VIRGINIA ELECTRIC AND POWER COMPANY RICHMOND, VIRGINIA 23261

November 12, 1996

Director, Office Nuclear Reactor Regulation	Serial No.	96-540
U.S. Nuclear Regulatory Commission	NL&OS/ETS	
Washington, D.C. 20555-0001	Docket Nos.	50-280 50-281
· · ·	License Nos.	DPR-32 DPR-37

Gentlemen:

VIRGINIA ELECTRIC AND POWER COMPANY **SURRY POWER STATION UNITS 1 AND 2** SIMULATOR CERTIFICATION FOUR-YEAR REPORTS

Pursuant to 10 CFR 55.45(b)(5)(ii), we are submitting the Simulator Facility Certification Four Year Report for Surry Units 1 and 2. The intent of these reports is to document our continuing compliance with ANSI/ANS-3.5-1985, as modified or endorsed by Regulatory Guide 1.149, dated April 1987. The reports are included as attachments to this letter.

If you have any questions, or require additional information please contact Dr. A. H. Friedman, Manager Nuclear Training at (804) 273-2701.

Very truly yours,

S. P. Sarver, Acting Manager Nuclear Licensing and Operations Support

> 05000280 PDR

Attachments

12002

200117

A0051/1

Mr. T. A. Peebles
 Chief, Division of Reactor Safety - Operations Branch
 U.S. Nuclear Regulatory Commission
 Region II
 101 Marietta Street, N.W.
 Suite 2900
 Atlanta, Georgia 30323

J

U.S. Nuclear Regulatory Commission Document Control Desk Washington, D.C. 20555-0001

Mr. R. A. Musser NRC Senior Resident Inspector Surry Power Station

5

SURRY UNIT 1 SIMULATOR CERTIFICATION

ì

1 ...

2nd FOUR YEAR REPORT

(1992 - 1996)

SURRY UNIT 1 SIMULATOR CERTIFICATION FOUR YEAR REPORT

1

This Surry Simulator Certification Four Year Report (1992 - 1996) consists of the following sections:

•	Previous Four Year Simulator Test Results Summary	(Attachment 1)
•	1997 - 2000 Simulator Test Schedule	(Attachment 2)

• Simulator Fidelity & Upgrade Report (Attachment 3)

ATTACHMENT 1 PREVIOUS FOUR YEAR SIMULATOR TEST RESULTS SUMMARY

;

Since October 1992, a number of modifications have been made to the Surry simulator. Testing, which verified simulator fidelity acceptable for training and certification, has been completed. Discrepancies that are identified during the report period are resolved in a timely manner in accordance with training administrative procedures.

The Integrated Tests for the Unit Cooldown for Hot Shutdown to Intermediate Shutdown and Unit Cooldown for Intermediate Shutdown to Cold Shutdown were performed in the first year of this cycle, 1992, instead of the fourth year as scheduled. The Integrated Tests for the Unit Heatup from Cold Shutdown to Intermediate Shutdown and Heatup from Intermediate Shutdown to Hot Shutdown were performed in the fourth year of this cycle, 1996, instead of the first year as scheduled. All testing was satisfactorily completed within the four-year time frame specified.

Based upon the testing conducted, and their results, the Surry simulator is acceptable for licensed operator training and retraining.

MALFUNCTION MODIFICATIONS

The following malfunctions were modified to meet changing training requirements.

MMI03

GRADUAL INCREASE IN CONTAINMENT PRESSURE

Modification to instructor console program required the deletion of the "MI" System designation for all instructor console malfunctions and overrides. Therefore MMI03, Gradual Increase In Containment Pressure, was renamed to MRS11, Gradual Increase In Containment Pressure. No modeling changes were made as a result of this action.

MMI04 FAILURE OF REACTOR TRIP BUTTON

Modification to instructor console program required the deletion of the "MI" System designation for all instructor console malfunctions and overrides. Therefore MMI04, Failure Of Reactor Trip Button, was renamed to MRD21, Failure Of Reactor Trip Button. No modeling changes were made as a result of this action.

ATTACHMENT 2 1997 - 2000 SIMULATOR TEST SCHEDULE

The next four year simulator test schedule follows. The tests are divided in such a manner as to ensure that 25% are performed each year thereby ensuring that all testing is completed within the four year time frame specified.

SIMULATOR PERFORMANCE TEST SCHEDULE

The performance testing to be conducted over the next four years will consist of the following.

- The Steady State Tests of ANS-3.5-1985 Appendix B section B.2.1 will be conducted annually.
- The Transient Performance Tests of ANS-3.5-1985 Appendix B section B.2.2 will be conducted annually.

November 1996 - October 1997

Integrated Tests

, ··· ,

- Plant Heatup from Cold Shutdown to Intermediate Shutdown.
- Plant Heatup from Intermediate Shutdown to Hot Shutdown.

Malfunction Tests

MCA01	INSTRUMENT AIR LEAK
MCA02	CONTAINMENT INSTRUMENT AIR COMPRESSOR IA-C-4A, B TRIP
MCA04	CONTAINMENT INSTRUMENT AIR HEADER LEAK
MCA08	INSTRUMENT AIR COMPRESSOR OVERLOAD TRIP
MCC01	LOSS OF CC WATER TO SW THROUGH CC HX'S
MCC03	OVERLOAD TRIP OF COMPONENT COOLING WATER PUMP
MCC04	LOSS OF COMPONENT COOLING TO NON-REGENERATIVE HEAT
	EXCHANGER
MCC05	THERMAL BARRIER LEAK TO CC SYSTEM
MCH01	ISOLABLE LETDOWN LINE LEAK IN CONTAINMENT
MCH02	ISOLABLE LETDOWN LINE OUTSIDE CONTAINMENT

. MCH03	CHARGING LINE LEAK DOWNSTREAM FCV-1122 OUTSIDE CONTAINMENT
MCH05	LOSS OF CHARGING PUMP
MCH06	NON-REGENERATIVE HEAT EXCHANGER TEMPERATURE
	CONTROLLER TC-1144B FAILS
MCH11	RCP SEAL WATER INJECTION PRESSURE TRANSMITTER FAILURE
MCH12	RCP SEAL WATER RETURN HEADER TEMPERATURE TRANSMITTER
	FAILURE
MCH13	TUBE RUPTURE IN THE NON-REGENERATIVE HEAT EXCHANGER
MCH17	SEAL WATER RETURN FILTER CLOGS
MCH19	VCT LEVEL CONTROLLER FAILURE
MCH20	FUEL MELT
MCH21	VCT LEVEL TRANSMITTER FAILURE
MCH22	VOLUME CONTROL TANK PRESSURE TRANSMITTER FAILURE
MCH23	VOLUME CONTROL TANK TEMPERATURE TRANSMITTER FAILURE
MCH24	BORIC ACID FLOW CONTROLLER 1113 FAILURE
MCH25	PRIMARY WATER FLOW CONTROLLER 1114 FAILURE
MCH28	FAILURE OF CHARGING FLOW CONTROLLER
MCH29	FAILURE OF CHARGING FLOW TRANSMITTER
MCH31	REGENERATIVE HEAT EXCHANGER OUTLET TEMPERATURE
	TRANSMITTER CH-TE-1123
MCH35	LOW PRESSURE LETDOWN FLOW TRANSMITTER FAILURE
MCH36	LETDOWN PRESSURE CONTROLLER (PC-1145) FAILURE
MCH37	LOW PRESSURE LETDOWN LINE PRESSURE TRANSMITTER PT-1145
	FAILURE
MCH38	REGENERATIVE HEAT EXCHANGER LETDOWN TEMPERATURE
	TRANSMITTER FAILURE
MCH39	LETDOWN LINE RELIEF LINE TEMPERATURE TRANSMITTER
MCH40	LOW PRESSURE LETDOWN LINE TEMPERATURE TRANSMITTER
2 6077 / 4	
MCH41	NON-REGENERATIVE HEAT EXCHANGER OUTLET TEMPERATURE
	TRANSMITTER FAILURE
MCN01	LOSS OF CONDENSATE PUMP, OVER CURRENT
MCN02	AIR LEAK INTO MAIN CONDENSER CN-SC-1A & 1B BOOT
MCN03	HOTWELL LEVEL CONTROLLER FAILURE LC-CN-102
MCN05	CONDENSATE LINE LEAK BETWEEN CN_114 AND FCV-CN-107
MCN08	LOSS OF AIR EJECTOR LOOP SEAL
MELOI	LOSS OF ALL OFFSITE POWER
MEL02	MAIN GENERATOR TRIP

. ...

.

.

: د د د

November 1997 - October 1998

Integrated Tests

2

L ...

.

• Unit start up operations (Hot Shutdown to Full Power).

Malfunction Tests

MEI 07	LOSS OF 4160V STATION BUS
MELO8	LOSS OF SCREENWELL TRANSFORMER
MEL09	LOSS OF EMERGENCY DIESEL GENERATOR
MEL12	LOSS OF 480V EMERGENCY SWITCHGEAR
MEL13	LOSS OF 480V EMERGENCY MOTOR CONTROL CENTER
MEL14	LOSS OF SEMI-VITAL BUS
MEL17	LOSS OF 125V D.C. BUS
MEL18	LOSS OF 480V STATION SWITCHGEAR
MEL19	LOSS OF 480V MOTOR CONTROL CENTER
MEL20	LOSS OF AC VITAL BUS
MEL21	LOSS OF 4160V EMERGENCY BUS
MFW01	MAIN FEEDWATER PUMP RECIRC VALVE FAILS OPEN
MFW02	MAIN FEEDWATER REGULATING VALVE FAILS CLOSED
MFW04	MAIN FEED PUMP LOW LUBE OIL PRESSURE
MFW05	MAIN FEEDWATER BREAK BETWEEN FLOW TRANSMITTER AND
	DISCHARGE CHECK VALVE
MFW07	AUX FEED PUMPS FW-P-3A/B TRIP : OVERCURRENT
MFW08	AUX FEED PUMP TURBINE WON'T STOP
MFW10	AUXILIARY FEED PUMP CHECK VALVE OPEN
MFW12	MAIN FEED PUMP SUCTION LINE BREAK
MFW13	STEAM GENERATOR LEVEL TRANSMITTER FAILURE (0-100%)
MFW14	AUXILIARY FEEDWATER BREAK DOWNSTREAM OF FLOW
	TRANSMITTER AND CHECK VALVE
MFW15	MAIN FEEDWATER BREAK DOWNSTREAM OF CHECK VALVE
	OUTSIDE CONTAINMENT
MFW16	MAIN FEEDWATER BREAK IN CONTAINMENT
MFW17	DEGRADATION OF MAIN FEED PUMP
MFW18	STEAM GEN MAIN FEED FLOW TRANSMITTER FAILURE
MFW19	STEAM GEN MAIN FEED FLOW CONTROLLER FAILURE
MFW20	STEAM GEN WIDE RANGE LEVEL TRANSMITTER FAILURE
MFW21	STEAM GEN AUX FEED FLOW TRANSMITTER FAILURE
MFW22	STEAM GEN MAIN FEED HEADER PRESSURE TRANSMITTER FAILURE
MFW23	TOTAL LOSS OF FEEDWATER
MMS01	RUPTURE OF MAIN STEAM LINE AT HEADER
MMS03	RUPTURE OF MAIN STEAM LINE UPSTREAM OF FLOW ELEMENT
MMS04	RUPTURE OF MAIN STEAM LINE BEFORE THE TRIP VALVE
MMS06	MAIN STEAM TRIP VALVE FAILS AS IS
MMS07	MAIN STEAM SAFETY VALVE FAILS OPEN

MMS08	STEAM GEN STEAM FLOW TRANSMITTER FAILURE
MMS09	MAIN STEAM TRIP VALVE FAILS SHUT
MMS10	FAILURE OF AUTO STEAM DUMP AS IS
MMS11	MAIN STEAM HEADER PRESSURE TRANSMITTER FAILURE
MMS13	STEAM GEN PRESSURE TRANSMITTER FAILURE
MMS14	TURBINE FIRST STAGE PRESSURE TRANSMITTER FAILURE

November 1998 - October 1999

Integrated Tests

÷

.

. .

.

.

- Decreasing power from 100% power level to Hot Shutdown conditions.
- Computer Real Time Test.

Malfunction Tests

MMS15	SG PORV CONTROLLER FAILURE
MNI01	SOURCE RANGE CHANNEL FAILURE
MNI02	SOURCE RANGE DETECTOR FAILURE (DISCRIMINATOR ERROR)
MNI03	INTERMEDIATE RANGE CHANNEL UNDERCOMPENSATION
MNI04	INTERMEDIATE RANGE CHANNEL OVERCOMPENSATION
MNI05	INTERMEDIATE RANGE CHANNEL FAILURE
MNI06	FAILURE OF IR TO ALLOW SR BLOCK
MNI07	LOSS OF INSTRUMENT POWER TO POWER RANGE CHANNEL
MNI08	POWER RANGE CHANNEL UPPER DETECTOR FAILURE
MNI09	POWER RANGE CHANNEL LOWER DETECTOR FAILURE
MNI10	POWER RANGE CHANNEL FAILS
MRC01	REACTOR COOLANT SYSTEM COLD LEG PIPE RUPTURE
MRC02	REACTOR COOLANT SYSTEM HOT LEG PIPE RUPTURE
MRC03	REACTOR COOLANT SYSTEM SUCTION LEG PIPE RUPTURE
MRC04	REACTOR COOLANT SYSTEM NONISOLABLE LEAK
MRC05	RCP OVERCURRENT TRIP
MRC07	FAILURE OF NARROW RANGE T-HOT INSTRUMENT / RTD
MRC08	TAYLOR MATH UNIT FAILURE HI/LO
MRC11	FAILURE OF NARROW RANGE T-COLD INSTRUMENT / RTD
MRC14	FAILURE OF RCP SEAL #3
MRC15	PRZR PRESSURE CONTROLLERS FAILURE
MRC16	PRZR REL/SFTY VV LINE TEMPERATURE TRANSMITTER FAILURE
MRC17	PRESSURIZER LEVEL CONTROL FAILURE
MRC20	BOTH PRZR SPRAY VALVES FAIL SHUT
MRC21	PRESSURIZER SAFETY VALVE FAILS OPEN
MRC22	PRZR SPRAY VALVE FAILS OPEN
MRC24	STEAM GENERATOR TUBE RUPTURE
MRC25	PRESSURIZER HEATERS GROUP FAIL ON

.

RCP SHAFT SHEARS
LOSS OF SEAL INJECTION FLOW TO RCP
REACTOR COOLANT LOOP FLOW TRANSMITTER FAILURE
RCS WIDE AND NARROW RANGE PRESSURE TRANSMITTER
FAILURE
PRESSURIZER RELIEF TANK PRESSURE TRANSMITTER FAILURE
LOSS OF COMPONENT COOLING WATER TO RCP
PRESSURIZER PORV LEAKAGE
PRESSURIZER TEMPERATURE TRANSMITTER FAILURE
PRESSURIZER RELIEF TANK TEMPERATURE TRANSMITTER
FAILURE
REACTOR VESSEL LEAKOFF TEMPERATURE TRANSMITTER
FAILURE
PRESSURIZER PRESSURE TRANSMITTER FAILURE
PRESSURIZER LEVEL TRANSMITTER FAILURE
PRESSURIZER RELIEF TANK LEVEL TRANSMITTER FAILURE

.

November 1999 - October 2000

Integrated Tests

2

. ..

- Unit cooldown from Hot Shutdown to Intermediate Shutdown.
- Unit cooldown from Intermediate Shutdown to Cold Shutdown.

Malfunction Tests

MRD01	CONTINUOUS ROD WITHDRAWAL, MANUAL OR AUTO
MRD02	CONTINUOUS ROD INSERTION MANUAL OR AUTO
MRD03	LOGIC FAILURE CAUSING TWO BANKS TO MOVE AT THE SAME
	TIME
MRD04	AUTO AND MANUAL ROD CONTROL INOPERABLE
MRD05	CONTROL BANKS IN SPEED FAIL TO 72 SPM
MRD06	CONTROL BANKS IN SPEED FAIL TO 8 SPM
MRD07	CONTROL BANKS OUT SPEED FAIL TO 72 SPM
MRD08	CONTROL BANKS OUT SPEED FAIL TO 8 SPM
MRD09	CONTROL BANK MOVES OUT WHEN IN DEMANDED IN AUTO
MRD10	CONTROL BANK MOVES IN WHEN OUT DEMANDED IN AUTO
MRD12	DROPPED CONTROL ROD
MRD13	EJECTED CONTROL ROD
MRD15	REACTOR TRIP BREAKERS OPEN DUE TO UV COIL FAILURE
MRD16	INDIVIDUAL ROD POSITION INDICATION FAIL
MRD18	FAIL OF AUTO TRIP TO SCRAM RX
MRD19	FAILURE OF ALL ROD STOPS TO BLOCK ROD MOVEMENT
MRD20	STUCK ROD

MRD21	FAILURE OF REACTOR TRIP BUTTON
MRH01	RESIDUAL HEAT REMOVAL SYSTEM LEAK
MRH02	LOSS OF RESIDUAL HEAT REMOVAL PUMP
MRH04	HCV-1758 CONTROLLER OUTPUT FAILURE
MRH05	RHR FLOW CONTROLLER FC-1605 FAILS
MRH06	RELIEF VALVE FAILS OPEN ON RESIDUAL HEAT
	REMOVAL SYSTEM
MRM01	AREA RADIATION MONITOR FAILS
MRM02	PROCESS RADIATION MONITOR FAILURE
MRS06	LOSS OF OUTSIDE RECIRC SPRAY PUMP
MRS07	LOSS OF INSIDE RECIRC SPRAY PUMP
MRS08	LOSS OF CONTAINMENT SPRAY PUMP
MRS11	GRADUAL INCREASE IN CONTAINMENT PRESSURE
MSI03	SAFETY INJECTION HOT LEG FLOW TRANSMITTER FAILURE
MSI04	SAFETY INJECTION TOTAL FLOW TRANSMITTER FAILURE
MSI05	LHSI PUMP FLOW TRANSMITTER FAILURE
MSI06	SAFETY INJECTION COLD LEG FLOW TRANSMITTER FAILURE
MSI07	SAFETY INJECTION ACCUMULATOR TRANSMITTER FAILURE
MSI08	FAILURE OF SAFETY INJECTION RESET TIMER
MSI10	LOW HEAD SAFETY INJECTION PUMP IMPELLER DEGRADATION
MTU01	TURBINE TRIP DUE TO SOLENOID FAILURE
MTU04	FAILURE OF MANUAL TURBINE TRIP
MTU13	FAILURE OF AUTOMATIC TURBINE RUNBACK
MWD01	DROPPED SPENT FUEL ASSEMBLY IN THE SPENT FUEL PIT
MWD03	ACCIDENTAL RELEASE OF RADIOACTIVE GAS

.

. ,

2

ATTACHMENT 3 SIMULATOR FIDELITY & UPGRADE REPORT

PHYSICAL FIDELITY

Physical fidelity is verified with an item-by-item comparison of the Simulator Control Room to a series of Unit 1 Plant Control Room photographs that are taken annually. Identified discrepancies are scheduled for resolution during the current year.

The report includes identification of all unresolved Simulator Control Panel discrepancies and indicates the work to be performed based on training impact, cost effectiveness, and other considerations as appropriate. Also included are discrepancies identified as requiring no action. Generic Control Room/Panel differences have been identified as necessary.

The simulator <u>Physical Fidelity Report</u> is not included with this report; however, it is available for examination.

CONTROL ROOM AND SIMULATOR PANEL COMPARISON

A review was conducted of the original and the first four-year submittal reports on the Surry Control Room and Simulator Comparison of Panel Layout. The review was performed to update the changes made during the prior four years and to validate the original differences noted. This comparison also identifies any differences between Unit 1 and Unit 2 Control Room Panels.

The review of the <u>Control Room and Simulator Panel Comparison</u> is not included with this report; however, it is available for examination.

Panels that remain non-simulated because of their relative minor training value are:

ROBERTSHAW FIRE PROTECTION PANEL STATION FIRE PROTECTION PANEL FLOOD CONTROL PANEL (Hardware only installed)

CONTROL ROOM AND SIMULATOR ENVIRONMENTAL REVIEW

2

The following minor environmental differences identified in the original and the first four year simulator certification report have been incorporated into the simulator:

Simulator Gaitronics system has been modified to mute the paging feature from the control room.

The remaining environmental differences identified in the initial and the first four year simulator certification reports have been reviewed and found to have no impact on training. Based upon the review results, the simulator is acceptable for operator training and retraining.

OTHER SIMULATOR UPGRADES INSTALLED

- The simulator *Electronic Associates Inc.* hardware I/O system was replaced and upgraded to a *VMIC "Intelligent I/O Control"* system.
- The simulator computer hardware configuration was upgraded from a Gould 32/8780 to a SUN SPARC 10 workstation. The simulation software was then recompiled to run on the new UNIX platform. Extensive testing was conducted to ensure model integrity and functionality of all simulator features.
- Reactor core cycles upgrades 13, and 14 were installed upon completion of the respective station refueling cycle.
- A Simulator model modification was installed during the normal Design Change process for DCP-94-30-3, Core Uprate Setpoint Change. This change increased the core operating power level to 2546 MWt. This Design Change also modified the RWST, Hi Steam Flow, SI Pressurizer Pressure Low, Tave and Delta T setpoints. Modification was also performed to the Steam Dump, Rod Speed, Pressurizer Level, Turbine First Stage, and EHC System control and equipment protection functions.
- A Simulator model modification was installed during the normal Design Change process for DCP-92-028, Radiation Monitor Ratemeter and Recorder Replacement. This design change is still in progress; however, the portion which was completed replaced the Radiation Monitor Alarm Panel in its entirety.
- The simulator's audio and video recording capability was enhanced by the addition of upgraded microphones and cameras.

SIMULATOR DISCREPANCIES IDENTIFIED DURING NRC EXAMINATIONS.

The following simulator discrepancies were identified during NRC inspections from September, 1993 to September, 1996.

<u>SMR No.</u>	DESCRIPTION
9301281000	The simulator did not adequately model RHR mid-loop operation/evolutions. RHR model upgrade completed on 03-14-94
9411290805	During Reactor Coolant System (RCS) cooldown, RCS pressure suddenly and unexpectedly decreased.
	Repair completed on 04-18-95
9412281237	Simulator label plate for 2-VS-HF-4 incorrectly reads 2-VS-F-4.
	Label replaced on 03-23-95

SURRY UNIT 2 SIMULATOR CERTIFICATION 2nd FOUR YEAR REPORT (1992 - 1996)

SURRY UNIT 2 SIMULATOR CERTIFICATION FOUR YEAR REPORT

The Surry Power Station is a two unit station, operating from a common control room. The respective unit control panels are identical in their configuration and layout with respect to the operator. A few auxiliary systems panels present a mirror image layout to the operator in order to maintain an overall balanced appearance of the control room.

This Surry Unit 2 Simulator Certification Four Year Report consist of the following sections:

• Simulator Fidelity & Upgrade Report

(Attachment 1)

There were no significant differences identified during the previous four years. The Surry Unit 1 Simulator meets the Unit 2 training needs.

ATTACHMENT 1 SIMULATOR FIDELITY & UPGRADE REPORT

⊊ € ≿ .

PHYSICAL FIDELITY

A review was conducted of the original and the first four-year submittal reports on the Surry Unit 2 Control Room and Simulator Panel Comparison. The review was performed to update the changes made during the prior four years and to validate the original differences noted. This comparison also identifies any differences between Unit 1 and Unit 2 Control Room Panels.

The review of the <u>Control Room and Simulator Panel Comparison</u> is not included with this report; however, it is available for examination.

Panels specific to Unit 2 operation that remain non-simulated because of their relative minor training value are:

VICTOREEN RADIATION MONITORING **INCORE FLUX DISTRIBUTION PANEL** NUCLEAR INSTRUMENTATION PANEL CONTAINMENT HIGH RANGE RADIATION MONITORING PANEL **EMERGENCY DIESEL GENERATOR #2 PANEL** EMERGENCY DIESEL GENERATOR #3 PANEL (UNIT 2 SIDE) TURBINE SUPERVISORY PANEL **REACTOR COOLANT PUMP VIBRATION PANEL** SECONDARY CHEMISTRY MONITORING PANEL VERTICAL BOARD #1 VERTICAL BOARD #2 POST ACCIDENT MONITORING PANEL **BENCHBOARD #1 BENCHBOARD #2** PLANT COMPUTER P-250 OPERATOR STATION **RADIATION MONITORING PANELS**

ENVIRONMENTAL REVIEW

Environmental differences between the simulator and the Unit 1 Control Room are discussed within the Surry Unit 1 Simulator Certification Four Year Report.