

Attn: Document Control Desk Director Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission Washington, D.C. 20555-0001

> Louisiana Energy Services, LLC NRC Docket No. 70-3103

Subject: Safety Analysis Report (SAR) Update

In accordance with Materials License SNM-2010, Condition 30, Louisiana Energy Services (LES), dba URENCO USA (UUSA) herewith submits the Safety Analysis Report (SAR) changes made under UUSA's authority.

Enclosure 1 contains the marked up pages to the Safety Analysis Report for revision 43. A description of each change is provided in the revision history. Revision bars, strikethroughs and underlines were utilized.

Should there be any questions regarding this submittal, please contact Wyatt Padgett, UUSA Licensing and Performance Assessment Manager, at 575-394-5257.

Respectfully,

DUAL

Stephen Cowne Chief Nuclear Officer and Compliance Manager

1)

Enclosure:

Marked up pages of the Safety Analysis Report.

NMSSZD

CC: via email (without attachments)

Mike G. Raddatz, Senior Project Manager U.S. Nuclear Regulatory Commission <u>Michael.Raddatz@nrc.gov</u>

Marvin Sykes, Chief - Fuel Facility Branch 1 U.S. Nuclear Regulatory Commission <u>Marvin.Sykes@nrc.gov</u>

Jacob Zimmerman, Branch Chief - Enrichment and Conversion Branch U. S. Nuclear Regulatory Commission Jacob.Zimmerman@nrc.gov Enclosure 1 Marked up pages of the Safety Analysis Report (revision bars, strikethroughs and underlines utilized)



# SAFETY ANALYSIS REPORT Revision <u>43</u>42a

LES, PO Box 1789, Eunice, New Mexico 88231, USA T: +1 575 394 4646 F: +1 575 394 4545 W: www.urenco.com Copyright@2010 LES Table of Contents

|                 | Summary of Changes |                                                                                                                                                                                           |  |  |  |  |
|-----------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Issue /<br>Date | Change             | Description of Change                                                                                                                                                                     |  |  |  |  |
|                 | LBDCR 17-0006      | MFDT Enriched Operations<br>CC-RW-2015-0003 70.72 – 2017-0025                                                                                                                             |  |  |  |  |
|                 | LBDCR-17-0012      | Replaces carbon/aluminum oxide mixed bed Type 'A' trap on the feedsampling pump/trap sets with a Type 'A' trap filled with sodiumfluoride and aluminum oxide.MOD-17-015270.72 – 2017-0076 |  |  |  |  |
| <u>43</u>       | LBDCR-17-0022      | Modification of the SRC audit frequency based on NRC Approval of SRC Audit Frequency (IN-12-0081-NRC)<br>CC-LS-2015-0001; 70.72 – 2015-0285                                               |  |  |  |  |
|                 | LBDCR 18-001       | Removal of fluorinated carbon from a chemical trap under an inert atmosphere for sampling purposes<br>CC-RW-2017-0003 70.72 – 2018-0015                                                   |  |  |  |  |

Revision

### 2.2 Key Management Positions

#### 2.2.3 Safety Review Committee

The facility maintains a Safety Review Committee (SRC) to assist with the safe operation of the facility. The SRC reports to the Chief Nuclear Officer and provides technical and administrative review and audit of operations that could impact plant worker, public safety and environmental impacts. The scope of activities reviewed and audited by the SRC shall, as a minimum, include the following:

- Radiation protection
- Nuclear criticality safety
- Hazardous chemical safety
- Industrial safety including fire protection
- Environmental protection
- ALARA policy implementation
- Changes in facility design or operations.

LBDCR-17-0022

The SRC shall ensure construction and operational conduct at least one facility audits <u>per year</u> for the above areas are conducted according to the frequencies specified in Section 11.5.2. SRC review of audits completed by the QA Department can be credited for meeting SRC review and auditing requirements.

The Safety Review Committee shall be composed of at least five members, including the Chairman. Members of the SRC may be from the LES corporate office or technical staff. The five members shall include experts on operations and all safety disciplines (criticality, radiological, chemical, industrial). The Chairman, members and alternate members of the Safety Review Committee shall be formally appointed by the Chief Nuclear Officer, shall have an academic degree in an engineering or physical science field; and, in addition, shall have a minimum of five years of technical experience, of which a minimum of three years shall relate directly to one or more of the safety disciplines (criticality, radiological, chemical, industrial).

The Safety Review Committee shall meet at least once per calendar quarter.

Review meetings shall be held within 30 days of any incident that is reportable to the NRC. These meetings may be combined with regular meetings. Following a reportable incident, the SRC shall review the incident's causes, the responses, and both specific and generic corrective actions to ensure resolution of the problem is implemented.

A written report of each SRC meeting and audit shall be forwarded to the Chief Nuclear Officer and appropriate Managers within 30 days and be retained in accordance with the records management system.

#### 2.2.4 Personnel Qualification Requirements

The minimum qualification requirements for the facility functions that are directly responsible for its safe operation shall be as outlined below consistent with NUREG-1520. This includes the Chief Nuclear Officer, Operations Manager, Compliance Manager, Shift Managers, and managers for various safety and environmental disciplines. "Responsible nuclear experience" for these positions shall include (a) responsibility for and contributions towards support of

Safety Analysis Report

43<mark>42a</mark>

Rev

# 3.6 Chapter 3 Tables

| IROFS    | Monitoring Support<br>Equipment                                                                                                | Other Equipment                                                               | Equipment<br>Attributes<br>Accurate and<br>reliable indication |                  | Attributes<br>Accurate and |      | Operated<br>Support<br>Equipment | Other<br>Equipment | Equipment<br>Attributes<br>None |
|----------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------|------------------|----------------------------|------|----------------------------------|--------------------|---------------------------------|
| IROFS15  | None                                                                                                                           | Instrument for<br>determining item<br>contains no enriched<br>uranic material |                                                                |                  |                            |      | None                             |                    |                                 |
| IROFS16a | None                                                                                                                           | Instrument for<br>viewing cylinder<br>internal                                | Non<br>e                                                       | LBDCR<br>17-0006 | None                       | None | None                             |                    |                                 |
|          | Pressure transducer and local<br>digital display<br>*(Note 2)                                                                  | None                                                                          | Accurate and reliable indication                               |                  | None                       | None | None                             |                    |                                 |
| IROFS16e | Weighing Scale System<br>including local digital readout<br>from weighing system at the<br>cylinder stations<br>*(Notes 2 & 3) | None                                                                          | Accurate and reliable indication                               |                  | None                       | None | None                             |                    |                                 |
|          | Pressure transducer and local<br>digital display<br>*(Note2)                                                                   | None                                                                          | Accurate and reliable indication                               |                  | None                       | None | None                             |                    |                                 |
| IROFS16f | Weighing Scale System<br>including local digital readout<br>from weighing system at the<br>cylinder stations<br>*(Notes 2 & 3) | None                                                                          | Accurate reliable<br>indication                                |                  | None                       | None | None                             |                    |                                 |
| IROFS16f | Pressure transducer and local<br>digital display<br>*( Note 2)                                                                 | None                                                                          | Accurate reliable indication                                   |                  | None                       | None | None                             |                    |                                 |

## Table 3.4-1 Administrative Control IROFS Support Equipment

Safety Analysis Report

Rev

43<del>42a</del>

## 3.6 Chapter 3 Tables

| IROFS    | Monitoring Support<br>Equipment |                  | Other Equipment | Equipment<br>Attributes                                                                                              | Operated<br>Support<br>Equipment | Other<br>Equipment | Equipment<br>Attributes                                       |                                                          |
|----------|---------------------------------|------------------|-----------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------|---------------------------------------------------------------|----------------------------------------------------------|
|          |                                 |                  |                 | enrichment level<br>(wt.% <sup>235</sup> U),<br>independent of<br>IROFS55b                                           |                                  |                    | Slab Tanks)                                                   | liquid sample                                            |
| IROFS55b | N/A                             | LBDCR<br>17-0006 |                 | Instrument(s) for<br>determining uranium<br>enrichment level (wt.<br>% <sup>235</sup> U), independent<br>of IROFS55a | Accurate and reliable indication | N/A                | Circulation<br>pumps (for<br>Slab Tanks)                      | Supports withdrawa<br>of representative<br>sample        |
| IROFS56a |                                 | None             | 4               | Instrument for<br>determining gross<br><sup>235</sup> U content<br>independent of<br>IROFS56b                        | Accurate and reliable indication | None               | <u>None</u>                                                   | None                                                     |
| IROFS56b |                                 | None             |                 | Instrument for<br>determining gross<br><sup>235</sup> U content<br>independent of<br>IROFS56a                        | Accurate and reliable indication | None               | None                                                          | None                                                     |
| IROFS57a |                                 | <u>None</u>      | × 4             | Instrument for<br>determining gross<br><sup>235</sup> U content<br>independent of<br>IROFS57b                        | Accurate and reliable indication | None               | <u>Circulation</u><br><u>pumps (for</u><br><u>MFDT baths)</u> | Supports withdrawa<br>of representative<br>sample        |
| IROFS57b |                                 | <u>None</u>      |                 | Instrument for<br>determining gross<br><sup>235</sup> U content<br>independent of<br>IROFS57a                        | Accurate and reliable indication | None               | <u>Circulation</u><br><u>pumps (for</u><br><u>MFDT baths)</u> | <u>Supports withdrawa</u><br>of representative<br>sample |
| IROFS58a |                                 | None             |                 | Instrument for<br>determining gross<br><sup>235</sup> U content                                                      | Accurate and reliable indication | None               | None                                                          | None                                                     |
| IROFS58b |                                 | None             |                 | None                                                                                                                 | None                             | None               | Storage Array                                                 | Provides adequate                                        |

43**42a** 

# 3.6 Chapter 3 Tables

| IROFS    | Monitoring Support<br>Equipment                                                                                             | Other Equipment Equipment Attributes                    |                                                                                          | Operated<br>Support<br>Equipment                          | Other<br>Equipment                       | Equipment<br>Attributes                           |
|----------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------|---------------------------------------------------|
|          |                                                                                                                             |                                                         |                                                                                          |                                                           |                                          | spacing                                           |
| IROFS60  | None<br>LBDCR<br>18-001                                                                                                     | Oxygen Sensor                                           | Accurate and<br>reliable indication<br>of displacement<br>of O <sub>2</sub> by inert gas | None                                                      | <u>Glove Bag</u>                         | <u>Provides enclosure</u><br><u>for inert gas</u> |
|          | None                                                                                                                        | None                                                    | None                                                                                     | None                                                      | Inert Gas                                | Provides non-<br>reactive environment             |
| IROFS61  | None                                                                                                                        | None                                                    | None                                                                                     | None                                                      | Inert Gas                                | Provides non-<br>reactive environment             |
|          | None                                                                                                                        | None                                                    | None                                                                                     | None                                                      | Mobile Rigs                              | Provides method of purge                          |
|          | 1) Weigh Scale System<br>including local digital readout<br>from weighing system at<br>cylinder station *(Notes 2 and<br>3) | None                                                    | 1) Accurate and reliable indication                                                      | Select<br>independent<br>isolation<br>valves<br>*(Note 2) | None                                     | Valve closure                                     |
| IROFSC22 | 2) vent system cold trap load<br>cells *( <b>Notes 2 and 3)</b>                                                             |                                                         | 2) Accurate and reliable indication                                                      |                                                           |                                          |                                                   |
|          | N/A                                                                                                                         | Instrument for<br>determining cylinder<br>content assay | 3) Accurate and reliable indication                                                      | N/A                                                       | Verify<br>CASCAL<br>settings<br>document | Accurate and reliable                             |

Safety Analysis Report

Rev

<u>43</u>42a

6.2.1.2.2 Chemical Traps - Activated Carbon, Aluminum Oxide, and Sodium Fluoride

Adsorption is the attraction of gas molecules to the surface of an activated solid. There are two classifications of adsorption: physical and chemical. At ordinary temperatures, adsorption is usually caused by molecular forces rather than by the formation of chemical bonds. In this type of adsorption, called physical adsorption, very little heat is evolved. If a chemical reaction takes place between the gas and the solid surface, the process is known as chemisorption. In chemisorption the reaction between surface and gas molecules occurs in a stoichiometric manner, and heat is liberated during the reaction.

Chemisorption is used in the removal of  $UF_{6}$ , HF and trace amounts of  $F_{2}$  from gaseous effluent streams. It is also used to remove oil mist from vacuum pumps operating upstream of gaseous effluent vent systems. Adsorbent materials are placed on stationary beds in chemical traps downstream of the various cold traps. These materials capture HF and the trace amounts of  $UF_{6}$  that escape desublimation during feed purification or during venting of residual  $UF_{6}$  contained in hoses and/or piping that is bled down before disconnection.

The chemical traps are placed in series downstream of the cold traps in the exhaust streams to the GEVS and may include one or more of a series of three different types of chemical traps; activated carbon or NaF-traps, sodium fluoride (NaF) traps aluminum oxide (Al<sub>2</sub>O<sub>3</sub>) traps, and mixed-bed traps, which contain beth-activated carbon and Al<sub>2</sub>O<sub>3</sub> or NaF and Al<sub>e</sub>O<sub>3</sub> in the same housing. The activated carbon or NaF captures small amounts of UF<sub>6</sub> that escape desublimation. Since chemisorption is a pressure sensitive process, HF is not fully adsorbed on carbon at low pressures. In addition, F<sub>2</sub> passes through NaF. This necessitates a second type of trap containing a charge of Al<sub>2</sub>O<sub>3</sub> to remove HF and/or-trace amounts of F<sub>2</sub> from the gaseous effluent stream at normal system operating pressure. One or more of a series of these traps is used depending on the process system being served. Additionally, an oil trap (also containing Al<sub>2</sub>O<sub>3</sub>) is present on the inlet of the vacuum pumps to prevent pump oil from migrating back into the UF<sub>6</sub> cold traps.

Chemisorption of UF<sub>6</sub> on activated carbon evolves considerable thermal energy. This is not normally a problem in the chemical traps downstream of the cold traps because very little UF<sub>6</sub> escapes desublimation. If multiple equipment failures and/or operator errors occur, significant quantities of UF<sub>6</sub> could enter the chemical traps containing activated carbon. This could cause significant overheating leading to release. Failures associated with the carbon traps were evaluated in the Integrated Safety Analysis.

Activated carbon cannot be used in the Contingency Dump System because the relatively high  $UF_6$  flow rates during this non-routine operation could lead to severe overheating. A chemical trap containing sodium fluoride (NaF) is installed in the contingency dump flow path to trap UF<sub>6</sub>. NaF is used because the heat of UF<sub>6</sub> chemisorption on NaF is significantly lower than the heat of UF<sub>6</sub> chemisorption on activated carbon. Failures associated with the NaF traps were evaluated in the integrated safety analysis.

LBDCR-17-0012

There are no specific concerns with heat of adsorption of either  $UF_{6_1}$ ,  $F_{2_1}$  or HF with  $AI_2O_3$ . Although the heat of absorption of HF on NaF and  $F_2$  on  $AI_2O_3$  are relatively large, the quantity of HF or  $F_2$  present at a pump/trap set is relatively small. Failures associated with the sodium fluoride and aluminum oxide traps were evaluated in the Integrated Safety Analysis.

Safety Analysis Report

Rev

## 6.6 Chapter 6 Tables

| Table 6.1-5 Physical Properties of UF6     |  |  |  |  |
|--------------------------------------------|--|--|--|--|
| Value                                      |  |  |  |  |
| 56.6°C (133.8°F)                           |  |  |  |  |
| 1.52 bar abs (22 psia)<br>64.1°C (147.3°F) |  |  |  |  |
|                                            |  |  |  |  |
| 5.1 g/cc (317.8 lb/ft <sup>3</sup> )       |  |  |  |  |
| 3.6 g/cc (227.7 lb/ft <sup>3</sup> )       |  |  |  |  |
| 3.5 g/cc (215.6 lb/ft <sup>3</sup> )       |  |  |  |  |
| 3.3 g/cc (207.1 lb/ft <sup>3</sup> )       |  |  |  |  |
| 3.3 g/cc (203.3 lb/ft <sup>3</sup> )       |  |  |  |  |
| 135,373 J/kg (58.2 BTU/lb)                 |  |  |  |  |
| 54,661 J/kg (23.5 BTU/lb)                  |  |  |  |  |
| 81,643 J/kg (35.1 BTU/lb)                  |  |  |  |  |
|                                            |  |  |  |  |
| 477 J/kg/°K (0.114 BTU/lb/°F)              |  |  |  |  |
| 544 J/kg/°K (0.130 BTU/lb/°F)              |  |  |  |  |
| 46.10 bar abs (668.8 psia)                 |  |  |  |  |
| 230.2°C (446.4°F)                          |  |  |  |  |
|                                            |  |  |  |  |

Table 6.1-5 Physical Properties of UF<sub>6</sub>

LBDCR-17-0012

 Table 6.2-1
 Properties of Chemical Adsorbents

| Adsorbent (solid)/<br>Adsorbate (gas) | Heat of Adsorption                                                                          | Capacity of Adsorption by weight |  |  |
|---------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------|--|--|
| Activated Carbon/UF <sub>6</sub>      | 293 kJ/kg (126 BTU/lb)                                                                      | 1:1                              |  |  |
| Activated Carbon/HF                   | negligible                                                                                  | negligible at low pressure       |  |  |
| Aluminum Oxide/UF <sub>6</sub>        | negligible                                                                                  | 0.2:1                            |  |  |
| Aluminum Oxide/HF                     | negligible                                                                                  | 0.2:1                            |  |  |
| Aluminum Oxide/F <sub>2</sub>         | <u>7824 kJ/kg Al<sub>2</sub>O<sub>3</sub><br/>(3364 BTU/lb Al<sub>2</sub>O<sub>3</sub>)</u> | <u>0.12:1</u>                    |  |  |
| Sodium Fluoride Activated NaF/UF6     | 186 kJ/kg (80 BTU/lb)                                                                       | 1.0-1.5:1                        |  |  |
| Sodium FluorideActivated NaF/HF       | 4,052 kJ/kg (1,742 BTU/lb)                                                                  | 1:0.5                            |  |  |
| Sodium Fluoride/F2                    | Negligible                                                                                  | Negligible                       |  |  |

<u>43</u>42a