CATEGORY 1

REGULAT INFORMATION DISTRIBUTION YSTEM (RIDS)

ACCESSION NBR:9801280175 DOC.DATE: 98/01/22 NOTARIZED: NO FACIL:50-281 Surry Power Station, Unit 2, Virginia Electric & Powe 05000281 AUTH.NAME AUTHOR AFFILIATION MCCARTHY, J.H. Virginia Power (Virginia Electric & Power Co.) RECIP.NAME RECIPIENT AFFILIATION REYES, L.A. Region 2 (Post 820201) SUBJECT: Forwards rev 0 to NE-1148, "Surry Unit 2 Cycle 15 Startup Physics Test Rept," summarizing results of physics testing program performed after initial criticality of cycle 15 on 971030. DISTRIBUTION CODE: IE26D COPIES RECEIVED:LTR ENCL SIZE: TITLE: Startup Report/Refueling Report (per Tech Specs) NOTES: 05000281 G RECIPIENT COPIES RECIPIENT COPIES 0 ID CODE/NAME LTTR ENCL ID CODE/NAME LTTR ENCL PD2-1 PD 1 EDISON, G. 1 TIE CENTER INTERNAL: ACRS 1 1 NRR/DSSA/SRXB/B 1 RGN2 01 1 . FILE EXTERNAL: NOAC 1 NRC PDR 1 1 1 1 NOTES: 1 1 D E

NOTE TO ALL "RIDS" RECIPIENTS:

PLEASE HELP US TO REDUCE WASTE. TO HAVE YOUR NAME OR ORGANIZATION REMOVED FROM DISTRIBUTION LISTS OR REDUCE THE NUMBER OF COPIES RECEIVED BY YOU OR YOUR ORGANIZATION, CONTACT THE DOCUMENT CONTROLDESK (DCD) ON EXTENSION 415-2083

CATEGORY 1

REGULAT INFORMATION DISTRIBUTION YSTEM (RIDS)

ACCESSION NBR:9801280175 DOC.DATE: 98/01/22 NOTARIZED: NO DOCKET # FACIL:50-281 Surry Power Station, Unit 2, Virginia Electric & Powe 05000281 AUTHOR AFFILIATION AUTH.NAME Virginia Power (Virginia Electric & Power Co.) MCCARTHY, J.H. RECIPIENT AFFILIATION RECIP.NAME Region 2 (Post 820201) REYES, L.A. SUBJECT: Forwards rev 0 to NE-1148, "Surry Unit 2 Cycle 15 Startup Physics Test Rept," summarizing results of physics testing program performed after initial criticality of cycle 15 on 971030. DISTRIBUTION CODE: IE26D COPIES RECEIVED:LTR ENCL TITLE: Startup Report/Refueling Report (per Tech Specs) 05000281 NOTES: G RECIPIENT COPIES RECIPIENT COPIES 0 LTTR ENCL ID CODE/NAME ID CODE/NAME LTTR ENCL PD2-1 PD 1 EDISON, G. 1 INTERNAL: ACRS 1 CENTER. 1 1 1 1 1 NRR/DSSA/SRXB/B RGN2 1 FILE EXTERNAL: NOAC 1 1 NRC PDR 1 1 NOTES: 1 1 Ď IJ M E

NOTE TO ALL "RIDS" RECIPIENTS:
PLEASE HELP US TO REDUCE WASTE. TO HAVE YOUR NAME OR ORGANIZATION REMOVED FROM DISTRIBUTION LISTS
OR REDUCE THE NUMBER OF COPIES RECEIVED BY YOU OR YOUR ORGANIZATION, CONTACT THE DOCUMENT CONTROL
DESK (DCD) ON EXTENSION 415-2083

VIRGINIA ELECTRIC AND POWER COMPANY RICHMOND, VIRCINIA 23261

January 22, 1998

Mr. Luis A. Reyes, Administrator United States Nuclear Regulatory Commission Region II Atlanta Federal Center 61 Forsyth St., SW, Suite 23T85 Atlanta, Georgia 30303 Serial No. 98-048

NLOS/GDM

Docket No. 50-281

License No. DPR-37

Dear Mr. Reyes:

VIRGINIA ELECTRIC AND POWER COMPANY SURRY POWER STATION UNIT 2 CYCLE 15 STARTUP PHYSICS TESTS REPORT

As required by Surry Technical Specification 6.6.A.1, enclosed is the Virginia Electric and Power Company Technical Report NE-1148, Revision 0, entitled "Surry Unit 2, Cycle 15 Startup Physics Tests Report." This report summarizes the results of the physics testing program performed after the initial criticality of Cycle 15 on October 30, 1997. The results of the physics tests were within the applicable Technical Specification limits.

If you have any questions or require additional information, please contact us.

Very truly yours,

CC:

ປ. H. McCanthy, Manager

Nuclear Operations and Licensing Support

Enclosure - Surry Unit 2, Cycle 15 Startup Physics Tests Report

Commitment Summary: No new commitments are intended as a result of this letter.

7801280175 780122 PDR ADOCK 05000281 P PDR

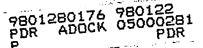
U. S. Nuclear Regulatory Commission - 5 copies

Attention: Document Control Desk

Washington, D. C. 20555

Mr. R. A. Musser NRC Senior Resident Inspector

Surry Power Station



Te26

Surry Unit 2, Cycle 15 Startup Physics Test Report

Nuclear Analysis and Fuel
Nuclear Engineering & Services

December, 1997

TECHNICAL REPORT NE-1148 - Rev. 0

SURRY UNIT 2, CYCLE 15 STARTUP PHYSICS TESTS REPORT

NUCLEAR ANALYSIS AND FUEL NUCLEAR ENGINEERING AND SERVICES VIRGINIA POWER DECEMBER 1997

PREPARED BY: 12/16/97

D. T. Bloom Date

REVIEWED BY: Shores S. Psinh

12/16/97

REVIEWED BY: NEKAWILINE

1422/97

APPROVED BY:_

D. Dziadosz

//5/90 Date

QA Category: Nuclear Safety Related

Keywords: SPS2, S2C15, Startup

CLASSIFICATION/DISCLAIMER

The data, techniques, information, and conclusions in this report have been prepared solely for use by Virginia Electric and Power Company (the Company), and they may not be appropriate for use in situations other than those for which they have been specifically prepared. The Company therefore makes no claim or warranty whatsoever, express or implied, as to their accuracy, usefulness, or applicability. In particular, THE COMPANY MAKES NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, NOR SHALL ANY WARRANTY BE DEEMED TO ARISE FROM COURSE OF DEALING OR USAGE OF TRADE, with respect to this report or any of the data, techniques, information, or conclusions in it. By making this report available, the Company does not authorize its use by others, and any such use is expressly forbidden except with the prior written approval of the Company. Any such written approval shall itself be deemed to incorporate the disclaimers of liability and disclaimers of warranties provided herein. In no event shall the Company be liable, under any legal theory whatsoever (whether contract, tort, warranty, or strict or absolute liability), for any property damage, mental or physical injury or death, loss of use of property, or other damage resulting from or arising out of the use, authorized or unauthorized, of this report or the data, techniques, information, or conclusions in it.

TABLE OF CONTENTS

	·	PAGE
Classificati	on/Disclaimer	1
Table of Con	tents	2
List of Tabl	es	3
List of Figu	res	4
Preface	••••••••	5
Section 1	Introduction and Summary	7
Section 2	Control Rod Drop Time Measurements	16
Section 3	Control Rod Bank Worth Measurements	21
Section 4	Boron Endpoint and Worth Measurements	26
Section 5	Temperature Coefficient Measurement	30
Section 6	Power Distribution Measurements	32
Section 7	References	39
APPENDIX	Startup Physics Test Results and	4 0

LIST OF TABLES

TABLE	TITLE	PAGE
1.1	Chronology of Tests	10
2.1	Hot Rod Drop Time Summary	18
3.1	Control Rod Bank Worth Summary	23
4.1	Boron Endpoints Summary	28
5.1	Isothermal Temperature Coefficient Summary	31
6.1	Incore Flux Map Summary	34
6.2	Comparison of Measured Power Distribution Parameters With Their Core Operating Limits	35

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Core Loading Map	11
1.2	Beginning of Cycle Fuel Assembly Burnups	12
1.3	Incore Thimble Locations	13
1.4	Burnable Poison Locations1	4
1.5	Control Rod Locations	15
2.1	Typical Rod Drop Trace	19
2.2	Rod Drop Time - Hot Full Flow Conditions	20
3.1	Bank B Integral Rod Worth - HZP	24
3.2	Bank B Differential Rod Worth - HZP	25
4.1	Boron Worth Coefficient	29
6.1	Assemblywise Power Distribution - 30% Power	36
6.2	Assemblywise Power Distribution - 69% Power	37
6.3	Assemblywise Power Distribution -100% Power	38

PREFACE

This report presents the analysis and evaluation of the physics tests which were performed to verify that the Surry 2, Cycle 15 core could be operated safely, and makes an initial evaluation of the performance of the core. It is not the intent of this report to discuss the particular methods of testing or to present the detailed data taken. Standard test techniques and methods of data analysis were used. The test data, results, and evaluations, coupled with the detailed startup procedures, are on file at the Surry Power Station. Therefore, only a cursory discussion of these items is included in this report. The analyses presented include a brief summary of each test, a comparison of the test results with design predictions, and an evaluation of the results.

The Surry 2, Cycle 15 Startup Physics Test Results and Evaluation Sheets are included as an appendix to provide additional information on Each data sheet provides the following the startup test results. information: 1) test identification, 2) test conditions (design), 3) test conditions (actual), 4) test results, 5) acceptance criteria, and 6) comments concerning the test. These sheets provide a compact summary of the startup test results in a consistent format. The design test conditions and design values at these design conditions for the measured parameters were completed prior to the startup physics testing. The entries for the design values were based on the calculations performed by Virginia Electric and Power Company's Nuclear Analysis and Fuel Group 1. During the tests, the data sheets were used as guidelines both to verify that the proper test conditions were met and to facilitate the preliminary comparison between measured and predicted test results, thus enabling a quick identification of possible problems occurring during the tests.

SECTION 1

INTRODUCTION AND SUMMARY

On October 6, 1997, Surry Unit 2 shut down for its fourteenth refueling. During this shutdown, 57 of the 157 fuel assemblies in the core were replaced with 56 fresh assemblies and 1 once-burned assembly. The Cycle 15 core consists of seven sub-batches of fuel: two fresh batches (batches 17A and 17B); three once burned batches, two from cycle 14 (batches 16A and 16B), and one from Surry 1 Cycle 13 (batch S1/15A); and two twice burned batches (batches 15A and 15B). The core loading pattern and the design parameters for each sub-batch are shown in Figure 1.1. Beginning-of-cycle (BOC) fuel assembly burnups are given in Figure 1.2. The incore thimble locations available during startup physics testing are identified in Figure 1.3. Figure 1.4 identifies the location and number of burnable poison rods for Cycle 15, while Figure 1.5 identifies the control rod locations.

The Cycle 15 core achieved initial criticality at 1213 on October 30, 1997. Startup Physics tests, with the exception of hot rod drops, were performed after criticality as outlined in Table 1.1. Hot rod drops were performed prior to criticality. A summary of the physics test results follows.

 The measured drop time of each control rod was within the 2.4 second limit of Technical Specification 3.12.C.1.

- 2. The reference control rod bank was measured with the dilution method, and the result was within 3.0% of the design prediction. Individual control rod bank worths were measured using the rod swap technique^{2,3} and all results were within 3.6% of the design predictions. The sum of the individual measured control rod bank worths was within 0.6% of the design prediction. All results were within the design tolerance of ±15% for individual bank worths (±10% for the rod swap reference bank worth) and the design tolerance of ±10% for the sum of the individual control rod bank worths.
- Measured critical boron concentrations for two control bank configurations were within 3 ppm of the design predictions. The all-rods-out (ARO) result was within the 50 ppm design tolerance, and met the Technical Specification 4.10.A criterion that the overall core reactivity balance shall be within $\pm 1\%$ $\Delta k/k$ of the design prediction. The reference bank in critical boron concentration was within its design tolerance.
- 4. The boron worth coefficient measurement was within 4.1% of the design prediction, which is within the design tolerance of $\pm 10\%$.
- 5. The measured isothermal temperature coefficient (ITC) for the all-rods-out configuration was within 1.29 pcm/°F of the design prediction. This result is within the design tolerance of ±3 pcm/°F. The measured ITC was -1.43 pcm/°F. When the Doppler temperature coefficient (-1.69 pcm/°F) and a 0.5 pcm/°F uncertainty are accounted for in the +6.0 pcm/°F MTC limit of the

Core Operating Limits Report (COLR) Section 2.1, the MTC requirement is satisfied as long as the ITC is less positive than $3.81 \text{ pcm/}^{\circ}\text{F}$.

6. Measured core power distributions were within established acceptance criteria and COLR limits. The average relative assembly power distribution measured/predicted percent difference was 1.8% or less for the three initial power ascension flux maps. The heat flux hot channel factors, F-Q(Z), and enthalpy rise hot channel factors, F-DH(N), were within the limits of COLR Sections 2.3 and 2.4, respectively. Note that since there are no LOPAR assemblies in this cycle, the FdH limits for all assemblies are the same.

In summary, all startup physics test results were acceptable.

Detailed results, specific design tolerances and acceptance criteria for each measurement are presented in the following sections of this report.

Table 1.1

SURRY 2 - CYCLE 15 STARTUP PHYSICS TESTS
CHRONOLOGY OF TESTS

Test	Date	Time	Power	Reference Procedure
Hot Rod Drop - Hot Full Flow	10/29/97	1700	HSD	2-NPT-RX-014
Zero Power Testing Range	10/30/97	1302	HZP	2-NPT-RX-008
Reactivity Computer Checkout	10/30/97	1340	HZP	2-NPT-RX-008
Boron Endpoint - ARO	10/30/97	1800	HZP	2-NPT-RX-008
Boron Worth Coefficient - ARO	10/30/97	1800	HZP	2-NPT-RX-008
Temperature Coefficient - ARO	10/30/97	1810	HZP	2-NPT-RX-008
Bank B Worth	10/30/97	1930	HZP	2-NPT-RX-008
Boron Endpoint - B in	10/30/97	2330	HZP	2-NPT-RX-008
Bank D Worth - Rod Swap	10/31/97	0037	HZP	2-NPT-RX-008
Bank C Worth - Rod Swap	10/31/97	0117	HZP	2-NPT-RX-008
Bank A Worth - Rod Swap	10/31/97	0155	HZP	2-NPT-RX-008
Bank SB Worth - Rod Swap	10/31/97	0220	HZP	2-NPT-RX-008
Bank SA Worth - Rod Swap	10/31/97	0254	HZP	2-NPT-RX-008
Flux Map - 30% Power	10/31/97	2327	29.6%	2-NPT-RX-002
Peaking Factor Verification		'		2-NPT-RX-008
& Power Range Calibration				
Flux Map - 69% Power	11/02/97	1843	68.8%	2-NPT-RX-002
Peaking Factor Verification				2-NPT-RX-008
& Power Range Calibration				
Flux Map -100% Power	11/07/97	1000	99.8%	2-NPT-RX-002
Peaking Factor Verification				2-NPT-RX-008
& Power Range Calibration				

Figure 1.1

SURRY UNIT 2 - CYCLE 15 CORE LOADING MAP

R	P	H	н	L	K	J	н	G	F	E	D	С	B	A	
							15A 0X3	15A 0X9	1						1
				15B 3X3	15B 3X2	17B 33L	168 4Y0	178 40L	15B 3X9	15B 4X6					2
-				1 17A 29L		16A 2Y8		16A 2Y1		17A 14L	15B 5X0	1			3
		15B 4X5	1 15B 3X1	17B 44L	16A 1Y5	17A 06L		17A 10L	16A 0Y5	178 49L	15B 2X9	15B 5X5	-		4
	15B 4x8	17A 05L	17B 52L		17A 17L	16B 4Y1		16B 5Y6		16A 1Y7	17B 36L	17A 26L	15B 4X4		5
	15B 4X3						16B 5Y3						15B 5X4	-	6
15A 0X5	178 47L	16A 0Y7	17A 25L	16B 4Y4	17A 12L	16A 0Y9		 16A 176	17A 04L		17A 32L	16A 1Y1	17B 37L	15A 1X8	 7
15A 0X4	16B 5Y9	16B 5Y5	16A 2Y4	1 16B 4Y6	16B 6Y0	16B 5Y0	S1/15A 1K5		168 4Y5	16B 5Y7	16A 2Y7	16B 3Y4	16B 3Y6	15A 2X8	. <u>.</u> 8
1 15A 1 2X0	17B 34L	16A		16B	17A	16A	168	16A	17A	16B 5Y4	17A	16A 2Y5	17B	15A 2X2	. <u>.</u> 9
	1 15B	17B	16A	17A	16A		16B	17A 11L	16A		16A	1 17B	15B 15B	<u>.:-::-</u>	10
	15B	17A 01L	17B	16A 3Y1	17A	16B		16B	17A		17B		15B	. <u>:</u> !	11
		15B	15B	! 17B	16A	17A	16A	17A	16A	17B	15B	1 15B	!		
		5x6 	3X8 15B	42L 17A	1 174 	27L 	2Y3 16B	24L 16A	1Y8 17B	53L 17A	5X1 15B	3x6 	<u> </u>		12
			4X0	19L	38L	074	•	1 1 1 2	48L		: ===	<u>i</u> 			13
				15B 3X4	15B 4X7	178 51L	16B 3Y9	178 35L	15B 4X9	15B 5X3	 -				14
	–. .	D 4 70''				1 15A 1 2X7		15A 2X6	1						15
i		BATCH ASSEMB	LY ID												

FUEL ASSEMBLY DESIGN PARAMETERS

	SUB-BATCH												
	S1/15A	15A	15B	16A	16B	17A	17B						
INITIAL ENRICHMENT (W/O U-235)	3.82	3.61	4.01	3.80	4.01	3.90	4.06						
BURNUP AT BOC 15 (MWD/MTU)	22426	37587	34851	20129	18758	٥	0						
ASSEMBLY TYPE	15×15	15X15	15X15	15X15	15X15	15X15	15X15						
NUMBER OF ASSEMBLIES	1	12	28	32	28	32	24						
FUEL RODS PER ASSEMBLY	204	204	204	204	204	204	204						

Figure 1.2

SURRY UNIT 2 - CYCLE 15 BEGINNING OF CYCLE FUEL ASSEMBLY BURNUPS

R	P	N	н	L	K	J	н	G	F	Ε .	D	С	В	A	
		·					0X3 37.74							-	1
				3X3 38.21								<u>. </u>			2
			4X2 34.62			278	3Y8	2Y1		14L	5X0				3、
		4X5 34.65													4
		05L 0.00													5
		39L 0.00													6
	47L 0.00														7
	5Y9 2 19.06														8
	34L 7 0.00														9
	4X1 33.62														10
	3X0 37.37														11
		5X6 34.05												•	12
			4X0 34.81												· 13
				3X4 36.71											14
	•				•	37.93	1X1· 37.38	38.03							15

^{|--&}gt; ASSEMBLY ID |--> ASSEMBLY BURNUP (GMD/MTU)

Figure 1.3

SURRY UNIT 2 - CYCLE 15
INCORE THIMBLE LOCATIONS

	R	P	N	H	L	K	J	н	G	F	Ε	. Д	С	В	A	
							! !	II	 	! !						1
		•				 	 	—— 	 	I IT	!	! ! !				2
				IT		 	I IT	IT	 	 		 IT 	 	٠.		3
					II		 	IT		I IT	i — — — — — — — — — — — — — — — — — — —	j 	 	! ! !		4
		! ! !	IT		IT		IT	11	 	 	I IT	IT		i IT	} ! !	5
		 			IT	 	 	ΙT		IT	. 			! ! !	! ! !	6
!		— — 	ΙΤ				ΙΤ	` 	IT	 	 	· IT		I IT	 	7
1	IT.		IT		IT.	 	 		 	ΙΤ		 	Iĭ	11		8
1		 			IT	 			IT .	IT					IT	 9
			IT				ΙΤ	 	 	 	i i	IT		 IT 	 	10
	 			I	11			11		ΙΤ	· IT) 	11
			ΙΤ	I			IT			 		IT	ΙŢ			12
			 			 		IT I		Ιτ	 	·				13
				 ! !	IT_				IT .	 	 					14
IT #	- Inco	ore This vailable	ble Locati	on		 	17				•					15

Figure 1.4

SURRY UNIT 2 - CYCLE 15 BURNABLE POISON LOCATIONS

						!	!	I I	!					
				-		4P BP571		4P 1BP579	i					
				4P BP572	20P BP613	<u> </u>	8P 18P567	<u> </u>	20P BP614	4P BP580	; -			
		!		20P BP619	¦ !	20P BP595	<u> </u>	20P BP596	<u>; </u>	20P BP620]	
		4P 18P586	20P BP625	 	20P BP603	¦	12P 18P564	<u> </u>	20P BP604	 	20P BP623	4P BP574	 	
		20P BP617	¦	20P BP609	<u> </u>	20P BP591		20P BP592		20P BP607		ZOP BP615	;; !	
!	4P 18P585		20P BP601	<u> </u>	20P BP593		12P BP559	i	20P BP594	!	20P BP599	 	4P BP573	
<u> </u>	i	&P 1BP569	 	12P 18P565	i	1ZP IBP560		12P BP561		12P BP566	<u> </u>	8P BP570	 	
i	4P BP577	i—— !	20P 1BP602	 	20P BP589	¦	12P BP562	<u>-</u>	20P BP590	 	20P BP600	 	4P 18P581	
' -	; 	20P BP618		20P BP610	<u> </u>	20P 1BP587		20P 18P588	 	20P BP608	¦ !	20P BP616	 	
	<u> </u>	4P 18P578	20P BP626	i——	20P BP605		12P BP563	i	20P BP606		20P BP624	. 4P BP582	 	
	'	 	 	20P BP621	<u> </u>	20P BP597	 	20P 18P598	 	20P BP622	i	<u></u>	' 	
		'—— <u>—</u>	 	4P 18P584	20P BP611	—— 	8P 8P568	<u>; </u>	20P BP612	4P BP576	i	<u> </u>		
			' <u></u>	i	; !	4P BP583	 	4P BP575	 		; !	•		
	POISON			·	·——		}	[! !	<u> </u>	I <u> </u>	ı			

XXP - # OF BP RODS

BP### - BP ASSEMBLY ID

10

11

12

13

Figure 1.5

SURRY UNIT 2 - CYCLE 15 CONTROL ROD LOCATIONS

	R	P	N	Ħ	L	K	J	Н	e	F	Ε	D	С	В	A			
								180 	O									
							ļ	<u> </u>	Ī	i								1
					!	I A	i	D	<u> </u>	Ā	1	1				•		2
		N-4	1	_	;	i !	SA	<u> </u>	SA	<u>;</u> —	<u> </u>	i	l N-	43				3
		•	l I	C	<u>; </u>	B	i	i —	į —	i В	<u> </u>	C	i] 				4
		<u> </u>	i	i	SB	i	<u>i</u> —	<u> </u>	i	<u>i</u> —	SB	<u> </u>	<u> </u>	i]			5
		i A	i	В	i —	i D	i	C	i	j D I	i—	B	i——	i A	i			6
	<u> </u>	i —	I SA	i —	i —	i	SB	i—	SB	<u> </u>	i	i	SA	i	i	1		7
90°-	 	D	i —	i I	i	C I	i	i —	<u> </u>	i c	i I		j ——	D	i	- 270 ⁰	•	8
	[I SA I	!		 	I SB	 	SB 	[]	!	 	I SA	 	1	1		9
		1 A	 	B 		D 		C 	 	D 	! 	B 	 -	I A				10
		 	 	 	SB	! 	 		i	i 	SB 	 	 	! !	1	٠		11
			 	l c	 	B	 	 	i—	B	! !	C		! 				12
		N-4	 14	 	 	 	SA	 	I SA		i !	, 	1 N-1	42				13
•] 	A		D 	 	 	<u> </u>	! -						14
							!!	 	 	 						•		15
Absoi Matei Ag-Ir	rial] 0°										

Function	Number of Cluster
	`
Control Bank D	8
Control Bank C	8
Control Bank B	8
Control Bank A	8
Shutdown Bank SB	8
Shutdown Bank SA	8

SECTION 2

CONTROL ROD DROP TIME MEASUREMENTS

The drop time of each control rod was measured at hot full-flow reactor coolant system (RCS) conditions (Tave of 547±5°F) in order to verify that the time from initiation of the rod drop to the entry of the rod into the dashpot was less than or equal to the maximum allowed by Technical Specification 3.12.C.1.

The rod drop times were measured by withdrawing a bank to its fully withdrawn position and tripping all eight control rods within the bank by opening the reactor trip breakers. This allowed the rods to drop into the core as they would during a plant trip. The Individual Rod Position Indication (IRPI) primary coil voltage signals were recorded for each rod in the bank to determine each rod's drop time. This procedure was repeated for each bank.

As shown on the sample rod drop trace in Figure 2.1, the initiation of the rod drop is indicated by the increase in IRPI coil voltage when the reactor trip breakers are opened. As the rod drops, a voltage is induced in the IRPI primary coil. The magnitude of this voltage is a function of control rod velocity. As the rod enters the dashpot region of the guide tube, its velocity slows causing a voltage decrease in the IRPI coil voltage. This voltage reaches a minimum when the rod reaches the bottom of the dashpot. Subsequent variations in the trace are caused by rod bouncing.

The measured drop times for each control rod are recorded on Figure 2.2. The slowest, fastest, and average drop times are summarized in Table

2.1. Technical Specification 3.12.C.1 specifies a maximum rod drop time from loss of stationary gripper coil voltage to dashpot entry of 2.4 seconds with the RCS at hot, full flow conditions. The test results satisfy this limit. In addition, rod bounce was observed at the end of each trace which demonstrated that no control rod stuck in the dashpot region.

Table 2.1

SURRY UNIT 2 - CYCLE 15 STARTUP PHYSICS TESTS HOT ROD DROP TIME SUMMARY

ROD DROP TIME TO DASHPOT ENTRY

SLOWEST ROD	FASTEST ROD	AVERAGE TIME
B-06 1.35 sec.	F-04* 1.25 sec.	1.29 sec.

 $[\]star$ Rods M-06, K-04, H-02, and P-08 also had drop times of 1.25 sec.

Figure 2.1

SURRY UNIT 2 - CYCLE 15 STARTUP PHYSICS TESTS
TYPICAL ROD DROP TRACE

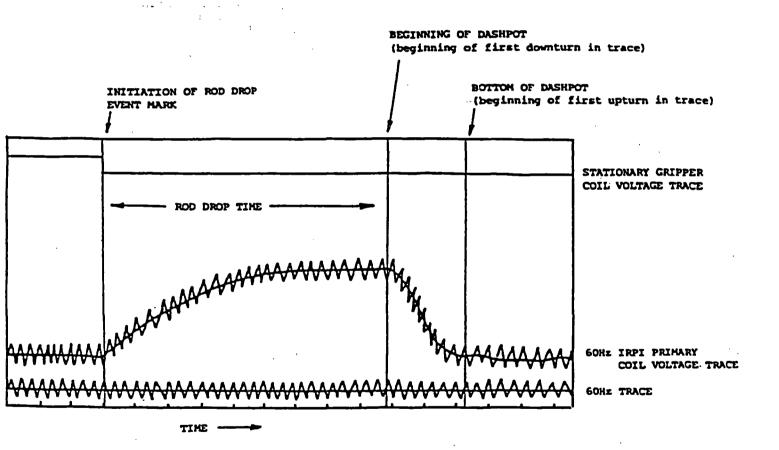


Figure 2.2

SURRY UNIT 2 - CYCLE 15 STARTUP PHYSICS TESTS ROD DROP TIME - HOT FULL FLOW CONDITIONS

	R	Р	N	н	L	K		Н	G	F	E	D	С	В	A		
							! ! !	{ 	! ! !	! !							
					· 	 1.27 	! ! !	1.25	<u> </u>	 1.26 	! ! !	! ! !					
				 	<u> </u>	<u> </u>	 1.28 	! !	 1.30 	! ! !	 	! !	! 				•
			! ! !	1 1.28	 	 1.25 	[[i I !	 1.25 	! ! !	 1.32 	! ! !	 			•
		1 	 	1	 1.26 	 	! ! !	 	l 	 	 1.29 	! ! !] !		
_		1.27	! ! !	 1.25 	 	 1.28 		1.30	 	1.34	 	 1.28 	 	1.35	! 		é
-		 	1.29	 	! ! !	 	1.30	 	1.30			!	1.29] 	 	7
 		1.25		! ! !	! ! !	! 1.30 				1.29		! ! !		1.30	! ! !	 	8
_		 	1.28	<u> </u>	l 	 	1.32		1.32	 		 	1.28]] 	ç
		 1.28 		 1.28 	 	1.30		1.31	 	1.32	 	 1.26 	 	1.29	! !	1	10
				! 	1.30	 			 		1.32	 			i i	1	1)
		 		 1.28 	! !	1.27 	 			1.30	 	1.30				1	12
				! ! !	 	 	1.29		1.31	 	 					1	13
						1.31		1.27	 	1.29		 				1	14
						:										1	1 5

X.XX --- ROD DROP TIME TO DASHPOT ENTRY (SEC)

SECTION 3

CONTROL ROD BANK WORTH MEASUREMENTS

Control rod bank worths were measured for the control and shutdown banks using the rod swap technique^{2,3}. The initial step of the rod swap method diluted the predicted most reactive control rod bank (hereafter referred to as the reference bank) into the core and measured its reactivity worth using conventional test techniques. The reactivity changes resulting from the reference bank movements were recorded continuously by the reactivity computer and were used to determine the differential and integral worth of the reference bank. For Cycle 15, Control Bank B was used as the reference bank.

After the completion of the reference bank reactivity worth measurement, the reactor coolant system temperature and boron concentration were stabilized with the reactor just critical and the reference bank near full insertion. Initial statepoint data for the rod swap maneuver were obtained by moving the reference bank to its fully inserted position with all other banks fully withdrawn and recording the core reactivity and moderator temperature. From this point, a rod swap maneuver was performed by withdrawing the reference bank several steps and then one of the other control rod banks (i.e. a test bank) was inserted to balance the reactivity of the reference bank withdrawal. This sequence was repeated until the test bank was fully inserted and the reference bank was positioned such that the core was just critical or near the initial statepoint reactivity. This measured critical position (MCP) of the reference bank with the test bank fully inserted was used to

determine the integral reactivity worth of the test bank. The core reactivity, moderator temperature, and the differential worth of the reference bank were recorded with the reference bank at the MCP. The rod swap maneuver then was repeated in reverse such that the reference bank again was fully inserted with the test bank fully withdrawn from the core. This rod swap process was then repeated for each of the other control and shutdown banks.

A summary of the test results is given in Table 3.1. As shown in this table and the Startup Physics Test Results and Evaluation Sheets given in the Appendix, all of the individual measured bank worths for the control and shutdown banks were within the design tolerance (±10% for the reference bank, ±15% for test banks worth greater than 600 pcm, and ±100 pcm for test banks worth less than or equal to 600 pcm). The sum of the individual measured rod bank worths was within 0.6% of the design prediction. This is well within the design tolerance of ±10% for the sum of the individual control rod bank worths.

The integral and differential reactivity worths of the reference bank (Control Bank B) are shown in Figures 3.1 and 3.2, respectively. The design predictions and the measured data are plotted together in order to illustrate their agreement. In summary, the measured rod worth values were satisfactory.

Table 3.1

SURRY UNIT 2 - CYCLE 15 STARTUP PHYSICS TESTS
CONTROL ROD BANK WORTH SUMMARY

BANK	MEASURED WORTH (PCM)	PREDICTED WORTH (PCM)	PERCENT DIFFERENCE (%) (M-P)/P X 100
B-Reference Bank	1537.0 1005.0	1492.0 1022.4	3.0 -1.7
C	881.0	914.0	-3.6
A	196.0	200.8	-2.4*
SB SA	1225.0	1243.5 809.1	-1.5 -0.8
Total Worth	5647.0	5681.8	-0.6

^{*} Difference is less than 100 pcm.

SURRY UNIT 2 - CYCLE 15 STARTUP PHYSICS TESTS
BANK B INTEGRAL ROD WORTH - HZP

Figure 3.1

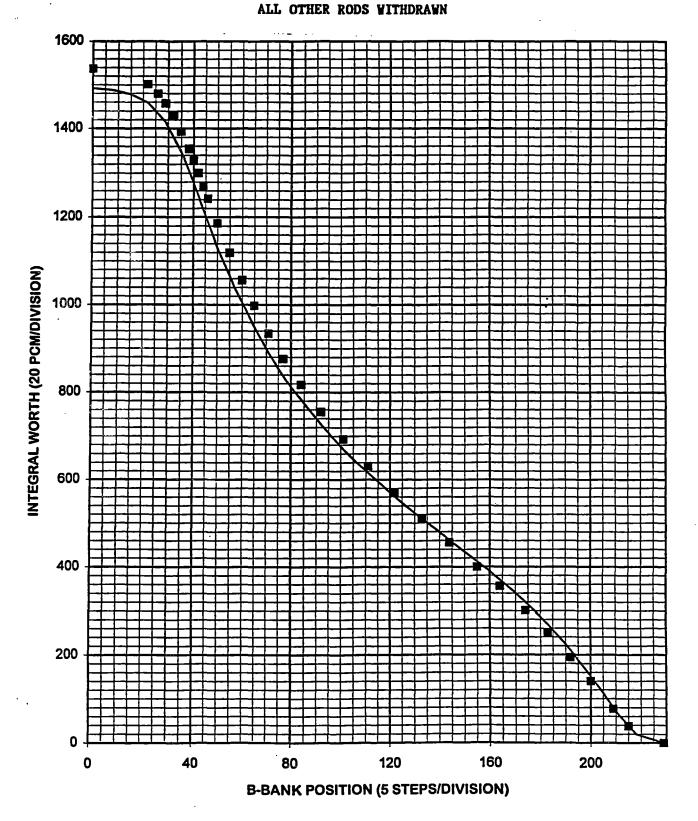
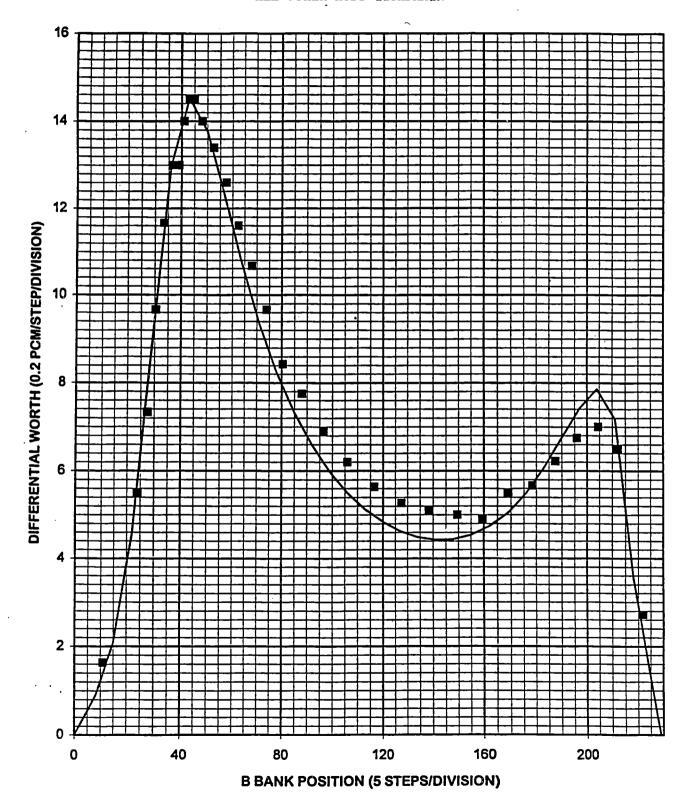



Figure 3.2

SURRY UNIT 2 - CYCLE 15 STARTUP PHYSICS TESTS

BANK B DIFFERENTIAL ROD WORTH - HZP

ALL OTHER RODS WITHDRAWN

SECTION 4

BORON ENDPOINT AND WORTH MEASUREMENTS

Boron Endpoint

With the reactor critical at hot zero power, reactor coolant system (RCS) boron concentrations were measured at selected rod bank configurations to enable a direct comparison of measured boron endpoints with design predictions. For each critical boron concentration measurement, the RCS conditions were stabilized with the control banks at or very near a selected endpoint position. Adjustments to the measured critical boron concentration values were made to account for off-nominal control rod position and moderator temperature, if necessary.

The results of these measurements are given in Table 4.1. As shown in this table and in the Startup Physics Test Results and Evaluation Sheets given in the Appendix, the measured critical boron endpoint values were within their respective design tolerances. The all-rods-out (ARO) endpoint comparison to the predicted value met the requirements of Technical Specification 4.10.A regarding core reactivity balance. In summary, the boron endpoint results were satisfactory.

Boron Worth Coefficient

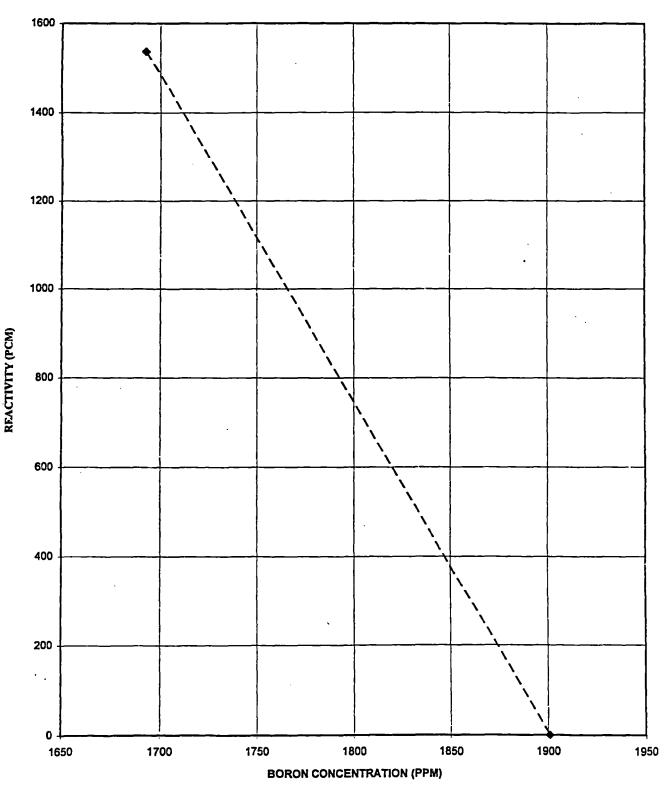
The measured boron endpoint values provide stable statepoint data from which the boron worth coefficient or differential boron worth (DBW) was determined. By relating each endpoint concentration to the integrated rod worth present in the core at the time of the endpoint measurement,

the value of the DBW over the range of boron endpoint concentrations was obtained.

A plot of the boron concentration versus inserted control rod worth is shown in Figure 4.1. As indicated in this figure and in the Appendix, the measured DBW was -7.39 pcm/ppm. This is within 4.1% of the predicted value of -7.10 pcm/ppm and is well within the design tolerance of $\pm 10\%$. In summary, the measured boron worth coefficient was satisfactory.

Table 4.1

SURRY UNIT 2 - CYCLE 15 STARTUP PHYSICS TESTS BORON ENDPOINTS SUMMARY


Control Rod Configuration	Measured Endpoint (ppm)	Predicted Endpoint (ppm)	Difference M-P (ppm)		
ARO	1901	1898	3		
B Bank In	1693	1691*	2		

* The predicted endpoint for the B Bank In configuration was adjusted for the difference between the measured and predicted values of the endpoint taken at the ARO configuration as shown in the boron endpoint Startup Physics Test Results and Evaluation Sheet in the Appendix.

Figure 4.1

SURRY UNIT 2 - CYCLE 15 STARTUP PHYSICS TESTS BORON WORTH COEFFICIENT

Measured DBW = -7.39 pcm/ppm

NE-1148 S2C15 Startup Physics Tests Report

Page 29 of 56

SECTION 5

TEMPERATURE COEFFICIENT MEASUREMENT

The isothermal temperature coefficient (ITC) at the all-rods-out condition is measured by controlling the reactor coolant system (RCS) temperature through varying the steam generator blowdown flow, establishing a constant heatup or cooldown rate, and monitoring the resulting reactivity changes on the reactivity computer. This test sequence includes a cooldown followed by a heatup.

Reactivity was measured during an RCS cooldown of 3.0°F and an RCS heatup of 2.6°F. Reactivity and temperature data were taken from the reactivity computer and strip chart recorders. Using the statepoint method, the temperature coefficient was determined by dividing the change in reactivity by the change in RCS temperature. An X-Y plotter, which plotted reactivity versus temperature, confirmed the statepoint method in calculating the measured ITC.

The predicted and measured isothermal temperature coefficient values are compared in Table 5.1. As can be seen from this summary and from the Startup Physics Test Results and Evaluation Sheet given in the Appendix, the measured isothermal temperature coefficient value was within the design tolerance of ±3 pcm/°F. Accounting for the Doppler temperature coefficient (-1.69 pcm/°F) and a 0.5 pcm/°F uncertainty, the moderator temperature coefficient was 0.76 pcm/°F, which meets the requirement of Core Operating Limits Report Section 2.1. In summary, the measured result was satisfactory.

Table 5.1

SURRY UNIT 2 - CYCLE 15 STARTUP PHYSICS TESTS ISOTHERMAL TEMPERATURE COEFFICIENT SUMMARY

C	ORE CONDITION	ISOTHERMAL TEMPERATURE COEFFICIENT (PCM/ F)						
D-BANK POSITION	TEMPERATURE RANGE (F)	BORON CONCENTRATION (ppm)	C/D	H/U	AVE. MEAS.	PRED.	DIFFER. (M-P)	
214/215	543.8 to 548.3	1896	-1.50	-1.35	-1.43	-2.72	1.29	

SECTION 6

POWER DISTRIBUTION MEASUREMENTS

The core power distributions were measured using the movable incore detector flux mapping system. This system consists of five fission chamber detectors which traverse fuel assembly instrumentation thimbles depicted in Figure 1.3. For each traverse, the detector voltage output is continuously monitored on a strip chart recorder, and scanned for 61 discrete axial points by the PRODAC P-250 process computer. Full core, three-dimensional power distributions are determined from this data using the CECOR code⁴. CECOR couples the measured voltages with predetermined analytic signal-to-power conversions, pin-to-box factors, and average coupling coefficients in order to determine the power distribution for the whole core.

A list of the full-core flux maps taken during the startup test program and the measured values of the important power distribution parameters are given in Table 6.1. A comparison of these measured values with their Technical Specification limits as specified in the COLR⁶ is given in Table 6.2. Flux map 2 was taken at approximately 30% power to verify the radial power distribution (RPD) predictions at low power. Figure 6.1 shows the measured RPDs from this flux map. Flux maps 3 through 4 were taken near 69% and 100% power, respectively, with different control rod configurations. These flux maps were taken to check at-power design predictions and to measure core power distributions at various operating conditions. The radial power distributions for these maps are given in Figures 6.2 through 6.3. These figures show that the average measured/predicted relative assembly power distribution

difference was 1.8% or less for the three maps. The measured F-Q(Z) and F-DH(N) peaking factor values for all flux maps were within the limits of the Core Operating Limits Report (COLR) Sections 2.3 and 2.4, respectively. Flux maps 2 and 3 were used to recalibrate the power range excore detectors. Power range detector calibration contants based on flux map 4 measurements verified the existing calibration from map 3 was satisfactory.

In conclusion, the power distribution measurement results were considered to be acceptable with respect to the design tolerances, the accident analysis acceptance criteria, and the COLR limits. It is therefore anticipated that the core will continue to operate as designed throughout Cycle 15.

TABLE 6.1

SURRY UNIT 2 - CYCLE 15 STARTUP PHYSICS TESTS INCORE FLUX MAP SUMMARY

- I		1		l I	1	<u> </u>	i		1	T T		<u> </u>			2		I
ı	3		ļ	BURN	1	ı	ı	F-Q(Z)	HOT	F-DHC	N) HOT	CORE F	(Z)	POWER	≀]	ĺ	
ı	HAP	HAP	l !	l UP	ı	BANK	} C	HANNEL F	ACTOR	CHNL.F	ACTOR	MAX	J	TILT	۱ ا	AXIAL	NO.
١	DESCRIPTION	NO.	DATE	MWD/	JPWR	D	I			!		l	<u> </u>		I	OFF	OF !
- 1		1	i I	MTU	(Z)	STEPS	IASSY	AXIAL	ľ	ASSY	F-DH(N)	AXIAL F	F(Z)	HAX I	LOC !	SET	THIN
١		1 1		}	1 .	l	l	POINT	F-Q(Z)	1	l	TAIO9	ı	1	- 1	(%)	BLES
I.		! !	II	·	!	ـــــا		t	l	l	l	·	i	I	!	1	
- 1	LESS THN 30% PWR				† " 30	191	D11	19	2.041	D10	1.556	19 1.	. 230 [1.014	NE	6.75	42
1	BTWN 65% AND 75%	3	11-02-97	29	1 69	211	D10	l 19	1.836	D10	1.503	19 [1.	. 146	1.009	SE	4.061	42
ı	GRT THAN 95% PWR	4	11-07-97	178	100	228	D10 -	34	1.773	D10	1.497	30 [1.	.088	1.011	SE	-0.72	38 I
٦,		اـــــا	اا		اا	ا		اــــــــــــــــــــــــــــــــــــ	!	li	l	II_	<u>ا</u>	اا	1	اا	

NOTES: HOT SPOT LOCATIONS ARE SPECIFIED BY GIVING ASSEMBLY LOCATIONS (E.G. HOB IS THE CENTER-OF-CORE ASSEMBLY), AND CORE HEIGHT (IN THE "Z" DIRECTION THE CORE IS DIVIDED INTO 61 AXIAL POINTS STARTING FROM THE TOP OF THE CORE).

- 1. F-Q(Z) INCLUDES A TOTAL UNCERTAINTY OF 1.08. (
- 2. POWER TILT DEFINED AS THE AVERAGE QUADRANT POWER TILT FROM CECOR.
- 3. EACH MAP WAS USED TO PERFORM A PEAKING FACTOR VERIFICATION AND A POWER RANGE EXCORE DETECTOR CALIBRATION. THE FLUX MAP 4 CALIBRATION VERIFIED THE EXISTING CALIBRATION.

Table 6.2

SURRY UNIT 2 - CYCLE 15 STARTUP PHYSICS TESTS COMPARISON OF MEASURED POWER DISTRIBUTION PARAMETERS WITH THEIR CORE OPERATING LIMITS

		F-Q(Z)		1 -	F-Q(Z CHANNEL E OF MI		F-DH(N) HOT CHANNEL FACTOR#			
MAP NO.	MEAS	LIMIT	NODE	MEAS	LIMIT	NODE	MARGIN (%)	MEAS	LIMIT	MARGIN (%)
2 3 4	2.041 1.836 1.773	4.501 3.270 2.324	19 19 34	2.041 1.836 1.728	4.501 3.270 2.254	19 19 19	54.7 43.9 23.3	1.556 1.503 1.497	1.890 1.706 1.561	17.7 11.9 4.1

- * The Technical Specification's limit for the heat flux hot channel factor, F-Q(Z), is a function of core height and power level. The values for F-Q(Z) listed are the maximum value of F-Q(Z) in the core. The Technical Specification's limit listed above is evaluated at the plane of maximum F-Q(Z).
- The value for F-Q(Z) listed above is the value at the plane of minimum margin. The minimum margin values listed are the minimum percent difference between the measured values of F-Q(Z) and the Technical Specification's limit at that node for each map.

The measured F-Q(Z) hot channel factors include 8% total uncertainty.

Since all fuel assemblies in the core are SIF fuel (i.e. there are no lopar assemblies), the FdH(N) limit for all assemblies is the same.

Figure 6.1

SURRY UNIT 2 - CYCLE 15 STARTUP PHYSICS TESTS ASSEMBLYWISE POWER DISTRIBUTION 30% POWER

R	P	N	н	· L	ĸ	J	н	G	F	E	D	С	В	A
	• • • •	PREDICTE						. 0.227 .				PREDICTE	····	
		MEASUREI DIFFERE	NCE.			. 0.1	. 1.0	. 0.233 .			.PCT	MEASURED DIFFEREN		•
	••••			. 0.310	. 0.493	. 0.919	. 0.780	. 0.919 .	0.493	. 0.310 .	••••		••••	
			4					2.8			•			
								. 1.110 . . 1.134 .						
	_							2.1 .					_	
								. 1.339 . . 1.370 .						
•								. 2.3 .						-
	. 0.306 .	1.066 .	1.293	. 1.275	. 1.328	. 1.361	. 1.275	. 1.360 . . 1.382 .	1.371 .	. 1.333 .	1.330	. 1.100 .	0.317	•
								. 1.6 .						•
	. 0.485 .	1.185 .	1.353	. 1.303	. 1.203	. 1.281	. 1.303	. 1.284 . . 1.293 . . 0.7 .	1.246 .	. 1.362 .	1.387	1.221 .	0.508	•
. 0.228	. 0.922 .													
. 0.223	. 0.901 .	1.090 .	1.316	. 1.336	. 1.267	. 1.179	. 1.097	. 1.165 .	1.284 .	1.358 .	1.314	1.122 .	0.968	. 0.238 .
. 0.257	. 0.782 .	1.077 .	1.235	. 1.255	1.291	. 1.100	. 1.047	. 1.100 .	1.291 .	1.255 .	1.235	1.077 .	0.782	. 0.257 .
2.5	. 0.762 . 2.5 .	-2.1 .	-1.5	0.5	1.0	1.0	0.8	0.8 .	0.2 .	0.3.	0.2 .	0.7 .	1.1	. 2.0 .
. 0.228	. 0.922 .	1.113 .	1.342	. 1.360	. 1.283	. 1.182	. 1.102	. 1.182 .	1.283 .	1.360 .	1.342 .		0.922	. 0.228 .
	-2.5													
	. 0.496 . . 0.481 .													
	3.0 .				. .									-
	. 0.313 .	1.067 .	1.302	. 1.281	. 1.328	. 1.345	. 1.279	. 1.363 .	1.335 .	1.332 .	1.378 .	1.140 .	0.328	-
	2.5 .													•
		0.389 .	0.726	. 1.303	. 1.367	. 1.322	. 1.236	. 1.344 .	1.386 .	1.344 .	0.779 .	0.421 .		
	•													
								. 1.115 . . 0.5 .						
		•						. 0.919 .			•••••			
				. 3.8	. 0.1 .	-0.4	. 0.1	. 0.938 . . 2.0 .	0.8 .	1.1 .				
		STANDARD DEVIATIO	•	•••••		. 0.227 .	. 0.256	. 0.227 . . 0.231 .		*******	•	AVERAGE DIFFEREN	•	
		=1.536				2.3	. 0.0	1.6 .				= 1.8	•	
					c	I IMM A DV								

SUMMARY

BURNUP = 5.0 MWD/MTU A.O. = 6.752%

DATE: 10/31/97 POWER: 29.6% CONTROL ROD POSITIONS: F-Q(Z) = 2.041OPTR: D BANK AT 191 STEPS F-DH(N) = 1.556NW 0.9856 | NE 1.0142 SW 0.9865 | SE 1.0138 F(Z) = 1.230

MAP NO: S2-15-02

Figure 6.2

SURRY UNIT 2 - CYCLE 15 STARTUP PHYSICS TESTS ASSEMBLYWISE POWER DISTRIBUTION 69% POWER

R	P	N	н	Ł	K	J	н	G	F	E	D	С	В	A	
	•	PREDICT MEASURE	ED .			. 0.251 . . 0.252 .	. 0.288 . 0.292	. 0.251 . 0.256			•	PREDICTED MEASURED DIFFEREN			1
		• • • • • • •		. 0.322 . . 0.317 . 1.7 .	0.514 0.511 -0.6	. 0.961 . . 0.965 .	0.849 0.862	. 0.961 . 0.984 . 2.4	. 0.514 . 0.541 . 5.3	. 0.322 . 0.333 . 3.2	• •	•••••	•••		2
		·	. 0.385 . 0.390 . 1.3	. 1.072 . . 1.049 . 2.1 .	1.194 1.181 -1.1	. 1.122 . . 0.1 .	1.097 1.109	. 1.121 . 1.141 . 1.8	. 1.194 . 1.222 . 2.3	. 1.072 . 1.097 . 2.3	. 0.358 . 0.403 . 4.6	•			3
		0.400 0.391 -2.1	. 0.738 . 0.720 2.4	. 1.284 . . 1.230 . 4.2 .	1.352 1.333 -1.5	. 1.315 . . 1.317 . . 0.1 .	1.225	. 1.315 . 1.336 . 1.6	. 1.352 . 1.374 . 1.6	. 1.284 . 1.301 . 1.3	. 0.738 . 0.743 . 0.7	. 0.400 . . 0.401 . . 0.2 .			4
	. 0.326 . . 0.320 . 1.9 .	1.083 1.063 -1.8	. 1.291 . 1.270 1.7	. 1.273 . . 1.263 . 0.8 .	1.323 1.314 -0.6	. 1.338 . . 1.344 . . 0.4 .	1.237 1.255 1.5	. 1.338 . 1.356 . 1.3	. 1.323 . 1.338 . 1.1	. 1.273 . 1.279 . 0.5	. 1.291 . 1.281 0.8	. 1.083 . . 1.083 . . 0.1 .	0.326 . 0.337 . 3.5 .	•	5
	. 0.516 . . 0.507 .	1.199 1.177 -1.9	. 1.357 . 1.330 2.0	. 1.324 . . 1.286 . 2.8 .	1.253 1.245 -0.7	. 1.272 . . 1.283 . . 0.8 .	1.278 . 1.312 . 2.7 .	. 1.272 . 1.288 . 1.2	. 1.253 . 1.266 . 1.0	. 1.324 . 1.327 . 0.2	. 1.357 . 1.351 0.5	. 1.199 . . 1.198 . 0.1 .	0.516 . 0.521 . 0.9 .	•	6
. 0.251 . 0.247 1.7	. 0.963 . . 0.946 . 1.8 .	1.123 ~1.104 ~1.7	. 1.317 . 1.297 1.5	. 1.338 . . 1.321 . 1.2 .	1.271 1.267 -0.3	. 1.181 . . 1.192 . . 0.9 .	1.101 . 1.112 . 1.0 .	. 1.181 . 1.178 0.3	. 1.271 . 1.277 . 0.5	. 1.338 . 1.337 0.1	1.317 1.302 -1.2	. 1.123 . . 1.120 . 0.3 .	0.963 . 0.976 . 1.4 .	. 0.251 . . 0.254 . . 1.0 .	7
. 0.288 . 0.283 1.7	. 0.850 . . 0.836 .	1.099 1.081 -1.6	. 1.226 . 1.212 1.1	. 1.237 . . 1.236 . 0.1 .	1.276 1.273 -0.2	. 1.099 . . 1.101 . . 0.1 .	1.054 . 1.058 . 0.4 .	1.099 1.103 0.4	. 1.276 . . 1.292 . . 1.2	. 1.237 . 1.240 . 0.3	1.226 1.223 -0.2	. 1.099 . . 1.088 . 1.0 .	0.850 . 0.841 . -1.0 .	0.288 . 0.287 . 0.3 .	8
. 0.246 2.0	. 0.944 . 2.0 .	1.101 -2.0	. 1.299	. 1.331 . 0.5 .	1.264 -0.5	. 1.176 . 0.5 .	0.1	0.2	. 1.247 1.9	. 1.340 . . 0.1 .	1.329	. 1.123 . . 1.132 . . 0.8 .	0.968 . 0.5 .	0.252 .	9
	. 0.503 .	1.162 -3.1	. 1.333 .	1.308 .	1.241	. 1.253 . 1.5 .	0.4	1.277	. 1.253 . 0.1 .	1.341	1.395 2.8	. 1.199 . . 1.227 . . 2.3 .	0.531 . 2.9 .		10
	. 0.319 .	1.063 -1.8	. 1.271 .	1.253 .	1.310 -0.9	. 1.335 . 0.3 .	2.8	0.8	. 1.319 0.3	. 1.300 . . 2.1 .	1.331 3.0	. 1.083 . . 1.116 . . 3.1 .	0.336 . 3.0 .	•	11
		0.406 1.5	. 0.731 .	1.271 .	1.339 .	. 1.297 . 1.4 .	0.4	0.3	. 1.354 . . 0.1 .	1.304 . 1.6 .	0.775 5.0	. 0.400 . . 0.422 . . 5.7 .			12
			. 0.385 . . 0.383 . 0.6 .	1.068 .	1.186 . -0.6 .	. 1.113 . 0.7 .	0.0	0.0	. 1.179 . 1.3 .	. 1.077 . . 0.4 .	0.394 2.3	• •			13
		STANDAR		0.334 . 3.5 .	0.513 . -0.1 .	0.961 . 0.956 . -0.5 .	0.851 .	0.972 1.2	. 0.513 . 0.1 .	. 0.323 . . 0.3 .		AVERAGE	•••		14
	•	DEVIATI =1.091	ON .		:	0.243 .	0.287 . -0.2 .	0.253			•	DIFFERENCE = 1.3			15

SUMMARY

MAP NO: S2-15-03 DATE: 11/02/97 POWER: 68.82%

CONTROL ROD POSITIONS: F-Q(Z) = 1.836 QPTR:

D BANK AT 211 STEPS F-DH(N) = 1.503 NW 0.9916 | NE 1.0088

F(Z) = 1.146 SW 0.9908 | SE 1.0088

BURNUP = 29 MWD/HTU A.O. = 4.061%

Figure 6.3

SURRY UNIT 2 - CYCLE 15 STARTUP PHYSICS TESTS ASSEMBLYWISE POWER DISTRIBUTION 100% POWER

R	P N	і н	L	K	J	н	G	F	E	D	C	В	A	
	. MEAS	ICTED . SURED .		-		. 0.303 . 0.306				 .PC1	PREDICTE MEASURED DIFFERE			
	•••••	•••••	. 0.327	. 0.522		. 0.881	. 0.974 .	0.522	. 0.327		•••••	••••		
			1.3	0.6 	. 0.2	. 1.0	. 2.6 .	7.2	. 3.7					
	•	. 0.406	. 1.059 . 1.042 1.7	1.170	. 1.123	. 1.111	. 1.145 .	1.213	. 1.081 .	0.394	•			
		03 . 0.737 194 . 0.721		. 1.334	. 1.304	. 1.224	1.304 .	1.334	. 1.264 .	0.737				
	2	.22.2	-4.2	-1.5	. 0.2	. 2.1	1.9 .	2.0	1.2	0.1	-0.1		. •	
	0.323 . 1.0	46 . 1.244	. 1.238	1.300	. 1.335	. 1.254 . . 1.4 .	. 1.351 . . 1.4 .	1.330	. 1.266 . . 0.4 .	1.254	. 1.067	0.344	:	
	0.524 . 1.1 0.513 . 1.1 -2.12	87 . 1.338 61 . 1.307	. 1.314 .	1.275	. 1.275 . . 1.282 .	. 1.281 . . 1.306 .	. 1.275 . . 1.290 .	1.275	1.314 .	1.338	. 1.187 . 1.182	. 0.524 . 0.525	:	
. 0.262 .	0.976 . 1.1	26 . 1.306	. 1.331	1.274	. 1.192	1.114	1.192 .	1.274	1.331 .	1.306	. 1.126	0.976	. 0.262 .	
2.1 .	0.955 . 1.1	.01.6	1.2	-0.3	1.0	. 0.8	-0.4 .	0.4	-0.2	-1.4	-0.6	-0.4	0.4 .	
. 0.296 . 2.1 .	0.881 . 1.1 0.863 . 1.0 -2.11	89 . 1.213 .81.0	. 1.246 .	1.279	. 1.115 . . 0.2 .	. 1.076 . . 0.3 .	1.115 . 0.2 .	1.285 .	1.238 .	1.226 0.1	. 1.111 .	0.876	. 0.302 . 0.1 .	
. 0.262 . . 0.256 .	0.976 . 1.1 0.952 . 1.1 -2.42	26 . 1.306 00 . 1.287	. 1.331 .	1.274	. 1.192 . . 1.185 .	. 1.114 . . 1.116 .	1.192 . 1.198 .	1.274 .	1.331 .	1.306 1.325	. 1.126 . . 1.144 .	0.976	. 0.262 . . 0.266 .	
	0.524 . 1.1 0.508 . 1.1	 87 . 1.338	. 1.314	1.275	. 1.275	1.281	1.275 .	1.275	1.314 .	1.338	. 1.187	0.524	• • • • • • • • • • • • • • • • • • • •	1
•	-3.13 0.330 . 1.0	.72.0	1.2 .	-1.2	2.0 .	0.3	0.3.	-0.2	1.3 .	3.8	3.3	4.5		•
	0.322 . 1.0	48 . 1.251	. 1.245 .	1.300 -1.0	. 1.324 .	. 1.273 .	1.341 .	1.303 .	1.278 .	1.313	. 1.111 .	0.344		1
•	. 0.4	03 . 0.737 11 . 0.732 .10.7	. 1.254 .	1.334 1.319	. 1.304 . . 1.278 .	1.228 .	1.309 .	1.335 .	1.281 .	0.773	. 0.433 .		•	1;
		. 0.389		1.182	. 1.124 .	1.108	1.124	1.182 .	1.059 .	0.389	• • • • • • • • • • • • • • • • • • •			13
		0.4	0.1 .	-0.5 	0.7 .	0.1.	0.3.	. 8.0-	0.5 .	2.3	•			
			. 0.343 .	0.524		0.886 . 0.6 .	0.991 .	0.524 .	0.329 . 0.5 .					14
		DARD . ATION . 314 .			. 0.262 . . 0.262 . . 0.2 .	0.303 . 0.305 . 0.7 .	0.262 . 0.266 . 1.6 .			PCT	AVERAGE DIFFEREN = 1.4			15

SUMMARY

BURNUP = 178 MWD/MTU A.O. = -0.722%

MAP NO: S2-15-04 DATE: 11/07/97 POWER: 99.83%

CONTROL ROD POSITIONS: F-Q(Z) = 1.773 QPTR:

D BANK AT 228 STEPS F-DH(N) = 1.497 NW 0.9904 | NE 1.0077

F(Z) = 1.088 SW 0.9906 | SE 1.0112

SECTION 7

REFERENCES

- 1. T. S. Psuik and C. B. LaRoe, "Surry Unit 2, Cycle 15 Design Report", Technical Report NE-1146, Revision 0, October, 1997.
- 2. T. K. Ross, W. C. Beck, "Control Rod Reactivity Worth Determination By The Rod Swap Technique," VEP-FRD-36A, December, 1980.
- Letter from W. L. Stewart (Virginia Power) to the U.S.N.R.C, "Surry Power Station Units 1 and 2, North Anna Power Station Units 1 and 2: Modification of Startup Physics Test Program - Inspector Followup Item 280, 281/88-29-01", Serial No. 89-541, December 8, 1989.
- 4. T. W. Schleicher, "Reactor Power Distribution Analysis Using a Moveable In-Core Detector System and the TIP/CECOR Computer Code Package", VEP-NAF-2, November, 1991.
- 5. Surry Unit 1 and 2 Technical Specifications, Sections 3.1.E.1, 3.12.B.1, 3.12.C.1, 4.10.A, and 5.3.A.6.b.
- 6. "Core Operating Limits Report Surry 2 Cycle 15 Pattern UZ, Revision 0", September, 1997.

APPENDIX

STARTUP PHYSICS TEST RESULTS
AND EVALUATION SHEETS

1	Test Description: Zero Power Testing Range Determination
Reference	Proc No / Section: 2-NPT-RX-008 Sequence Step No:
11	Bank Positions (Steps) RCS Temperature (°F): 547
Test	Power Level (% F.P.): 0
Conditions	SDA: 229 SDB: 229 CA: 229 Other (specify):
(Design)	CB: 229 CC: * CD: * Below Nuclear Heating
111	Bank Positions (Steps) RCS Temperature (°F):547.4
Test	Power Level (% F.P.): 0
Conditions	SDA: 229 SDB: 229 CA: 229 Other (specify):
(Actual)	CB: 229 CC: 229 CD: 104 Below Nuclear Heating
	Date/Time Test Performed:
	10/30/97 1302
	Reactivity Computer Initial
	Flux Background Reading amps .
IV	*Bucking current set to: 1-33x109amps
Test	
Results	Flux Reading At
	Point Of Nuclear Heating 3.0 x 16 ⁻⁷ amps
	·
	Zero Power Testing Range 1×10^{-8} to 10×10^{-8} amps
ļ	Reference Not Applicable
V	FSAR/Tech Spec Not Applicable
Acceptance	
Criteria	Reference Not Applicable
	Design Tolerance is met** : YES NO
	Acceptance Criteria is met**: YES NO
Vi	* At The Just Critical Position
Comments	** Design Tolerance and Acceptance Criteria are met if ZPTR
· .	is below the Point of Nuclear Heating and above background.

Prepared By: Pamle D. Baning

Reviewed By: Thomas S. Dut

1	Test Description: Reactivity C	omputer Ch	eckout					
Reference	Proc No / Section: 2-NF	PT-RX-008	Sequence Step No:					
11	Bank Positions (Steps)		RCS Temperature (°F): 547					
Test			Power Level (% F.P.): 0					
Conditions	SDA: 229 SDB: 229 CA:	229	Other (specify):					
(Design)	CB: 229 CC: * CD:	•	Below Nuclear Heating					
111	Bank Positions (Steps)		RCS Temperature (°F): 548.5					
Test			Power Level (% F.P.): 0					
Conditions	SDA: 229 SDB: 229 CA:	229	Other (specify):					
(Actual)	CB: 229 CC: ZZ9 CD:	109	Below Nuclear Heating					
	Date/Time Test Performed:							
	10/30/97 13:40							
	Magazinad Daramatar	- 140	noused Department visits and an arranged of					
İ	Measured Parameter	, . •	asured Reactivity using p-computer					
	(Description)	pt= Pre	dicted Reactivity					
IV Tank								
Test Results	Measured Value	00= -4	4.0,49.0					
, 10 u		04= -4	15.4, 49.8					
		1	3.1 , -1.2					
·		700-						
	Design Value	$\%D = \{(\rho_C - \rho_t)/\rho_t\} \times 100\% \le 4.0\%$						
	Reference	WCAP 7905, Rev. 1, Table 3.6						
		VVOAF 1905, Nev. 1, Table 5.0						
V	-SAR/Tech Spec	Not Applic	able					
Acceptance	• -	}	İ					
	Reference	Not Applic	able					
}								
	Design Tolerance is met :	V YES	S NO					
	Acceptance Criteria is met:	YES	SNO					
VI	* At The Just Critical Position							
Comments	The allowable range will be	set based	on the above results, as well as					
	results from the benchmar	k test.						
	Allowable F	lange = -	44,2ca to +49 pen					

Prepared By: Thomas 8. Pul

Reviewed By: Pamle D. Bonnie

1	Test Description: Critical Boron Concentration - ARO							
Reference	Proc No / Section: 2-NPT-RX-008 Sequence Step No:							
l u	Bank Positions (Steps) RCS Temperature (°F): 547							
Test	Power Level (% F.P.): 0							
Conditions	SDA: 229 SDB: 229 CA: 229 Other (specify):							
(Design)	CB: 229 CC: 229 CD: 229 Below Nuclear Heating							
111	Bank Positions (Steps) RCS Temperature (°F): 547.0							
Test	Power Level (% F.P.): 0							
Conditions	SDA: 229 SDB: 229 CA: 229 Other (specify):							
(Actual)	CB: 229 CC: 229 CD: 229 Below Nuclear Heating							
	Date/Time Test Performed: 10/30/47 1800							
IV	Measured Parameter (C _B) ^M _{ARO} ; Critical Boron Concentration - ARO							
Test Results	Measured Value (C _B) ^M _{ARO} = 1901 ppm (Design Conditions)							
	Design Value $C_B = 1898 \pm 50 \text{ ppm}$ (Design Conditions)							
1	Reference Technical Report NE-1145, Rev. 0							
V	FSAR/Tech Spec $ \alpha C_B \times C_B^D \le 1000 \text{ pcm}$							
Acceptance								
1 1	Reference Technical Specification 4.10.A							
1 1	Design Tolerance is met : YESNO Acceptance Criteria is met : YESNO							
VI Comments ·	$\alpha C_B = -7.09 \text{ pcm/ppm}$ $C_B^D = (C_B)^M_{ARO} - C_B ; C_B \text{ is design value}$							

Prepared By: May

Reviewed By: 1/ Unest

	Test Description: Isothermal Te	emperature	Coefficient - ARO			
Reference	Proc No / Section: 2-NP	T-RX-008	Sequence Step No:			
11	Bank Positions (Steps)		RCS Temperature (°F): 547			
Test	<u> </u>		Power Leve' (% F.P.): 0			
Conditions	SDA: 229 SDB: 229 CA:	229	Other (specify):			
(Design)	CB: 229 CC: 229 CD:	229	Below Nuclear Heating			
111	Bank Positions (Steps)		RCS Temperature (°F): 546.6			
Test			Power Level (% F.P.): 0			
Conditions	SDA: 229 SDB: 229 CA:		Other (specify):			
(Actual)	CB: 229 CC: 229 CD:	214/215	Below Nuclear Heating			
	Date/Time Test Performed:		·			
	10/30/97 1810					
	Manager d December	. 1	SON A LOAD SON TOWN			
	Measured Parameter	(at	SO)ARO: Isothermal Temperature			
	(Description)		Coefficient - ARO			
IV Test	Measured Value	/!	so) _{ARO} = -1.43 pcm/o _F			
Results	ivieasured value	(at	$(C_B = 1896 \text{ ppm})$			
Nesults	Dooign Value	ļ 	(CB- 1940 ppm)			
	Design Value (Actual Conditions)	(~-1	so _{)ARO} = -2.72 ±3.0 pcm/°F			
·	(Actual Conditions)	, lut	(C _B = /896 ppm)			
·	Design Value		(OB- 14-10 bbill)			
	(Design Conditions)	$(\alpha_T^{ISO})_{ARO} = -2.70 \pm 3.0 \text{ pcm/}^{O} \text{F}$				
	(Looigi. Conditions)	((C _B = 1893 ppm)			
}	Reference	Technical	Report NE-1146, Rev. 0			
	FSAR/COLR		3.81 * pcm/°F			
	ISAIVOOER	ſ	-1.69 pcm/ ^O F			
Acceptance	Defense					
Criteria	Reference	COLR 2.1.1, Technical Report NE-1146, Rev				
	Design Tolerance is met :	YES	S NO			
1	Acceptance Criteria is met:	YES	· · ·			
VI						
3	*Uncertainty on αT _{MOD} = 0.5 pc	cm/ ^o F (Refe	erence: memorandum from			
į	C.T. Snow to E.J. Lozito dated	•	1			
	1 1 07		•			
						

Prepared By:

Reviewed By: 21 Mean

I	Test Description: Control Bank	B Worth M	easurement, Rod Swap Ref. Bank				
Reference	Proc No / Section: 2-NP	T-RX-008	Sequence Step No:				
II	Bank Positions (Steps)		RCS Temperature (°F): 547				
Test			Power Level (% F.P.): 0				
Conditions	SDA: 229 SDB: 229 CA:	229	Other (specify):				
(Design)	CB: moving CC: 229 CD:	229	Below Nuclear Heating				
111	Bank Positions (Steps)		RCS Temperature (°F): 546,5				
Test			Power Level (% F.P.): 0				
Conditions	SDA: 229 SDB: 229 CA:	229	Other (specify):				
(Actual)	CB: moving CC: 229 CD:	229	Below Nuclear Heating				
	Date/Time Test Performed: 10/30/97 1930						
	Measured Parameter (Description)		gral Worth Of Control Bank B, Other Rods Out				
IV Test Results	Measured Value	IBREF = 1537 pcm					
	Design Value (Design Conditions)	IB ^{REF} = 149	2 ± 149 pcm				
	Reference	Technical	Report NE-1146, Rev. 0				
		If Design To	olerance is exceeded, SNSOC shall				
V	FSAR/Tech Spec	1	pact of test result on safety analysis.				
Acceptance	-	SNSOC ma	y specify that additional testing				
Criteria		be performe	ed.				
	Reference	VEP-FRD-	36A				
	Design Tolerance is met :	YES	SNO				
	Acceptance Criteria is met:	YES	S · NO				
VI							
Comments			ł				
ł							
·							
	. 11 111						

Prepared By:

Reviewed By: 74 Uneel

I	Test Description: Critical Boron Co	oncentration - B Bank In
Reference	Proc No / Section: 2-NPT-F	XX-008 Sequence Step No:
11	Bank Positions (Steps)	RCS Temperature (°F): 547
Test		Power Level (% F.P.): 0
Conditions	SDA: 229 SDB: 229 CA: 2	Other (specify):
(Design)	CB: 0 CC: 229 CD: 2	29 Below Nuclear Heating
111	Bank Positions (Steps)	RCS Temperature (°F): 546.1
Test		Power Level (% F.P.): 0
Conditions	SDA: 229 SDB: 229 CA: 2	Other (specify):
(Actual)	CB: 0 CC: 229 CD: 2	29 Below Nuclear Heating
	Date/Time Test Performed:	1
	10/30/97 2330	.]
ļ	Measured Parameter (C	B) ^M B; Critical Boron Concentration,
	(Description)	B Bank In .:
l IV		•
Test		
Results	Measured Value (C	B) ^M B= 1693 ppm
	(Design Conditions)	
j		2
	l l	$_{\rm i} = 1688 + \Delta C_{\rm B}^{\rm Prev} \pm (10 + 149.2/]\alpha C_{\rm B}]) \rm ppm$
	(Design Conditions)	C _B = 1691 ± 31 ppm
;		
	Reference Te	chnical Report NE-1146, Rev. 0
V	FSAR/Tech Spec No	t Applicable
Acceptance		
Criteria	Reference No	t Applicable
	Design Tolerance is met :	YES NO
	Acceptance Criteria is met :	✓ YES NO
VI		
Comments	$\alpha C_B = -7.10 \text{ pcm/ppm}$	
	$\Delta C_B^{Prev} = (C_B)^M_{ARO} - 189$	8 ppm
		

Prepared By: UN Munn

Reviewed By: Mul A Wielu

ı	Test Description: HZP Boron W	orth Coefficient Measurement
Reference	Proc No / Section: 2-NPT	T-RX-008 Sequence Step No:
11	Bank Positions (Steps)	RCS Temperature (^O F): 547
Test		Power Level (% F.P.): 0
Conditions	SDA: 229 SDB: 229 CA:	229 Other (specify):
(Design)	CB: moving CC: 229 CD:	229 Below Nuclear Heating
111	Bank Positions (Steps)	RCS Temperature (°F): 547-0
Test		Power Level (% F.P.): 0
Conditions	SDA: 229 SDB: 229 CA:	229 Other (specify):
(Actual)	CB: moving CC: 229 CD:	229 Below Nuclear Heating
	Date/Time Test Performed: 10/30/97 19:00	
IV	Measured Parameter (Description)	αC _B ; Boron Worth Coefficient
Test Results	Measured Value	$\alpha C_B = -7.39$ pcm/ppm
	Design Value (Design Conditions)	$\alpha C_B = -7.10 \pm 0.71 \text{ pcm/ppm}$
·	Reference	Technical Report NE-1146, Rev. 0
V		Not Applicable
Acceptance	·	
Criteria	Reference I	Not Applicable
	Design Tolerance is met :	✓ YESNO
	Acceptance Criteria is met:	✓ YES NO
VI Comments		
	·	

Prepared By: And Heile Reviewed By: UN Kohluren

I	Test Description: Control Bank	D Worth M	leasurement, Rod Swap		
Reference	Proc No / Section: 2-NP	T-RX-008	Sequence Step No:		
11	Bank Positions (Steps)		RCS Temperature (^o F): 547		
Test	<u> </u>		Power Level (% F.P.): 0		
Conditions	SDA: 229 SDB: 229 CA:	229	Other (specify):		
(Design)	CB: moving CC: 229 CD:	moving	Below Nuclear Heating		
111	Bank Positions (Steps)		RCS Temperature (°F): 546.3		
Test		··	Power Level (% F.P.): 0		
Conditions	SDA: 229 SDB: 229 CA:	229	Other (specify):		
(Actual)	CB: moving CC: 229 CD:	moving	Below Nuclear Heating		
	Date/Time Test Performed: 10/31/97 00:37				
	Measured Parameter	ID ^{RS} ;	Integral Worth of Control Bank D,		
]	(Description)		Rod Swap		
IV Test	Measured Value	ſ	Reference Bank Position = 129 steps)		
Results	Design Value	Chilcal Rele	erence Bank Position = 129 steps)		
Results	(Actual Conditions)	InRS=	1022.4 cm (Adjusted Measured		
	(· · · · · · · · · · · · · · · · · · ·		erence Bank Position = 129 steps)		
	Design Value	01111011			
·	(Design Conditions)	ID ^{RS} =	1026 ± 154 pcm		
		(Critical Ref	ference Bank Position = 143 steps)		
	Reference	Technical R	Report NE-1146, Rev. 0, VEP-FRD-36A		
	FSAR/Tech Spec	If Design To	olerance is exceeded, SNSOC shall		
V		evaluate im	pact of test result on safety analysis.		
Acceptance		SNSOC ma	y specify that additional testing		
Criteria		be performe	ed.		
	Reference	VEP-FRD-			
	Design Tolerance is met :	YES			
	Acceptance Criteria is met :	YES	S NO		
VI Comments					

Prepared By: <u>ON Kohlina</u> Reviewed By: <u>Auluttuilu</u>

1	Test Description: Control Bank C Worth Measurement, Rod Swap						
Reference	Proc No / Section: 2-NP	T-RX-008	Sequence Step No:				
11	Bank Positions (Steps)		RCS Temperature (°F): 547				
Test		Power Level (% F.P.): 0					
Conditions	SDA: 229 SDB: 229 CA:	229	Other (specify):				
(Design)	CB: moving CC: moving CD:	229	Below Nuclear Heating				
111	Bank Positions (Steps)		RCS Temperature (°F): 546.5				
Test			Power Level (% F.P.): 0				
Conditions	SDA: 229 SDB: 229 CA:	229	Other (specify):				
(Actual)	CB: moving CC: moving CD:	229	Below Nuclear Heating				
	Date/Time Test Performed:						
}			<u> </u>				
[Measured Parameter	IcRS:	Integral Worth of Control Bank C,				
} ,	(Description)	Rod Swap .:					
IV	Measured Value	sured Value IcRS= 861 pcm					
Test		Critical Refe	erence Bank Position = 107 steps)				
Results	Design Value		A				
·	(Actual Conditions)	Ic ^{RS} =	914.0 pm (Adjusted Measured				
		Critical Refe	erence Bank Position = 107 steps)				
	Design Value						
	(Design Conditions)	Ic ^{RS} =	912 ± 137 pcm				
·		(Critical Ref	ference Bank Position = 118 steps)				
	Reference	Technical R	Report NE-1146, Rev. 0, VEP-FRD-36A				
	FSAR/Tech Spec	If Design To	plerance is exceeded, SNSOC shall				
V		evaluate im	pact of test result or, safety analysis.				
Acceptance		SNSOC ma	y specify that additional testing				
Criteria		be performe					
	Reference	VEP-FRD-					
	Design Tolerance is met :	YE?					
	Acceptance Criteria is met:	V YES	S NO				
VI							
Comments							
			·				

Prepared By: <u>N. M. Links</u> Reviewed By: <u>Auch Huilun</u>

1	Test Description: Control Bank A Worth Measurement, Rod Swap							
Reference	Proc No / Section: 2-NP	T-RX-008	Sequence Step No:					
11	Bank Positions (Steps)		RCS Temperature (°F): 547					
Test	<u> </u>		Power Level (% F.P.): 0					
Conditions	SDA: 229 SDB: 229 CA:	moving	Other (specify):					
(Design)	CB: moving CC: 229 CD:	229	Below Nuclear Heating					
III	Bank Positions (Steps)		RCS Temperature (°F): 546.3					
Test			Power Level (% F.P.): 0					
Conditions	SDA: 229 SDB: 229 CA:	moving	Other (specify):					
(Actual)	CB: moving CC: 229 CD:	229	Below Nuclear Heating					
	Date/Time Test Performed:							
	10/31/97 01:5	5						
	Measured Parameter	IARS;	Integral Worth of Control Bank A,					
İ	(Description)	Rod Swap :						
) IV	Measured Value		IARS = 196 pcm (Adjusted Measured					
Test		Critical Refe	ference Bank Position = 39 steps)					
Results	Design Value	22 0 0 0						
l .	(Actual Conditions)	•	200.8 pcm (Adjusted Measured					
		Critical Refe	erence Bank Position = 39 steps)					
1	Design Value	. RS						
	(Design Conditions)		201 ± 100 pcm					
			erence Bank Position = 39 steps)					
	Reference		eport NE-1146, Rev. 0, VEP-FRD-36A					
	FSAR/Tech Spec	1	plerance is exceeded, SNSOC shall					
V .			pact of test result on safety analysis.					
Acceptance			y specify that additional testing					
Criteria		be performe						
	Reference	VEP-FRD-						
	Design Tolerance is met :	YES						
\ <u>,</u>	Acceptance Criteria is met:	V YES	NO NO					
VI								
Comments								
1	· · · · · · · · · · · · · · · · · · ·							

Prepared By: <u>UN lighturn</u> Reviewed By: <u>Auslin A Linglen</u>

1	Test Description: Shutdown Bank B Worth Measurement, Rod Swap							
Reference	Proc No / Section: 2-NP	Sequence Step No:						
11	Bank Positions (Steps)	RCS Temperature (°F): 547						
Test		Power Level (% F.P.): 0						
Conditions	SDA: 229 SDB: moving CA:	229	Other (specify):					
(Design)	CB: moving CC: 229 CD:	229	Below Nuclear Heating					
111	Bank Positions (Steps)		RCS Temperature (°F): 546.4					
Test			Power Level (% F.P.): 0					
Conditions	SDA: 229 SDB: moving CA:	229	Other (specify):					
(Actual)	CB: moving CC: 229 CD:	229	Below Nuclear Heating					
	Date/Time Test Performed:							
}	10/31/97 02:	20	·					
		ne						
	Measured Parameter	ISB ^{KS} ;	Integral Worth of Shutdown Bank B,					
	(Description)		Rod Swap					
		P6						
IV	Measured Value		1225 pcm (Adjusted Measured					
Test		Critical Refe	erence Bank Position = (72 steps)					
Results	Design Value	. 29						
	(Actual Conditions)		1243.5 pcm (Adjusted Measured					
]		Critical Refe	erence Bank Position = 172 steps)					
	Design Value	, RS						
1	(Design Conditions)		1242 ± 186 pcm					
			ference Bank Position = 186 steps)					
	Reference		Leport NE-1146, Rev. 0, VEP-FRD-36A					
	FSAR/Tech Spec		plerance is exceeded, SNSOC shall					
\ \ \ \		1	pact of test result on safety analysis.					
Acceptance		ļ	y specify that additional testing					
Criteria		be performe	· · · · · · · · · · · · · · · · · · ·					
	Reference	VEP-FRD-						
	Design Tolerance is met :	YES						
	Acceptance Criteria is met:	V YES	S NO					
VI								
·Comments								

Prepared By: Dil When Reviewed By: And Audilus

1	Test Description: Shutdown Ba	ink A Worth	Measurement, Rod Swap		
Reference	Proc No / Section: 2-NP	T-RX-008	Sequence Step No:		
II	Bank Positions (Steps)		RCS Temperature (°F): 547		
Test			Power Level (% F.P.): 0		
Conditions	SDA: moving SDB: 229 CA:	229	Other (specify):		
(Design)	CB: moving CC: 229 CD:	229	Below Nuclear Heating		
111	Bank Positions (Steps)		RCS Temperature (°F): 564.4 with		
Test	·		Power Level (% F.P.): 0 546.4 10/31/47		
Conditions	SDA: moving SDB: 229 CA:	229	Other (specify):		
(Actual)	CB: moving CC: 229 CD:	229	Below Nuclear Heating		
	Date/Time Test Performed:				
ł	10/31/97 02:54				
Ì					
	Measured Parameter	I _{SA} ^{RS} ; Integral Worth of Shutdown Bank			
	(Description)	Rod Swap ·			
Í					
) IV	Measured Value	I _{SA} ^{RS} = 803 pcm (Adjusted Measo			
Test		Critical Refe	erence Bank Position = 95 steps)		
Results	Design Value	, ne	8-6		
	(Actual Conditions)	1	809.1 pcm (Adjusted Measured		
j ·	· · · · · · · · · · · · · · · · · · ·	Critical Refe	erence Bank Position = 95 steps)		
	Design Value				
	(Design Conditions)	1	810 ± 122 pcm		
	<u></u>		ference Bank Position = 99 steps)		
 	Reference		Report NE-1146, Rev. 0, VEP-FRD-36A		
	FSAR/Tech Spec	1	olerance is exceeded, SNSOC shall		
V		,	pact of test result on safety analysis.		
Acceptance		l	y specify that additional testing		
Criteria		be performe			
	Reference	VEP-FRD-			
	Design Tolerance is met :	YES			
	Acceptance Criteria is met:	✓ YES	S NO		
VI		•			
Comments					

Prepared By: UN Chlurn

Reviewed By: Aula Allielu

1	Test Description: Total Rod Wo	orth, Rod S	wap		
Reference	•	T-RX-008	Sequence Step No:		
11	Bank Positions (Steps)		RCS Temperature (°F): 547		
Test			Power Level (% F.P.): 0		
Conditions	SDA: moving SDB: moving CA:	moving	Other (specify):		
(Design)	CB: moving CC: moving CD:	moving	Below Nuclear Heating		
111	Bank Positions (Steps)		RCS Temperature (°F): 546.5		
Test			Power Level (% F.P.): 0		
Conditions	SDA: moving SDB: moving CA:	moving	Other (specify):		
(Actual)	CB: moving CC: moving CD:	moving	Below Nuclear Heating		
	Date/Time Test Performed: 10/30/97 19:30	Ţ			
	Measured Parameter	I _{Total} ;	Integral Worth of All Banks,		
l	(Description)		Rod Swap		
IV Test	Measured Value	I _{Total} = 56 47 pcm			
Results	Design Value				
	(Actual Conditions)	Total=	5681.8 pcm		
	Design Value				
	(Design Conditions)	I _{Total} =	5683 ± 568 pcm		
,	Reference	Technical R	Report NE-1146, Rev. 0, VEP-FRD-36A		
	FSAR/Tech Spec	If Design To	plerance is exceeded, SNSOC shall		
V		evaluate im	pact of test result on safety analysis.		
Acceptance		Additional to	esting must be performed.		
Criteria	 				
	Reference	VEP-FRD-			
	Design Tolerance is met :	YES			
	Acceptance Criteria is met :	V YES	S NO		
VI Comments		·			

Prepared By: UN Whinn	Reviewed By: And Helich
-----------------------	-------------------------

ATACHMENT 7

SURRY POWER STATION UNIT 2 CYCLE 15 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET

i	Test Descri	Test Description: M/D Flux Map - At Power							
Reference	Proc No	/ Section:	2-NP	T-RX-008		Sequence Ste			
11	Bank Position	ons (Steps)			RCS Tem	perature (°F):	TREF ± 1		
Test					Power Le	vel (% F.P.): ≤	30		
Conditions	SDA: 229	SDB: 229	CA:	229	Other (sp	ecify):			
(Design)	CB: 229	CC: *	CD:		Must have	e ≥ 38 thimbles	**		
111	Bank Position	ons (Steps)			RCS Tem	perature (°F):	TREF		
Test					Power Le	vel (% F.P.): a	19,55		
Conditions	SDA: 229	SDB: 229	CA:	229	Other (sp	ecify):			
(Actual)	CB: 229	cc: 22°	CD:	191	}	ecify): 42 th	imbles		
	Date/Time	Test Perform	ned:]				
ļ	10/31/9	7 @ 23	27						
		Maximum I	Relative	Nuclear	Enthalpy	Total Heat	Maximum		
	Measured	Assem	biy	Rise	e Hot	Flux Hot	Positive Incore		
	Parameter	Power %	DIFF	Channe	el Factor	Channel	Quadrant		
IV	(Description)	(M-P)/	P	FA	H(N)	Factor Fu(Z)	Power Tilt		
Test	Measured	-5.7 Pi	≥0.9	1.5	5 /2				
Results	Value	8.8 P	40.9	1.5		2.041	1.0142		
i	Design Value	±10% for Pi	≥0.9						
	(Design	±15% for Pi<	9.0	N//	4	N/A	≤ 1.02		
}	Conditions)	(Pi = assy po	wer)						
	Reference	WCAP-7905	Rev. 1	Non	e	None	WCAP-7905,		
						<u> </u>	Rev. 1		
V	FSAR/COLR	None	•	FΔH(N)≾1.56	(1+0.3(1-P))	FQ(Z)≤4.64°K(Z)	None		
Acceptance		[
Criteria	Reference	None	3	COLR	2.4	COLR 2.3	None		
·					·				
	Design Tole	rance is me	et :	ノ YE	S	NC			
	Acceptance	Criteria is r	net :	✓ YE	S	NC NC)		
VI	* As required	i							
Comments	** Must have	at least 16 th	imbles f	or quarter c	ore maps fo	or multi-point cal	ibrations		
j	•								
				•		•			

Prepared By: Panula D. Banning

Reviewed By Block Bill

ATTACKMENT 7

SURRY POWER STATION UNIT 2 CYCLE 15 STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEET

1	Test Desc	Test Description: M/D Flux Map - At Power							
Reference	Proc N	/ Section	on:	2-NP	T-RX-008		Sequence Ste		
[1	Bank Pos	tions (S	teps)				perature (°F):		
Test						Power Le	vel (% F.P.): 6	5 ≤ P ≤ 75	
Conditions	SDA: 22	SDB:	229	CA:	229	Other (sp	ecify):		
(Design)	CB: 22	CC:	229	CD:			e ≥ 38 thimbles		
III	Bank Posi	tions (St	eps)			RCS Tem	perature (°F):	TROF ±1	
Test						Power Le	vel (% F.P.): (68.82	
Conditions	SDA: 22	SDB:	229	CA:	229	Other (sp	ecify):		
(Actual)	CB: 22	CC:	229	CD:	211	42	THIMBLE'S		
1	Date/Time								
ł	11/2	97		1843	·		,		
		Maxin	num Re	elative	Nuclear	Enthalpy	Total Heat	Maximum	
	Measured	A:	ssembl	y	Rise	: Hot	Flux Hot	Positive Incore	
	Paramete	Po	wer %D	IFF	Channe	el Factor	Channel	Quadrant	
IV	(Description	· ·	M-P)/P		FΔI	H(N)	Factor Fo(Z)	Power Tilt	
Test	Measured		Piz		1.5	n 3	1.836	1.0088	
Results	Value	5.77	6 P. 4	2·4 				7.00 80	
1	Design Value	4	or P; ≥0		}				
	(Design	±15% f	or Pi<0.	9	N/A	1	N/A	≤ 1.02	
]	Conditions)	(P _i = a:	sy pow	er)					
	Reference	WCAP-	7905, F	Rev. 1	Non	е	None	WCAP-7905,	
 						·		Rev. 1	
V	FSAR/COLR		None		F∆H(N)≾1.56	(1+0.3(1-P))	FQ(Z)≤2.32/P°K(Z)	None	
Acceptance				·					
Criteria	Reference		None		COLR 2	.4	COLR 2.3	Non∈	
					<u> </u>				
	Design To	erance i	s met	:	_✓ YE	_	NC)	
	Acceptanc	e Criteria	a is me	et :	✓ YE	<u>s</u>	NC)	
VI `	* As requir	ed							
Comments	** Must have	e at least	16 thin	nbles f	or quarter c	ore maps fo	or multi-point cali	brations	
· ·									
							0	$\Lambda \propto$	

Prepared By: 👱

Reviewed By:

ı	Test Description: M/D Flux Map - At Power							
Reference	Proc No /	Section:	2-NP	r-RX-008		Sequence Step		
11	Bank Positio	ns (Steps)			RCS Tem	perature (°F): 1	REF ± 1	
Test					Power Lev	vel (% F.P.): 95	≤ P ≤ 100	
Conditions	SDA: 229	SDB: 229	CA:	229	Other (spe	- *		
(Design)	CB: 229	CC: 229	CD:	*	Must have	≥ ≥ 38 thimbles	-	
111	Bank Position	ns (Steps)		_	RCS Tem	perature (^o F): (573.0°F	
Test					Power Le	vel (% F.P.): q	9.23%	
Conditions	SDA: 229	SDB: 229	CA:	229	Other (sp	ecify):		
(Actual)	CB: 229	CC: 229	CD:	225	3	8 thim ble	-<	
	Date/Time T	est Perform	ned:				~	
ļ ·	11/7/9	7 100	~	·	<u> </u>			
		Maximum F	Relative	Nuclear	r Enthalpy	Total Heat	Maximum	
į	Measured	Assemb	oly	Rise	e Hot	Flux Hot	Positive Incore	
ł	Parameter	Power %	DIFF	Chann	el Factor	Channel	Quadrant	
IV.	(Description)	· (M-P)/I		FΔ	H(N)	Factor FQ(Z)	Power Tilt	
Test	Measured	-4.2% Fox			<u></u>	1772	1.0137	
Results	Value	+7.5% FX	۱ ۲۲۰۹	1.49	(1.773	TOP.11767	
ł	Design Value	±10% for Pi	0.9					
ļ	(Design	±15% for Pi<	0.9	N/	A	N/A	≤ 1.02	
1	Conditions)	(P; = assy po	wer)			ļ		
·	Reference	WCAP-7905.	Rev. 1	Nor	ne	None	WCAP-7905,	
	<u> </u>						Rev. 1	
V	FSAR/COLR	None	•	F∆H(N)≤1.56	5(1+0.3(1-P))	FQ(Z)±2.32/P*K(Z)	None	
Acceptance				ļ				
Criteria	Reference	None	•	COLR	2.4	COLR 2.3	None	
		<u> </u>						
	Design Tole		_		YES NO		j	
	Acceptance		net :	YE	<u> </u>	NC)	
VI	* As require						Ì	
Comments	** Must have	at least 16 th	nimbles i	for quarter of	core maps f	or multi-point cali	brations	
1								
1		Λ						
		//		·				

Prepared By: A Jawwelle

Reviewed B