#### Pre-Submittal Meeting Slides for Topical Report WCAP-18240-P, "Westinghouse Thermal Design Procedure (WTDP)," (Non-Proprietary)

July 18, 2018

Westinghouse Electric Company 1000 Westinghouse Drive Cranberry Township, PA 16066

© 2018 Westinghouse Electric Company LLC All Rights Reserved Westinghouse Non-Proprietary Class 3

© 2018 Westinghouse Electric Company LLC. All Rights Reserved. LTR-NRC-18-49 NP-Attachment

This page intentionally left blank.



# Pre-Submittal Meeting on WTDP (Westinghouse Thermal Design Procedure) Topical Report WCAP-18240-P July 18, 2018

**AP1000** is a trademark or registered trademark of Westinghouse Electric Company LLC, its affiliates and/or its subsidiaries in the United States of America and may be registered in other countries throughout the world. All rights reserved. Unauthorized use is strictly prohibited. Other names may be trademarks of their respective owners.



# AGENDA

- Introductions
- Acronyms
- Problem Statement and Need for Change
- Purpose and Scope
- Technical Overview
- DNBR Limit Calculation Inputs and Process
- Statistical Rods-in-DNB Inputs and Process
- Intended Applications
- Sample Results
- Conditions for WTDP Applications
- Topical Report Outline
- Summary



#### **Technical Acronyms**

| AO                  | Axial Offset                                                            |
|---------------------|-------------------------------------------------------------------------|
| ASI                 | Axial Shape Index (-AO)                                                 |
| CE                  | Combustion Engineering                                                  |
| CETOP-D             | Simplified TORC T/H code in 4-Channel Core Representation               |
| CHF                 | Critical Heat Flux                                                      |
| COLSS               | Core Operating Limit Supervisory System                                 |
| CPC                 | Core Protection Calculator                                              |
| DNB                 | Departure from Nucleate Boiling                                         |
| DNBR                | Departure from Nucleate Boiling Ratio                                   |
| $F_{\DeltaH}$       | Enthalpy Rise Hot Channel Factor                                        |
| LOCA                | Loss of Coolant Accident                                                |
| NGF                 | Next Generation Fuel (16x16 CE-NSSS design)                             |
| NSSS                | Nuclear Steam Supply System                                             |
| MSCU                | Modified SCU (CE-NSSS)                                                  |
| PWR                 | Pressurized Water Reactor                                               |
| RTDP                | Revised Thermal Design Procedure (Westinghouse-NSSS)                    |
| SAL                 | Safety Analysis Limit                                                   |
| SCU                 | Statistical Combination of Uncertainties (CE-NSSS)                      |
| SER                 | Safety Evaluation Report                                                |
| T/H                 | Thermal-Hydraulic (Design)                                              |
| THUNC <sub>SD</sub> | Standard deviation of T/H code uncertainties                            |
| TORC                | T/H Subchannel code used for CE-NSSS                                    |
| VVER                | Water-Water Energetic Reactor (Russian designed PWR)                    |
| VIPRE-W             | Westinghouse Version of VIPRE-01 T/H Subchannel Code                    |
| WTDP                | Westinghouse Thermal Design Procedure (Statistical DNB Method)          |
| $\sigma_{GM}$       | Standard deviation of DNB probability distribution for DNBR $\geq$ mean |
| σ <sub>LM</sub>     | Standard deviation of DNB probability distribution for DNBR < mean      |

#### Problem Statement and Need for Change

- Combustion Engineering (CE) and Westinghouse NSSS plants use different methods for DNBR limit calculations and rods-in-DNB calculations – [ ]<sup>a,c</sup>
- The NRC approval of the CE-NSSS methods is often documented within individual plant licensing bases, rather than in a generic topical report – [

]a,c

 Some plant analysis results are overly conservative and reloads/operations are penalized unnecessarily due to [ ]<sup>a,c</sup>



#### Purpose and Scope

- One topical report which consolidates existing approved methods for all PWRs would facilitate future analysis work and review activities
  - DNBR limit for Condition I and II events
  - Statistical rods-in-DNB evaluations for non-LOCA Condition III and IV events in support of radiological consequence analyses
- Applicable to all PWR designs (CE-NSSS, Westinghouse-NSSS, VVER, AP1000<sup>®</sup> reactors, APR1400)
- Improved ability to quantify analysis margin:
  - CE-NSSS DNBR limit calculation
  - Westinghouse-NSSS rods-in-DNB for rod ejection and locked rotor



#### **Technical Overview**

- WTDP based on existing CE-PWR statistical methods enhanced with VIPRE-W code:
  - 95/95 DNBR Limit
  - Rods-in-DNB convolution method for Condition III / IV events
- Maintains full compliance with current regulatory requirements and guidelines, including
  - NUREG-0800 Rev. 2 Section 4.4 (T/H Design)
  - NRC Information Notice 2014-01, "Fuel Safety Limit Calculation Inputs Were Inconsistent With NRC-Approved Correlation Limit Values"
- Topical report to be submitted for approval of extended applications of existing NRC-approved methods



# WTDP DNBR Limit Calculation - Input

- DNB correlation limit as approved by the NRC
- Parameter uncertainties
  - Plant-specific system (fuel-related) parameters
  - Plant-specific state (operating condition and peaking factors) parameters
- Code uncertainty
- Rod bow penalty [
- Design parameter ranges
  - Power
  - Pressure
  - Flow
  - T-in

]a,c





# WTDP DNBR Limit Calculation – Process

a,c

- Sample reference condition and calculate DNBR, [
- Additional sampling of [

]a,c

]a,c

 DNBR distribution generated with minimum of [ ]<sup>a,c</sup>



# WTDP for Statistical Rods-in-DNB Input and Process

- Based on existing method applied to CE-NSSS plants
  Credits the fact that there is only 5% probability with 95% confidence that DNB will occur at the 95/95 design DNBR limit
  - No change to conservative assumption of fuel failure when reaching DNB -
- DNB probability is determined by integrating the DNBR Limit probability density functions
  - la,c ]<sup>a,c</sup> ]a,c ]a,c
- % rods-in-DNB is determined based on probability distribution and following input:
  - a,c ]a,c ]a,c



# WTDP Intended Applications – Westinghouse-NSSS

- Applications will be on forward-fit basis for plants using RTDP:
  - Monte Carlo sampling for DNBR limit, and/or
  - Rods-in-DNB statistical convolution for Condition IV events
- Implementation requires [

]<sup>a,c</sup> including:

- Approved T/H code and DNB correlations
- Design interface for reload evaluations
- Flexible input for applications with advanced methods
  - Input of uncertainty in new parameter justified on plant specific basis
  - Can be used with new, approved DNB correlations, transient evaluation methods, etc.
  - Applicable to new plant designs



#### WTDP Intended Applications – CE-NSSS

- Applications to CE-NSSS currently using SCU/MSCU
  - Simplify DNBR limit calculation process to eliminate response surface as an intermediate step due to TORC code limitations
  - To be implemented with VIPRE-W code
- Support CETOP-D replacement with VIPRE-W under currently NRC-approved setpoint methodology and SER conditions
  - WCAP-16500-P-A, CE-NGF fuel topical report
  - WCAP-16500-P-A Supplement 1 Revision 1
  - Į

a,c



# Sample Results: WTDP 95/95 DNBR Limit Westinghouse-NSSS 4-Loop / 17x17 Vantage+ Fuel

| Method | DNB<br>Correlation | # of<br>R | Code<br>uns | 9:<br>DNB | 5/95<br>R Limit | Differ<br>DNB | rence in<br>R Limit |
|--------|--------------------|-----------|-------------|-----------|-----------------|---------------|---------------------|
| RTDP   | WRB-2              | [         | ]a,c        | [         | ]a,c            |               |                     |
| WTDP   | WRB-2              | [         | ]a,c        | [         | ]a,c            | [             | ]a,c                |
|        |                    | [         | ]a,c        | [         | ]a,c            | [             | ]a,c                |

• [



Westinghouse Non-Proprietary Class 3

© 2018 Westinghouse Electric Company LLC. All Rights Reserved.

# Sample Results: WTDP 95/95 DNBR Limit CE-NSSS System 80 / 16x16 CE16NGF Fuel

| Method            | DNB<br>Correlation | # <b>c</b> | of Code<br>Runs | 99<br>DNB | 5/95<br>R Limit | Differ<br>DNB | rence in<br>R Limit |
|-------------------|--------------------|------------|-----------------|-----------|-----------------|---------------|---------------------|
| TORC/SCU          | WSSV-T             | [          | ]a,c            | [         | ]a,c            | 1             | N/A                 |
| VIPRE-W /<br>WTDP | WSSV               | [          | ]a,c            | [         | ]a,c            | [             | ]a,c                |

• Т



© 2018 Westinghouse Electric Company LLC. All Rights Reserved. LTR-NRC-18-49 NP-Attachment

# Sample Results WTDP Rods-in-DNB Calculations

| Event           | W-NSSS / Fuel      | Rods-in-DNB<br>Deterministic<br>Method | WTDP<br>Rods-in-DNB<br>Statistical Method |
|-----------------|--------------------|----------------------------------------|-------------------------------------------|
| Locked<br>Rotor | 4-Loop<br>17x17 V+ | [ ]a,c                                 | [ ]a,c                                    |



# Implementation Prerequisites for WTDP Applications

- WTDP application to a plant, as an alternative to either RTDP or SCU, will be based on the following conditions:
  - WTDP shall be used with an <u>approved subchannel code and DNB correlation;</u>
  - <u>Input</u> of parameter uncertainties to the 95/95 DNBR limit calculation shall be justified on a plant specific basis;
  - Input of DNBR limit to the rods-in-DNB evaluation shall be justified on a plant specific basis;
  - The plant <u>application shall reference this report</u> for the statistical DNBR limit method or rods-in-DNB calculation <u>method</u>;
  - For CE-NSSS plants using the VIPRE-W code in <u>replacement of the CETOP-D</u> code, the WTDP application shall be within the limits and conditions of the CE-NSSS setpoint methodology as defined in <u>WCAP-16500-P-A Supplement 1 Revision 1</u>.



# **Topical Report Outline**

- Report Outline:
  - Introduction & Applicable Regulatory Requirements
  - Method for DNBR Limit Calculation
  - Method for Rods-In-DNB Calculation
  - Intended Applications
    - Westinghouse-NSSS plant DNBR limit
    - CE-NSSS plant DNBR limit
    - Non-LOCA rods-in-DNB events
  - Summary
  - Attachments of sample calculations



#### Licensee Implementation

- CE-NSSS
  - License amendment required to revise list of COLR Technical Specification references with respect to CETOP-D and TORC
  - Add reference to VIPRE-W (WCAP-14565-P-A), where applicable
- Westinghouse-NSSS
  - License amendment required to change COLR Technical Specification references, where currently listed, from ITDP (WCAP-8567-P-A) or RTDP (WCAP-11397-P-A) to approved version of WTDP (WCAP-18240-P) following approval
  - Add VIPRE-W (WCAP-14565-P-A) to THINČ-IV reference citations (e.g., WCAP-7956-A, WCAP-8054-P-A, WCAP-12330-P-A), where applicable



#### Summary

- Executive summary provided prior to the meeting (LTR-NRC-18-41)
- WTDP consolidates existing statistical DNB methods for all PWR • applications into one topical report
  - 95/95 DNBR limit
  - Rods-in-DNB for Conditions III and IV events
- Analysis and review efficiencies
  - Improved ability to quantify analysis margin
    Unnecessary penalties eliminated
- WTDP compatible with current design interfaces and complementary with Westinghouse advanced technologies
- Topical report to be submitted no later than August 30, 2018 for domestic plant applications

