ARGINIA POWER

Administrative Procedures Action Request (A-PAR)

VPAP-0502 - Attachment 22					
quest for Procedure Modification - to be completed by Requestor and Counterpart (complete blocks 1 through 15 and forward to appropriate Process / Program Owner (PPO). If needed, see instructions for this form contained in VPAP-0502)					
1. Procedure Number VPAP-2103	2. Revision 8	3. Page 1 of 2	4. Effective D	late 10-29-97	
5. Procedure Title Offsite Dose Calculation Manual			6. Expiration	·	
7. Type of Request New Procedur	e X Procedu	ure Revision	Procedu	re Deletion	
Brief description of the modification Please see Page 2 of 2					
Thease see I age 2 of 2					
9. Location X SPS NAPS	CORP	Location	SPS X		ORP
J. Keithly	11. Date 12. Phone 13/20/97 2028	13. Requested by S. Tipsword	`	03/20/97	15. Phone 2126
Request <u>Approval Checklist</u> - to be com to appropriate Station Procedures)	pleted by-Process/ Pr	ogram Owners (PPO	s) (complete b	oločks 16 through 32	and forward
16. Is this a new procedure or does proced	dure meet requirements	of NOTE below?		Yes No	
Does this procedure require a Safety E	evaluation?		A Yes	国常国家	
13 Are there any new sections or steps de	esignated North Anna o	r Surry?		Yes No	
19. Is the reason for the station-specific in	19. Is the reason for the station-specific instructions due to differences in regulatory requirements?				
20. Is the reason for the station-specific in	structions due to differe	nces in construction?		Yes Ar	□ N/A
21. Is the reason for the station-specific in	structions due to station	preferences?		Yes No	□ N/A
If all answers are No or N/A, approval is re	quired by PPOs as ider	ntified on the Procedur	e Cover Page.	Check block 29.	
If block 16 or 17 is Yes, approval is require NOTE: VPAP-2101 and VPAP-2201 re VPAP-2103, VPAP-2104, and V	quire SNSOC approval			ks 29, 30, and 31, as	appropriate.
If block 18, 19, or 20 is Yes with block 21 i	No, approval is required	by PPOs and Station	Managers. Ch	eck blocks 29 and 31.	
If block 21 is Yes, approval is required by	PPOs, Station Manager	s, and Vice President.	Check blocks	29, 31, and 32.	
22. Location X SPS NAPS	CORP	Location	SPS X	NAPS CO	RP
	24. Date 25. Phone 23/20/97 2010	26. PPO Name (P A. H. Stafford	lease Print)	27. Date 03/20/97	28. Phone 2107
Required Approval Authority - Determina	ation From Above by I	PPO			
29. PPO(s)	30. SNSOCs	31. Station Ma	_	32. Vice Presid	ent
Procedure Approval (Signature) (comple 33. PPO (Signature)	te blocks 33 through	46 and forward to Sta 35. PPO (Signature		es)	36. Date
35. FFO (Signature)	/0-8-9	· · · · · · · · · · · · · · · · · · ·	Stafford	p dan	6-2-97
37. SNSOC Chairman (Signature)	38. Date	39. SNSOC Chairn	nan (Signature) Heacock	Sh.	40. Date
Station Manager (Signature)	42. Date	43. Station Manage	er (Signature)	0	44. Date 6-3-51
Executive approval required for any star	xecutive approval required for any station-specific 45. Vice President (Signature) 46. Date				
instructions that are based solely on station preferences.					

Station Administrative Procedure

© 1997 by Virginia Power. All Rights Reserved

Title: Offsite Dose Calculation Manual

Process / Program Owner: Superintendent - Radiological Protection

Procedure Number	Revision Number	Effective Date
VPAP-2103	8	10-29-97

Revision Summary

- Incorporated PN1, PN2, PS1, and PS2 to update procedure as follows:
- Added 3.1.23, Deviation Report N94-1137, Improper Placement of Emergency TLDs (PN1/PS1)
- Corrected 4.5 units of I¹³¹ concentration to µCi/cc (PN2/PS2)
- Added 6.2.2.c "Steam Generator High Capacity Blowdown Line" (PN2)
- Revised 4.13 to reflect Surry Core Uprate to 2546 MWt Rated Thermal Power (PN2/PS2)
- Deleted from 6.6.3.a., 6.6.3.b., 6.6.3.b.1, and 6.7.1 "NRC-approved EPA Interlaboratory Comparison Program" since the EPA eliminated the program (PN1/PS1)
- Added Attachment 2 and 4 "Steam Generator High Capacity Blowdown" (PN2)
- Added Attachment 14 "1-VG-RM-104" to Ventilation Vent System Noble Gas Activity monitors (PS2)
- Changed Attachment 20, Surry Environmental Sampling Locations to replace Walnut Point oyster sampling location with Kingsmill oyster sampling location (PN1/PS1)
- Changed Attachment 21, North Anna Environmental Sampling Locations, to correct Emergency TLD locations (PN1/PS1)
- Added 3.1.11, WASH 1258, Vol. 2, July 1973, Numerical Guides for Design Objectives and Limiting Conditions for Operation to Meet the Criterion "As Low As Practicable" For Radioactive Material in Light Water-Cooled Nuclear Power Reactor Effluents, to update references
- Responded to North Anna and Surry DRs concerning the Annual Radiological Effluent Release Report by changing the following:
 - Added 3.2.5, North Anna DR N-97-0926, Annual Radiological Effluent Release Report
 - Added 3.2.6, Surry DR S-97-1281, Annual Radiological Effluent Release Report
- Revised 6.7.2.1 in response to North Anna and Surry DRs concerning the Annual Radiological Effluent Release Report [Commitment 3.2.5] [Commitment 3.2.6]
- Revised 6.2.3.d "B_i" description due to deletion of Attachment 7

Revision Summary continued on Page 2

Approvals on File

Revision Summary

- Revised 6.7.2.a Step Title, 6.7.2.a.1, and added 6.7.2.c Note (Surry) and 6.7.2.c to provide for separate Annual Radioactive Effluent Release Reports for the station and the ISFSI
- Updated Attachment 5, Liquid Ingestion Pathway Dose Factors for Surry Station Units 1 and 2, Cr-51 Thyroid A_i to 3.34E+0 mrem/hr
- Deleted Attachment 6, North Anna Liquid Ingestion Pathway Dose Factor Calculation Units 1 and 2, due to no longer used/needed
- Deleted Attachment 7, North Anna Liquid Pathway Dose Commitment Factors for Adults, due to no longer used/needed
- Deleted from Attachment 10, Gaseous Effluent Dose Factors for Surry, "Kr-83m" and "Kr-90" to update Dose Factors for Surry Ventilation Vent and Process Vent
- Revised Attachment 27, 2.2 and 2.3, to address use of the North Anna Power Station liquid pathway critical organ calculations spreadsheet

TABLE OF CONTENTS

		Sect	ion			Page
	1.0	PUI	RPOSE			7
	2.0	SCO	OPE			7
						, O
	3.0	KE	PEREN	ICES/COMMITMENT DOCUMENTS		8
	4.0	DE	FINITI	ONS		9
	5.0	RES	SPONS	IBILITIES	· 	13
	6.0	INS	TRUC	ΓIONS		15
		6.1	Samp	ling and Monitoring Criteria		15
		6.2	Liqui	d Radioactive Waste Effluents		15
			6.2.1	Liquid Effluent Concentration Limitations	,	15
	-		6.2.2	Liquid Monitoring Instrumentation	•	16
			6.2.3	Liquid Effluent Dose Limit		20
			6.2.4	Liquid Radwaste Treatment		23
			6.2.5	Liquid Sampling		24
		6.3	Gaseo	ous Radioactive Waste Effluents		24
_			6.3.1	Gaseous Effluent Dose Rate Limitation		24
			6.3.2	Gaseous Monitoring Instrumentation		27
			6.3.3	Noble Gas Effluent Air Dose Limit		30
			6.3.4	I-131, 133, H-3 & Radionuclides In Particulate Form Effluen	t Dose Limit	t 32
			6.3.5	Gaseous Radwaste Treatment		- 36
		6.4	Radio	active Liquid and Gaseous Release Permits		38
			6.4.1	Liquid Waste Batch Release Permits		38
			6.4.2	Continuous Release Permit		39
			6.4.3	Waste Gas Decay Tank (WGDT) Release Permit	•	39
			6.4.4	Reactor Containment Release Permits		40
			6.4.5	Miscellaneous Gaseous Release Permit		<i>4</i> ∩

TABLE OF CONTENTS (continued)

	Sec	ction	Page
		6.4.6 Radioactive Liquid and Gaseous Release Controls	40
	6.5	Total Dose Limit to Public From Uranium Fuel Cycle Sources	41
	6.6	Radiological Environmental Monitoring	43
		6.6.1 Monitoring Program	43
		6.6.2 Land Use Census	45
		6.6.3 Interlaboratory Comparison Program	46
	6.7	Reporting Requirements	47
		6.7.1 Annual Radiological Environmental Operating Report	47
		6.7.2 Annual Radioactive Effluent Release Report	48
		6.7.3 Annual Meteorological Data	50
		6.7.4 Changes to the ODCM	50
7.0	RE	CORDS	52
		ATTACHMENTS	
	1	Surry Radioactive Liquid Effluent Monitoring Instrumentation	53
	2	North Anna Radioactive Liquid Effluent Monitoring Instrumentation	55
	3	Surry Radioactive Liquid Effluent Monitoring Instrumentation Surveillance Requirements	57
	4	North Anna Radioactive Liquid Effluent Monitoring Instrumentation Surveillance Requirements	59
	5	Liquid Ingestion Pathway Dose Factors for Surry Station Units 1 and 2	61
	6	Surry Radioactive Liquid Waste Sampling and Analysis Program	63
	7	North Anna Radioactive Liquid Waste Sampling and Analysis Program	67
	8	Surry Radioactive Gaseous Waste Sampling and Analysis Program	71
	9	North Anna Radioactive Gaseous Waste Sampling and Analysis Program	77
	10	Gaseous Effluent Dose Factors for Surry	81
	11	Gaseous Effluent Dose Factors for North Anna	85

TABLE OF CONTENTS (continued)

Section	Page
12 Surry Radioactive Gaseous Effluent Monitoring Instrumentation	89
13 Surry Radioactive Gaseous Effluent Monitoring Instrumentation	91
14 Surry Radioactive Gaseous Effluent Monitoring Instrumentation Surveillance Requirements	97
15 North Anna Radioactive Gaseous Effluent Monitoring Instrumentation Surveillance Requirements	99
16 Critical Organ and Inhalation Dose Factors for Surry	103
17 Critical Organ Dose Factors for North Anna	105
18 Surry Radiological Environmental Monitoring Program	107
19 North Anna Radiological Environmental Monitoring Program	111
20 Surry Environmental Sampling Locations	117
21 North Anna Environmental Sampling Locations	121
22 Detection Capabilities for Surry Environmental Sample Analysis	125
23 Detection Capabilities for North Anna Environmental Sample Analysis	127
24 Reporting Levels for Radioactivity Concentrations in Environmental Samples at Surry	129
25 Reporting Levels for Radioactivity Concentrations in Environmental Samples at North Anna	131
26 Surry Meteorological, Liquid, and Gaseous Pathway Analysis	133
27 North Appa Mateorological Liquid and Coscous Pathway Apolysis	1/1

Intentionally Blank

1.0 PURPOSE

The Offsite Dose Calculation Manual (ODCM) establishes requirements for the Radioactive Effluent and Radiological Environmental Monitoring Programs. Methodology and parameters are provided to calculate offsite doses resulting from radioactive gaseous and liquid effluents, to calculate gaseous and liquid effluent monitoring alarm/trip setpoints, and to conduct the Environmental Monitoring Program. Requirements are established for the Annual Radiological Environmental Operating Report and the Annual Radioactive Effluent Release Report required by Station Technical Specifications. Calculation of offsite doses due to radioactive liquid and gaseous effluents are performed to assure that:

- Concentration of radioactive liquid effluents to the unrestricted area will be limited to ten
 times the effluent concentration values of 10 CFR 20, Appendix B, Table 2, Column 2, for
 radionuclides other than dissolved or entrained noble gases and 2E-4 µCi/ml for dissolved or
 entrained noble gases.
- Exposure to the maximum exposed member of the public in the unrestricted area from radioactive liquid effluents will not result in doses greater than the liquid dose limits of 10 CFR 50, Appendix I
- Dose rate at and beyond the site boundary from radioactive gaseous effluents will be limited to:
 - •• Noble gases less than or equal to a dose rate of 500 mrem/yr to the total body and less than or equal to a dose rate of 3000 mrem/yr to the skin
 - •• I¹³¹, I¹³³, and H³, and all radionuclides in particulate form with half-lives greater than 8 days less than or equal to a dose rate of 1500 mrem/yr to any organ
- Exposure from radioactive gaseous effluents to the maximum exposed member of the public in the unrestricted area will not result in doses greater than the gaseous dose limits of 10 CFR 50, Appendix I, and
- Exposure to a real individual will not exceed 40 CFR 190 dose limits

2.0 SCOPE

This procedure applies to the Radioactive Effluent and Environmental Monitoring Programs at Surry and North Anna Stations.

3.0 REFERENCES/COMMITMENT DOCUMENTS

3.1 References

- 3.1.1 10 CFR 20, Standards for Protection Against Radiation
- 3.1.2 10 CFR 50, Domestic Licensing of Production and Utilization Facilities
- 3.1.3 40 CFR 190, Environmental Radiation Protection Standards for Nuclear Power Operations
- 3.1.4 TID-14844, Calculation of Distance Factors for Power and Test Reactor Sites
- 3.1.5 Regulatory Guide 1.21, Measuring, Evaluating, and Reporting Radioactivity in Solid Wastes and Releases of Radioactive Materials in Liquid and Gaseous Effluents from Light-Water-Cooled Nuclear Power Plants, Rev. 1, U.S. NRC, June 1974
- 3.1.6 Regulatory Guide 1.109, Calculation of Annual Doses to Man From Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance With 10 CFR 50, Appendix I, Rev. 1, U.S. NRC, October 1977
- 3.1.7 Regulatory Guide 1.111, Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water-Cooled Reactors, Rev. 1, U.S. NRC, July 1977
- 3.1.8 Surry and North Anna Technical Specifications (Units 1 and 2)
- 3.1.9 NUREG-0324, XOQDOQ, Program for the Meteorological Evaluation of Routine Effluent Releases at Nuclear Power Stations, U.S. NRC, September 1977
- 3.1.10 NUREG/CR-1276, Users Manual for the LADTAP II Program, U.S. NRC, May, 1980
- 3.1.11 WASH 1258, Vol. 2, July 1973, Numerical Guides for Design Objectives and Limiting Conditions for Operation to Meet the Criterion "As Low As Practicable" For Radioactive Material in Light Water-Cooled Nuclear Power Reactor Effluents
- 3.1.12 NUREG-0597, User's Guide to GASPAR Code, U.S. NRC, June, 1980
- 3.1.13 Radiological Assessment Branch Technical Position on Environmental Monitoring, November, 1979, Rev. 1
- 3.1.14 NUREG-0133, Preparation of Radiological Effluent Technical Specifications for Nuclear Power Stations, October, 1978
- 3.1.15 NUREG-0543, February 1980, Methods for Demonstrating LWR Compliance With the EPA Uranium Fuel Cycle Standard (40 CFR Part 190)
- 3.1.16 NUREG-0472, Standard Radiological Effluent Technical Specifications for Pressurized Water Reactors, Rev. 3, March 1982
- 3.1.17 Environmental Measurements Laboratory, DOE HASL 300 Manual

- 3.1.18 NRC Generic Letter 89-01, Implementation of Programmatic Controls for Radiological Effluent Technical Specifications (RETS) in the Administrative Controls Section of the Technical Specifications and the Relocation of Procedural Details of RETS to the Offsite Dose Calculation Manual or to the Process Control Program
- 3.1.19 UFSAR (Surry and North Anna)
- 3.1.20 Nuclear Reactor Environmental Radiation Monitoring Quality Control Manual, IWL-0032-361
- 3.1.21 VPAP-2802, Notifications and Reports
- 3.1.22 NAPS Circulating Water System Modifications
 - a. DC-85-37-1 Unit 1
 - b. DC-85-38-2 Unit 2
- 3.1.23 Deviation Report N94-1137, Improper Placement of Emergency TLDs

3.2 Commitment Documents

- 3.2.1 Quality Assurance Audit Report Number C 90-22, Management Safety Review Committee, Observation 03C, January 17, 1991
- 3.2.2 Quality Assurance Audit Report Number 91-03, Observation 08N
- 3.2.3 Quality Assurance Audit Report Number 92-03, Observation 02N
- 3.2.4 Quality Assurance Audit Report Number 92-03, Observation 04NS (Item 2)
- 3.2.5 North Anna DR N-97-0926, Annual Radiological Effluent Release Report
- 3.2.6 Surry DR S-97-1281, Annual Radiological Effluent Release Report

4.0 DEFINITIONS

4.1 Channel Calibration

Adjustment, as necessary, of the channel output so it responds with the necessary range and accuracy to known values of the parameter the channel monitors. It encompasses the entire channel, including the sensor and alarm and/or trip functions and the Channel Functional Test. The Channel Calibration can be performed by any series of sequential, overlapping, or total channel steps so the entire channel is calibrated.

4.2 Channel Check

A qualitative assessment, by observation, of channel behavior during operation. This assessment includes, where possible, comparison of the channel indication and/or status with other indications and/or status derived from independent instrumentation channels measuring the same parameter.

4.3 Channel Functional Test

There are two types of Channel Functional Tests.

4.3.1 Analog Channel

Injection of a simulated signal into a channel, as close to the sensor as practicable, to verify Operability, including alarm and/or trip functions.

4.3.2 Bistable Channel

Injection of a simulated signal into a sensor to verify Operability, including alarm and/or trip functions.

4.4 Critical Organ

That organ, which has been determined to be the maximum exposed organ based on an effluent pathway analysis, thereby ensuring the dose and dose rate limitations to any organ will not be exceeded.

4.5 Dose Equivalent I-131

That concentration of I^{131} (μ Ci/cc) that alone would produce the same thyroid dose as the quantity and isotopic mixture of I^{131} , I^{132} , I^{133} , I^{134} , and I^{135} actually present. Thyroid dose conversion factors for this calculation are listed in Table III of TID-14844, Calculation of Distance Factors for Power and Test Reactor Sites. Thyroid dose conversion factors from NRC Regulatory Guide 1.109, Revision 1, may be used (Surry).

4.6 Frequency Notations

NOTE: Frequencies are allowed a maximum extension of 25 percent.

NOTATION FREQUENCY

D - Daily	At least once per 24 hours
W - Weekly	At least once per 7 days
M - Monthly	At least once per 31 days
Q - Quarterly	At least once per 92 days
SA - Semi-annually	At least once per 184 days
R - Refueling	At least once per 18 months
S/U - Start-up	Prior to each reactor start-up
P - Prior to release	Completed prior to each release
N.A Not applicable	Not applicable
•	

4.7 Gaseous Radwaste Treatment System

DR - During the release

A system that reduces radioactive gaseous effluents by collecting primary coolant system offgases from the primary system and providing delay or holdup to reduce total radioactivity prior to release to the environment. The system comprises the waste gas decay tanks, regenerative heat exchanger, waste gas charcoal filters, process vent blowers, waste gas surge tanks, and waste gas diaphragm compressor (North Anna).

At least once during each release

4.8 General Nomenclature

- χ = Chi: concentration at a point at a given instant (curies per cubic meter)
- D = Deposition: quantity of deposited radioactive material per unit area (curies per square meter)
- Q = Source strength (instantaneous; grams, curies)
 - = Emission rate (continuous; grams per second, curies per second)
 - = Emission rate (continuous line source; grams per second per meter)

4.9 Lower Limit of Detection (LLD)

The smallest concentration of radioactive material in a sample that will yield a net count (above system background) that can be detected with 95 percent probability with only 5 percent probability of falsely concluding that a blank observation represents a "real" signal.

4.10 Members of the Public

Individuals who, by virtue of their occupational status, have no formal association with the Station. This category includes non-employees of Virginia Power who are permitted to use portions of the site for recreational, occupational, or other purposes not associated with Station functions. This category does not include non-employees such as vending machine servicemen or postal workers who, as part of their formal job function, occasionally enter an area that is controlled by Virginia Power to protect individuals from exposure to radiation and radioactive materials.

4.11 Operable - Operability

A system, subsystem, train, component, or device is operable or has operability when it is capable of performing its specified functions and all necessary, attendant instrumentation, controls, normal and emergency electrical power sources, cooling or seal water, lubrication or other auxiliary equipment that are required for the system, subsystem, train, component, or device to perform its functions are also capable of performing their related support functions.

4.12 Purge - Purging

Controlled discharge of air or gas from a confinement to maintain temperature, pressure, humidity, concentration, or other operating condition, so that replacement air or gas is required to purify the confinement.

4.13 Rated Thermal Power

Total reactor core heat transfer rate to reactor coolant.

- Surry 2546 Megawatts Thermal (MWt)
- North Anna 2893 MWt

4.14 Site Boundary

The line beyond which Virginia Power does not own, lease, or otherwise control the land.

4.15 Source Check

A qualitative assessment of channel response when a channel sensor is exposed to radiation. This applies to installed radiation monitoring systems.

4.16 Special Report

A report to NRC to comply with Subsections 6.2, 6.3, or 6.5 of this procedure. Also refer to VPAP-2802, Notifications and Reports.

4.17 Thermal Power

Total reactor core heat transfer rate to the reactor coolant.

4.18 Unrestricted Area

Any area at or beyond the site boundary, access to which is neither limited nor controlled by Virginia Power for purposes of protection of individuals from exposure to radiation and radioactive materials, or any area within the site boundary used for residential quarters or for industrial, commercial, institutional or recreational purposes.

4.19 Ventilation Exhaust Treatment System

A system that reduces gaseous radioiodine or radioactive material in particulate form in effluents by passing ventilation or vent exhaust gases through charcoal adsorbers and High Efficiency Particulate Air (HEPA) filters to remove iodines and particulates from a gaseous exhaust stream prior to release to the environment (such a system is not considered to have any effect on noble gas effluents). Engineered Safety Feature (ESF) atmospheric cleanup systems are not Ventilation Exhaust Treatment System components.

5.0 RESPONSIBILITIES

5.1 Superintendent Radiological Protection

The Superintendent Radiological Protection is responsible for:

- 5.1.1 Establishing and maintaining procedures for surveying, sampling, and monitoring radioactive effluents and the environment.
- 5.1.2 Surveying, sampling, and analyzing plant effluents and environmental monitoring, and documenting these activities.
- 5.1.3 Analyzing plant effluent trends and recommending actions to correct adverse trends.
- 5.1.4 Preparing Effluent and Environmental Monitoring Program records.

5.2 Superintendent Operations

The Superintendent Operations is responsible for requesting samples, analyses, and authorization to release effluents.

Intentionally Blank

6.0 INSTRUCTIONS

NOTE: Meteorological, liquid, and gaseous pathway analyses are presented in Attachments 26 and 27, Meteorological, Liquid, and Gaseous Pathway Analysis.

6.1 Sampling and Monitoring Criteria

- 6.1.1 Surveys, sampling, and analyses shall use instruments calibrated for the type and range of radiation monitored and the type of discharge monitored.
- 6.1.2 Installed monitoring systems shall be calibrated for the type and range of radiation or parameter monitored.
- 6.1.3 A sufficient number of survey points shall be used or samples taken to adequately assess the status of the discharge monitored.
- 6.1.4 Samples shall be representative of the volume and type of discharge monitored.
- 6.1.5 Surveys, sampling, analyses, and monitoring records shall be accurately and legibly documented, and sufficiently detailed that the meaning and intent of the records are clear.
- 6.1.6 Surveys, analyses, and monitoring records shall be reviewed for trends, completeness, and accuracy.

6.2 Liquid Radioactive Waste Effluents

6.2.1 Liquid Effluent Concentration Limitations

- a. Liquid waste concentrations discharged from the Station shall not exceed the following limits:
 - For radionuclides (other than dissolved or entrained noble gases), liquid
 effluent concentrations released to unrestricted areas shall not exceed ten times
 the effluent concentration values specified in 10 CFR 20, Appendix B, Table 2,
 Column 2.
 - 2. For dissolved or entrained noble gases, concentrations shall not exceed 2E-4 μCi/ml.
- b. If the concentration of liquid effluent exceeds the limits in 6.2.1.a., promptly reduce concentrations to within limits.

c. Daily concentrations of radioactive materials in liquid waste released to unrestricted areas shall meet the following:

$$\frac{\text{Volume of Waste Discharged + Volume of Dilution Water}}{\text{Volume of Waste Discharged} \times \sum_{i} \frac{\mu \text{Ci/ml}_{i}}{\text{ACW}_{i}}} \ge 1$$
 (1)

where:

μCi/ml; = the concentration of nuclide i in the liquid effluent discharge

ACW_i = ten times the effluent concentration value in unrestricted areas of nuclide i, expressed as μ Ci/ml from 10 CFR 20, Appendix B, Table 2, Column 2 for radionuclides other than noble gases, and 2E-4 μ Ci/ml for dissolved or entrained noble gases

6.2.2 Liquid Monitoring Instrumentation

a. Radioactive Liquid Effluent Monitoring Instrumentation

Radioactive liquid effluent monitoring instrumentation channels shown on Attachments 1 and 2, Radioactive Liquid Effluent Monitoring Instrumentation, shall be operable with their alarm/trip setpoints set to ensure that 6.2.1.a. limits are not exceeded.

- 1. Alarm/trip setpoints of these channels shall be determined and adjusted in accordance with 6.2.2.d., Setpoint Calculation.
- 2. If a radioactive liquid effluent monitoring instrumentation channel alarm/trip setpoint is less conservative than required by 6.2.2.a., perform one of the following:
 - Promptly suspend release of radioactive liquid effluents monitored by the affected channel
 - Declare the channel inoperable
 - Change the setpoint to an acceptable, conservative value

- b. Radioactive Liquid Effluent Monitoring Instrumentation Operability Each radioactive liquid effluent monitoring instrumentation channel shall be demonstrated operable by performing a Channel Check, Source Check, Channel Calibration, and Channel Functional Test at the frequencies shown in Attachments 3 and 4, Radioactive Liquid Effluent Monitoring Instrumentation Surveillance
 - 1. If the number of operable channels is less than the minimum required by the tables in Attachment 1 or 2, perform the action shown in those tables.
 - 2. Attempt to return the instruments to operable status within 30 days. If unsuccessful, explain in the next Annual Radioactive Effluent Release Report why the inoperability was not corrected in a timely manner.

c. Applicable Monitors

Requirements.

Liquid effluent monitors for which alarm/trip setpoints shall be determined are:

Release Point	Instrument Numb	ber	
·	North Anna	Surry	
Liquid Radwaste Effluent Line	1-LW-RM-111	N/A	
Service Water System Effluent Line	1-SW-RM-108	1-SW-RM-107 A, B, C, D	
Condenser Circulating Water Line	1-SW-RM-130 2-SW-RM-230	1-SW-RM-120 2-SW-RM-220	
Radwaste Facility Effluent Line	N/A	1-RRM-RITS-131	
Steam Generator High Capacity Blowdown Line	1-RM-SS-125 2-RM-SS-125	N/A	

6.2.2 Liquid Monitoring Instrumentation (continued)

d. Setpoint Calculation

NOTE: This methodology does not preclude use of more conservative setpoints.

1. Maximum setpoint values shall be calculated by:

$$S = \frac{CF_D}{F_E}$$
 (2)

where:

S = the setpoint, in μ Ci/ml, of the radioactivity monitor measuring the radioactivity concentration in the effluent line prior to dilution

C = the effluent concentration limit for the monitor used to implement 10 CFR 20 for the Station, in μ Ci/ml

 F_E = maximum design pathway effluent flow rate

 F_D = dilution water flow rate calculated as: (Surry) D = F_E + (200,000 gpm x number of circ. pumps in service)

(N. Anna) D = F_E + (218,000 gpm x number of circ. pumps in service)

2. Each of the condenser circulating water channels (Surry: SW-120, SW-220) (North Anna: SW-130, SW-230) monitors the effluent (service water, including component cooling service water, circulating water, and liquid radwaste) in the circulating water discharge tunnel beyond the last point of possible radioactive material addition. No dilution is assumed for this pathway. Therefore, Equation (2) becomes:

$$S = C \tag{3}$$

The setpoint for Station monitors used to implement 10 CFR 20 for the site becomes the effluent concentration limit.

3. In addition, for added conservatism, setpoints shall be calculated for the liquid radwaste effluent line (North Anna: LW-111), the service water system effluent line (Surry: SW-107 A, B, C, and D, North Anna: SW-108), and the Radwaste Facility effluent line (Surry: RRM-131).

4. For the liquid radwaste effluent line, Equation (2) becomes:

$$S = \frac{CF_D K_{LW}}{F_F}$$
 (4)

where:

K_{LW} = The fraction of the effluent concentration limit, used to implement 10 CFR 20 for the site, attributable to the liquid radwaste effluent line pathway

5. For the service water system effluent line, Equation (2) becomes:

$$S = \frac{CF_DK_{SW}}{F_F}$$
 (5)

where:

 K_{SW} = The fraction of the effluent concentration limit, used to implement 10 CFR 20 for the Station, attributable to the service water effluent line pathway

6. For the Radwaste Facility effluent line, Equation (2) becomes:

$$S = \frac{CF_D K_{RW}}{F_F} \tag{6}$$

where:

K_{RW} = The fraction of the effluent concentration limit, used to implement 10 CFR 20 attributable to the Radwaste Facility effluent line pathway

7. The sum $K_{LW} + K_{SW} + K_{RW}$ shall not be greater than 1.0.

6.2.3 Liquid Effluent Dose Limit

a. Requirement

At least once per 31 days, perform the dose calculations in 6.2.3.c. and 6.2.3.d. to ensure the dose or dose commitment to the maximum exposed member of the public from radioactive materials in liquid releases (from each reactor unit) to unrestricted areas is limited to:

1. During any calendar quarter:

- Less than or equal to 1.5 mrem to the total body
- Less than or equal to 5 mrem to the critical organ

2. During any calendar year:

- Less than or equal to 3 mrem to the total body
- Less than or equal to 10 mrem to the critical organ

b. Action

If the calculated dose from release of radioactive materials in liquid effluents exceeds any of the above limits, prepare and submit to the NRC, within 30 days, a special report in accordance with VPAP-2802, Notifications and Reports, that identifies causes for exceeding limits and defines corrective actions taken to reduce releases of radioactive materials in liquid effluents to ensure that subsequent releases will be in compliance with the above limits.

c. Surry Dose Contribution Calculations

NOTE: Thyroid and GI-LLI organ doses must be calculated to determine which is the critical organ for the period being considered.

Dose contributions shall be calculated for all radionuclides identified in liquid effluents released to unrestricted areas based on the equation:

$$D = t F M \sum_{i} C_{i} A_{i}$$
 (7)

where:

Subscripts = i, refers to individual radionuclide

D = the cumulative dose commitment to the total body or critical organ from the liquid effluents for the period t, in mrem

t = the period for which C; and F are averaged for all liquid releases, in hours

M = the mixing ratio (reciprocal of the dilution factor) at the point of exposure, dimensionless, 0.2 from Appendix 11A, Surry UFSAR

F = the near field average dilution factor for C_i during any liquid effluent release; the ratio of the average undiluted liquid waste flow during release to the average flow from the site discharge structure to unrestricted areas

 C_i = the average concentration of radionuclide, i, in undiluted liquid effluent during the period t, from all liquid releases, in μ Ci/ml

 A_i = the site-related ingestion dose commitment factor to the total body or critical organ of an adult for each identified principal gamma and beta emitter in mrem-ml per hr- μ Ci. Values for A_i are given in Attachment 5, Liquid Ingestion Pathway Dose Factors For Surry Power Station.

$$A_i = 1.14 \text{ E} + 05 (21BF_i + 5BI_i) DF_i$$
 (8)

where:

1.14 E+05 = 1 E+06 pCi/ μ Ci x 1 E+03 ml/kg/(8760 hr/yr), units conversion factor

21 = adult fish consumption, kg/yr, from NUREG-0133

5 = adult invertebrate consumption, kg/yr, from NUREG-0133

BI_i = the bioaccumulation factor for nuclide i, in invertebrates, pCi/kg per pCi/l, from Table A-1 of Regulatory Guide 1.109, Rev. 1

BF_i = the bioaccumulation factor for nuclide i, in fish, pCi/kg per pCi/l, from Table A-1 of Regulatory Guide 1.109, Rev. 1

DF_i = the critical organ dose conversion factor for nuclide i, for adults, in mrem/pCi, from Table E-11 of Regulatory Guide 1.109, Rev. 1

d. North Anna Dose Contribution Calculations

Dose contribution shall be calculated for all radionuclides identified in liquid effluents released to unrestricted areas based on:

$$D = \sum_{i} Q_{i} \times B_{i}$$
 (9)

Where:

Subscripts = i, refers to individual radionuclide

D = the cumulative dose commitment to the total body or critical organ from the liquid effluents for the period t, in mrem

B_i = Dose Commitment Factors (mrem/Ci) for each age group of interest. Values for B_i are provided in code file for North Anna Power Station liquid pathway critical organ calculations

Qi = Total released activity for the considered period and the ith nuclide

$$Q_i = t \times C_i \times \text{Waste Flow}$$
 (10)

Where:

t = the period for which C_i and F are averaged for all liquid releases, in hours

 C_i = the average concentration of radionuclide, i, in undiluted liquid effluent during the period, t, from any liquid releases, in μ Ci/ml

e. Quarterly Composite Analyses

For radionuclides not determined in each batch or weekly composite, dose contribution to current monthly or calendar quarter cumulative summation may be approximated by assuming an average monthly concentration based on previous monthly or quarterly composite analyses. However, for reporting purposes, calculated dose contribution shall be based on the actual composite analyses.

6.2.4 Liquid Radwaste Treatment

a. Requirement

- The Liquid Radwaste Treatment System and/or the Surry Radwaste Facility
 Liquid Waste System shall be used to reduce the radioactive materials in liquid
 waste prior to discharge when projected dose due to liquid effluent, from each
 reactor unit, to unrestricted areas would exceed 0.06 mrem to total body or 0.2
 mrem to the critical organ in a 31-day period.
- 2. Doses due to liquid releases shall be projected at least once per 31 days.

b. Action

If radioactive liquid waste is discharged without treatment and in excess of the above limits prepare and submit to the NRC, within 30 days, a special report in accordance with VPAP-2802, Notifications and Reports, that includes the following:

- 1. An explanation of why liquid radwaste was being discharged without treatment, identification of any inoperable equipment or sub-system, and the reason for the inoperability.
- 2. Actions taken to restore inoperable equipment to operable status.
- 3. Summary description of actions taken to prevent recurrence.

c. Projected Total Body Dose Calculation

- 1. Determine D_{TB} , the total body dose from liquid effluents in the previous 31-day period, per Equation (7) or Equation (9) (Surry and North Anna, respectively).
- 2. Estimate R₁, the ratio of the estimated volume of liquid effluent releases in the present 31-day period to the volume released in the previous 31-day period.

- 3. Estimate F₁, the ratio of the estimated liquid effluent radioactivity concentration in the present 31-day period to liquid effluent concentration in the previous 31-day period (μCi/ml).
- 4. Determine PD_{TB}, the projected total body dose in a 31-day period.

$$PD_{TB} = D_{TB}(R_1F_1) \tag{11}$$

d. Projected Critical Organ Dose Calculation

Historical data pertaining to the volumes and radioactivity of liquid effluents released in connection with specific Station functions, such as maintenance or refueling outages, shall be used in projections as appropriate.

- Determine D_o, the critical organ dose from liquid effluents in the previous 31-day period, per Equation (7) or Equation (9) (Surry and North Anna, respectively).
- 2. Estimate R_1 as in 6.2.4.c.2.
- 3. Estimate F_1 as in 6.2.4.c.3.
- 4. Determine PD_o = projected critical organ dose in a 31-day period.

$$PD_{O} = D_{O}(R_{1}F_{1}) \tag{12}$$

6.2.5 Liquid Sampling

Radioactive liquid wastes shall be sampled and analyzed according to the sampling and analysis requirements in Attachments 6 and 7, Radioactive Liquid Waste Sampling and Analysis Program (Surry and North Anna, respectively).

6.3 Gaseous Radioactive Waste Effluents

6.3.1 Gaseous Effluent Dose Rate Limitation

a. Requirement

Dose rate due to radioactive materials released in gaseous effluents from the site to areas at and beyond the site boundary shall be limited to:

1. The dose rate limit for noble gases shall be \leq 500 mrem/year to the total body and \leq 3000 mrem/year to the skin.

2. The dose rate limit for I^{131} , I^{133} , for tritium, and for all radioactive materials in particulate form with half-lives greater than 8 days shall be ≤ 1500 mrem/year to the critical organ.

b. Action

- 1. If dose rates exceed 6.3.1.a. limits, promptly decrease the release rate to within the above limits.
- 2. Dose rates due to noble gases in gaseous effluents shall be determined, continuously, to be within 6.3.1.a. limits.
- 3. Dose rates due to I¹³¹, I¹³³, tritium, and all radionuclides in particulate form with half-lives greater than 8 days, in gaseous effluents shall be determined to be within the above limits by obtaining representative samples and performing analyses in accordance with the sampling and analysis program specified on Attachments 8 and 9, Radioactive Gaseous Waste Sampling and Analysis Program.

c. Calculations of Gaseous Effluent Dose Rates

1. The dose rate limit for noble gases shall be determined to be within the limit by limiting the release rate to the lesser of:

$$\sum_{i} \left[K_{ivv} \dot{Q}_{ivv} + K_{ipv} \dot{Q}_{ipv} \right] \le 500 \text{mrem/yr to the total body}$$
 (13)

OR

$$\sum_{i} [(L_{ivv} + 1.1M_{ivv}) \dot{Q}_{ivv} + (L_{ipv} + 1.1M_{ipv}) \dot{Q}_{ipv}] \le 3000 \text{mrem/yr to the skin}$$
(14)

where:

Subscripts = vv, refers to vent releases from the building ventilation vent, including Radwaste Facility Ventilation Vent;

pv, refers to the vent releases from the process vent;
i, refers to individual radionuclide

K_{ivv}, K_{ipv} = The total body dose factor for ventilation vents or process vent release due to gamma emissions for each identified noble gas radionuclide i, in mrem/yr per Curie/sec. Factors are listed in Attachments 10 and 11, Gaseous Effluent Dose Factors (Surry and North Anna, respectively)

 L_{ivv} , L_{ipv} = The skin dose factor for ventilation vents or process vent release due to beta emissions for each identified noble gas radionuclide i, in mrem/yr per Curie/sec. Factors are listed in Attachments 10 and 11

M_{ivv}, M_{ipv} = The air dose factor for ventilation vents or process vent release due to gamma emissions for each identified noble gas radionuclide, i, in mrad/yr per Curie/sec. Factors are listed in Attachments 10 and 11

 $\dot{Q}_{ivv}\dot{Q}_{ipv}$ = The release rate for ventilation vents or process vent of noble gas radionuclide i, in gaseous effluents in Curie/sec (per site)

1.1 = The unit conversion factor that converts air dose to skin dose, in mrem/mrad

2. The dose rate limit for I¹³¹, I¹³³, tritium, and for all radionuclides in particulate form with half-lives greater than 8 days, shall be determined to be within the limit by restricting the release rate to:

$$\sum_{i} [P_{ivv} \dot{Q}_{ivv} + P_{ipv} \dot{Q}_{ipv}] \le 1500 \text{mrem/yr to the critical organ}$$
 (15)

where:

- P_{ivv}, P_{ipv} = The critical organ dose factor for ventilation vents or process vent for I¹³¹, I¹³³, H³, and all radionuclides in particulate form with half-lives greater than 8 days, for the inhalation pathway, in mrem/yr per Curie/sec. Factors are listed in Attachments 10 and 11
 - $Q_{ivv}Q_{ipv}$ = The release rate for ventilation vents or process vent of I¹³¹, I¹³³, H³, and all radionuclides i, in particulate form with half-lives greater than 8 days, in gaseous effluents in Curie/sec (per site)
- 3. All gaseous releases, not through the process vent, are considered ground level and shall be included in the determination of \dot{Q}_{ivv} .

6.3.2 Gaseous Monitoring Instrumentation

a. Requirement

- 1. The radioactive gaseous effluent monitoring instrumentation channels shown in Attachment 12 or 13, Radioactive Gaseous Effluent Monitoring Instrumentation, shall be operable with alarm/trip setpoints set to ensure that 6.3.1.a. noble gas limits are not exceeded. Alarm/trip setpoints of these channels shall be determined and adjusted in accordance with 6.3.2.d.
- 2. Each radioactive gaseous effluent monitoring instrumentation channel shall be demonstrated operable by Channel Checks, Source Checks, Channel Calibrations, and Channel Functional Tests at the frequencies shown in Attachment 14 or 15, Radioactive Gaseous Effluent Monitoring Instrumentation Surveillance Requirements.

b. Action

- 1. If a radioactive gaseous effluent monitoring instrumentation channel alarm/trip setpoint is less conservative than required by 6.3.2.a.1, promptly:
 - Suspend the release of radioactive gaseous effluents monitored by the affected channel and declare the channel inoperable
 - OT
 - Change the setpoint so it is acceptably conservative
- 2. If the number of operable channels is less than the minimum required by tables in Attachments 12 and 13, take the action shown in those tables.
- 3. Return instruments to operable status within 30 days. If unsuccessful, explain in the next Annual Radioactive Effluent Release Report why the inoperability was not corrected in a timely manner.

c. Applicable Monitors

Radioactive gaseous effluent monitors for which alarm/trip setpoints shall be determined are:

Release Point	Instrument Number		
	North Anna	Surry	
Process Vent	1-GW-RM-102 1-GW-RM-178-1	1-GW-RM-102 1-GW-RM-130-1	
Condenser Air Ejector	1-SV-RM-121 2-SV-RM-221	1-SV-RM-111 2-SV-RM-211	
Ventilation Vent A	1-VG-RM-104 1-VG-RM-179-1	N/A	
Ventilation Vent B	1-VG-RM-113 1-VG-RM-180-1	N/A	
Ventilation Vent No. 1	N/A	1-VG-RM-104	
Ventilation Vent No. 2	N/A	1-VG-RM-110 1-VG-RM-131-1	
Radwaste Facility Vent	N/A	RRM-101	

d. Setpoint Calculations

1. Setpoint calculations for each monitor listed in 6.3.2.c. shall maintain this relationship:

$$D \ge D_{pv} + D_{cae} + D_{vv} \tag{16}$$

where:

D = Step 6.3.1.a. dose limits that implement 10 CFR 20 for the Station, mrem/yr

D_{pv} = The noble gas site boundary dose rate from process vent gaseous effluent releases, mrem/yr

D_{cae} = The noble gas site boundary dose rate from condenser air ejector gaseous effluent releases, mrem/yr

D_{vv} = The noble gas site boundary dose rate from:
Surry: Summation of the Ventilation Vents 1, 2, and the Radwaste
Facility vent gaseous effluent releases, mrem/yr

North Anna: Summation of Ventilation Vent A plus B gaseous effluent releases, mrem/yr

2. Setpoint values shall be determined by:

$$C_{\rm m} = \frac{R_{\rm m} \times 2.12 \text{ E-03}}{F_{\rm m}}$$
 (17)

where:

m = The release pathway, process vent (pv), ventilation vent (vv) condenser air ejector (cae), or Radwaste Facility (rv)

 C_m = The effluent concentration limit implementing 6.3.1.a. for the Station, μ Ci/ml

R_m = The release rate limit for pathway m determined from methodology in 6.3.1.c., using Xe¹³³ as nuclide to be released,

μCi/sec

2.12E-03 = CFM per ml/sec

 F_m = The maximum flow rate for pathway m, CFM

NOTE: According to NUREG-0133, the radioactive effluent radiation monitor alarm/trip setpoints should be based on the radioactive noble gases. It is not practicable to apply instantaneous alarm/trip setpoints to integrating monitors sensitive to radioiodines, radioactive materials in particulate form, and radionuclides other than noble gases.

6.3.3 Noble Gas Effluent Air Dose Limit

a. Requirement

- 1. The air dose in unrestricted areas due to noble gases released in gaseous effluents from each unit at or beyond the site boundary shall be limited to:
 - During any calendar quarter: ≤5 mrads for gamma radiation and ≤10 mrads for beta radiation
 - During any calendar year: ≤10 mrads for gamma radiation and ≤20 mrads for beta radiation
- 2. Cumulative dose contributions for noble gases for the current calendar quarter and current calendar year shall be determined in accordance with 6.3.3.c. at least once per 31 days.

b. Action

If the calculated air dose from radioactive noble gases in gaseous effluents exceeds any of the above limits, prepare and submit to the NRC, within 30 days, a special report in accordance with VPAP-2802, Notifications and Reports, that identifies the causes for exceeding the limits and defines corrective actions that have been taken to reduce releases and the proposed corrective actions to be taken to assure that subsequent releases will be in compliance with the limits in 6.3.3.a.

c. Noble Gas Effluent Air Dose Calculation

Gaseous releases, not through the process vent, are considered ground level and shall be included in the determination of \overline{Q}_{ivv} .

The air dose to areas at or beyond the site boundary due to noble gases shall be determined by the following:

For gamma radiation:

$$D_g = 3.17E-08\sum_{i} [M_{ivv}\overline{Q}_{ivv} + M_{ipv}\overline{Q}_{ipv}]$$
 (18)

For beta radiation:

$$D_{b} = 3.17E-08\sum_{i} [N_{ivv}\bar{Q}_{ivv} + N_{ipv}\bar{Q}_{ipv}]$$
 (19)

Where:

Subscripts = vv, refers to vent releases from the building ventilation vents,

including the Radwaste Facility Ventilation Vent and air

ejectors

pv, refers to the vent releases from the process vent

i, refers to individual radionuclide

 D_g = the air dose for gamma radiation, in mrad

D_b = the air dose for beta radiation, in mrad

 M_{ivv} , M_{inv} = the air dose factors for ventilation vents or process vent release

due to gamma emissions for each identified noble gas radionuclide i, in mrad/vr per Curie/sec. Factors are listed in

A the above at 10 and 11

Attachments 10 and 11

 N_{ivv} , N_{ipv} = the air dose factor for ventilation vents or process vent release

due to beta emissions for each identified noble gas

radionuclide i, in mrad/yr per Curie/sec. Factors are listed in

Attachments 10 and 11

 \overline{Q}_{ivv} , \overline{Q}_{inv} = the release for ventilation vents or process vent of noble gas

radionuclide i, in gaseous effluents for 31 days, quarter, or year

as appropriate in Curies (per site)

3.17 E-08 = the inverse of the number of seconds in a year

6.3.4 I-131, 133, H-3 & Radionuclides In Particulate Form Effluent Dose Limit

a. Requirement

- 1. Methods shall be implemented to ensure that the dose to any organ of a member of the public from I¹³¹, I¹³³, tritium, and all radionuclides in particulate form with half-lives greater than 8 days, in gaseous effluents released from the site to unrestricted areas from each reactor unit shall be:
 - During any calendar quarter: ≤ 7.5 mrem to the critical organ
 - During any calendar year: ≤ 15 mrem to the critical organ
- 2. Cumulative dose contributions to a member of the public from I¹³¹, I¹³³, tritium, and radionuclides in particulate form with half-lives greater than 8 days, in gaseous effluents released to unrestricted areas for the current calendar quarter and current calendar year shall be determined at least once per 31 days in accordance with 6.3.4.c. or 6.3.4.d.

b. Action

If the calculated dose from the release of I¹³¹, I¹³³, tritium, and radionuclides in particulate form, with half-lives greater than 8 days, in gaseous effluents exceeds any of the above limits, prepare and submit to the NRC within 30 days, a special report in accordance with VPAP-2802, Notifications and Reports, that contains the:

- 1. Causes for exceeding limits.
- 2. Corrective actions taken to reduce releases.
- 3. Proposed corrective actions to be taken to assure that subsequent releases will be in compliance with limits stated in 6.3.4.a.

c. Surry Dose Calculations

Gaseous releases, not through the process vent, are considered ground level and shall be included in the determination of \tilde{Q}_{ivv} . Historical data pertaining to the volumes and radioactive concentrations of gaseous effluents released in connection to specific Station functions, such as containment purges, shall be used in the estimates, as appropriate.

 The dose to the maximum exposed member of the public, attributable to gaseous effluents at and beyond the site boundary that contain I¹³¹, I¹³³, tritium, and particulate-form radionuclides with half-lives greater than 8 days, shall be determined by:

$$D_{r} = 3.17E-08 \sum_{i} [(RM_{ivv} \tilde{Q}_{ivv} + RM_{ipv} \tilde{Q}_{ipv}) + (RI_{ivv} \tilde{Q}_{ivv} + RI_{ipv} \tilde{Q}_{ipv})]$$
 (20)

Where:

Subscripts = vv, refers to vent releases from the building ventilation vents,

including the Radwaste Facility Ventilation Vent and air ejectors;

pv, refers to the vent releases from the process vent

 D_r = the dose to the critical organ of the maximum exposed member

of the public in mrem

RM_{ivv}, RM_{ipv}= the cow-milk pathway dose factor for ventilation vents or process vent release due to I¹³¹, I¹³³, tritium, and from all

particulate-form radionuclides with half-lives greater than 8 days, in mrem/yr per Curie/sec. Factors are listed in

Attachment 16, Critical Organ and Inhalation Dose Factors

For Surry

 RI_{ivv} , RI_{ipv} = the inhalation pathway dose factor for ventilation vents or

process vent release due to I¹³¹, I¹³³, tritium, and from all particulate-form radionuclides with half-lives greater than 8 days, in mrem/yr per Curie/sec. Factors are listed in

Attachment 16

 $\tilde{Q}_{ivv}\tilde{Q}_{ipv}$ = the release for ventilation vents or process vent of I^{131} , I^{133} ,

tritium, and from all particulate-form radionuclides with half-

lives greater than 8 days in Curies

3.17 E-08 = the inverse of the number of seconds in a year

d. North Anna Dose Calculations

Gaseous releases, not through the process vent, are considered ground level and shall be included in the determination of \tilde{Q}_{ivv} . Historical data pertaining to the volumes and radioactive concentrations of gaseous effluents released in connection to specific Station functions, such as containment purges, shall be used in the estimates as appropriate.

1. The dose to the maximum exposed member of the public, attributable to gaseous effluents at and beyond the site boundary, that contain I¹³¹, I¹³³, tritium, and particulate-form radionuclides with half-lives greater than 8 days, shall be determined by:

$$D_{r} = 3.17E-08\sum_{i} [RM_{ivv}\tilde{Q}_{ivv} + RM_{ipv}\tilde{Q}_{ipv}]$$
 (21)

Where:

Subscripts = vv, refers to vent releases from the building ventilation vents; pv, refers to the vent releases from the process vent

D_r = the dose to the critical organ of the maximum exposed member

of the public, in mrem

RM_{ivv}, RM_{ipv} =the cow-milk dose factor for ventilation vents or process vent release due to I¹³¹, I¹³³, tritium, and from all particulate-form radionuclides with half-lives greater than 8 days, in mrem/yr

Organ Dose Factors for North Anna

 $\tilde{Q}_{ivv}\tilde{Q}_{ipv}$ = the release for ventilation vents or process vent of I^{131} , I^{133} , tritium, and from all particulate-form radionuclides with half-

per Curie/sec. Factors are listed in Attachment 17, Critical

lives greater than 8 days, in Curies

3.17 E-08 = the inverse of the number of seconds in a year

6.3.5 Gaseous Radwaste Treatment

Historical data pertaining to the volumes and radioactive concentrations of gaseous effluents released in connection with specific Station functions, such as containment purges, shall be used to calculate projected doses, as appropriate.

a. Requirement

- 1. The Gaseous Radwaste Treatment System and the Ventilation Exhaust Treatment System shall be used to reduce radioactive material in gaseous waste before its discharge, when projected gaseous effluent air doses due to gaseous effluent releases, from each unit to areas at and beyond the site boundary, would exceed 0.2 mrad for gamma radiation and 0.4 mrad for beta radiation, averaged over 31 days. (North Anna)
- 2. Appropriate portions of the Gaseous Radwaste Treatment System shall be used to reduce radioactive materials in gaseous waste before its discharge, when the projected gaseous effluent air doses due to gaseous effluent releases, from each unit to areas at and beyond the site boundary, would exceed 0.2 mrad for gamma radiation and 0.4 mrad for beta radiation, averaged over 31 days. (Surry)
- 3. The Ventilation Exhaust Treatment System shall be used to reduce radioactive materials in gaseous waste before its discharge, when the projected doses due to gaseous effluent releases, from each unit to areas at and beyond the site boundary, would exceed 0.3 mrem to the critical organ, averaged over 31 days.
- 4. Doses due to gaseous releases from the site shall be projected at least once per 31 days, based on the calculations in 6.3.5.c. and 6.3.5.d.

b. Action

If gaseous waste that exceeds the limits in 6.3.5.a. is discharged without treatment, prepare and submit to the NRC within 30 days, a special report in accordance with VPAP-2802, Notifications and Reports, that includes:

- 1. An explanation why gaseous radwaste was being discharged without treatment, identification of any inoperable equipment or subsystems, and the reason for the inoperability.
- 2. Actions taken to restore the inoperable equipment to operable status.
- 3. Summary description of actions taken to prevent recurrence.

c. Projected Gamma Dose

- 1. Determine D_g , the 31-day gamma air dose for the previous 31-day period, per Equation (18).
- 2. Estimate R_g , the ratio of the estimated volume of gaseous effluent in the current 31-day period to the volume released during the previous 31-day period.
- 3. Estimate F_g, the ratio of the estimated noble gas effluent activity in the current 31-day period to the noble gas effluent activity during the previous 31-day period (μCi/ml).
- 4. Determine PDg, the projected 31-day gamma air dose.

$$PD_{g} = D_{g}(R_{g} \times F_{g})$$
 (22)

d. Projected Beta Dose

- 1. Determine D_b, the 31-day beta air dose in the previous 31 days, per Equation (19).
- 2. Estimate R_g and F_g as in 6.3.5.c.2. and 6.3.5.c.3.
- 3. Determine PD_b, the projected 31-day beta air dose.

$$PD_b = D_b(R_g \times F_g)$$
 (23)

e. Projected Maximum Exposed Member of the Public Dose

- 1. Determine D_{max} , the 31-day maximum exposed member of the public dose in the previous 31-day period, per Equation (20) or Equation (21), where $D_r = D_{max}$.
- 2. Estimate F_i, the ratio of the estimated activity from I¹³¹, I¹³³, radioactive materials in particulate form with half-lives greater than 8 days, and tritium in the current 31-day period to the activity of I¹³¹, I¹³³, radioactive materials in particulate form with half-lives greater than 8 days, and tritium in the previous 31-day period (μCi/ml).

3. Determine PD_{max}, the projected 31-day maximum exposed member of the public dose.

$$PD_{max} = D_{max}(R_g \times F_i)$$
 (24)

6.4 Radioactive Liquid and Gaseous Release Permits

RP shall maintain procedures for Liquid and Gaseous Release Permits to ensure effluent dose limits are not exceeded when making releases.

6.4.1 Liquid Waste Batch Release Permits

Operations shall obtain RP authorization before initiating batch releases of radioactive liquids. Examples of batch releases include:

a. Surry Batch Releases

Release of contents from the following tanks/sumps other than transfers to the Surry Radwaste Facility shall have a Liquid Waste Batch Release Permit before the discharge:

- Boron Recovery Test Tank (BRTT)
- Low Level Waste Drain Tank (LLWDT)
- High Level Waste Drain Tank (HLWDT)
- Liquid Waste Test Tank (LWTT)
- Contaminated Drain Tank (CDT)
- Laundry Drain Surge Tank (LDST)
- Turbine Building Sumps when RP determines that source activity requires placing pumps in manual mode
- Condensate Polishing Building Sumps when RP determines the presence of contamination from primary-to-secondary leakage

b. North Anna Batch Releases

NOTE: If the clarifier is in service, releases from tanks processed through the clarifier are considered continuous releases.

A Batch Release Permit is required for a release from any tanks/sumps which contain (or potentially contain) radioactive liquid. Tanks/sumps include:

- BRTT
- LLWDT
- HLWDT
- Turbine Building Sumps when secondary coolant activity exceeds 1.0 E-5 μCi/ml
- CDT

6.4.2 Continuous Release Permit

Operations shall obtain RP authorization before initiating continuous releases of radioactive liquids.

a. Surry Continuous Releases

A Continuous release permit is required at Surry for:

- · Steam generator blowdown
- Component Cooling Water (CCW) heat exchanger to service water leakage, if applicable
- Turbine Building sumps and/or subsurface drains if source activity concentrations are sufficiently low to allow continuous release

b. North Anna Continuous Releases

A Continuous Release Permit is required at North Anna for:

- Clarifier, unless being bypassed
- Steam generator blowdown when clarifier is bypassed
- Containment mat sumps and service water reservoir when clarifier is bypassed

6.4.3 Waste Gas Decay Tank (WGDT) Release Permit

Operations shall obtain RP authorization before initiating WGDT releases.

6.4.4 Reactor Containment Release Permits

Operations shall obtain authorization from RP before initiating containment purges or containment hogging. Reactor Containment Release Permits shall be valid from start of purge/hog until:

- Routine termination
- · Terminated for cause by RP
- Receipt of Radiation Monitoring System (RMS) Containment Gas Monitor high alarm

6.4.5 Miscellaneous Gaseous Release Permit

Operations shall obtain RP authorization before initiating releases of noble gases that may not be accounted for by routine sampling, or any planned release not being routed through the Process Vent or Ventilation Vents (e.g., steam driven auxiliary feedwater pump testing if primary to secondary leakage exists).

6.4.6 Radioactive Liquid and Gaseous Release Controls

- a. Operations shall notify RP of pending releases and request RP to initiate the appropriate release permit. Operations shall provide the necessary information to complete the required release permit.
- b. A representative sample shall be obtained of the source to be released.
 - 1. Operations shall provide RP with liquid samples and sample information (e.g., time of sample) for samples obtained outside the Primary Sample Room, except Clarifier Proportional Tank and Clarifier Grab Samples at North Anna.
 - 2. Chemistry shall provide RP with liquid samples and sample information for samples obtained from inside the Primary Sample Room.
 - 3. RP shall obtain gaseous samples.
- c. RP shall perform required sample analyses.
- d. RP shall calculate and record the following information on a release permit:
 - · Maximum authorized release rate
 - Maximum authorized release rate in percentage of limits specified by the ODCM
 - Applicable conditions or controls pertaining to the release

- e. RP shall notify the Shift Supervisor if it is determined that a release may not be within the effluent dose limits.
- f. Upon receipt of a release permit from RP, Operations shall:
 - 1. Verify the correct source is authorized for release.
 - 2. Note maximum authorized release rate.
 - 3. Note percent of Technical Specification limits the release represents.
 - 4. Note and ensure compliance with any indicated controls or conditions applicable to the release.
- g. When commencing release, Operations shall provide RP with required information. As appropriate, required information shall include:
 - · Date and time release was started
 - Starting tank/sump level
 - Beginning pressure
 - · Release flow rate
 - · Dilution water flow rate
- h. Upon terminating the release, Operations shall return the permit to RP and provide information necessary for completion of permit. As appropriate, required information shall include:
 - Date and time release was stopped
 - Tank/sump ending level
 - Release flow rate just prior to termination
 - Ending pressure
 - Volume released

6.5 Total Dose Limit to Public From Uranium Fuel Cycle Sources

6.5.1 Requirement

The annual (calendar year) dose or dose commitment to a real individual due to releases of radioactivity and radiation from uranium fuel cycle sources shall not exceed 25 mrem to the total body or the critical organ (except the thyroid, which shall not exceed 75 mrem).

6.5.2 Action

- a. If the calculated doses from release of radioactive materials in liquid or gaseous effluents exceed twice the limits in 6.2.3.a., 6.3.3.a., or 6.3.4.a., calculate (including direct radiation contribution from the units and from outside storage tanks) whether limits in 6.5.1 have been exceeded.
- b. If the limits in 6.5.1 have been exceeded, prepare and submit to the NRC within 30 days, a special report in accordance with VPAP-2802, Notifications and Reports, that defines the corrective action to be taken to reduce subsequent releases and to prevent recurrence, and includes a schedule for achieving conformance with the limits. Special reports, as defined in 10 CFR 20.2203(a)(4), shall include:
 - 1. An analysis that estimates the radiation exposure (dose) to a real individual from uranium fuel cycle sources, including all effluent pathways and direct radiation, for the calendar year that includes the releases covered by the report.
 - 2. A description of the levels of radiation and concentrations of radioactive material involved, and the cause of the exposure levels or concentrations.
 - 3. If the estimated dose exceeds the limits in 6.5.1, and if the release condition that violates 40 CFR 190 has not already been corrected, the special report shall include a request for a variance in accordance with the provisions of 40 CFR 190. Submittal of the report is considered a timely request, and a variance is granted until staff action on the request is complete.

6.6 Radiological Environmental Monitoring

6.6.1 Monitoring Program

a. Requirement

- The Radiological Environmental Monitoring Program shall be conducted as specified in Attachments 18 or 19, Radiological Environmental Monitoring Program.
- 2. Samples shall be collected from specific locations specified in Attachment 20 or 21, Environmental Sample Locations. [Commitment 3.2.2]
- 3. Samples shall be analyzed in accordance with:
 - Attachment 18 or 19 requirements
 - Detection capabilities required by Attachment 22 or 23, Detection Capabilities for Environmental Sample Analysis
 - Guidance of the Radiological Assessment Branch Technical Position on Environmental Monitoring dated November, 1979, Revision No. 1

b. Action

1. If the Radiological Environmental Monitoring Program is not being conducted as required in 6.6.1.a., report the situation in accordance with VPAP-2802, Notifications and Reports, by preparing and submitting to the NRC, in the Annual Radiological Environmental Operating Report required by Technical Specification (Surry Technical Specification 6.6.B.2 and North Anna Technical Specification 6.9.1.8), a description of the reasons for not conducting the program as required, and the plan for precluding recurrence.

- 2. If, when averaged over any calendar quarter, radioactivity exceeds the reporting levels of Attachment 24 or 25, Reporting Levels for Radioactivity Concentrations in Environmental Samples, prepare and submit to the NRC within 30 days, a special report in accordance with VPAP-2802, Notifications and Reports, that:
 - · Identifies the causes for exceeding the limits, and
 - Defines the corrective actions to be taken to reduce radioactive effluents so that the potential annual dose to a member of the public is less than the calendar year limits of 6.2.3, 6.3.3, and 6.3.4

When more than one of the radionuclides listed in Attachment 24 or 25 are detected in the sampling medium, the report shall be submitted if:

$$\frac{\text{concentration (1)}}{\text{reporting level (1)}} + \frac{\text{concentration (2)}}{\text{reporting level (2)}} + \dots \ge 1.0$$
 (25)

- 3. When radionuclides other than those listed in Attachments 24 and 25 are detected and are the result of plant effluents, the report shall be submitted if the potential annual dose to a member of the public is equal to or greater than the calendar year limits of 6.2.3, 6.3.3, and 6.3.4. The report is not required if the measured level of radioactivity was not the result of plant effluents; however, in such an event, report and describe the condition in the Annual Radiological Environmental Operating Report in accordance with VPAP-2802, Notifications and Reports.
- 4. If milk or fresh leafy vegetable samples are unavailable from one or more of the sample locations required by Attachment 18 or 19, identify locations for obtaining replacement samples and add them to the radiological environmental monitoring program within 30 days. The specific locations from which samples were unavailable may then be deleted from the monitoring program. Identify the cause of the unavailability of samples and identify the new locations for obtaining replacement samples in the next Annual Radioactive Effluent Release Report in accordance with VPAP-2802, Notifications and Reports. Include in the report a revised figure and table for the ODCM to reflect the new locations.

6.6.2 Land Use Census

a. Requirement

A land use census shall be conducted and shall identify within a distance of 8 km (5 miles) the location in each of the 16 meteorological sectors of the following:

- · Nearest milk animal
- Nearest residence
- Nearest garden greater than 50 m² (500 ft²) that produces broad leaf vegetation
- The land use census shall be conducted during the growing season, at least once
 per 12 months, using methods that will provide the best results (e.g., door-todoor survey, aerial survey, local agriculture authorities). Land use census results
 shall be included in the Annual Radiological Environmental Operating Report
 in accordance with VPAP-2802, Notifications and Reports.
- 2. In lieu of the garden census, broad leaf vegetation sampling of at least three different kinds of vegetation may be performed at the site boundary in each of two different direction sectors with the highest predicted ground deposition (D/Qs). Specifications for broad leaf vegetation sampling in Attachment 18 or 19 shall be followed, including analysis of control samples.

b. Action

- If a land use census identifies locations that yield a calculated dose or dose commitment greater than the values currently being calculated in 6.3.4.a.2, identify the new locations in the next Annual Radioactive Effluent Release Report in accordance with VPAP-2802, Notifications and Reports.
- 2. If a land use census identifies locations that yield a calculated dose or dose commitment (via the same exposure pathway) 20 percent (Surry) or 25 percent (North Anna) greater than at a location from which samples are currently being obtained, add the new locations to the Radiological Environmental Monitoring Program within 30 days. Sampling locations, excluding the control station location, that have the lowest calculated dose or dose commitments (via the same exposure pathway) may be deleted from the monitoring program. Identify new locations in the next Annual Radioactive Effluent Release Report and include in the report revised figures and tables reflecting the new locations in accordance with VPAP-2802, Notifications and Reports. [Commitment 3.2.4]

6.6.3 Interlaboratory Comparison Program

a. Requirement

Radioactive materials (which contain nuclides produced at the Stations), supplied as part of an Interlaboratory Comparison Program, shall be analyzed.

b. Action

1. Analyses shall be performed as follows:

Program Cross-Check of

Milk I¹³¹, Gamma, K, Sr⁸⁹ and Sr⁹⁰

Water Gross Beta, Gamma, I¹³¹, H³ (Tritium), Sr⁸⁹

and Sr⁹⁰ (blind—any combinations of above

radionuclides)

Air Filter Gross Beta, Gamma, Sr⁹⁰

 If analyses are not performed as required by 6.6.3.b., report in the Annual Radiological Environmental Operating Report in accordance with VPAP-2802, Notifications and Reports, the corrective actions taken to prevent recurrence.

c. Methodology and Results

- 1. Methodology and results of the cross-check program shall be maintained in the contractor-supplied Quality Control Manual.
- 2. Results shall be reported in the Annual Radiological Environmental Monitoring Report in accordance with VPAP-2802, Notifications and Reports.

6.7 Reporting Requirements

6.7.1 Annual Radiological Environmental Operating Report

Routine Radiological Environmental Operating Reports covering the operation of the units during the previous calendar year shall be submitted prior to May 1 of each year. A single submittal may be made for the Station. Radiological Environmental Operating Reports shall include:

- a. Summaries, interpretations, and analysis of trends of results of radiological environmental surveillance activities for the report period, including:
 - A comparison (as appropriate) with preoperational studies, operational controls, and previous environmental surveillance reports
 - An assessment of the observed impacts of the plant operation on the environment
 - Results of land use census per 6.6.2
- b. Results of analysis of radiological environmental samples and of environmental radiation measurements taken per 6.6.1, Monitoring Program. Results shall be summarized and tabulated in the format of the table in the Radiological Assessment Branch Technical Position on Environmental Monitoring.
 - 1. If some individual results are not available for inclusion with the report, the report shall be submitted, noting and explaining reasons for missing results.
 - 2. Missing data shall be submitted in a supplementary report as soon as possible.
- c. A summary description of the radiological environmental monitoring program.
- d. At least two legible maps covering sampling locations, keyed to a table giving distances and directions from the centerline of one reactor. One map shall cover stations near the site boundary; a second shall include more distant stations.
- e. Results of Station participation in the Interlaboratory Comparison Program, per 6.6.3.
- f. Discussion of deviations from the Station's environmental sampling schedule per Attachment 18 or 19.
- g. Discussion of analyses in which the lower limit of detection (LLD) required by Attachment 22 or 23 was not achievable.

6.7.2 Annual Radioactive Effluent Release Report

a. Requirement - Station

Radioactive Effluent Release Reports covering operation of the units during the previous 12 months of operation shall be submitted before May 1 of each year. A single submittal may be made for the Station and should combine those sections that are common to both units. Radioactive Effluent Release Reports shall include:

- 1. A summary of quantities of radioactive liquid and gaseous effluents and solid waste released. Data shall be summarized on a quarterly basis following the format of Regulatory Guide 1.21, Appendix B, for liquid and gaseous effluents. Data shall be summarized on an annual basis following the format of Regulatory Guide 1.21, Appendix B, for solid waste. [Commitment 3.2.5] [Commitment 3.2.6]
- 2. An assessment of radiation doses to the maximum exposed members of the public due to the radioactive liquid and gaseous effluents released from the Station during the previous calendar year. This assessment shall be in accordance with 6.7.2.b.
- 3. A list and description of unplanned releases from the site to unrestricted areas, during the reporting period, which meet the following criteria:
 - Unplanned releases that exceeded the limits in 6.2.1 and 6.3.1
 - Unplanned releases which require a Deviation Report and involve the discharge of contents of the wrong Waste Gas Decay Tank or the wrong liquid radwaste release tank
 - Unplanned releases from large leaks due to unexpected valve or pipe failures
 that result in a quantity of release such that a 10 CFR 50.72, Immediate
 Notification Requirements for Operating Nuclear Power Reactors or 10 CFR
 50.73, Licensee Event Report System, report is required
 - Unplanned releases as determined by Radiation Protection Supervision, which may or may not require a Deviation Report
- 4. Major changes to radioactive liquid, gaseous, and solid waste treatment systems during the reporting period.
- 5. Changes to VPAP-2103, Offsite Dose Calculation Manual (See 6.7.4).

6. A listing of new locations for dose calculations or environmental monitoring identified by the land use census (See 6.6.2).

b. Dose Assessment

- Radiation dose to individuals due to radioactive liquid and gaseous effluents
 from the Station during the previous calendar year shall either be calculated in
 accordance with this procedure or in accordance with Regulatory Guide 1.109.
 Population doses shall not be included in dose assessments.
- 2. The dose to the maximum exposed member of the public due to radioactive liquid and gaseous effluents from the Station shall be incorporated with the dose assessment performed above. If the dose to the maximum exposed member of the public exceeds twice the limits of 6.2.3.a.1, 6.2.3.a.2, 6.3.3.a.1, or 6.3.4.a.1, the dose assessment shall include the contribution from direct radiation.

NOTE: NUREG-0543 states: "There is reasonable assurance that sites with up to four operating reactors that have releases within Appendix I design objective values are also in conformance with the EPA Uranium Fuel Cycle Standard, 40 CFR Part 190."

3. Meteorological conditions during the previous calendar year or historical annual average atmospheric dispersion conditions shall be used to determine gaseous pathway doses.

NOTE: Annual Radioactive Effluent Release Reports for the Station and the ISFSI are separate and are not submitted as a combined report. (Surry)

c. ISFSI

- Radioactive Effluent Release Report covering operation of the ISFSI during the previous 12 months of operation shall be submitted within 60 days after January 1.
- The ISFSI Radioactive Effluent Release Report shall specify the quantities of each of the principal radionuclides released to the environment in liquid and in gaseous effluents.

3. Dose Assessment

- Radiation dose to individuals due to radioactive liquid and gaseous effluents during the previous calendar year shall either be calculated in accordance with this procedure or in accordance with Regulatory Guide 1.109. Population doses shall not be included in dose assessments
- The dose to the maximum exposed member of the public due to radioactive liquid and gaseous effluents from the Station shall be incorporated with the dose assessment performed above. If the dose to the maximum exposed member of the public exceeds twice the limits of 6.2.3.a.1, 6.2.3.a.2, 6.3.3.a.1, or 6.3.4.a.1, the dose assessment shall include the contribution from direct radiation
- Meteorological conditions during the previous calendar year or historical annual average atmospheric dispersion conditions shall be used to determine gaseous pathway doses

6.7.3 Annual Meteorological Data

- a. Meteorological data collected during the previous year shall be in the form of joint frequency distributions of wind speed, wind direction, and atmospheric stability.
- b. Meteorological data shall be retained in a file on site and shall be made available to NRC upon request.

6.7.4 Changes to the ODCM

Changes to the ODCM shall be:

- a. Reviewed and approved by SNSOC and the Station Manager before implementation.
- b. Documented. Records of reviews shall be retained as Station records.

 Documentation shall include:
 - 1. Sufficient information to support changes, together with appropriate analyses or evaluations justifying changes.

- 2. A determination that a change will not adversely impact the accuracy or reliability of effluent doses or setpoint calculations, and will maintain the level of radioactive effluent control required by:
 - 10 CFR 20 Subpart D
 - 40 CFR 190
 - 10 CFR 50.36a
 - 10 CFR 50, Appendix I
- c. Submitted to NRC in the form of a complete, legible copy of the entire ODCM as a part of, or concurrent with the Annual Radioactive Effluent Release Report for the period of the report in which any change was made. Each change shall be identified by markings in the margin of the affected pages, clearly indicating the area of the page that was changed, and shall indicate the date (e.g., month/year) the change was implemented.
- d. Submitted to the Management Safety Review Committee (MSRC) Coordinator. [Commitment 3.2.1]
- e. Submitted to NRC in accordance with VPAP-2802, Notifications and Reports.

7.0 RECORDS

- 7.1 The following individual and packaged documents and copies of any related correspondence completed as a result of the performance or implementation of this procedure are records. They shall be submitted to Records Management in accordance with VPAP-1701, Records Management. Prior to transmittal to Records Management, the sender shall assure that:
 - Each record is packaged when applicable
 - QA program requirements have been fulfilled for Quality Assurance records
 - Each record is legible, completely filled out, and adequately identifiable to the item or activity involved
 - Each record is stamped, initialed, signed, or otherwise authenticated and dated, as required by this procedure

7.1.1 Individual Records

None

7.1.2 Record Packages

- Records of changes to the ODCM in accordance with 6.7.4
- Records of meteorological data in accordance with 6.7.3
- Records of sampling and analyses
- Records of radioactive materials and other effluents released to the environment
- Records of preventive maintenance, surveillances, and calibrations
- 7.2 The following documents completed as a result of the implementation of this procedure are **not** records and are not required to be transmitted to Records Management.

None

(Page 1 of 1)

Surry Radioactive Liquid Effluent Monitoring Instrumentation

Instrument	Minimum Operable Channels	Action
GROSS RADIOACTIVITY MONITORS PROVIDING ALARM AND AUTOMATIC TERMINATION OF RELEASE (a) Radwaste Facility Liquid Effluent Line		
RM-RRM-131	1	1
2. GROSS BETA OR GAMMA RADIOACTIVITY MONITORS PROVIDING ALARM BUT NOT PROVIDING AUTOMATIC TERMINATION OF RELEASE (a) Circulating Water Discharge Line		
Unit 1: 1-SW-RM-120 Unit 2: 2-SW-RM-220 (b) Component Cooling Service Water Effluent Line	2	2
1-SW-RM-107A 1-SW-RM-107B 1-SW-RM-107C 1-SW-RM-107D	4	2
3. FLOW RATE MEASUREMENT DEVICES	-	
Radwaste Facility Liquid Effluent Line		
Instrument Loop RLW-153	1	3

ACTION 1: If the number of operable channels is less than required, effluent releases shall be suspended.

ACTION 2: If the number of operable channels is less than required, effluent releases via this pathway may continue provided that, at least once per 12 hours, grab samples are collected and analyzed for principal gamma emitters, as defined in Attachment 6, Surry Radioactive Liquid Waste Sampling and Analysis Program.

ACTION 3: If the number of operable channels is less than required, effluent releases via this pathway shall be suspended.

Intentionally Blank

(Page 1 of 2)

North Anna Radioactive Liquid Effluent Monitoring Instrumentation

	Instrument	Minimum Operable Channels	Action
1.	Liquid Radwaste Effluent		
1	(a) 1-RM-LW-111, Liquid Radwaste Effluent Monitor	1	1
	(b) 1-LW-FT-104, Liquid Radwaste Effluent Total Flow Measuring Device	1	2
	(c) 1-LW-SOV-121, Clarifier Effluent Line Continuous Composite Sampler and Sampler Flow Monitor	1	1
1	(d) 1-LW-TK-20, Liquid Waste Effluent Sample Vessel	1	1
	(e) 1-LW-1130, Liquid Waste Effluent Proportional Sample Valve	1	1
	(f) 1-RM-SW-108, Service Water Effluent Monitor	1	1
	(g) 1-RM-SW-130, Unit 1 Circulating Water System Effluent Line Monitor	1	4
	(h) 2-RM-SW-230, Unit 2 Circulating Water System Effluent Line Monitor	1	4
2.	Tank Level Indicating Devices (Note 1) (a) Refueling Water Storage Tanks	1 1 1 1	3 3 3 3
1	(d) Boron Recovery Test Tanks (Note 2)	-	
	1-BR-LT-112A (1-BR-TK-2A)	1	3
	1-BR-LT-112B (1-BR-TK-2B)	1	3
3.	Steam Generator High Capacity Blowdown (a) Steam Generator High Capacity Blowdown Radiation Monitor Unit 1 1-RM-SS-125	1	1
	Unit 2 2-RM-SS-225	1	1
	(b) Steam Generator High Capacity Blowdown Flash Tank Outlet Flowrate Unit 1 1-BD-FT-105	1	2
	Unit 2 2-BD-FT-205	1	2
	(c) Steam Generator High Capacity Blowdown Proportional Sampling System Collection Tank		
	Unit 1 1-BD-TK-4 Unit 2 2-BD-TK-4	1	1
	Unit 2 2-BD-TK-4	1	1

(Page 2 of 2)

North Anna Radioactive Liquid Effluent Monitoring Instrumentation

- ACTION 1: If the number of operable channels is less than required, effluent releases via this pathway may continue if, at least once within 12 hours, grab samples are collected and analyzed for gross radioactivity (beta and gamma) at an LLD of at least 1x10-7 μCi/g or an isotopic radioactivity at an LLD of at least 5x10-7 μCi/g.
- ACTION 2: If the number of operable channels is less than required, effluent releases via this pathway may continue if the flow rate is estimated at least once per 4 hours during actual releases. Design capacity performance curves generated in situ may be used to estimate flow.
- ACTION 3: If the number of operable channels is less than required, liquid additions to this tank may continue if the tank liquid level is estimated during all liquid additions to the tank.
- ACTION 4: If the number of operable channels is less than required, make repairs as soon as possible. Grab samples cannot be obtained via this pathway.
- NOTE 1: Tanks included in this requirement are those outdoor tanks that are not surrounded by liners, dikes, or walls capable of holding the tank contents, and do not have overflows and surrounding area drains connected to the liquid radwaste treatment system.
- NOTE 2: This is a shared system between Unit 1 and Unit 2.

(Page 1 of 1)

Surry Radioactive Liquid Effluent Monitoring Instrumentation Surveillance Requirements

	Channel Description	Channel Check		Channel Calibration	Channel Functional Test
1.	GROSS RADIOACTIVITY MONITORS PROVIDING ALARM AND AUTOMATIC TERMINATION OF RELEASE				
	(a) Radwaste Facility Liquid Effluent Line				
ļ	RM-RRM-131	D	P	R	Q
2.	GROSS BETA OR GAMMA RADIOACTIVITY MONITORS PROVIDING ALARM BUT NOT PROVIDING AUTOMATIC TERMINATION OF RELEASE				-
	(a) Circulating Water Discharge Line				
	Unit 1: 1-SW-RM-120 Unit 2: 2-SW-RM-220	D	М	R	Q
	(b) Component Cooling Service Water Effluent Line				
	1-SW-RM-107A 1-SW-RM-107B 1-SW-RM-107C 1-SW-RM-107D	D	М	R	Q.
3.	FLOW RATE MEASUREMENT DEVICES				
	Radwaste Facility Liquid Effluent Line				
	Instrument Loop RLW-153	DR	N/A	R	N/A

VPAP-2103 REVISION 8 PAGE 58 OF 148

Intentionally Blank

(Page 1 of 2)

North Anna Radioactive Liquid Effluent Monitoring Instrumentation Surveillance Requirements

	Channel Description	Channel Check	Source Check	Channel Calibration	Channel Functional Test
1.	Liquid Radwaste Effluent	,		., .	
	(a) 1-RM-LW-111, Liquid Radwaste Effluent Monitor	D	D	R	Q (NOTE 1)
•	(b) 1-LW-FT-104, Liquid Radwaste Effluent Total Flow Measuring Device	D (NOTE 3)	N/A	R	Q
	(c) 1-LW-SOV-121, Clarifier Effluent Line Continuous Composite Sampler and Sampler Flow Monitor	N/A	N/A	R	N/A
	(d) 1-LW-TK-20, Liquid Waste Effluent Sample Vessel	D (NOTE 9)	N/A	N/A	N/A
	(e) 1-LW-1130, Liquid Waste Effluent Proportional Sample Valve	D (NOTE 9)	N/A	N/A	N/A
	(f) 1-RM-SW-108, Service Water System Effluent Monitor	D	М	R	Q (NOTE 2)
	(g) 1-RM-SW-130, Unit 1 Circulating Water System Effluent Line Monitor	D	M	R	Q (NOTE 2)
	(h) 2-RM-SW-230, Unit 2 Circulating Water System Effluent Line Monitor	D	M ·	··R·	Q (NOTE 2)
2.	Tank Level Indicating Device (NOTE 6)				
	(a) Refueling Water Storage Tanks				
	Unit 1 1-QS-LT-100A, 1-QS-LT-100B 1-QS-LT-100C, 1-QS-LT-100D	D (NOTE 4)	N/A	R	Q (NOTE 7)
	Unit 2 2-QS-LT-200A, 2-QS-LT-200B 2-QS-LT-200C, 2-QS-LT-200D	D (NOTE 4)	N/A	R	Q (NOTE 7)
	(b) Casing Cooling Storage Tanks				
	Unit 1 1-RS-LT-103A, 1-RS-LT-103B	D (NOTE 4)	N/A	R	Q (NOTE 7)
	Unit 2 2-RS-LT-203A, 2-RS-LT-203B	D (NOTE 4)	N/A	R	Q (NOTE 7)
	(c) PG Water Storage Tanks (NOTE 5)	•	,		
	1-BR-LT-116A (1-PG-TK-1A)	D (NOTE 4)	N/A	R	Q (NOTE 8)
	1-BR-LT-116B (1-PG-TK-1B)	D (NOTE 4)	N/A	R	Q (NOTE 8)
	(d) Boron Recovery Test Tanks (NOTE 5)			,	
	1-BR-LT-112A (1-BR-TK-2A)	D (NOTE 4)	N/A	R ·	Q (NOTE 8)
	1-BR-LT-112B (1-BR-TK-2B)	D (NOTE 4)	N/A	R	Q (NOTE 8)
3.	Steam Generator (SG) High Capacity Blowdown				
	(a) SG High Capacity Blowdown Radiation Monitor		:		
	Unit 1 1-RM-SS-125 Unit 2 2-RM-SS-225	D (NOTE 12)	D (NOTE 12)	R	Q (NOTE 11) R (NOTE 10)
	(b) SG High Capacity Blowdown Flash Tank Outlet Flowrate				·
	Unit 1 1-BD-FT-105 Unit 2 2-BD-FT-205	D (NOTE 13)	N/A	R	N/A
	(c) SG High Capacity Blowdown Proportional Sampling System Collection Tank				
	Unit 1 1-BD-TK-4 Unit 2 2-BD-TK-4	D (NOTE 9)	N/A	N/A	N/A

(Page 2 of 2)

North Anna Radioactive Liquid Effluent Monitoring Instrumentation Surveillance Requirements

- NOTE 1: The Channel Functional Test shall demonstrate:
 - a. Automatic isolation of this pathway and Control Room alarm annunciation occur if the instrument indicates measured levels above alarm/trip setpoint.
 - b. Alarm annunciation occurs if the instrument controls are not set in "operate" mode.
- NOTE 2: The Channel Functional Test shall demonstrate that Control Room alarm annunciation occurs if any of the following conditions exists:
 - a.Instrument indicates measured levels above the alarm/trip setpoint.
 - b.Instrument controls not set in "operate" mode.
- NOTE 3: Channel Check shall consist of verifying indication of flow during periods of release. Channel Check shall be made at least once per 24 hours on days on which continuous, periodic, or batch releases are made.
- NOTE 4: During liquid additions to the tank, verify indication of level change.
- NOTE 5: This is a shared system between Unit 1 and Unit 2.
- NOTE 6: Tanks included in this requirement are those outdoor tanks that are not surrounded by liners, dikes, or walls capable of holding the tank contents and do not have overflows and surrounding area drains connected to the liquid radwaste treatment system.
- NOTE 7: The Channel Functional Test shall demonstrate that automatic isolation of this pathway and Control Room alarm annunciation occur if instrument indicates measured levels outside the alarm/trip setpoint. Demonstration of automatic isolation may consist of verifying the appropriate signal is generated. Valves need not be operated for this test.
- NOTE 8: The Channel Functional Test shall demonstrate that Control Room alarm annunciation occurs if the instrument indicates measured levels are outside alarm setpoint.
- NOTE 9: Channel Check shall consist of verifying that proportional flow exceeds 0.5 mls/gallon.
- NOTE 10: Channel Functional Test shall demonstrate that system isolation occurs on a radiation monitor High-High Alarm.
- NOTE 11: Channel Functional Test shall demonstrate:
 - a. Trip signals are generated at the required setpoints. Isolation is not required.
 - b.Local radiation monitor indication occurs if instrument controls are not set in "Operate" mode or if the instrument indicates measured levels are above the alarm/trip setpoint.
- NOTE 12: The radiation monitor automatically performs periodic source checks. The Source Check and Channel Check are satisfied as long as the green light is lit.
- NOTE 13: This is verified by indicated effluent flow less than or equal to 190 gpm.

(Page 1 of 1)

Liquid Ingestion Pathway Dose Factors for Surry Station Units 1 and 2

Radionuclide	Total Body A _i mrem/hr μCi/ml	Thyroid A _i <u>mrem/hr</u> μCi/ml	GI-LLI mrem/hr μCi/ml
H-3	2.82E-01	2.82E-01	2.82E-01
Na-24	4.57E-01	4.57E-01	4.57E-01
Cr-51	5.58E+00	3.34E+0	1.40E+03
Mn-54	1.35E+03	-	2.16E+04
Fe-55	8.23E+03	-	2.03E+04
Fe-59	7.27E+04	-	6.32E+05
Co-58	1.35E+03	-	1.22E+04
Co-60	3.82E+03	-	3.25E+04
Zn-65	2.32E+05	-	3.23E+05
Rb-86	2.91E+02	-	1.23E+02
Sr-89	1.43E+02	-	8.00E+02
Sr-90	3.01E+04	-	3.55E+03
Y-91	2.37E+00	-	4.89E+04
Zr-95	3.46E+00	-	1.62E+04
Zr-97	8.13E-02	-	5.51E+04
Nb-95	1.34E+02	-	1.51E+06
Mo-99	2.43E+01	-	2.96E+02
Ru-103	4.60E+01	-	1.25E+04
Ru-106	2.01E+02	-	1.03E+05
Ag-110m	8.60E+02	-	5.97E+05
Sb-124	1.09E+02	6.70E-01	7.84E+03
Sb-125	4.20E+01	1.79E-01	1.94E+03
Te-125m	2.91E+01	6.52E+01	8.66E+02
Te-127m	6.68E+01	1.40E+02	1.84E+03
Te-129m	1.47E+02	3.20E+02	4.69E+03
Te-131m	5.71E+01	1.08E+02	6.80E+03
Te-132	1.24E+02	1.46E+02	6.24E+03
I-131	1.79E+02	1.02E+05	8.23E+01
I-132	9.96E+00	9.96E+02	5.35E+00
I-133	3.95E+01	1.90E+04	1.16E+02
I-134	5.40E+00	2.62E+02	1.32E-02
I-135	2.24E+01	4.01E+03	6.87E+01
Cs-134	1.33E+04	<u>-</u>	2.85E+02
Cs-136	2.04E+03	-	3.21E+02
Cs-137	7.85E+03	-	2.32E+02
Cs-138	5.94E+00	-	5.12E-05
Ba-140	1.08E+02	-	3.38E+03
La-140	2.10E-01	-	5.83E+04
Ce-141	2.63E-01		8.86E+03
Ce-143	4.94E-02	-	1.67E+04
Ce-144	9.59E+00	-	6.04E+04
Np-239	1.91E-03	-	7.11E+02

VPAP-2103 REVISION 8 PAGE 62 OF 148

Intentionally Blank

(Page 1 of 3)

Surry Radioactive Liquid Waste Sampling and Analysis Program

Liquid Release Type	Sampling Frequency	Minimum Analy- sis Frequency	Type of Activity Analysis	Lower Limit of Detection (LLD) (µCi/ml), (Note 1)
	P	P	Principle Gamma Emitters (Note 3)	5 x 10 ⁻⁷
	(Each Batch)	(Each Batch)	I ¹³¹	1 x 10 ⁻⁶
Batch Releases	P (One Batch/M)	М	Dissolved and Entrained Gases (Gamma Emitters)	1 x 10 ⁻⁵
(Note 2)	P	M Composite	H^3	1 x 10 ⁻⁵
	(Each Batch)	(Note 4)	Gross Alpha	1 x 10 ⁻⁷
	P	Q Composite	Sr ⁸⁹ and Sr ⁹⁰	5 x 10 ⁻⁸
	(Each Batch)	(Note 4)	Fe ⁵⁵	1 x 10 ⁻⁶
	Continuous	W Composite	Principal Gamma Emitters (Note 6)	5 x 10 ⁻⁷
	(Note 6)	(Note 6)	I ¹³¹	1 x 10 ⁻⁶
Continuous Releases	M Grab Sample	М	Dissolved and Entrained Gases (Gamma Emitters)	1 x 10 ⁻⁵
(Note 5)	Continuous	M Composite	H^3	1 x 10 ⁻⁵
	(Note 6)	(Note 6)	Gross Alpha	1 x 10 ⁻⁷
,	Continuous	Q Composite	Sr ⁸⁹ and Sr ⁹⁰	5 x 10 ⁻⁸
	(Note 6)	(Note 6)	Fe ⁵⁵	1 x 10 ⁻⁶

(Page 2 of 3)

Surry Radioactive Liquid Waste Sampling and Analysis Program

NOTE 1: For a particular measurement system (which may include radiochemical separation):

$$LLD = \frac{4.66 \text{ s}_{b}}{E \cdot V \cdot 2.22E + 06 \cdot Y \cdot e^{-(\lambda \Delta t)}}$$
(8-1)

Where:

LLD = the "a priori" (before the fact) Lower Limit of Detection (as microcuries per unit mass or volume) (See 4.8)

sb = the standard deviation of the background counting rate or of the counting rate of a blank sample as appropriate (as counts per minute, cpm)

E = the counting efficiency (as counts per disintegration)

V = the sample size (in units of mass or volume)

2.22E+06 = the number of disintegrations per minute (dpm) per microcurie

Y = the fractional radiochemical yield (when applicable)

 λ = the radioactive decay constant for the particular radionuclide

 Δt = the elapsed time between the midpoint of sample collection and time of counting

Typical values of E, V, Y and Δt should be used in the calculation.

The LLD is an "a priori" (before the fact) limit representing the capability of a measurement system and not a "posteriori" (after the fact) limit for a particular measurement.

NOTE 2: A batch release is the discharge of liquid wastes of a discrete volume. Before sampling for analyses, each batch shall be isolated, and appropriate methods will be used to obtain a representative sample for analysis.

(Page 3 of 3)

Surry Radioactive Liquid Waste Sampling and Analysis Program

- NOTE 3: The principal gamma emitters for which the LLD specification applies exclusively are the following radionuclides: Mn⁵⁴, Fe⁵⁹, Co⁵⁸, Co⁶⁰, Zn⁶⁵, Mo⁹⁹, Cs¹³⁴, Cs¹³⁷, Ce¹⁴¹, and Ce¹⁴⁴. This list does not mean that only these nuclides are to be detected and reported. Other peaks that are measurable and identifiable, at levels exceeding the LLD, together with the above nuclides, shall also be identified and reported.
- NOTE 4: A composite sample is one in which the quantity of liquid sampled is proportional to the quantity of liquid waste discharged and for which the method of sampling employed results in a specimen that is representative of the liquids released.
- NOTE 5: A continuous release is the discharge of liquid wastes of a non-discrete volume, e.g., from a volume of a system that has an input flow during the continuous release.
- NOTE 6: To be representative of the quantities and concentrations of radioactive materials in liquid effluents, composite sampling shall employ appropriate methods which will result in a specimen representative of the effluent release.

Intentionally Blank

(Page 1 of 3)

North Anna Radioactive Liquid Waste Sampling and Analysis Program

T !! 1 D -1	G1!	I Minimum Amala	Town of Andinites	Lower Limit of
Liquid Release	Sampling	Minimum Analy-	Type of Activity	1
Туре	Frequency	sis Frequency	Analysis	Detection (LLD)
				(μCi/ml), (Note 1)
	P	P	Principle Gamma	5 x 10 ⁻⁷
			Emitters (Note 3)	
	(Each Batch)	(Each Batch)	T ¹³¹	1 x 10 ⁻⁶
			1	1 1 10
Batch Releases	. P	M	Dissolved and	_
	(One Batch/M)		Entrained Gases	1×10^{-5}
	((Gamma Emitters)	
(Notes 2 and 7)	P	M Composite		5
(110tcs 2 and 7)	1	W Composite	H^3	1 x 10 ⁻⁵
	(Each Batch)	(Note 4)		7
	(Each Batch)	(14016 4)	Gross Alpha	1 x 10 ⁻⁷
	P	0.00		
	, P	Q Composite	Sr ⁸⁹ and Sr ⁹⁰	5 x 10 ⁻⁸
	(= 1 = 1)			
	(Each Batch)	(Note 4)	Fe ⁵⁵	1 x 10 ⁻⁶
	<u> </u>		5	
			Principal Gamma	5 x 10 ⁻⁷
		,	Emitters (Note 6)	
	Continuous	W Composite	T131	1 x 10 ⁻⁶
		-	1	1 1 10
Continuous	(Note 6)	(Note 6)	Dissolved and	
Releases	(= := : :)	(Entrained Gases	1×10^{-5}
110104505			(Gamma Emitters)	
(Note 5)	Continuous	M Composite	H ³	1 x 10 ⁻⁵
(2.0000)			H	1 x 10 °
	(Note 6)	(Note 6)		7
	(110100)	(11010 0)	Gross Alpha	1 x 10 ⁻⁷
	Continuous	Q Composite	90 00	0
	Continuous	Q Composite	Sr ⁸⁹ and Sr ⁹⁰	5 x 10 ⁻⁸
	(Note 6)	(Note 6)		
	(Note 6)	(Note 6)	Fe ⁵⁵	1 x 10 ⁻⁶
		l	<u> </u>	

(Page 2 of 3)

North Anna Radioactive Liquid Waste Sampling and Analysis Program

NOTE 1: For a particular measurement system (which may include radiochemical separation):

$$LLD = \frac{4.66 \text{ s}_{b}}{E \cdot V \cdot 2.22E + 06 \cdot Y \cdot e^{-(\lambda \Delta t)}}$$
(9-1)

Where:

LLD = the "a priori" (before the fact) Lower Limit of Detection as defined above (as microcuries per unit mass or volume) (See 4.8)

sb = the standard deviation of the background counting rate or of the counting rate of a blank sample as appropriate (as counts per minute, cpm)

E = the counting efficiency (as counts per disintegration)

V = the sample size (in units of mass or volume)

2.22E+06 = the number of disintegrations per minute (dpm) per microcurie

Y = the fractional radiochemical yield (when applicable)

 λ = the radioactive decay constant for the particular radionuclide

 Δt = the elapsed time between the midpoint of sample collection and time of counting

Typical values of E, V, Y and Δt should be used in the calculation.

The LLD is an "a priori" (before the fact) limit representing the capability of a measurement system and not a "posteriori" (after the fact) limit for a particular measurement.

NOTE 2: A batch release is the discharge of liquid wastes of a discrete volume. Before sampling for analyses, each batch shall be isolated, and then thoroughly mixed as the situation permits, to assure representative sampling.

(Page 3 of 3)

North Anna Radioactive Liquid Waste Sampling and Analysis Program

- NOTE 3: The principal gamma emitters for which the LLD specification applies exclusively are the following radionuclides: Mn⁵⁴, Fe⁵⁹, Co⁵⁸, Co⁶⁰, Zn⁶⁵, Mo⁹⁹, Cs¹³⁴, Cs¹³⁷, Ce¹⁴¹, and Ce¹⁴⁴. This list does not mean that only these nuclides are to be detected and reported. Other peaks that are measurable and identifiable, at levels exceeding the LLD, together with the above nuclides, shall also be identified and reported.
- NOTE 4: A composite sample is one in which the quantity of liquid sampled is proportional to the quantity of liquid waste discharged and for which the method of sampling employed results in a specimen that is representative of the liquids released.
- NOTE 5: A continuous release is the discharge of liquid wastes of a non-discrete volume, e.g., from a volume of a system that has an input flow during the continuous release.
- NOTE 6: To be representative of the quantities and concentrations of radioactive materials in liquid effluents, samples shall be collected continuously in proportion to the rate of flow of the effluent stream. Prior to analyses, all samples taken for the composite shall be thoroughly mixed in order for the composite sample to be representative of the effluent releases.
- NOTE 7: Whenever the secondary coolant activity exceeds 10⁻⁵ µCi/ml, the turbine building sump pumps shall be placed in manual operation and samples shall be taken and analyzed prior to release. Secondary coolant activity samples shall be collected and analyzed on a weekly basis. These samples are analyzed for gross activity or gamma isotopic activity within 24 hours.

Intentionally Blank

(Page 1 of 5)

Surry Radioactive Gaseous Waste Sampling and Analysis Program

Gaseous Release Type	Sampling Frequency	Minimum Analysis Frequency	Type of Activity Analysis	Lower Limit of Detection (LLD) (µCi/ml), (Note 1)
A. Waste Gas Storage Tank	Prior to Release (Each Tank) (Grab Sample)	Prior to Release (Each Tank)	Principal Gamma Emitters (Note 2)	1 x 10 ⁻⁴
B. Containment	Prior to Release	Prior to Release	Principle Gamma Emitters (Note 2)	1 x 10 ⁻⁴
Purge	(Each PURGE) (Grab Sample)	(Each PURGE)	H ³	1 x 10 ⁻⁶
C. Ventilation (1)Process Vent	Weekly (Grab Sample)	Weekly	Principle Gamma Emitters (Note 2)	1 x 10 ⁻⁴
(2) Vent Vent #1 (3) Vent Vent #2 (4) SRF Vent	(Note 3)	(Note 3)	H ³	1 x 10 ⁻⁶
	Continuous	Weekly (Note 5)	I ¹³¹	1 x 10 ⁻¹²
	(Note 4)	(Charcoal Sample)	I ¹³³	1 x 10 ⁻¹⁰
All Release	Continuous (Note 4)	Weekly (Note 5) Particulate Sample	Principal Gamma Emitter (Note 2)	1 x 10 ⁻¹¹
Types as listed	Continuous (Note 4)	Weekly Composite Particulate Sample	Gross Alpha	1 x 10 ⁻¹¹
in A, B, and C	Continuous (Note 4)	Quarterly Composite Particulate	Sr ⁸⁹ and Sr ⁹⁰	1 x 10 ⁻¹¹
	Continuous (Note 4)	Noble Gas Monitor	Noble Gases Gross Beta and Gamma	1 x 10 ⁻⁶
Condenser Air	Weekly	Weekly	Principle Gamma Emitters (Note 2)	1 x 10 ⁻⁴
Ejector	Grab Sample (Note 3)	(Note 3)	H^3	1 x 10 ⁻⁶

(Page 2 of 5)

Surry Radioactive Gaseous Waste Sampling and Analysis Program

Gaseous Release Type	Sampling Frequency	Minimum Analysis Frequency	Type of Activity Analysis	Lower Limit of Detection (LLD) (µCi/ml), (Note 1)
	Prior to Release	Prior to Release	Principle Gamma Emitters	1 x 10 ⁻⁴
'	(Grab Sample)	(Each Release)	H^3	1 x 10 ⁻⁶
	Continuous	Charcoal Sample	I ¹³¹	1 x 10 ⁻¹¹
Containment	(Note 4)	(Note 6)	I ¹³³	1 x 10 ⁻¹⁰
Hog Depres-	Continuous (Note 4)	Particulate Sample (Note 6)	Principal Gamma Emitter (Note 2)	1 x 10 ⁻¹⁰
surization	Continuous (Note 4)	Composite Particulate Sample (Note 6)	Gross Alpha	1 x 10 ⁻¹⁰
	Continuous (Note 4)	Composite Particulate Sample (Note 6)	Sr ⁸⁹ and Sr ⁹⁰	1 x 10 ⁻¹⁰

(Page 3 of 5)

Surry Radioactive Gaseous Waste Sampling and Analysis Program

NOTE 1: For a particular measurement system (which may include radiochemical separation):

$$LLD = \frac{4.66 \text{ s}_{b}}{E \cdot V \cdot 2.22E + 06 \cdot Y \cdot e^{-(\lambda \Delta t)}}$$
(10-1)

Where:

LLD = the "a priori" (before the fact) Lower Limit of Detection as defined above

(as microcuries per unit mass or volume) (See 4.8).

sb = the standard deviation of the background counting rate or of the counting

rate of a blank sample as appropriate (as counts per minute, cpm).

E = the counting efficiency (as counts per disintegration).

V = the sample size (in units of mass or volume).

2.22E+06 = the number of disintegrations per minute (dpm) per microcurie.

Y = the fractional radiochemical yield (when applicable).

 λ = the radioactive decay constant for the particular radionuclide.

 Δt = the elapsed time between the midpoint of sample collection and time of

counting.

Typical values of E, V, Y and Δt should be used in the calculation.

The LLD is an "a priori" (before the fact) limit representing the capability of a measurement system and not a "posteriori" (after the fact) limit for a particular measurement.

(Page 4 of 5)

Surry Radioactive Gaseous Waste Sampling and Analysis Program

- NOTE 2: The principal gamma emitters for which the LLD specification applies exclusively are the following radionuclides: Kr⁸⁷, Kr⁸⁸, Xe¹³³, Xe^{133m}, Xe¹³⁵, Xe^{135m}, and Xe¹³⁸ for gaseous emissions and Mn⁵⁴, Fe⁵⁹, Co⁵⁸, Co⁶⁰, Zn⁶⁵, Mo⁹⁹, Cs¹³⁴, Cs¹³⁷, Ce¹⁴¹ and Ce¹⁴⁴ for particulate emissions. This list does not mean that only these nuclides are to be detected and reported. Other nuclides with half lives greater than 8 days, that are measurable and identifiable at levels exceeding the LLD, together with the above nuclides, shall also be identified and reported.
- NOTE 3: Sampling and analysis shall also be performed following shutdown, start-up, and whenever a thermal power change exceeding 15 percent of the rated thermal power occurs within any one-hour period, when:
 - a. Analysis shows that the dose equivalent I¹³¹ concentration in the primary coolant has increased more than a factor of 3; and
 - b. The noble gas activity monitor shows that effluent activity has increased by more than a factor of 3.
- NOTE 4: The ratio of the sample flow rate to the sampled stream flow rate shall be known for the period covered by each dose or dose rate calculation made in accordance with 6.3.1, 6.3.3, and 6.3.4.
- NOTE 5: Samples shall be changed at least once per seven days and analyses shall be completed within 48 hours after changing (or after removal from sampler). Sampling shall also be performed at least once per 24 hours for at least seven days following each shutdown, start-up, or thermal power change exceeding 15 percent of rated thermal power in one hour, and analyses shall be completed within 48 hours of changing. When samples collected for 24 hours are analyzed, the corresponding LLDs may be increased by a factor of 10. This requirement applies if:
 - a. Analysis shows that the dose equivalent I¹³¹ concentration in the primary coolant has increased by a factor of 3; and
 - b. Noble gas monitor shows that effluent activity has increased more than a factor of 3.

(Page 5 of 5)

Surry Radioactive Gaseous Waste Sampling and Analysis Program

NOTE 6: To be representative of the quantities and concentrations of radioactive materials in gaseous effluents, composite sampling shall employ appropriate methods that will result in a specimen representative of the effluent release.

Intentionally Blank

(Page 1 of 4)

North Anna Radioactive Gaseous Waste Sampling and Analysis Program

Gaseous Release	Sampling	Minimum	Type of Activity	Lower Limit of
Туре	Frequency	Analysis	Analysis	Detection (LLD)
		Frequency		(μCi/ml), (Note 1)
A. Waste Gas Storage Tank	Prior to Release (Each Tank Grab Sample)	Prior to Release (Each Tank)	Principal Gamma Emitters (Note 2)	1 x 10 ⁻⁴
B. Containment	Prior to Release	Prior to Release	Principle Gamma Emitters (Note 2)	1 x 10 ⁻⁴
Purge	(Each PURGE Grab Sample)	(Each PURGE)	H ³	1 x 10 ⁻⁶
C. Ventilation	Monthly	Monthle	Principle Gamma	1 x 10 ⁻⁴
(1) Process Vent	(Grab Sample)	Monthly	Emitters (Note 2)	1 x 10
(2) Vent Vent A (3) Vent Vent B	(Notes 3, 4, and 5)	(Note 3)	H^3	1 x 10 ⁻⁶
	Continuous	Weekly	I ¹³¹	1 x 10 ⁻¹²
	(Note 4)	(Charcoal Sample)	I ¹³³	1 x 10 ⁻¹⁰
All Release	Continuous (Note 4)	Weekly Particulate Sample	Principal Gamma Emitter (Note 2)	1 x 10 ⁻¹¹
Types as listed	Continuous (Note 4)	Monthly Composite Particulate Sample	Gross Alpha	1 x 10 ⁻¹¹
in A, B, and C	Continuous (Note 4)	Quarterly Composite Particulate	Sr ⁸⁹ and Sr ⁹⁰	· 1 x 10 ⁻¹¹
	Continuous (Note 4)	Noble Gas Monitor	Noble Gases Gross Beta or Gamma	1 x 10 ⁻⁶
Condenser Air Ejector/Steam	Weekly	Weekly	Principle Gamma Emitters (Note 7)	1 x 10 ⁻⁴
Generator Blowdown Vent	Grab Sample (Note 6)		H^3	1 x 10 ⁻⁶
Containment Vacuum Steam	Prior to Release	Prior to each	Principle Gamma Emitters (Note 2)	1 x 10 ⁻⁴
Ejector (Hogger)	(Grab Sample) (Note 8)	Release	H^3	1 x 10 ⁻⁶

(Page 2 of 4)

North Anna Radioactive Gaseous Waste Sampling and Analysis Program

NOTE 1: For a particular measurement system (which may include radiochemical separation):

$$LLD = \frac{4.66 \text{ s}_{b}}{E \cdot V \cdot 2.22E + 06 \cdot Y \cdot e^{-(\lambda \Delta t)}}$$
(11-1)

Where:

LLD = the "a priori" (before the fact) Lower Limit of Detection as defined above (as microcuries per unit mass or volume) (See 4.9)

s_b = the standard deviation of the background counting rate or of the counting rate of a blank sample as appropriate (as counts per minute, cpm)

E = the counting efficiency (as counts per disintegration)

V = the sample size (in units of mass or volume)

2.22E+06 = the number of disintegrations per minute (dpm) per microcurie

Y = the fractional radiochemical yield (when applicable)

 λ = the radioactive decay constant for the particular radionuclide

 Δt = the elapsed time between the midpoint of sample collection and time of counting

Typical values of E, V, Y and Δt should be used in the calculation.

The LLD is an "a priori" (before the fact) limit representing the capability of a measurement system and not as "posteriori" (after the fact) limit for a particular measurement.

(Page 3 of 4)

North Anna Radioactive Gaseous Waste Sampling and Analysis Program

- NOTE 2: The principal gamma emitters for which the LLD specification applies exclusively are the following radionuclides: Kr⁸⁷, Kr⁸⁸, Xe¹³³, Xe^{133m}, Xe¹³⁵, Xe^{135m}, and Xe¹³⁸ for gaseous emissions and Mn⁵⁴, Fe⁵⁹, Co⁵⁸, Co⁶⁰, Zn⁶⁵, Mo⁹⁹, Cs¹³⁴, Cs¹³⁷, Ce¹⁴¹ and Ce¹⁴⁴ for particulate emissions. This list does not mean that only these nuclides are to be detected and reported. Other peaks that are measurable and identifiable, at levels exceeding the LLD, together with the above nuclides, shall also be identified and reported.
- NOTE 3: Sampling and analysis shall also be performed following shutdown, start-up, and whenever a thermal power change exceeding 15 percent of the rated thermal power occurs within any one-hour period, if:
 - a. Analysis shows that the dose equivalent I^{131} concentration in the primary coolant is greater than 1.0 μ Ci/gm; and
 - b. The noble gas activity monitor shows that effluent activity has increased by more than a factor of 3.
- NOTE 4: The ratio of the sample flow rate to the sampled stream flow rate shall be known for the period covered by each dose or dose rate calculation made in accordance with 6.3.1, 6.3.3, and 6.3.4.
- NOTE 5: Samples shall be changed at least once per seven days and analyses shall be completed within 48 hours after changing (or after removal from sampler). Sampling shall also be performed at least once per 24 hours for at least seven days following each shutdown, start-up or thermal power change exceeding 15 percent of rated thermal power in one hour and analyses shall be completed within 48 hours of changing. When samples collected for 24 hours are analyzed, the corresponding LLDs may be increased by a factor of 10. This requirement applies if:
 - a. Analysis shows that the dose equivalent I^{131} concentration in the primary coolant is greater than 1.0 μ Ci/gm and;
 - b. Noble gas monitor shows that effluent activity has increased more than a factor of 3.

(Page 4 of 4)

North Anna Radioactive Gaseous Waste Sampling and Analysis Program

- NOTE 6: Whenever the secondary coolant activity exceeds $10^{-5} \,\mu\text{Ci/ml}$, samples shall be obtained and analyzed weekly. Secondary coolant activity samples shall be collected and analyzed on a weekly basis. These samples are analyzed for gross activity or gamma isotopic activity within 24 hours.
- NOTE 7: The principal gamma emitters for which the LLD specification applies exclusively are the following radionuclides: Kr⁸⁷, Kr⁸⁸, Xe¹³³, Xe^{133m}, Xe^{135m}, and Xe¹³⁸ for gaseous emissions. This list does not mean that only these nuclides are to be detected and reported. Other peaks that are measurable and identifiable, at levels exceeding the LLD together with the above nuclides, shall also be identified and reported.
- NOTE 8: If the secondary coolant activity level in any Steam Generator supplying steam to the Hogger exceeds 1.0E-5 μ Ci/ml, Steam Generator samples shall be obtained and analyzed prior to release.

(Page 1 of 3)

Gaseous Effluent Dose Factors for Surry

(Gamma and Beta Dose Factors) $\chi/Q = 6.0E-05 \text{ sec/m}^3 \text{ at 499 meters N Direction}$ **Dose Factors for Ventilation Vent**

Noble Gas	K _{ivv}	L _{ivv}	M _{ivv}	N _{ivv}
Radionuclide	Total Body	Skin	Gamma Air	Beta Air
·	mrem/yr	mrem/yr	mrad/yr	mrad/yr
	Curie/sec	Curie/sec	Curie/sec	Curie/sec
Kr-85m	7.02E+04	8.76E+04	7.38E+04	1.18E+05
Kr-85	9.66E+02	8.04E+04	1.03E+03	1.17E+05
Kr-87	3.55E+05	5.84E+05	3.70E+05	6.18E+05
Kr-88	8.82E+05	1.42E+05	9.12E+05	1.76E+05
Kr-89	9.96E+05	6.06E+05	1.04E+06	6.36E+05
Xe-131m	5.49E+03	2.86E+04	9.36E+03	6.66E+04
Xe-133m	1.51E+04	5.96E+04	1.96E+04	8.88E+04
Xe-133	1.76E+04	1.84E+04	2.12E+04	6.30E+04
Xe-135m	1.87E+05	4.27E+04	2.02E+05	4.43E+04
Xe-135	1.09E+05	1.12E+05	1.15E+05	1.48E+05
Xe-137	8.52E+04	7.32E+05	9.06E+04	7.62E+05
Xe-138	5.30E+05	2.48E+05	5.53E+05	2.85E+05
Ar-41	5.30E+05	1.61E+05	5.58E+05	1.97E+05

(Page 2 of 3)

Gaseous Effluent Dose Factors for Surry

(Gamma and Beta Dose Factors)

χ/Q = 1.0E-06 sec/m³ at 644 meters N Direction

Dose Factors for Process Vent

Noble Gas	K _{ipv}	$L_{ m ipv}$	$M_{ m ipv}$	N _{ipv}
Radionuclide	Total Body	Skin	Gamma Air	Beta Air
	mrem/yr	mrem/yr	mrad/yr	mrad/yr
·	Curie/sec	Curie/sec	Curie/sec	Curie/sec
Kr-85m	1.17E+03	1.46E+03	1.23E+03	1.97E+03
Kr-85	1.61E+01	1.34E+03	1.72E+01	1.95E+03
Kr-87	5.92E+03	9.73E+03	6.17E+03	1.03E+04
Kr-88	1.47E+04	2.37E+03	1.52E+04	2.93E+03
Kr-89	1.66E+04	1.01E+04	1.73E+04	1.06E+04
Xe-131m	9.15E+01	4.76E+02	1.56E+02	1.11E+03
Xe-133m	2.51E+02	9.94E+02	3.27E+02	1.48E+03
Xe-133	2.94E+02	3.06E+02	3.53E+02	1.05E+03
Xe-135m	3.12E+03	7.11E+02	3.36E+03	7.39E+02
Xe-135	1.81E+03	1.86E+03	1.92E+03	2.46E+03
Xe-137	1.42E+03	1.22E+04	1.51E+03	1.27E+04
Xe-138	8.83E+03	4.13E+03	9.21E+03	4.75E+03
Ar-41	8.84E+03	2.69E+03	9.30E+03	3.28E+03

(Page 3 of 3)

Gaseous Effluent Dose Factors for Surry

(Inhalation Pathway Dose Factors)

Ventilation Vent $\chi/Q = 6.0\text{E}-05 \text{ sec/m}^3$ at 499 meters N Direction Process Vent $\chi/Q = 1.0\text{E}-06 \text{ sec/m}^3$ at 644 meters S Direction

Radionuclide	P _{ivv} <u>mrem/yr</u> Curie/sec	P _{ipv} <u>mrem/yr</u> Curie/sec
H-3	6.75E+04	1.12E+03
Cr-51	5.13E+03	8.55E+01
Mn-54	ND	ND
Fe-59	ND	ND
Co-58	ND	ND
Co-60	ND	ND
Zn-65	ND	ND
Rb-86	ND	ND
Sr-90	ND	ND
Y-91	ND	ND
Zr-95	ND	ND
Nb-95	ND	ND
Ru-103	ND	ND
Ru-106	ND	ND
Ag-110m	ND	ND
Te-127m	3.64E+05	6.07E+03
Te-129m	3.80E+05	6.33E+03
Cs-134	ND	ND
Cs-136	ND	ND
Cs-137	ND	ND
Ba-140	ND	ND
Ce-141	ND	ND
Ce-144	ND	ND
I-131	9.75E+08	1.62E+07
I-133	2.31E+08	3.85E+06

ND - No data for dose factor according to Regulatory Guide 1.109, Revision 1

VPAP-2103 REVISION 8 PAGE 84 OF 148

Intentionally Blank

(Page 1 of 3)

Gaseous Effluent Dose Factors for North Anna

(Gamma and Beta Dose Factors)

χ/Q = 9.3E-06 sec/m³ at 1416 meters SE Direction

Dose Factors for Ventilation Vent

Noble Gas	K _{ivv}	L _{ivv}	M _{ivv}	N _{ivv}
Radionuclide	Total Body	Skin	Gamma Air	Beta Air
	mrem/yr	mrem/yr	mrad/yr	mrad/yr
	Curie/sec	Curie/sec	Curie/sec	Curie/sec
Kr-83m	7.03E-01		1.79E+02	2.68E+03
Kr-85m	1.09E+04	1.36E+04	1.14E+04	1.83E+04
Kr-85	1.50E+02	1.25E+04	1.60E+02	1.81E+04
Kr-87	5.51E+04	9.05E+04	5.74E+04	9.58E+04
Kr-88	1.37E+05	2.20E+04	1.41E+05	2.72E+04
Kr-89	1.54E+05	9.39E+04	1.61E+05	9.86E+04
Kr-90	1.45E+05	6.78E+04	1.52E+05	7.28E+04
Xe-131m	8.51E+02	4.43E+03	1.45E+03	1.03E+04
Xe-133m	2.33E+03	9.24E+03	3.04E+03	1.38E+04
Xe-133	2.73E+03	2.85E+03	3.28E+03	9.77E+03
Xe-135m	2.90E+04	6.61E+03	3.12E+04	6.87E+03
Xe-135	1.68E+04	1.73E+04	1.79E+04	2.29E+04
Xe-137	1.32E+04	1.13E+05	1.40E+04	1.18E+05
Xe-138	8.21E+04	3.84E+04	8.57E+04	4.42E+04
Ar-41	8.22E+04	2.50E+04	8.65E+04	3.05E+04

(Page 2 of 3)

Gaseous Effluent Dose Factors for North Anna

(Gamma and Beta Dose Factors)

χ/Q = 1.2E-06 sec/m³ at 1513 meters S Direction

Dose Factors for Process Vent

Noble Gas Radionuclide	K _{ipv} Total Body <u>mrem/yr</u> Curie/sec	L _{ipv} Skin <u>mrem/yr</u> Curie/sec	M _{ipv} Gamma Air <u>mrad/yr</u> Curie/sec	N _{ipv} Beta Air <u>mrad/yr</u> Curie/sec
Kr-83m	9.07E-02	-	2.32E+01	3.46E+02
Kr-85m	1.40E+03	1.75E+03	1.48E+03	2.36E+03
Kr-85	1.93E+01	1.61E+03	2.06E+01	2.34E+03
Kr-87	7.10E+03	1.17E+04	7.40E+03	1.24E+04
Kr-88	1.76E+04	2.84E+03	1.82E+04	3.52E+03
Kr-89	1.99E+04	1.21E+04	2.08E+04	1.27E+04
Kr-90	1.87E+04	8.75E+03	1.96E+04	9.40E+03
Xe-131m	1.10E+02	5.71E+02	1.87E+02	1.33E+03
Xe-133m	3.01E+02	1.19E+03	3.92E+02	1.78E+03
Xe-133	3.53E+02	3.67E+02	4.24E+02	1.26E+03
Xe-135m	3.74E+03	8.53E+02	4.03E+03	8.87E+02
Xe-135	2.17E+03	2.23E+03	2.30E+03	2.95E+03
Xe-137	1.70E+03	1.46E+04	1.81E+03	1.52E+04
Xe-138	1.06E+04	4.96E+03	1.11E+04	5.70E+03
Ar-41	1.06E+04	3.23E+03	1.12E+04	3.94E+03

(Page 3 of 3)

Gaseous Effluent Dose Factors for North Anna

(Inhalation Pathway Dose Factors)

Ventilation Vent $\chi/Q = 9.3E-06 \text{ sec/m}^3$ at 1416 meters SE Direction Process Vent $\chi/Q = 1.2E-06 \text{ sec/m}^3$ at 1513 meters S Direction

Radionuclide	P _{ivv} mrem/vr	P _{ipv} mrem/yr
	<u>mremyr</u> Curie/sec	Curie/sec
H-3	1.05E+04	1.35E+03
Cr-51	7.95E+02	1.02E+02
Mn-54	ND	ND
Fe-59	ND	ND
Co-58	ND	ND ·
Co-60	ND	ND
Zn-65	ND	ND
Rb-86	ND	ND
Sr-90	ND	ND
Y-91	ND	ND
Zr-95	ND	ND
Nb-95	ND	ND
Ru-103	ND	ND
Ru-106	ND	ND
Ag-110m	ND	ND
Te-127m	5.64E+04	7.28E+03
Te-129m	5.88E+04	7.59E+03
Cs-134	ND	ND
Cs-136	ND	ND
Cs-137	ND	ND
Ba-140	ND	ND
Ce-141	ND	ND
Ce-144	ND	ND
I-131	1.51E+08	1.95E+07
I-133	3.58E+07	4.62E+06

ND - No data for dose factor according to Regulatory Guide 1.109, Revision 1

Intentionally Blank

(Page 1 of 3)

Surry Radioactive Gaseous Effluent Monitoring Instrumentation

		INSTRUMENT	MINIMUM OPERABLE CHANNELS	ACTION
1.	PRC	OCESS VENT SYSTEM	٧	
	(a)	Noble Gas Activity Monitor - Providing Alarm and	-	
		Automatic Termination of Release		
1		1-GW-RM-102	1	1
		1-GW-RM-130-1		
	(b)	-		
		Process Vent Continuous HP Sampler, or		
		1-GW-RM-130-1	1	2
	(c)	Particulate Sampler		
		Process Vent Continuous HP Sampler, or	1	2
	٠	1-GW-RM-130-1		
1	(d)	Process Vent Flow Rate Monitor		
		1-GW-FT-100	1	3
	(e)	Sampler Flow Rate Measuring Device		
		KAMAN Flow Rate Measuring Device	1	3.
		(Parameter #19), or HP Sampler Rotometer		
2.	COl	NDENSER AIR EJECTOR SYSTEM		
İ	(a)	Gross Activity Monitor		
		1-SV-RM-111	2 (one per unit)	1
		2-SV-RM-211	2 (one per unit).	1
1	(b)	Air Ejector Flow Rate Measuring Device		
		Unit 1: 1-VP-FI-1A		
		1-VP-FI-1B	2 (one per unit)	3
		Unit 2: 2-VP-FI-1A	2 (one per unit)	3
		2-VP-FI-1B		
3.	VEN	NTILATION VENT SYSTEM		
	(a)	Noble Gas Activity Monitor		
		SRF: RRM-101	1	1
		SPS: Vent #1 1-VG-RM-104	1	1
		Vent #2, 1-VG-RM -110, or	1	1
<u> </u>		1-VG-RM-131-1		

(Page 2 of 3)

Surry Radioactive Gaseous Effluent Monitoring Instrumentation

	INSTRUMENT	MINIMUM OPERABLE CHANNELS	ACTION
(b)	Iodine Sampler		
}	SRF: RRM-101	· 1	· 2
	SPS: Vent #1, 1-VG-RM-104	1	2
	Vent #2, Continuous HP Sampler, or 1-VG-RM-131-1	1	2
(c)	Particulate Sampler	ļ	
	SRF: RRM-101	. 1	. 2
	SPS: Vent #1, VG-RM-104	1	2
	Vent #2, HP Continuous Sampler, or 1-VG-RM-131-1	1	2
(d)	Ventilation Vent Flow Rate Monitor		
	SRF: 01-RHV-FT-156	1	3
	SPS: Vent #1, 1-VS-FT-119	1	3
	Vent #2, 1-VS-FT-116	1	3
(e)	Sampler Flow Rate Measuring Device		
` ` `	SRF: RRM-101	1	3
	SPS: Vent #1, 1-VG-RM-104	1	3
	Vent #2, KAMAN Flow Rate Measuring Device (Parameter #19), or HP Sampler Rotometer	1	3

(Page 3 of 3)

Surry Radioactive Gaseous Effluent Monitoring Instrumentation

- ACTION 1: If the number of operable channels is less than required, effluent releases via this path may continue provided grab samples are taken at least once per 12 hours and these samples are analyzed for gross activity within 24 hours.
- ACTION 2: If the number of operable channels is less than required, effluent releases via the effected path may continue provided samples are continuously collected within one hour with auxiliary sampling equipment as required in Attachment 8.
- ACTION 3: If the number of operable channels is less than required, effluent releases via this pathway may continue provided the flow rate is estimated at least once per 4 hours.

Intentionally Blank

(Page 1 of 3)

North Anna Radioactive Gaseous Effluent Monitoring Instrumentation

	INSTRUMENT	MINIMUM OPERABLE CHANNELS	ACTION
1. PRO	DCESS VENT SYSTEM		
(a)	Noble Gas Activity Monitor		
	1-RM-GW-102 1-RM-GW-178-1	1	2, 4
(b)	Iodine Sampler		
	1-RM-GW-178-1 Process Vent Continuous HP Sampler	1	2, 5
(c)	Particulate Sampler	<i>5</i> ,	
	1-RM-GW-178-1 Process Vent Continuous HP Sampler	1	2, 5
(d)	Total Flow Monitor		
	1-GW-FT-108	1	1
(e)	Sampler Flow Rate Measuring Device		
	KAMANS Flow Rate Measuring Device (Parameter 19) HP Sampler Rotameter	1	1
2. COI	NDENSER AIR EJECTOR SYSTEM		
(a)	Gross Activity Monitor		
	Unit 1 1-SV-RM-121 Unit 2 2-SV-RM-221	1	3
(b)	Flow Rate Measuring Device		
	Unit 1 1-SV-FI-100A 1-SV-FI-101A 1-SV-FI-100B 1-SV-FI-101B	1 (NOTE 1)	1
	Unit 2 2-SV-FI-200A 2-SV-FI-201A 2-SV-FI-200B 2-SV-FI-201B	1 (NOTE 2)	1

(Page 2 of 3)

North Anna Radioactive Gaseous Effluent Monitoring Instrumentation

		INSTRUMENT	MINIMUM OPERABLE CHANNELS	ACTION
3.	VEN	ITILATION VENT A		
	(a)	Noble Gas Activity Monitor		
		1-RM-VG-104 1-RM-VG-179-1	1	2
	(b)	Iodine Sampler		
		1-RM-VG-179-1 Vent Vent A Continuous HP Sampler	1	2
	(c)	Particulate Sampler		
		1-RM-VG-179-1 Vent Vent A Continuous HP Sampler	1	2
	(d)	Total Flow Monitor		
		1-HV-FT-1212A	1	1
	(e)	Sampler Flow Rate Measuring Device		,
		KAMANS Flow Rate Measuring Device (Parameter 19) HP Sampler Rotameter	1	1
4.	VEN	NTILATION VENT B		
	(a)	Noble Gas Activity Monitor		
		1-RM-VG-113 1-RM-VG-180-1	1	. 2
	(b)	Iodine Sampler		
		1-RM-VG-180-1 Vent Vent B Continuous HP Sampler	1	2
	(c)	Particulate Sampler		
		1-RM-VG-180-1 Vent Vent B Continuous HP Sampler	1	2
,	(d)	Total Flow Monitor		
		1-HV-FT-1212B	1	1
	(e)	Sampler Flow Rate Measuring Device		
		KAMANS Flow Rate Measuring Device (Parameter 19) HP Sampler Rotameter	1	1

(Page 3 of 3)

North Anna Radioactive Gaseous Effluent Monitoring Instrumentation

- ACTION 1: If the number of operable channels is less than required, effluent releases, via this path, may continue if the flow rate is estimated at least once per four hours.
- ACTION 2: If the number of operable channels is less than required, effluent releases, via this path, may continue if grab samples are taken at least once per 12 hours and these samples are analyzed for gross activity or gamma isotopic activity within 24 hours.
- ACTION 3: If the number of operable channels is less than required, effluent releases, via this path, may continue if the frequency of the grab samples provided by Technical Specification requirement 4.4.6.3.b is increased to at least once per four hours and these samples are analyzed for gross activity or gamma isotopic activity within eight hours.
- ACTION 4: If the number of operable channels is less than required, the contents of the Waste Gas Decay Tanks may be released to the environment provided that prior to initiation of the release:
 - a. At least two independent samples of the tank's contents are analyzed, and:
 - b. At least two technically qualified members of the Station staff independently verify the release rate calculations and discharge valve lineup.
- ACTION 5: If the number of operable channels is less than required, effluent releases from the Waste Gas Decay Tank may continue provided samples are continuously collected with auxiliary sampling equipment as required in Attachment 9.

NOTE 1: A channel shall consist of:

- a. The flow instrument installed in the ejector through which the discharge is routed; either Train A (1-SV-FI-100A, 101A), or Train B (1-SV-FI-100B, 101B) or both.
- b. Flow instruments 101A and 101B provide low range measurement. Flow instruments 100A and 100B provide high range measurement.

NOTE 2: A channel shall consist of:

- a. The flow instrument installed in the ejector through which the discharge is routed; either Train A (2-SV-FI-200A, 201A), or Train B (2-SV-FI-200B, 201B) or both.
- b. Flow instruments 201A and 201B provide low range measurement. Flow instruments 200A and 200B provide high range measurement.

Intentionally Blank

(Page 1 of 2)

Surry Radioactive Gaseous Effluent Monitoring Instrumentation Surveillance Requirements

CHANNEL DESCRIPTION	CHANNEL CHECK	SOURCE CHECK		CHANNEL FUNCTIONAL TEST
1. PROCESS VENT SYSTEM				
(a) Noble Gas Activity Monitor -			*: :	
Providing Alarm and Automatic				
Termination of Release 1-GW-RM-102				
1-GW-RM-102 1-GW-RM-130-1	D	M, *	R	Q
(b) Iodine Sampler				
Process Vent Continuous HP	•	i .		
Sampler, or 1-GW-RM- 130-1	l w	N/A	N/A	N/A
bampion, or 1-6 w-14w-150-1	"	14/7	1976	IVA
(c) Particulate Sampler				
Process Vent Continuous HP				
Sampler, or 1-GW-RM- 130-1	w	N/A	N/A	N/A
		,	- 4	
(d) Process Vent Flow Rate Monitor				
1-GW-FT-100	D	N/A	R	N/A
(e) Sampler Flow Rate Measuring				
Device HP Sampler Rotometer, or	D	N/A	SA	N/A
KAMAN Flow Rate Measuring	D	N/A	R	N/A
Device (Parameter #19)				
2. CONDENSER AIR EJECTOR SYSTEM				
(a) Gross Activity Monitor				
Unit 1: 1-SV-RM-111	D	M	R	Q .
Unit 2: 2-SV-RM-211		<u>-</u>		
(b) Air Ejector Flow Rate Measuring				
Device Unit 1: 1-VP-FI-1A				
1-VP-FI-1B		;		
Unit 2: 2-VP-FI-1A	D .	N/A	R	N/A
2-VP-FI-1B				·
3. VENTILATION VENT SYSTEM		_		
(a) Noble Gas Activity Monitor				
SRF: RRM-101				
SPS: 1-VG-RM -110	_	[_	_
1-VG-RM -131-1	D	M	R	Q
1-VG-RM-104				

(Page 2 of 2)

Surry Radioactive Gaseous Effluent Monitoring Instrumentation Surveillance Requirements

CHANNEL DESCRIPTION	CHANNEL CHECK	SOURCE CHECK	CHANNEL CALIBRATION	CHANNEL FUNCTIONAL TEST
(b) Iodine Sampler			<i>:</i> .	
SRF: RRM-101				, , , , , , , , , , , , , , , , , , ,
SPS: Vent #1, 1-VG-RM-104	1			
Vent #2, Continuous HP	W	N/A	N/A	· N/A
Sampler or 1-VG-RM-131-				
(c) Particulate Sampler	1			
SRF: RRM-101				
SPS: Vent #1, 1-VG-RM-104				
Vent #2, Continuous HP	w	N/A	N/A	N/A
Sampler or 1-VG-RM-131-1	L]			
(d) Ventilation Vent Flow Rate Monitor				
SRF: 01-RHV-FT-156	1			·
SPS: Vent #1, 1-VS-FT-119		NT/A	.	77/4
Vent #2, 1-VS-FT-116	D	N/A	R	N/A
(e) Sampler Flow Rate Measuring				
Device	1			
SRF: RRM-101	D	N/A	R	N/A
SPS: Vent #1, 1-VG-RM-104	D	N/A	R	N/A
Vent#2, KAMAN Flow Rate	D	N/A	R	N/A
Measuring Device				
(Parameter #19), or HP	D	N/A		N/A
Sampler Rotometer			S/A	
* Drien to each Wests Cos Deser-Touls rela	<u> </u>			1

^{*} Prior to each Waste Gas Decay Tank release

(Page 1 of 3)

North Anna Radioactive Gaseous Effluent Monitoring Instrumentation Surveillance Requirements

		CHANNEL DESCRIPTION	CHANNEL CHECK	SOURCE CHECK	CHANNEL CALIBRATION	CHANNEL FUNCTIONAL TEST
1.	PRO	CESS VENT SYSTEM		· · · · · · · · · · · · · · · · · · ·		
	(a)	Noble Gas Activity Monitor				·
		1-RM-GW-102 1-RM-GW-178-1	D D	M (NOTE 5) M (NOTE 5)	R R	Q (NOTE 1) Q (NOTE 1)
	(b)	Iodine Sampler		4		
		1-RM-GW-178-1 Process Vent Continuous HP Sampler	W D (NOTE 3)	N/A N/A	N/A N/A	N/A N/A
	(c)	Particulate Sampler	D (NOTE 3)	IVA	·	IVA
	(6)	1-RM-GW-178-1 Process Vent Continuous HP	w	N/A	N/A	N/A
		Sampler	D (NOTE 3)	N/A	N/A	N/A
	(d)	Total Flow Monitor	,			
		1-GW-FT-108	D	N/A	R	Q
	(e)	Sampler Flow Rate Measuring Device	·			
		KAMANS Flow Rate Measuring Device (Parameter 19)	D (NOTE 3)	N/A	·R	N/A
		HP Sampler Rotameter	D (NOTE 3)	N/A	SA	N/A
2.		IDENSER AIR EJECTOR TEM				,
	(a)	Noble Gas Activity Monitor				
		Unit 1 1-SV-RM-121 Unit 2 2-SV-RM-221	D	M	R	Q (NOTE 1)
	(b)	Flow Rate Measuring Device				
		Unit 1 1-SV-FI-100A 1-SV-FI-101A 1-SV-FI-100B 1-SV-FI-101B	D	N/A	R	N/A
		Unit 2 2-SV-FI-200A 2-SV-FI-201A 2-SV-FI-200B 2-SV-FI-201B	D	N/A	R	N/A

(Page 2 of 3)

North Anna Radioactive Gaseous Effluent Monitoring Instrumentation Surveillance Requirements

		CHANNEL DESCRIPTION	CHANNEL CHECK	SOURCE CHECK	CHANNEL CALIBRATION	CHANNEL FUNCTIONAL TEST
3.	VEN	ITILATION VENT A				
	(a)	Noble Gas Activity Monitor				
		1-RM-VG-104	D	M	R	Q (NOTE 2)
		1-RM-VG-179-1	D	M (NOTE 5)	R	Q (NOTE 2)
	(b)	Iodine Sampler				
		1-RM-VG-179-1 Vent Vent A Continuous HP Sampler	W D (NOTE 3)	N/A N/A	N/A N/A	N/A N/A
	(c)	Particulate Sampler	1	1,711	1411	14/11
		1-RM-VG-179-1 Vent Vent A Continuous HP	· w	N/A	N/A	, N/A
		Sampler	D (NOTE 3)	N/A	N/A	N/A
	(d)	Total Flow Monitor	-	, 1		
		1-HV-FT-1212A	D ,	N/A	R	Q
	(e)	Sampler Flow Rate Measuring Device				
		KAMANS Flow Rate Measuring Device (Parameter 19)	D (NOTE 3)	N/A	R	N/A
		HP Sampler Rotameter	D (NOTE 3)	N/A	SA	N/A
4.		ITILATION VENT B				
	(a)	Noble Gas Activity Monitor		,		
		1-RM-VG-113	D	M .	R	Q (NOTE 4)
		1-RM-VG-180-1	D .	M (NOTE 5)	R	Q (NOTE 2)
	(b)	Iodine Sampler				
		1-RM-VG-180-1 Vent Vent B Continuous HP	W _.	N/A	N/A	N/A
		Sampler	D (NOTE 3)	N/A	N/A	N/A
	(c)	Particulate Sampler	e.		٠,	
		1-RM-VG-180-1	W	N/A	N/A	N/A
		Vent Vent B Continuous HP				- 5 .
	/ 45	Sampler	D (NOTE 3)	N/A	N/A	N/A
	(d)	Total Flow Monitor			_	_
	(a)	1-HV-FT-1212B	D	N/A	R	. Q
	(e)	Sampler Flow Rate Measuring Device			_	
		KAMANS Flow Rate Measuring Device (Parameter 19)	D (NOTE 3)	N/A	R	N/A
		HP Sampler Rotameter	D (NOTE 3)	N/A	SA	N/A

(Page 3 of 3)

North Anna Radioactive Gaseous Effluent Monitoring InstrumentationSurveillance Requirements

- NOTE 1: The Channel Functional Test shall demonstrate:
 - a. Automatic actuation of the valves in this pathway and Control Room alarm annunciation occur if the instrument indicates measured levels above the alarm/trip setpoint.
 - b. Alarm annunciation occurs if the instrument controls not set in "operate" mode.
- NOTE 2: The Channel Functional Test shall demonstrate:
 - a. Control Room alarm annunciation occurs if the instrument indicates measured levels are above the alarm/trip setpoint.
 - b. Alarm annunciation occurs if the instrument controls not set in "operate" mode.
- NOTE 3: Channel Checks shall consist of verifying indication of flow during periods of release.

 Channel Checks shall be made at least once per 24 hours on days on which continuous, periodic, or batch releases are made.
- NOTE 4: The Channel Functional Test shall demonstrate that:
 - a. Control Room alarm annunciation occurs if the instrument indicates measured levels are above alarm/trip setpoint.
 - b. The Instrument mode selection control automatically resets to "operate" mode when released.
- NOTE 5: Monitors 1-RM-GW-178-1, 1-RM-VG-179-1, and 1-RM-VG-180-1 are electronically source checked using an LED.

Intentionally Blank

(Page 1 of 2)

Critical Organ and Inhalation Dose Factors for Surry

(Critical Pathway Dose Factors) Ventilation Vent D/Q = $9.0E-10 \text{ m}^{-2}$ at 5150 meters S Direction Process Vent D/Q = $4.3E-10 \text{ m}^{-2}$ at 5150 meters S Direction

Radionuclide	RM _{ivv} mrem/yr	RM _{ipv} mrem/yr
	<u>mientyr</u> Curie/sec	Curie/sec
H-3	7.20E+02	3.12E+02
Mn-54	ND	ND
Fe-59	ND	ND
Cr-51	6.45E+01	3.08E+01
Co-58	ND	ND
Co-60	ND	ND
Zn-65	ND	ND
Rb-86	ND	ND
Sr-89	ND	ND
Sr-90	ND	ND
Y-91	ND	ND
Zr-95	ND	ND
Nb-95	ND	ND
Ru-103	ND	ND
Ru-106	ND	ND
Ag-110m	ND	ND
Te-127m	8.06E+04	3.85E+04
Te-129m	1.25E+05	5.98E+04
I-131	6.21E+08	2.97E+08
I-133	5.79E+06	2.77E+06
Cs-134	ND	ND
Cs-136	ND	ND
Cs-137	ND	ND
Ba-140	ND	ND
Ce-141	ND	ND
Ce-144	ND	ND

ND - No data for dose factor according to Regulatory Guide 1.109, Revision 1

(Page 2 of 2)

Critical Organ and Inhalation Dose Factors for Surry

(Inhalation Pathway Dose Factors)

Ventilation Vent $\chi/Q = 3.0\text{E}-07 \text{ sec/m}^3 \text{ at } 5150 \text{ meters S Direction}$ Process Vent $\chi/Q = 1.3\text{E}-07 \text{ sec/m}^3 \text{ at } 5150 \text{ meters S Direction}$

Radionuclide	RM _{ivv}	RM_{ipv}
	mrem/yr	mrem/yr
	Curie/sec	Curie/sec
H-3	1.94E+02	8.41E+01
Cr-51	1.73E+01	7.48E+00
Mn-54	ND	ND
Fe-59	ND	ND
Co-58	ND	ND
Co-60	ND	ND
Zn-65	ND	ND
Rb-86	ND	ND
Sr-89	ND	ND
Sr-90	ND	ND
Y-91	ND	ND
Zr-95	ND	ND
Nb-95	ND	ND
Ru-103	ND	. ND
Ru-106	ND	ND
Ag-110m	ND	ND
Te-127m	1.46E+03	6.33E+02
Te-129m	1.64E+03	7.12E+02
I-131	4.45E+06	1.93E+06
I-133	1.07E+06	4.63E+05
Cs-134	ND	ND
Cs-136	ND	ND
Cs-137	ND	ND
Ba-140	ND	ND
Ce-141	ND	ND ·
Ce-144	ND	ND

ND - No data for dose factor according to Regulatory Guide 1.109, Revision 1

(Page 1 of 1)

Critical Organ Dose Factors for North Anna

(Critical Pathway Dose Factors) Ventilation Vent D/Q = $2.4E-09 \text{ m}^{-2}$ at 3250 meters N Direction Process Vent D/Q = $1.1E-09 \text{ m}^{-2}$ at 3250 meters N Direction

Radionuclide	RM _{ivv} mrem/yr Curie/sec	RM _{ipv} mrem/yr Curie/sec
H-3	1.73E+03	9.36E+02
Mn-54	ND	ND
Fe-59	ND	ND
Cr-51	1.50E+02	6.89E+01
Co-58	ND	ND
Co-60	ND	ND
Zn-65	ND	ND
Rb-86	. ND	ND
Sr-89	ND	ND
Sr-90	ND	ND
Y-91	ND	ND
Zr-95	ND	ND
Nb-95	ND	ND
Ru-103	ND	ND
Ru-106	ND	ND
Ag-110m	ND	ND
Te-127m	1.97E+05	9.04E+04
Te-129m	2.95E+05	1.35E+05
I-131	1.45E+09	6.72E+08
I-133	1.33E+07	6.12E+06
Cs-134	ND	ND
Cs-136	ND	ND
Cs-137	ND	ND
Ba-140	ND	ND
Ce-141	ND	ND
Ce-144	ND	ND

ND - No data for dose factor according to Regulatory Guide 1.109, Revision 1

VIRGINIA POWER VPAP-2103 REVISION 8 PAGE 106 OF 148

Intentionally Blank

(Page 1 of 3)

Surry Radiological Environmental Monitoring Program

Exposure Pathway and/or Sample	Number of Sample and Sample Location	Collection Frequency	Type and Frequency of Analysis
1. DIRECT	•		
RADIATION			·
	About 40 Routine Monitoring Stations to be placed as follows: 1) Inner Ring in general area of site boundary with station in each	-	GAMMA DOSE
,	sector 2) Outer Ring 6 to 8 km from the site with a station in each sector 3) The balance of the 8	Quarterly	Quarterly
	dosimeters should be placed in special interest areas such as population centers, nearby residents, schools, and in 2 or 3 areas to serve as controls	*	
2. AIRBORNE			
Radioiodines and Particulates	 Samples from 7 locations: a) 1 sample from close to the site boundary location of the highest calculated annual average ground level D/Q b) 5 sample locations 6-8 km distance located in a concentric ring around the Station c) 1 sample from a control location 15-30 km distant, providing valid background data 	Continuous Sampler operation with sample collection weekly	Radioiodine Canister I ¹³¹ Analysis Weekly Particulate Sampler Gross beta radioactivity analysis following filter change; Gamma isotopic analysis of composite (by location) quarterly

(Page 2 of 3)

Surry Radiological Environmental Monitoring Program

Exposure Pathway and/or Sample	Number of Sample and Sample Location	Collection Frequency	Type and Frequency of Analysis
3. WATERBORNE		,	
a) Surface a) 1 sample upstream b) 1 sample downstream		Monthly Sample	Gamma isotopic analysis monthly; Composite for tritium analysis quarterly
b) Ground	Sample from 1 or 2 sources	Quarterly	Gamma isotopic and tritium analysis quarterly
c) Sediment from shoreline	1 sample from downstream area with existing or potential recreational value	Semi-Annually	Gamma isotopic analysis semi-annually
d) Silt	5 samples from vicinity of the Station	Semi-Annually	Gamma isotopic analysis semi-annually
4. INGESTION			
a) Milk (NOTE 1)	Milk a) 3 samples from milking		Gamma isotopic and I ¹³¹ analysis monthly
	 a) 2 samples of oysters in the vicinity of the Station 	Semi-Annually	Gamma isotopic on edibles
b) Fish and	b) 4 samples of clams in the vicinity of the Station	Semi-Annually	Gamma isotopic on edibles
Invertebrates	c) 1 sampling of crabs from the vicinity of the Station	Annually	Gamma isotopic on edibles
	d) 2 samples of fish from the vicinity of the Station (catfish, white perch, eel)	Semi-Annually	Gamma isotopic on edibles

(Page 3 of 3)

Surry Radiological Environmental Monitoring Program

Exposure Pathway and/or Sample	Number of Sample and Sample Location	Collection Frequency	Type and Frequency of Analysis
4. INGESTION (Continued)			
	a) 1 sample cornb) 1 sample soybeansc) 1 sample peanuts	Annually	Gamma isotopic on edible portion
c) Food Products	d) 1 sample of a broadleaf vegetation of two different available offsite locations with highest annual average ground level D/Q, if one or more milk samples are unavailable e) 1 sample of a broadleaf vegetation grown 15-30 km in the available, least prevalent wind direction, if one or more milk samples are unavailable	Monthly, if available, or at harvest	Gamma isotopic and I ¹³¹ analysis

NOTE 1: If milk sampling cannot be performed, use item 4.c (d).

VPAP-2103 REVISION 8 PAGE 110 OF 148

Intentionally Blank

(Page 1 of 5)

Exposure Pathway	Number of Sample and	Collection	Type and Frequency of
and/or Sample	Sample Location (NOTE 2)	Frequency	Analysis
_	·		
	stations, one in each emergency meteorological sector within 8 km range from the site 3) The balance of the stations to be placed in special interest areas such as population centers, nearby residences, schools, and in 1 or 2 areas to serve as control stations	Quarterly	Quarterly

(Page 2 of 5)

Exposure Pathway and/or Sample	Number of Sample and Sample Location (NOTE 2)	Collection Frequency	Type and Frequency of Analysis
2. AIRBORNE	·		
Radioiodines and Particulates	Samples from 5 locations: a) 3 samples from close to the 3 site boundary locations (in different sectors) of the highest calculated historical annual average ground level D/Q b) 1 sample from the vicinity of a community having the highest calculated annual average ground level D/Q c) 1 sample from a control location 15-40 km distant and in the least prevalent wind direction	Continuous sampler, operation with sample collection weekly	Radioiodine Canister I ¹³¹ Analysis, weekly Particulate Sampler Gross beta radioactivity analysis following filter change; (NOTE 4) Gamma isotopic analysis of composite (by location) quarterly (NOTE 5)
3. WATERBORNE			
a) Surface	Samples from 3 locations: a) 1 sample upstream b) 1 sample downstream c) 1 sample from cooling lagoon	Grab Monthly	Gamma isotopic analysis monthly; (NOTE 5) Composite for tritium analysis quarterly
b) Ground	Sample from 1 or 2 sources only if likely to be affected	Grab Quarterly	Gamma isotopic and tritium analysis quarterly (NOTE 5)
c) Sediment	1 sample from downstream area with existing or potential recreational value	Semi-Annually	Gamma isotopic analysis semi-annually (NOTE 5)

(Page 3 of 5)

Exposure Pathway and/or Sample	Number of Sample and Sample Location (NOTE 2)	Collection Frequency	Type and Frequency of Analysis
a) Milk (NOTE 7)	a) Samples from milking animals in 3 locations within 5 km that have the highest potential. If there are none, then 1 sample from milking animals in each of 3 areas between 5 to 8 km where doses are calculated to be greater than 1 mrem per yr (NOTE 6)	Monthly at all times	Gamma isotopic (NOTE 5) and I ¹³¹ analysis monthly
b) Fish and Invertebrates	b) 1 sample from milking animals at a control location (15-30 km in the least prevalent wind direction) a) 1 sample of commercially and recreationally important species (bass, sunfish, catfish) in vicinity of plant discharge area b) 1 sample of same species in	Semiannually	Gamma isotopic on edible portions
c) Food Products	areas not influenced by plant discharge a) Samples of an edible broad leaf vegetation grown nearest each of two different offsite locations of highest predicted historical annual average ground level D/Q if milk sampling is not performed b) 1 sample of broad leaf vegetation grown 15-30 km in the least prevalent wind direction if milk sampling is not performed	Monthly if available, or at harvest	Gamma isotopic (NOTE 5) and I ¹³¹ analysis

(Page 4 of 5)

- NOTE 1: The number, media, frequency, and location of samples may vary from site to site. This table presents an acceptable minimum program for a site at which each entry is applicable. Local site characteristics must be examined to determine if pathways not covered by this table may significantly contribute to an individual's dose and be included in the sampling program.
- NOTE 2: For each and every sample location in Attachment 19, specific parameters of distance and direction sector from the centerline of the reactor, and additional description where pertinent, shall be provided in Attachment 21. Refer to Radiological Assessment Branch Technical Positions and to NUREG-0133, Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plant, Deviations are permitted from the required sampling schedule if specimens are unattainable due to hazardous conditions, seasonal unavailability, malfunction of automatic sampling equipment and other legitimate reasons. If specimens are unattainable due to sampling equipment malfunction, every effort shall be made to complete corrective action before the end of the next sampling period. All deviations from the sampling schedule shall be documented in the Annual Radiological Environmental Operating Report pursuant to 6.7.1. It is recognized that, at times, it may not be possible or practicable to continue to obtain samples of the media of choice at the most desired location or time. In these instances, suitable alternative media and locations may be chosen for the particular pathway in question and appropriate substitutions made within 30 days in the radiological environmental monitoring program. In lieu of a Licensee Event Report and pursuant to 6.7.2, identify the cause of the unavailability of samples for that pathway and identify the new locations for obtaining replacement samples in the next Annual Radioactive Effluent Release Report, and include revised figures and tables from the ODCM reflecting the new locations in the report.

(Page 5 of 5)

- NOTE 3: One or more instruments, such as a pressurized ion chamber, for measuring and recording dose rate continuously may be used in place of, or in addition to, integrating dosimeters. For the purposes of this table, a thermoluminescent dosimeter (TLD) is considered to be one phosphor; two or more phosphors in a packet are considered as two or more dosimeters. Film badges shall not be used as dosimeters for measuring direct radiation. The 36 stations are not an absolute number. The number of direct radiation monitoring stations may be reduced according to geographical limitations, e.g., at an ocean site, some sectors will be over water so that the number of dosimeters may be reduced accordingly. The frequency of analysis or readout for TLD systems will depend upon the characteristics of the specific system used and should be selected to obtain optimum dose information with minimal fading.
- NOTE 4: Airborne particulate sample filters shall be analyzed for gross beta radioactivity 24 hours or more after sampling to allow for radon and thoron daughter decay. If gross beta activity in air particulate samples is greater than ten times the yearly mean of control samples, gamma isotopic analysis shall be performed on the individual samples.
- NOTE 5: Gamma isotopic analysis is the identification and quantification of gamma-emitting radionuclides that may be attributable to effluents from the facility.
- NOTE 6: The dose shall be calculated for the maximum organ and age group, using the methodology and parameters in the ODCM.
- NOTE 7: If milk sampling cannot be performed, use item 4.c (Page 3 of 5, Attachment 19)

VPAP-2103 REVISION 8 PAGE 116 OF 148

Intentionally Blank

(Page 1 of 4)

SAMPLE MEDIA	LOCATION		DISTANCE (MILES)	DIRECTION	REMARKS
Air Charcoal and Particulate	Surry Station (S	S)	0.37	NNE	Site Boundary Location at Sector with Highest D/Q
,	Hog Island Reserve (HI	R)	2.0	NNE	
	Bacons Castle (B	C)	4.5	SSW	
	Alliance (AL	L)	5.1	WSW	
	Colonial Parkway (C	P)	3.7	NNW	
·	Dow Chemical (DO	W)	5.1	ENE	
-	Fort Eustis (F.	E)	4.8	ESE	,
	Newport News (NI	<u>(N</u>	16.5	ESE	Control Location
Environmental	Control (00	0)	.,		Onsite **
TLDs	West North West (02	2)	0.17	WNW	Site Boundary
	Surry Station Discharge (0	3)	0.6	NW	Site Boundary
	North North West (04	4)	0.4	· NNW	Site Boundary
-	North (0:	5)	0.29	N	Site Boundary
·	North North East (00	6)	0.28	NNE	Site Boundary
	North East (0'	7)	0.31	NE	Site Boundary
	East North East (03	8)	0.43	ENE	Site Boundary
	East (Exclusion) (09	9)	0.31	E	Onsite
	West (10	0)	0.40	W	Site Boundary
	West South West (1)	1)	0.45	WSW	Site Boundary
	South West (12	2)	0.30	SW	Site Boundary
·	South South West (13	3)	0.43	SSW	Site Boundary
	South (14	4)	0.48	S	Site Boundary
	South South East (1:	5)	0.74	SSE	Site Boundary
	South East (10	6)	1.00	SE	Site Boundary
	East (1'	7)	0.57	Е	Site Boundary
	Station Intake (18	8)	1.23	ESE	Site Boundary
	Hog Island Reserve (19	9)	1.94	NNE	Near Resident

(Page 2 of 4)

SAMPLE MEDIA	LOCATION		DISTANCE (MILES)	DIRECTION	REMARKS
Environmental	Bacons Castle	(20)	4.45	SSW	Approx. 5 miles
TLDs	Route 633	(21)	3.5	SW	Approx. 5 miles
	Alliance	(22)	5.1	WSW	Approx. 5 miles
	Surry	(23)	8.0	WSW	Population Center
	Route 636 and 637	(24)	4.0	W	Approx. 5 miles
	Scotland Wharf	(25)	5.0	WNW	Approx. 5 miles
	Jamestown	(26)	6.3	NW	Approx. 5 miles
1	Colonial Parkway	(27)	3.7	NNW	Approx. 5 miles
	Route 617 and 618	(28)	5.2	NNW	Approx. 5 miles
	Kingsmill	(29)	4.8	N	Approx. 5 miles
	Williamsburg	(30)	7.8	N	Population Center
į	Kingsmill North	(31)	5.6	NNE	Approx. 5 miles
	Budweiser	(32)	5.7	NNE	Population Center
1	Water Plant	(33)	4.8	NE	Approx. 5 miles
ļ	Dow	(34)	5.1	ENE	Approx. 5 miles
}	Lee Hall	(35)	7.1	ENE	Population Center
	Goose Island	(36)	5.0	Е	Approx. 5 miles
,	Fort Eustis	(37)	4.8	ESE	Approx. 5 miles
	Newport News	(38)	16.5	ESE	Population Center
	James River Bridge	(39)	14.8	SSE	Control
	Benn's Church	(40)	14.5	S	Control
	Smithfield	(41)	11.5	S	Control
	Rushmere	(42)	5.2	SSE	Approx. 5 miles
	Route 628	(43)	5.0	S	Approx. 5 miles
Milk	Epp's		4.8	SSW	
	Colonial Parkway		3.7	NNW	
	Judkin's		6.2	SSW	
	William's		22.5	S	Control Location

(Page 3 of 4)

SAMPLE MEDIA	LOCATION	DISTANCE (MILES)	DIRECTION	REMARKS
Well Water	Surry Station			Onsite***
	Hog Island Reserve	2.0	NNE	
Crops (Corn, Peanuts,	Slade's Farm	2.4	S	
Soybeans)	Brock's Farm	3.8	S	
Crops	Spratley's Garden	3.2	S	
(Cabbage, Kale)	Carter's Grove Garden	4.8	NE	
	Lucas's Garden			Control Location (Chester, Va.)
River Water	Surry Discharge	0.17	NW	
(Monthly)	Scotland Wharf	5.0	WNW	Control Location
Sediment	Chickahominy River	11.2	WNW	Control Location
(Silt)	Surry Station Intake	1.9	ESE	
	Surry Station Discharge	1.0	NNW	
	Hog Island Point	2.4	NE	
	Point of Shoals	6.4	SSE	

(Page 4 of 4)

SAMPLE MEDIA	LOCATION	DISTANCE (MILES)	DIRECTION	REMARKS
Clams	Chickahominy River	11.2	WNW	Control Location
	Surry Station Discharge	1.3	NNW	
	Hog Island Point	2.4	NE	
	Lawne's Creek	2.4	SE	
Oysters	Kingsmill	2.9	NE	
	Mulberry Point	4.9	EESE	
Crabs	Surry Station Discharge	0.6	NW	
Fish	Surry Station Discharge	0.6	NW	
Shoreline Sediment	Hog Island Reserve	0.8	N	

^{**} Onsite Location - in Lead Shield

^{***} Onsite sample of Well Water—taken from tap-water at Surry Environmental Building

(Page 1 of 4)

North Anna Environmental Sampling Locations

Sample Media	Location	Station No.	Distance (Miles)	Direction	Collection Frequency	REMARKS
Environment al	NAPS Sewage Treatment Plant	01	0.20	NE	Quarterly & Annually	On-Site
TLDs	Frederick's Hall	02	5.30	SSW	Quarterly & Annually	_
	Mineral, VA	03	7.10	WSW	Quarterly & Annually	
	Wares Crossroads	04	5.10	WNW	Quarterly & Annually	
	Route 752	05	4.20	NNE	Quarterly & Annually	
	Sturgeon's Creek Marina	05A	3.20	N	Quarterly & Annually	4.
	Levy, VA	06	4.70	ESE	Quarterly & Annually	
	Bumpass, VA	07	7.30	SSE	Quarterly & Annually	
	End of Route 685	21	1.00	WNW	Quarterly & Annually	Site Boundary
	Route 700	22	1.00	WSW	Quarterly & Annually	Site Boundary
	"Aspen Hills"	23	0.93	SSE	Quarterly & Annually	Site Boundary
	Orange, VA	24	22.00	NW	Quarterly & Annually	Control
	Bearing Cooling Tower	N-1/33	0.06	N	Quarterly	On-Site
	Sturgeon's Creek Marina		3.20	N	Quarterly	
	Parking Lot "C"	NNE-3/35	0.24	NNE	Quarterly	On-Site
]	Good Hope Church	NNE-4/36	4.96	NNE	Quarterly	·
	Parking Lot "B"	NE-5/37	0.20	NE	Quarterly	On-Site
	Bogg's Drive	NE-6/38	1.46	NE	Quarterly	
	Weather Tower Fence	ENE-7/39	0.36	ENE	Quarterly	On-Site
,	Route 689 (ENE-8/40	2.43	ENE	Quarterly	
	Near Training Facility	E-9/41	0.30	Е	Quarterly	On-Site
4	"Morning Glory Hill"	E-10/42	2.85	E	Quarterly	
	Island Dike	ESE-11/43	0.12	ESE	Quarterly	On-Site
	Route 622	ESE-12/44	4.70	ESE	Quarterly	

(Page 2 of 4)

North Anna Environmental Sampling Locations

Sample Media	Location	Station No.	Distance (Miles)	Direction	Collection Frequency	REMARKS
Environment al	Biology Lab	SE-13/45	0.75	SE	Quarterly	On-Site
TLDs	Route 701 (Dam Entrance)	SE-14/46	5.88	SE	Quarterly	
`	"Aspen Hills"	SSE-15/47	0.93	SSE	Quarterly	Site Boundary
	Elk Creek	SSE-16/48	2.33	SSE	Quarterly	
·	NAPS Access Road	S-17/49	0.47	S	Quarterly	On-Site
	Elk Creek Church	S-18/50	1.55	S	Quarterly	
	NAPS Access Road	SSW-19/51	0.42	SSW	Quarterly	On-Site
	Route 618	SSW-20/52	5.30	SSW	Quarterly	
•	500KV Tower	SW-21/53	0.60	SW	Quarterly	On-Site
	Route 700	SW-22/54	4.36	SW	Quarterly	
·	NAPS Radio Tower	WSW-23/55	0.38	WSW	Quarterly	On-Site
	Route 700	WSW-24/56	1.00	WSW	Quarterly	Site Boundary
	South Gate of Switchyard	W-25/57	0.32	W	Quarterly	On-Site
	Route 685	W-26/58	1.55	W	Quarterly	
	End of Route 685	WNW-27/59	1.00	WNW	Quarterly	Site Boundary
	Route 685	WNW-28/60	1.40	WNW	Quarterly	
	Laydown Area North Gate	NW-29/61	0.45	NW	Quarterly	On-Site
	Lake Anna Campground	NW-30/62	2.54	NW	Quarterly	
	#1/#2 Intake	NNW-31/63	0.07	NNW	Quarterly	On-Site
•	Route 208	NNW-32/64	3.43	NNW	Quarterly	
	Bumpass Post Office	C-1/2	7.30	SSE	Quarterly	Control
	Orange, VA	C-3/4	22.00	NW	Quarterly	Control
	Mineral, VA	C-5/6	7.10	WSW	Quarterly	Control
	Louisa, VA	C-7/8	11.54	WSW	Quarterly	Control

(Page 3 of 4)

North Anna Environmental Sampling Locations

Sample Media	Location	Station No.	Distance (Miles)	Direction	Collection Frequency	REMARKS
Airborne	NAPS Sewage Treatment Plant	01	0.20	NE	Weekly	On-Site
Particulate	Frederick's Hall	02	5.30	SSW	Weekly	
and	Mineral, VA	03	7.10	WSW	Weekly	
Radioiodine	Wares Crossroads	04	5.10	WNW	Weekly	
	Route 752	05	4.20	NNE	Weekly	
	Sturgeon's Creek Marina	05A	3.20	N	Weekly	
,	Levy, VA	06	4.70	ESE	Weekly	
	Bumpass, VA	07	7.30	SSE	Weekly	
:	End of Route 685	21	1.00	WNW	Weekly	Site Boundary
	Route 700	22	1.00	WSW	Weekly	Site Boundary
	"Aspen Hills"	23	0.93	SSE	Weekly	Site Boundary
	Orange, VA	24	22.00	NW	Weekly	Control
Surface Water [Commitment 3.2.2]	Waste Heat Treatment Facility (Second Cooling Lagoon)	08	1.10	SSE	Monthly	
	North Anna River (upstream) Rt 669 Bridge (Brook's Bridge)	09A	12.9	WNW	Monthly	Control
	North Anna River (downstream)	11	5.80	SE	Monthly	
Ground Water (well water)	Biology Lab	01A	0.75	SE	Quarterly	
Aquatic Sediment	Waste Heat Treatment Facility (Second Cooling Lagoon)	08	1.10	SSE	Semi-Annually	
	North Anna River (upstream) Rt 669 Bridge (Brook's Bridge)	09A	12.9	WNW	Semi-Annually	Control
	North Anna River (downstream)	11	5.80	SE	Semi-Annually	
Shoreline Soil	Lake Anna	08	1.10	SSE	Semi-Annually	
Soil	NAPS Sewage Treatment Plant	01	0.20	NE	Once per 3 yrs	On-Site

(Page 4 of 4)

North Anna Environmental Sampling Locations

Sample Media	Location	Station No.	Distance (Miles)	Direction	Collection Frequency	REMARKS
Soil	Fredericks Hall	02	5.30	SSW	Once per 3 yrs	
(continued)	Mineral, VA	03	7.10	WSW	Once per 3 yrs	
	Wares Crossroads	04	5.10	WNW	Once per 3 yrs	
	Route 752	05	4.20	NNE	Once per 3 yrs	
	Sturgeon's Creek Marina	05A	3.20	N	Once per 3 yrs	
	Levy, VA	06	4.70	ESE	Once per 3 yrs	
٠	Bumpass, VA	07	7.30	SSE	Once per 3 yrs	
	End of Route 685	21	1.00	WNW	Once per 3 yrs	Site Boundary
	Route 700	22	1.00	WSW	Once per 3 yrs	Site Boundary
	"Aspen Hills"	23	0.93	SSE	Once per 3 yrs	Site Boundary
	Orange, VA	24 .	22.00	NW	Once per 3 yrs	Control
Milk	Holladay Dairy (R.C. Goodwin)	12	8.30	NW	Monthly	
	Terrell's Dairy (Frederick's Hall)	13	5.60	SSE	Monthly	·
Fish	Waste Heat Treatment Facility (Second Cooling Lagoon)	08	1.10	SSE	Semi- Annually	
	Lake Orange	25	16.50	NW	Semi- Annually	Control
Food Products	Route 713	14	varies	NE		
(Edible broadleaf	Route 614	15	varies	SE	Monthly if available,	
vegetation ^a)	Route 629/522	16	varies	NW	or at harvest	Control
	Route 685	21	varies	WNW	or at harvest	
·	"Aspen Hills" Area	23	varies	SSE]	

a. If edible broadleaf vegetation is unavailable, non-edible vegetation of similar leaf characteristics may be substituted.

(Page 1 of 2)

Detection Capabilities for Surry Environmental Sample Analysis

LOWER LIMIT OF DETECTION (LLD)

Analysis (NOTE 2)	Water (pCi/l)	Airborne Particulate or Gases (pCi/m ³)	Fish (pCi/kg) (wet)	Milk (pCi/l)	Food Products (pCi/kg) (wet)	Sediment (pCi/kg) (wet)
Gross beta	4	0.01				
H-3	2,000					
Mn-54	15		130			
Fe-59	30		260			
Co-58, 60	15		130			
Zn-65	30		260			- 12-14
Zr-95	30					
Nb-95	15					
I-131	(NOTE 3) 1	0.07		1	60	
Cs-134	15	0.05	130	15	60	150
Cs-137	18	0.06	150	18	80	180
Ba-140	60		-	60		
La-140	15			15		

NOTE 1: Required detection capabilities for thermoluminescent dosimeters used for environmental measurements are given in Regulatory Guide 4.13.

NOTE 2: This list does not mean that only these nuclides are to be detected and reported. Other peaks that are measurable and identifiable, together with the above nuclides, shall also be identified and reported.

NOTE 3: LLD for the Ground (drinking) Water Samples. The LLD for the surface (non-drinking) water samples is 10 pCi/l.

(Page 2 of 2)

Detection Capabilities for Surry Environmental Sample Analysis

LOWER LIMIT OF DETECTION (LLD)

NOTE 1: For a particular measurement system (which may include radiochemical separation):

$$LLD = \frac{4.66 \text{ s}_{b}}{E \cdot V \cdot 2.22E + 06 \cdot Y \cdot e^{-(\lambda \Delta t)}}$$
(24-1)

Where:

LLD = the "a priori" (before the fact) Lower Limit of Detection as defined above (as microcuries per unit mass or volume) (See 4.8)

s_b = the standard deviation of the background counting rate or of the counting rate of a blank sample as appropriate (as counts per minute, cpm)

E = the counting efficiency (as counts per disintegration)

V = the sample size (in units of mass or volume)

2.22E+06 = the number of disintegrations per minute (dpm) per microcurie

Y = the fractional radiochemical yield (when applicable)

 λ = the radioactive decay constant for the particular radionuclide

Δt = the elapsed time between sample collection (or end of the sample collection period) and time of counting (for environmental samples, not plant effluent samples)

Typical values of E, V, Y and Δt should be used in the calculation.

The LLD is an "a priori" (before the fact) limit representing the capability of a measurement system and not a "posteriori" (after the fact) limit for a particular measurement.

(Page 1 of 2)

Detection Capabilities for North Anna Environmental Sample Analysis

LOWER LIMIT OF DETECTION (LLD)

Analysis (NOTE 2)	Water (pCi/l)	Airborne Particulate or Gases (pCi/m ³)	Fish (pCi/kg) (wet)	Milk (pCi/l)	Food Products (pCi/kg) (wet)	Sediment (pCi/kg) (wet)
Gross beta	4	0.01				
H-3	2,000				1	
Mn-54	15		130			
Fe-59	30	,	260			
Co-58, 60	15		130			
Zn-65	30	.e	260			- 1
Zr-95	30			,		
Nb-95	15	:				
I-131	(NOTE 3) 1	0.07	-	1	60	
Cs-134	15	0.05	130	15	60	150
Cs-137	18	0.06	150	18	. 80	180
Ba-140	60 -			60		
La-140	15			15		·

- NOTE 1: Required detection capabilities for thermoluminescent dosimeters used for environmental measurements are given in Regulatory Guide 4.13.
- NOTE 2: This list does not mean that only these nuclides are to be detected and reported. Other peaks that are measurable and identifiable, together with the above nuclides, shall also be identified and reported.
- NOTE 3: LLD for the ground (drinking) water samples. The LLD for the surface (non-drinking) water samples is 10 pCi/l.

(Page 2 of 2)

Detection Capabilities for North Anna Environmental Sample Analysis

LOWER LIMIT OF DETECTION (LLD) (NOTE 3)

NOTE 3: For a particular measurement system (which may include radiochemical separation):

$$LLD = \frac{4.66 \text{ s}_{b}}{E \cdot V \cdot 2.22E + 06 \cdot Y \cdot e^{-(\lambda \Delta t)}}$$
(25-1)

Where:

LLD = the "a priori" (before the fact) Lower Limit of Detection as defined above (as microcuries per unit mass or volume) (See 4.9)

s_b = the standard deviation of the background counting rate or of the counting rate of a blank sample as appropriate (as counts per minute, cpm)

E = the counting efficiency (as counts per disintegration)

V = the sample size (in units of mass or volume)

2.22E+06 = the number of disintegrations per minute (dpm) per microcurie

Y = the fractional radiochemical yield (when applicable)

 λ = the radioactive decay constant for the particular radionuclide

Δt = the elapsed time between sample collection (or end of the sample collection period) and time of counting (for environmental samples, not plant effluent samples)

Typical values of E, V, Y and Δt should be used in the calculation.

The LLD is an "a priori" (before the fact) limit representing the capability of a measurement system and not a "posteriori" (after the fact) limit for a particular measurement.

(Page 1 of 1)

Reporting Levels for Radioactivity Concentrations in Environmental Samples at Surry

Analysis	Water (pCi/l)	Airborne Particulate or Gases (pCi/m³)	Fish (pCi/kg, wet)	Milk (pCi/l)	Food Products (pCi/kg, wet)
H-3	30,000				
Mn-54	1,000		30,000		
Fe-59	400		10,000		
Co-58	1,000		30,000		
Co-60	300	-	10,000		
Zn-65	300		20,000		
Zr-Nb-95	400				
I-131	(NOTE 1) 2	0.9		3	100
Cs-134	30	10	1,000	60	1,000
Cs-137	50	20	2,000	70	2,000
Ba-La-140	200			300	

NOTE 1: Reporting level for the ground (drinking) water samples required by Attachment 18. The reporting level for the surface (non-drinking) water samples required by Attachment 18 is 20 pCi/l.

Intentionally Blank

(Page 1 of 1)

Reporting Levels for Radioactivity Concentrations in Environmental Samples at North Anna

Analysis	Water (pCi/l)	Airborne Particulate or Gases (pCi/m³)	Fish (pCi/kg, wet)	Milk (pCi/l)	Food Products (pCi/kg, wet)
H-3	(NOTE 1) 20,000				
Mn-54	1,000		30,000		
Fe-59	400		10,000		
Co-58	1,000		30,000		
Co-60	300		10,000	<u> </u>	
Zn-65	300	1	20,000		
Zr-Nb-95	400				
I-131	2	0.9	-	3	100
Cs-134	30	10	1,000	60	1,000
Cs-137	50	20	2,000	70	2,000
Ba-La-140	200			300	

NOTE 1: For drinking water samples

Intentionally Blank

(Page 1 of 8)

Surry Meteorological, Liquid, and Gaseous Pathway Analysis

1.0 METEORLOGICAL ANALYSIS

1.1 Purpose

The purpose of the meteorological analysis was to determine the annual average χ/Q and D/Q values at critical locations around the Station for ventilation vent (ground level) and process vent (mixed mode) releases. The annual average χ/Q and D/Q values were used in a dose pathway analysis to determine both the maximum exposed individual at site boundary and member of the public. The χ/Q and D/Q values resulting in the maximum exposures were incorporated into the dose factors in Attachments 10 and 16.

1.2 Meteorological Data, Parameters, and Methodology

Onsite meteorological data for the period January 1, 1979, through December 31, 1981, were used in calculations. These data included wind speed, wind direction, and differential temperature for the purpose of determining joint frequency distributions for those releases characterized as ground level (i.e., ventilation vent), and those characterized as mixed mode (i.e., process vent). The portions of release characterized as ground level were based on $\Delta T_{158.9ft-28.2ft}$ and 28.2 foot wind data, and the portions characterized as mixed mode were based on $\Delta T_{158.9ft-28.2ft}$ and 158.9 ft wind data.

X/Qs and D/Qs were calculated using the NRC computer code "XOQDOQ - Program for the Meteorological Evaluation of Routine Effluent Releases at Nuclear Power Stations", September, 1977. The code is based upon a straight line airflow model implementing the assumptions outlined in Section C (excluding C1a and C1b) of Regulatory Guide 1.111, "Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water-Cooled Reactors."

The open terrain adjustment factors were applied to the χ/Q values as recommended in Regulatory Guide 1.111. The site region is characterized flat terrain such that open terrain correction factors are considered appropriate. The ground level ventilation vent release calculations included a building wake correction based on a 1516 m² containment minimum cross-sectional area. The effective release height used in mixed mode release calculations was based on a process vent release height of 131 ft, and plume rise due to momentum for a vent diameter of 3 in. with plume exit velocity of 100 ft/sec.

(Page 2 of 8)

Surry Meteorological, Liquid, and Gaseous Pathway Analysis

Ventilation vent, and vent releases other than from the process vent, are considered ground level as specified in Regulatory Guide 1.111 for release points less than the height of adjacent solid structures. Terrain elevations were obtained from Surry Power Station Units 1 and 2 Virginia Electric and Power Company Updated Final Safety Analysis Report Table 11A-8.

 χ /Q and D/Q values were calculated for the nearest site boundary, resident, milk cow, and vegetable garden by sector for process vent and ventilation vent releases. χ /Q values were also calculated for the nearest discharge canal bank for process and ventilation vent releases.

According to the definition for short term in NUREG-0133, "Preparation of Radiological Effluent Technical Specifications for Nuclear Power Stations," October, 1978, some gaseous releases may fit this category, primarily waste gas decay tank releases and containment purges. However, these releases are considered long term for dose calculations as past releases were both random in time of day and duration as evidenced by reviewing past release reports. Therefore, the use of annual average concentrations is appropriate according to NUREG-0133.

1.3 Results

The χ/Q value that resulted in the maximum total body, skin, and inhalation exposure for ventilation vent releases was 6.0E-05 sec/m³ at a site boundary location 499 meters N sector. For process vent releases, the site boundary χ/Q value was 1.0E-06 sec/m³ at a location 644 meters S sector. The discharge canal bank χ/Q value that resulted in the maximum inhalation exposure for ventilation vent releases was 7.8E-05 sec/m³ at a location 290 meters NW sector. The discharge canal bank χ/Q value for process vent was 1.6E-06 sec/m³ at a location 290 meters NW sector.

Pathway analysis indicated that the maximum exposure from I^{131} , I^{133} , and from all radionuclides in particulate form with half-lives greater than 8 days, was through the grass-cow-milk pathway. The D/Q value from ventilation vent releases resulting in the maximum exposure was 9.0E-10 per m^2 at a location 5150 meters S sector. For process vent releases, the D/Q value was 4.3E-10 per m^2 at a location 5150 meters S sector. For tritium, the χ /Q value from ventilation vent releases resulting in the maximum exposure for the milk pathway was 3.0E-07 sec/ m^3 , and 1.3E-07 sec/ m^3 for process vent releases at a location 5150 meters S sector. The inhalation pathway is the only other pathway existing at this location. Therefore, the χ /Q values given for tritium also apply for the inhalation pathway.

(Page 3 of 8)

Surry Meteorological, Liquid, and Gaseous Pathway Analysis

2.0 LIQUID PATHWAY ANALYSIS

2.1 Purpose

The purpose of the liquid pathway analysis was to determine the maximum exposed member of the public in unrestricted areas as a result of radioactive liquid effluent releases. The analysis included a determination of most restrictive liquid pathway, most restrictive age group, and critical organ. This analysis is required for Subsection 6.2, Liquid Radioactive Waste Effluents.

2.2 Data, Parameters, and Methodology

Radioactive liquid effluent release data for the years 1976, 1977, 1978, 1979, 1980, and 1981 were compiled from the Surry Power Station effluent release reports. The data for each year, along with appropriate site specific parameters and default selected parameters, were entered into the NRC computer code LADTAP as described in NUREG-0133.

Liquid radioactive effluents from both units are released to the James River via the discharge canal. Possible pathways of exposure for release from the Station include ingestion of fish and invertebrates and shoreline activities. The irrigated food pathway and potable water pathway do not exist at this location. Access to the discharge canal by the general public is gained two ways: bank fishing, controlled by the Station and limited to Virginia Power employees or guests of employees, and by boat as far upstream as the inshore end of the discharge canal groin. It has been estimated that boat sport fishing would be performed a maximum of 800 hours per year, and that bank fishing would be performed a maximum of 160 hours per year.

For an individual fishing in the discharge canal, no river dilution was assumed for the fish pathway. For an individual located beyond the discharge canal groins, a river dilution factor of 5 was assumed as appropriate according to Regulatory Guide 1.109, Rev. 1, and the fish, invertebrate, and shoreline pathways were considered to exist. Dose factors, bioaccumulation factors, and shore width factors given in Regulatory Guide 1.109, Rev. 1, and in LADTAP were used, as were usage terms for shoreline activities and ingestion of fish and invertebrates. Dose to an individual fishing on the discharge bank was determined by multiplying the annual dose calculated with LADTAP by the fractional year the individual spent fishing in the canal.

(Page 4 of 8)

Surry Meteorological, Liquid, and Gaseous Pathway Analysis

2.3 Results

For the years 1976, 1977, 1979, 1980, and 1981, the invertebrate pathway resulted in the largest dose. In 1978 the fish pathway resulted in the largest dose. The maximum exposed member of the public was determined to utilize the James River. The critical age group was the adult and the critical organ was either the thyroid or GI-LLI. The ingestion dose factor, A_i , in 6.2.3 includes the fish and invertebrate pathways. A_i dose factors were calculated for the total body, thyroid, and GI-LLI organs.

3.0 GASEOUS PATHWAY ANALYSIS

3.1 Purpose

A gaseous effluent pathway analysis was performed to determine the location that would result in the maximum doses due to noble gases, for use in demonstrating compliance with 6.3.1.a. and 6.3.3.a. The analysis also included a determination of the location, pathway, and critical organ, of the maximum exposed member of the public, as a result of the release of I¹³¹, I¹³³, tritium, and for all radionuclides in particulate form with half-lives greater than eight days for use in demonstrating compliance with 6.3.4.a. In addition, the analysis included a determination of the critical organ, maximum age group, and sector location of an exposed individual through the inhalation pathway from I¹³¹, I¹³³, tritium, and particulates to demonstrate compliance with 6.3.1.a..

3.2 Data, Parameters, and Methodology

Annual average χ/Q values were calculated, as described in Section 1 of this attachment, for the nearest site boundary in each directional sector and at other critical locations accessible to the public inside site boundary. The largest χ/Q value was determined to be 6.0E-05 sec/m³ at site boundary for ventilation vent releases at a location 499 meters N direction, and 1.0E-06 sec/m³ at site boundary for process vent releases at a location 644 meters S direction. The maximum doses to total body and skin, and air doses for gamma and beta radiation due to noble gases would be at these site boundary locations. The doses from both release points are summed in calculations to calculate total maximum dose.

(Page 5 of 8)

Surry Meteorological, Liquid, and Gaseous Pathway Analysis

Step 6.3.1.a.2 dose limits apply specifically to the inhalation pathway. Therefore, the locations and χ/Q values determined for maximum noble gas doses can be used to determine the maximum dose from I¹³¹, I¹³³, tritium, and for all radionuclides in particulate form with half-lives greater than 8 days for the inhalation pathway.

The NRC computer code GASPAR, "Evaluation of Atmospheric Releases," Revised 8/19/77, was run using 1976, 1977, 1978, 1979, 1980, and 1981 Surry Power Station gaseous effluent release report data. Doses from I^{131} , I^{133} , tritium, and particulates for the inhalation pathway were calculated using the 6.0E-05 sec/m³ site boundary χ /Q. Except for the source term data and the χ /Q value, computer code default parameters were used. Results for each year indicated that the critical age group was the child and the critical organ was the thyroid for the inhalation pathway. In 1979, the teen was the critical age group. However, the dose calculated for the teen was only slightly greater than for the child and the doses could be considered equivalent.

The gamma and beta dose factors K_{ivv} , L_{ivv} , M_{ivv} , and N_{ivv} in Attachment 10 were obtained by performing a units conversion of the appropriate dose factors from Table B-1, Regulatory Guide 1.109, Rev. 1, to mrem/yr per Ci/m³ or mrad/yr per Ci/m³, and multiplying by the ventilation vent site boundary χ/Q value of 6.0E-05 sec/m³. The same approach was used to calculate the gamma and beta dose factors K_{ipv} , L_{ipv} , M_{ipv} , and N_{ipv} in Attachment 10, using the process vent site boundary χ/Q value of 1.0E-06 sec/m³.

Inhalation pathway dose factors P_{ivv} and P_{ipv} in Attachment 10 were calculated using the equation:

$$P_i = K'(BR) DFA_i(\chi/Q) (mrem/yr per Curie/sec)$$
 (28-1)

where:

K' = a constant of unit conversion, 1E+12 pCi/Ci

BR = the breathing rate of the child age group, 3700 m³/yr, from Table E-5, Regulatory Guide 1.109, Rev.1

DFA_i = the thyroid organ inhalation dose factor for child age group for the ith radionuclide, in mrem/pCi, from Table E-9, Regulatory Guide 1.109, Rev. 1

 χ/Q = the ventilation vent site boundary χ/Q , 6.0E-5 sec/m³, or the process vent site boundary χ/Q , 1.0E-06 sec/m³, as appropriate

(Page 6 of 8)

Surry Meteorological, Liquid, and Gaseous Pathway Analysis

Step 6.3.4.a., requires that the dose to the maximum exposed member of the public from I^{131} , I^{133} , tritium, and from all radionuclides in particulate form with half-lives greater than 8 days be less than or equal to the specified limits. Dose calculations were performed for an exposed member of the public within site boundary unrestricted areas, discharge canal bank, and to an exposed member of the public beyond site boundary at real residences with the largest χ/Q values using the NRC computer code GASPAR. Doses to members of the public were also calculated for the vegetable garden, meat animal, and milk-cow pathways with the largest D/Q values using the NRC computer code GASPAR.

It was determined that the member of the public within site boundary would be using the discharge canal bank for fishing a maximum of 160 hours per year. The maximum annual χ Q at this location was determined to be 7.8E-05 sec/m³ at 290 meters NW direction. After applying a correction for the fractional part of year an individual would be fishing at this location, the dose was calculated to be less than an individual would receive at site boundary.

The member of the public receiving the largest dose beyond site boundary was determined to be located 5150 meters S sector. The critical pathway was the grass-cow-milk, the maximum age group was the infant, and the critical organ the thyroid. For each year 1976, 1977, 1978, 1979, 1980 and 1981 the dose to the infant from the grass-cow-milk pathway was greater than the dose to the member of the public within site boundary, nearest residence, vegetable or meat pathways. Therefore, the maximum exposed member of the public was determined to be the infant, exposed through the grass-cow-milk pathway, critical organ thyroid, at a location 5150 meters S sector. The only other pathway existing at this location for the infant is inhalation.

(Page 7 of 8)

Surry Meteorological, Liquid, and Gaseous Pathway Analysis

The RM_{ivv} and RM_{ipv} dose factors, except for tritium, in Attachment 16 were calculated by multiplying the appropriate D/Q value with the following equation:

$$RM_{i} = K' \frac{Q_{F}(U_{ap})}{\lambda_{i} + \lambda_{w}} F_{m} (r) (DFL_{i}) \left[\frac{f_{p}f_{s}}{Y_{p}} + \frac{(1 - f_{p}f_{s}) e^{-\lambda_{i}t_{h}}}{Y_{s}} \right] e^{-\lambda_{i}t_{f}}$$
(28-2)

where:

K' = a constant of unit conversion, 1E+12 pCi/Ci

Q_F = cow's consumption rate, 50, in Kg/day (wet weight)

 U_{ap} = infant milk consumption rate, 330, liters/yr

 Y_p = agricultural productivity by unit area of pasture feed grass, 0.7 Kg/m²

 Y_s = agricultural productivity by unit area of stored feed, 2.0, in Kg/m²

F_m = stable element transfer coefficients, from Table E-1, Regulatory Guide 1.109, Rev. 1

r = fraction of deposited activity retained on cow's feed grass, 1.0 for radioiodine, and 0.2 for particulates

DFL_i = thyroid ingestion dose factor for the ith radionuclide for the infant, in mrem/pCi, from Table E-14, Regulatory Guide 1.109, Rev.1

 λ_i = decay constant for the ith radionuclide, in sec⁻¹, from Table of Isotopes, Lederer, Hollander, and Perlman, sixth Edition.

 $\lambda_{\rm w}$ = decay constant for removal of activity of leaf and plant surfaces by weathering, 5.73E-07 sec⁻¹ (corresponding to a 14 day half-life)

tf = transport time from pasture to cow, to milk, to receptor, 1.73+05, in seconds

th = transport time from pasture, to harvest, to cow, to milk, to receptor, 7.78E+06, in seconds

f_p = fraction of year that cow is on pasture, 0.67 (dimensionless), 7.78E+06 in seconds

 f_s = fraction of cow feed that is pasture grass while cow is on pasture, 1.0, dimensionless

Parameters used above were obtained from NUREG-0133 and Regulatory Guide 1.109, Rev.1.

(Page 8 of 8)

Surry Meteorological, Liquid, and Gaseous Pathway Analysis

Since the concentration of tritium in milk is based on the airborne concentration rather than the deposition, the following equation is used:

$$R_{H^3} = K'K'''F_mQ_FU_{ap}(DFL_{H^3}) [0.75(0.5/H)]\chi/Q$$
 (28-3)

where:

K'" = a constant of unit conversion 1E+03 gm/kg

H = absolute humidity of the atmosphere, 8.0, gm/m^3

0.75 = the fraction of total feed that is water

0.5 = the ratio of the specific activity of the feed grass to the atmospheric water

 χ/Q = the annual average concentration at a location 5150 meters S sector, 3.0E-07 sec/m³ for ventilation vent releases, and 1.3E-07 sec/m³ for the process vent releases

Other parameters have been previously defined.

The inhalation pathway dose factors RI_{ivv} and RI_{ipv} in Attachment 16 were calculated using the following equation:

$$RI_i = K'(BR) DFA_i(\chi/Q)$$
 (mrem/yr per Curie/sec) (28-4)

where:

K' = a constant of unit conversion, 1E+12 pCi/Ci

BR = breathing rate of the infant age group, 1400 m³/yr, from Table E-5, Regulatory Guide 1.109, Rev.1

DFA_i = thyroid organ inhalation dose factor for infant age group for the ith radionuclide, in mrem/pCi, from Table E-10, Regulatory Guide 1.109, Rev.1

 χ/Q = ventilation vent χ/Q , 3.0E-07 sec/m³, or the process vent site boundary χ/Q , 1.3E-07 sec/m³, at a location 5150 meters S sector.

(Page 1 of 8)

North Anna Meteorological, Liquid, and Gaseous Pathway Analysis

1.0 METEOROLOGICAL ANALYSIS

1.1 Purpose

The purpose of the meteorological analysis was to determine the annual average χ/Q and D/Q values at critical locations around the Station for ventilation vent (ground level) and process vent (mixed mode) releases. The annual average χ/Q and D/Q values were used to perform a dose pathway analysis to determine both the maximum exposed individual at site boundary and member of the public. The χ/Q and D/Q values resulting in the maximum exposures were incorporated into the dose factors in Attachments 11 and 17.

1.2 Meteorological Data, Parameters, and Methodology

Onsite meteorological data for the period January 1, 1981, through December 31, 1981, were used in calculations. These data included wind speed, wind direction, and differential temperature for the purpose of determining joint frequency distributions for those releases characterized as ground level (e.g., ventilation vent), and those characterized as mixed mode (i.e., process vent). The portions of release characterized as ground level were based on $\Delta T_{158.9\text{ft-}28.2\text{ft}}$ and 28.2 foot wind data, and the portions characterized as mixed mode were based on $\Delta T_{158.9\text{ft-}28.2\text{ft}}$ and 158.9 ft wind data.

X/Q's and D/Q's were calculated using the NRC computer code "XOQDOQ - Program for the Meteorological Evaluation of Routine Effluent Releases at Nuclear Power Stations," September, 1977. The code is based upon a straight line airflow model implementing the assumptions outlined in Section C (excluding C1a and C1b) of Regulatory Guide 1.111, "Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water-Cooled Reactors."

The open terrain adjustment factors were applied to the χ/Q values as recommended in Regulatory Guide 1.111. The site region is characterized by gently rolling terrain so open terrain correction factors were considered appropriate. The ground level ventilation vent release calculations included a building wake correction based on a 1516 m² containment minimum cross-sectional area.

(Page 2 of 8)

North Anna Meteorological, Liquid, and Gaseous Pathway Analysis

The effective release height used in mixed mode release calculations was based on a process vent release height of 157.5 ft, and plume rise due to momentum for a vent diameter of 3 in. with plume exit velocity of 100 ft/sec. Ventilation vent, and vent releases other than from the process vent, are considered ground level as specified in Regulatory Guide 1.111 for release points less than the height of adjacent solid structures. Terrain elevations were obtained from North Anna Power Station Units 1 and 2, Virginia Electric and Power Company Final Safety Analysis Report Table 11C.2-8.

 χ /Q and D/Q values were calculated for the nearest site boundary, resident, milk cow, and vegetable garden by sector for process vent and ventilation vent releases at distances specified from North Anna Power Station Annual Environmental Survey Data for 1981. χ /Q values were also calculated for the nearest lake shoreline by sector for the process vent and ventilation vent releases.

According to the definition for short term in NUREG-0133, "Preparation of Radiological Effluent Technical Specifications for Nuclear Power Stations," October, 1978, some gaseous releases may fit this category, primarily waste gas decay tank releases and containment purges. However, these releases are considered long term for dose calculations as past releases were both random in time of day and duration as evidenced by reviewing past release reports. Therefore, the use of annual average concentrations is appropriate according to NUREG-0133.

The χ/Q and D/Q values calculated from 1981 meteorological data are comparable to the values presented in the North Anna Power Station UFSAR.

1.3 Results

The χ/Q value that resulted in the maximum total body, skin and inhalation exposure for ventilation vent releases was 9.3E-06 sec/m³ at a site boundary location 1416 meters SE sector. For process vent releases, the site boundary χ/Q value was 1.2E-06 sec/m³ at a location 1513 meters S sector. The shoreline χ/Q value that resulted in the maximum inhalation exposure for ventilation vent releases was 1.0E-04 sec/m³ at a location 274 meters NNE sector. The shoreline χ/Q value for process vent was 2.7E-06 sec/m³ at a location 274 meters NNE sector.

(Page 3 of 8)

North Anna Meteorological, Liquid, and Gaseous Pathway Analysis

Pathway analysis indicated that the maximum exposure from I-131, I¹³³, and from all radionuclides in particulate form with half-lives greater than 8 days was through the grass-cow-milk pathway. The D/Q value from ventilation vent releases resulting in the maximum exposure was 2.4E-09 per m² at a location 3250 meters N sector. For process vent releases, the D/Q value was 1.1E-09 per m² at a location 3250 meters N sector. For tritium, the χ /Q value from ventilation vent releases resulting in the maximum exposure for the milk pathway was 7.2E-07 sec/m³, and 3.9E-07 sec/m³ for process vent releases at a location 3250 meters N sector.

2.0 LIQUID PATHWAY ANALYSIS

2.1 Purpose

The purpose of the liquid pathway analysis was to determine the maximum exposed member of the public in unrestricted areas as a result of radioactive liquid effluent releases. The analysis includes a determination of most restrictive liquid pathway, most restrictive age group, and critical organ. This analysis is required for Subsection 6.2.

2.2 Data, Parameters, and Methodology

Initially, radioactive liquid effluent release data for the years 1979, 1980, and 1981 were compiled from the North Anna Power Station semi-annual effluent release reports. The data for each year, along with appropriate site specific parameters and default selected parameters, were entered into the NRC computer code LADTAP as described in NUREG-0133.

Re-concentration of effluents using the small lake connected to larger water body model was selected with the appropriate parameters determined from Table 3.5.3.5, Design Data for Reservoir and Waste Heat Treatment Facility from Virginia Electric and Power Company, Applicant's Environmental Report Supplement, North Anna Power Station, Units 1 and 2, March 15, 1972. Dilution factors for aquatic foods, shoreline, and drinking water were set to one. Transit time calculations were based on average flow rates. All other parameters were defaults selected by the LADTAP computer code.

(Page 4 of 8)

North Anna Meteorological, Liquid, and Gaseous Pathway Analysis

Beginning in 1997, the activity by nuclide released in the previous year is entered into the North Anna Power Station liquid pathway critical organ calculations spreadsheet, which calculates the most limiting age group total body and critical organ. This Process is repeated annually.

2.3 Results

Initially, the fish pathway resulted in the largest dose. The critical organ each year was the liver, and the adult and teenage age groups received the same organ dose. However, since the adult total body dose was greater than the teen total body dose for each year, the adult was selected as the most restrictive age group. Beginning in 1997, the most limiting age group for both total body and critical organ is calculated from the spreadsheet for North Anna Power Station liquid pathway critical organ calculations.

3.0 GASEOUS PATHWAY ANALYSIS

3.1 Purpose

A gaseous effluent pathway analysis was performed to determine the location that would result in the maximum doses due to noble gases for use in demonstrating compliance with 6.3.1.a. and 6.3.3.a. The analysis also included a determination of the critical pathway, location of maximum exposed member of the public, and the critical organ for the maximum dose due to I^{131} , I^{133} , tritium, and for all radionuclides in particulate form with half-lives greater than 8 days for use in demonstrating compliance with requirements in 6.3.4.a.1. In addition, the analysis included a determination of the critical pathway, maximum age group, and sector location of an exposed individual through the inhalation pathway from I^{131} , I^{133} , tritium, and particulates with half-lives greater than 8 days to demonstrate compliance with 6.3.1.a..

(Page 5 of 8)

North Anna Meteorological, Liquid, and Gaseous Pathway Analysis

3.2 Data, Parameters, and Methodology

Annual average χ/Q values were calculated, as described in Section 1 of this attachment, for the nearest site boundary in each directional sector and at other critical locations beyond the site boundary. The largest χ/Q value was determined to be 9.3E-06 sec/m³ at site boundary for ventilation vent releases at a location 1416 meters SE direction, and 1.2E-06 sec/m³ at site boundary for process vent releases at a location 1513 meters S direction. The maximum doses to total body and skin, and air doses for gamma and beta radiation due to noble gases, would be at these site boundary locations. The doses from both release points are summed in calculations to calculate total maximum dose.

Step 6.3.1.a.2 dose limits apply specifically to the inhalation pathway. Therefore, the locations and χ/Q values determined for maximum noble gas doses can be used to determine the maximum dose from I^{131} , I^{133} , tritium, and for all radionuclides in particulate form with half-lives greater than 8 days for the inhalation pathway.

The NRC computer code GASPAR, "Evaluation of Atmospheric Releases," Revised 8/19/77, was run using 1979, 1980 and 1981 North Anna Power Station Gaseous Effluent Release Report data. Doses from I^{131} , I^{133} , tritium, and particulates for the inhalation pathway were calculated using the 9.3E-06 sec/m³ site boundary χ /Q. Except for the source term data and the χ /Q value, computer code default parameters were used. Results for each year indicated that the critical age group was the child and the critical organ was the thyroid for the inhalation pathway.

The gamma and beta dose factors K_{ivv} , L_{ivv} , M_{ivv} , and N_{ivv} in Attachment 11 were obtained by performing a units conversion of the appropriate dose factors from Table B-1, Regulatory Guide 1.109, Rev. 1, to mrem/yr per Ci/m³ or mrad/yr per Ci/m³, and multiplying by the ventilation vent site boundary χ/Q value of 9.3E-06 sec/m³. The same approach was used in calculating the gamma and beta dose factors K_{ipv} , L_{ipv} , M_{ipv} , and N_{ipv} in Attachment 11 using the process vent site boundary χ/Q value of 1.2E-06 sec/m³.

(Page 6 of 8)

North Anna Meteorological, Liquid, and Gaseous Pathway Analysis

The inhalation pathway dose factors P_{ivv} and P_{ipv} in Attachment 11 were calculated using the following equation:

$$P_i = K'(BR) DFA_i (\chi/Q)$$
 (mrem/yr per Curie/sec) (29-1)

where:

K' = a constant of unit conversion, 1E+12 pCi/Ci

BR = the breathing rate of the child age group, 3700 m³/yr, from Table E-5, Regulatory Guide 1.109, Rev.1

DFA_i = the thyroid organ inhalation dose factor for child age group for the ith radionuclide, in mrem/pCi, from Table E-9, Regulatory Guide 1.109, Rev. 1

 χ/Q = the ventilation vent site boundary χ/Q , 9.3E-06 sec/m³, or the process vent site boundary χ/Q , 1.2E-06 sec/m³, as appropriate.

Step 6.3.4.a., requires that the dose to the maximum exposed member of the public from I¹³¹, I¹³³, tritium, and from all radionuclides in particulate form with half-lives greater than 8 days be less than or equal to the specified limits. Dose calculations were performed for an exposed member of the public within site boundary unrestricted areas, and to an exposed member of the public beyond site boundary at locations identified in the North Anna Power Station Annual Environmental Survey Data for 1981.

It was determined that the member of the public within site boundary would be using Lake Anna for recreational purposes a maximum of 2232 hours per year. It is assumed that this member of the public would be located the entire 2232 hours at the lake shoreline with the largest annual χ Q of 1.0E-04 at a location 274 meters NNE sector. The NRC computer code GASPAR was run to calculate the inhalation dose to this individual. The GASPAR results were corrected for the fractional year the member of the public would be using the lake.

(Page 7 of 8)

North Anna Meteorological, Liquid, and Gaseous Pathway Analysis

Using the NRC computer code GASPAR and annual average χ/Q and D/Q values obtained as described in Section 1 of this attachment, the member of the public receiving the largest dose beyond site boundary was determined to be located 3250 meters N sector. The critical pathway was the grass-cow-milk, the maximum age group was the infant, and the critical organ the thyroid. For each year 1979, 1980, and 1981 the dose to the infant from the grass-cow-milk pathway was greater than the dose to the member of the public within site boundary. Therefore, the maximum exposed member of the public was determined to be the infant, exposed through the grass-cow-milk pathway, critical organ thyroid, at a location 3250 meters N sector.

Pathway analysis results indicate that existing pathways, including ground and inhalation, within five miles of North Anna Power Station, yield R_i dose factors less than those determined for the cow-milk pathway. Although the cow-milk pathway does not exist within five miles of the Station, NUREG-0133 requires the use of cow-milk R_i dose factors since these values result in the most limiting doses. There is no requirement to include the other pathways.

[Commitment 3.2.3]

The RM_{ivv} and RM_{ipv} dose factors, except for tritium, in Attachment 17 were calculated by multiplying the appropriate D/Q value with the following equation:

$$RM_{i} = K' \frac{Q_{F}(U_{ap})}{\lambda_{i} + \lambda_{w}} F_{m}(r) (DFL_{i}) \left[\frac{f_{p}f_{s}}{Y_{p}} + \frac{(1 - f_{p}f_{s}) e^{-\lambda_{i}t_{h}}}{Y_{s}} \right] e^{-\lambda_{i}t_{f}}$$
(29-2)

where:

K' = a constant of unit conversion, 1E+12 pCi/Ci

Q_F = cow's consumption rate, 50, in Kg/day (wet weight)

 U_{ap} = infant milk consumption rate, 330 liters/yr

 Y_p = agricultural productivity by unit area of pasture feed grass, 0.7 Kg/m²

 Y_s = agricultural productivity by unit area of stored feed, 2.0, in Kg/m²

F_m = stable element transfer coefficients, from Table E-1, Regulatory Guide 1.109, Rev. 1

(Page 8 of 8)

North Anna Meteorological, Liquid, and Gaseous Pathway Analysis

- r = fraction of deposited activity retained on cow's feed grass, 1.0 for radioiodine, and 0.2 for particulates
- DFL_i= thyroid ingestion dose factor for the ith radionuclide for the infant, in mrem/pCi, from Table E-14, Regulatory Guide 1.109, Rev. 1
- λ_i = decay constant for the ith radionuclide, in sec⁻¹, from Table of Isotopes, Lederer, Hollander, and Perlman, sixth Edition.
- $\lambda_{\rm w}$ = decay constant for removal of activity of leaf and plant surfaces by weathering, 5.73E-07 sec⁻¹ (corresponding to a 14 day half-life)
- t_f = transport time from pasture to cow, to milk, to receptor, 1.73E+05, in seconds
- t_h = transport time from pasture, to harvest, to cow, to milk, to receptor, 7.78E+06, in seconds
- f_p = fraction of year that cow is on pasture, 0.58 (dimensionless), 7 months per year from NUREG-0.597
- f_s = fraction of cow feed that is pasture grass while cow is on pasture, 1.0, dimensionless Parameters used in the above equation were obtained from NUREG-0133 and Regulatory Guide 1.109, Rev.1.

Since the concentration of tritium in milk is based on the airborne concentration rather than the deposition, the following equation is used:

$$RM_{H^3} = K'K'''F_mQ_FU_{ap}(DFL_{H^3}) [0.75(0.5/H)]\chi/Q$$
 (29-3)

where:

K'" = a constant of unit conversion 1E+03 gm/kg

H = absolute humidity of the atmosphere, 8.0, gm/m^3

0.75 = the fraction of total feed that is water

- 0.5 = the ratio of the specific activity of the feed grass to the atmospheric water
- χ/Q = the annual average concentration at a location 3250 meters N sector, 7.2E-07 sec/m³ for ventilation vent releases, and 3.9E-07 sec/m³ for the process vent releases