

VEP-NOS-17

SURRY UNIT 2, CYCLE 7 CORE PERFORMANCE REPORT

by

Nancy S. Pierce

Reviewed:

E. S. Hendrixson, Engineer Nuclear Fuel Operation

Approved:

C. T. Snow, Supervisor Nuclear Fuel Operation

Operations and Maintenance Support Subsection Nuclear Operations Department Virginia Power Richmond, Virginia

March, 1985

CLASSIFICATION/DISCLAIMER

The data, techniques, information, and conclusions in this report have been prepared solely for use by Virginia Power (the Company), and they may not be appropriate for use in situations other than those for which they were specifically prepared. The Company therefore makes no claim or warranty whatsoever, express or implied, as to their accuracy, usefulness, or applicability. In particular, THE COMPANY MAKES NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, NOR SHALL ANY WARRANTY BE DEEMED TO ARISE FROM COURSE OF DEALING OR USAGE OF TRADE, with respect to this report or any of the data, techniques, information, or conclusions in it. By making this report available, the Company does not authorize its use by others, and any such use is expressly forbidden except with the prior written approval of the Company. Any such written approval shall itself be deemed to incorporate the disclaimers of liability and disclaimers of warranties provided herein. In no event shall the Company be liable, under any legal theory whatsoever (whether contract, tort, warranty, or strict or absolute liability), for any property damage, mental or physical injury or death, loss of use of property, or other damage resulting from or arising out of the use, authorized or unauthorized, of this report or the data, techniques, information, or conclusions in it.

i

TABLE OF CONTENTS

SECTION

н. 1 Б., 5,

TITLE

PAGE NO.

	Classification/Disclaimer
	List of Tables
	List of Figures
1	Introduction and Summary 1
2	Burnup Follow
3	Reactivity Depletion Follow
4	Power Distribution Follow
5	Primary Coolant Activity Follow
6	Conclusions
7	References

LIST OF TABLES

TABLE TITLE PAGE NO.

LIST OF FIGURES

FIGURE

1 1 - 1 1 - 2

TITLE

PAGE NO.

1.1	Core Loading Map	•	4
1.2	Movable Detector and Thermocouple Locations	•	5
1.3	Control Rod Locations	•	6
2.1	Core Burnup History	•	9
2.2	Monthly Average Load Factors	•	10
2.3	Assemblywise Accumulated Burnup: Measured and Predicted	•	11
2.4	Assemblywise Accumulated Burnup: Comparison of		
	Measured and Predicted	•	12
2.5A	Sub-Batch Burnup Sharing	•	13
2.5B	Sub-Batch Burnup Sharing	•	14
3.1	Critical Boron Concentration versus Burnup - HFP,ARO		16
4.1	Assemblywise Power Distribution - S2-7-05	•	23
4.2	Assemblywise Power Distribution - S2-7-23	•	24
4.3	Assemblywise Power Distribution - S2-7-45	•	25
4.4	Hot Channel Factor Normalized Operating Envelope	•	26
4.5	Heat Flux Hot Channel Factor, $F_Q^T(Z)$ - S2-7-05	•	27
4.6	Heat Flux Hot Channel Factor, $F_Q^{T}(Z)$ - S2-7-23	•	28
4.7	Heat Flux Hot Channel Factor, $F_Q^T(Z)$ - S2-7-45	•	29
4.8	Maximum Heat Flux Hot Channel Factor, F_Q *P, vs.		
	Axial Position	•	30
4.9	Maximum Heat Flux Hot Channel Factor, F-Q, versus Burnup		31
4.10	Enthalpy Rise Hot Channel Factor, $F-DH(N)$, versus Burnup	•	32
4.11	Target Delta Flux versus Burnup		33

.

LIST OF FIGURES CONT'D

FIGURE

ы I А. Қ.,

TITLE

PAGE NO.

4.12	Core A	Average	Axial	Power	Distri	bution	-	S2-	7-0	5	·	•	•	·	•	•	•	34
4.13	Core A	Average	Axial	Power	Distri	bution	-	S2-	7-2	3	•	•	•	•	•	•	•	35
4.14	Core A	Average	Axial	Power	Distri	bution	-	S2-	7-4	.5	•	•	•	•	•	•	•	36
4.15	Core A	Average	Axial	Peakin	ng Fact	or, F-2	Z,	ver	sus	Bı	ırr	up)	•	•	•	•	37
5.1	Dose H	Equivale	ent I-1	131 ve	rsus Ti	me .	•	•••		•		•			•	•	•	40
5.2	I-131,	/I-133 A	Activit	y Rat:	io vers	us Time	е											41

v

Section 1

INTRODUCTION AND SUMMARY

On March 20, 1985, Surry Unit 2 completed Cycle 7. Since the initial criticality of Cycle 7 on September 25, 1983, the reactor core produced approximately 87×10^6 MBTU (14,802 Megawatt days per metric ton of contained uranium) which has resulted in the generation of approximately 8.1 x 10^9 KWHr gross (7.7 x 10^9 KWHr net) of electrical energy. The purpose of this report is to present an analysis of the core performance for routine operation during Cycle 7. The physics tests that were performed during the startup of this cycle were covered in the Surry Unit 2, Cycle 7 Startup Physics Test Report¹ and, therefore, will not be included here.

The seventh cycle core consisted of six sub-batches of fuel: a thrice-burned sub-batch from cycles 4, 5, and 6 (6B5), two twice-burned sub-batches from cycles 5 and 6 (7A2 and 7B2), a once-burned batch from cycle 6 (8), and two fresh sub-batches (9A and S1/9C). The Surry 2, Cycle 7 core loading map specifying the fuel batch identification, fuel assembly locations, burnable poison locations and source assembly locations is shown in Figure 1.1. Movable detector locations and thermocouple locations are identified in Figure 1.2. Control rod locations are shown in Figure 1.3.

Routine core follow involves the analysis of four principal performance indicators. These are burnup distribution, reactivity depletion, power distribution, and primary coolant activity. The core

burnup distribution is followed to verify both burnup symmetry and proper batch burnup sharing, thereby ensuring that the fuel held over for the next cycle will be compatible with the new fuel that is inserted. Reactivity depletion is monitored to detect the existence of any abnormal reactivity behavior, to determine if the core is depleting as designed, and to indicate at what burnup level refueling will be required. Core power distribution follow includes the monitoring of nuclear hot channel factors to verify that they are within the Technical Specifications² limits thereby ensuring that adequate margins to linear power density and critical heat flux thermal limits are maintained. Lastly, as part of normal core follow, the primary coolant activity is monitored to verify that the dose equivalent iodine-131 concentration is within the limits specified by the Surry Technical Specifications, and to assess the integrity of the fuel.

Each of the four performance indicators is discussed in detail for the Surry 2, Cycle 7 core in the body of this report. The results are summarized below:

1. Burnup Follow - The burnup tilt (deviation from quadrant symmetry) on the core was no greater than $\pm 0.55\%$ with the burnup accumulation in each batch deviating from design prediction by less than 1.2%.

2. Reactivity Depletion Follow - The critical boron concentration, used to monitor reactivity depletion, was consistently within $\pm 0.47\%$ Δ K/K of the design prediction which is within the $\pm 1\%$ Δ K/K margin allowed by Section 4.10 of the Technical Specifications.

3. Power Distribution Follow - Incore flux maps taken each month indicated that the assemblywise radial power distributions deviated from the design predictions by an average difference of less than 2%. All hot channel factors met their respective Technical Specifications limits.

4. Primary Coolant Activity Follow - The average dose equivalent iodine-131 activity level in the primary coolant during Cycle 7 was approximately $1.0 \times 10^{-3} \mu \text{Ci/gm}$. This corresponds to much less than 1% of the operating limit for the concentration of radioiodine in the primary coolant.

In addition, the effects of fuel densification were monitored throughout the cycle. No densification effects were observed.

Figure 1.1

۰..

SURRY UNIT 2 - CYCLE 7

CORE LOADING MAP

R	P	N	м	L	к	L	н	G	F	Ε	D	С	в	A	
						1P2	6R4	1 2 96	-						1
				3NO	297	5R8 12P	5P2	2R0 12P	4P0	08					2
			5P3	3R9 8P	3R1 16P	089	4P8 SS	2P3	5R7 16P	1R7 8P	290				3
		492	494	485 16P	1 P0	0R6 20P	3P9 4P	2R5 20P	5P1	4R8 16P	6P5	294			4
	3N2	5R6 8P	2R6 16P	017	1R0 16P	W41	2P8 4P	W11	5R4 16P	OL4	2R1 16P	5R2 8P	ONG		5
	197	4Ŕ2 16P	4P1	5R3 16P	1L2	2R4 16P	1P3	3R3 16P	110	4R6 16P	6P4	OR1 16P	4P5		6
2P2	5R1 12P	3P8	0R2 20P	W29	2R8 16P	1112	4P7 4P	288	0R9 16P	W20	1R8 20P	0P7	3R6 12P	1 1P8	7
6R2 SS	5P5	196	0P4 4P	6P6 4P	295	3P3 4P	1R3 20P	5P6 4P	600	1P4 4P	0P3 4P	ÓP2	390	6R3	8
496	3R5 12P	4P9	1R9 20P	W32	4R9 16P	400	6P1 4P	5N0	3R0 16P	W04	2R9 20P	3P6	4R1 12P	3P4	9
	1P1	5R5 16P	OP6	3R4 16P	111	1R5 16P	299	0R3 16P	OL2	6R0 16P	3P7	3R8 16P	5P0		10
	0N1	ÓR8 8P	3Ř7 16P	016	2R3 16P	W05	1P9 4P	W48	1R6 16P	OL5	2R2 16P	5R9 8P	1117		11
	' <u></u>	0P5	5P4	4R7 16P	6P2	2R7 20P	6P7 4P	4R3 20P	698	0R4 16P	OPT	598		.'	12
		۱ <u></u>	2P1	0R5 8P	4R4 16P	195	3P5 SS	599	5R0 16P	6R1 8P	3P1		1		13
			I	ON4	6P3	1R1 12P	3P2	0R7 12P	507	2N3		1			14
	> ASS > ONE	EMBLY I OF THE	D FOLLOW	I	I <u></u>	4P3	6R5	098		·	I				15

4

A. SS - SECONDARY SOURCE B. XXP - BURNABLE POISON ASSEMBLY (XX-NUMBER OF RODS)

FUEL ASSEMBLY DESIGN PARAMETERS

				SUB-BAT	CH	
	6B5	7A2	782	8A	9	S1/9C
INITIAL ENRICHMENT(W/O U235) ASSEMBLY TYPE NUMBER OF ASSEMBLIES FUEL RODS PER ASSEMBLY ASSEMBLY IDENTIFICATION	3.20 15X15 8 204 W04,W05 W11,W20 W29,W32 W41,W48	3.13 15X15 8 204 0L2,0L4 0L5-0L7 1L0-1L2	3.41 15X15 12 204 0N1,0N4 0N6,0N8 1N2,1N7 2N3,2N8 3N0,3N2 4N0,5N0	3.61 15X15 68 204 0P1-0P9 1P0-1P9 2P0-2P9 3P0-3P9 4P0-4P9 5P0-5P9 6P0-6P8	3.59 15X15 57 204 0R1-0R9 1R0,1R1 1R3,1R5 1R6-1R9 2R0-2R9 3R0,3R1 3R3-3R9 4R1-4R9 5R0-5R9 6R0,6R1	3.59 15X15 4 204 6R2-6R5

4[.]

Figure 1.2

SURRY UNIT 2 - CYCLE 7

MOVABLE DETECTOR AND THERMOCOUPLE LOCATIONS

	R	P	N	м	L	к	Ł	H	G	F	Ε	D	с	в	A	
								MD	тс							1
							тс		TC	MD						2
•				MD TC		тс	MD	MD TC		тс		MD TC				3
			тс		MD			MD		MD	тс					4
			MD	i	MD	тс	MD	тс		тс	MD	MD TC		MD TC		5
			тс		MD TC			MD	тс	MD						, 6
	TC	тс	MD				MD		MD		тс	MD		MD		7
	MD	тс	MD TC		MD TC	тс		тс	тс	MD	тс		MD TC	MD	тс	8
ļ				тс	MD			тс	MD	MD TC					MD	9
•.			MD TC				MD TC				тс	MD		MD TC		10
				тс	MD	тс		MD TC		MD TC	MD				1	11
			MD		тс		MD TC				тс	MD	MD TC		•	12
								MD TC		MD TC						13
				•	MD TC				MD		тс	· ·	•			14
MD TC	- Mov - The	able Det rmocoup	lector le		•		MÐ	TC	TC			1				15

Absorber Material Ag-in-Cd

4

۲. ۱

FUNCTION

NUMBER OF CLUSTERS

Control Bank D	8
Control Bank C	8
Control Bank B	8
Control Bank A	8
Shutdown Bank SB	8
Shutdown Bank SA	8
SP (Spare Rod Locations)	8

Section 2

BURNUP FOLLOW

The burnup history for the Surry Unit 2, Cycle 7 core is graphically depicted in Figure 2.1. The Surry 2, Cycle 7 core achieved a burnup of 14,802 MWD/MTU. As shown in Figure 2.2, the average load factor for Cycle 7 was 81% when referenced to rated thermal power (2441 MW(t)).

Radial (X-Y) burnup distribution maps show how the core burnup is shared among the various fuel assemblies, and thereby allow a detailed burnup distribution analysis. The NEWTOTE³ computer code is used to calculate these assemblywise burnups. Figure 2.3 is a radial burnup distribution map in which the assemblywise burnup accumulation of the core at the end of Cycle 7 operation is given. For comparison purposes, the design values are also given. Figure 2.4 is a radial burnup distribution map in which the percentage difference comparison of measured and predicted assemblywise burnup accumulation at the end of Cycle 7 operation is also given. As can be seen from this figure, the accumulated assembly burnups were generally within $\pm 2.9\%$ of the predicted values. In addition, deviation from quadrant symmetry in the core, as indicated by the burnup tilt factors, was no greater than $\pm 0.55\%$.

The burnup sharing on a batch basis is monitored to verify that the core is operating as designed and to enable accurate end-of-cycle batch burnup predictions to be made for use in reload fuel design studies. Batch definitions are given in Figure 1.1. As seen in Figure 2.5, the batch burnup sharing for Surry Unit 2, Cycle 7 followed design predictions closely with each batch deviating less than 1.2% from design. Symmetric burnup in conjunction with agreement between actual and predicted

assemblywise burnups and batch burnup sharing indicate that the Cycle 7 core did deplete as designed.

ţ

· ·

ł

;

TIME(MONTHS)

---- CYCLE 7 MAXIMUM DESIGN BURNUP - 15500 MWD/MTU ---- BURNUP WINDOW FOR CYCLE 8 DESIGN - 13500 TO 15500 MWD/MTU

•

SURRY 2 - CYCLE 7

Figure 2.2

ł

HUNTE

Figure 2.3

SURRY 2 - CYCLE 7 ASSEMBLYWISE ACCUMULATED BURNUP MEASURED AND PREDICTED (1000 MWD/MTU)

	R	Ρ	N	M	L	к	J	н	G	F	E	D	С	B	A	
1						- 	23.901 24.151	11.28 11.49	24.771 24.15					MEA PRED	SURED	1
2				Ī	31.78 31.72	25.64 25.80	15.17 15.38	30.28 30.90	15.33 15.38	26.481 25.80	32.31 31.72					2
3			-	26.85 26.70	15.70 15.67	17.64	36.06 36.29	35.571 35.751	35.69 36.29	17.90 17.65	16.14 15.67	27.31 26.70				3
4		-	26.65 26.58	32.27 32.32	18.00 18.04	37.51 37.39	18.34 18.54	35.461 35.951	18.26 18.54	37.01 37.39	18.35 18.04	32.66 32.32	26.79 26.58			4
5	Ī	31.491 31.631	15.38 15.63	17.871	39.02 39.18	19.001 19.291	39.50 39.77	28.32 29.04	39.28 39.77	19.26 19.29	39.641 39.18[18.07 17.99	15.89 15.63	32.U2 31.63		5
6	-	25.64 25.78	17.47	37.14 37.35	18.75 19.22	39.26 39.47	18.47! 18.881	36.35 36.78	18.551 18.881	39.431 39.471	19.27 19.22	37.39 37.35	17.77 17.60	26.07 25.78		6
7	23.83 24.01	15.081 15.35	36.72 36.41	18.17 18.48	39.03 39.61	18.35 18.78	40.351 40.81	32.10 32.46	40.77 40.81	18.53 18.78	39.73 39.61	18.51 18.48	36.49 36.41	15.471 15.351	24.32 24.01	7
8	10.97 11.49	30.12 30.94	35.98 35.77	35.99 35.96	27.67 28.76	35.95 36.50	32.521 32.271	17.93 18.06	31.61 32.27	36.38 36.50	28.92 28.76	35.54 35.96	35.51 35.77	31.25(30.94	11.61 11.49	8
9	23.99 24.01	15.05 15.35	36.33 36.41	18.26 18.48	38.75 39.61	18.14 18.78	40.36 40.81	32.231 32.461	40.74 40.81	18.06 18.78	39.63 39.61	18.47 18.48	36.43 36.41	15.69 15.35	23.89 24.01	9
10		26.21	17.80 17.60	37.191 37.351	19.36 19.22	39.08 39.47	18.17 18.88	36.211 36.781	18.39 18.88	38.86 39.47	19.09 19.22	37.63 37.35	17.92 17.60	26.011 25.78		10
11	-	32.07 31.63	16.03 15.63	18.361 17.991	39.02 39.18	19.06 19.29	39.53 39.77	28.761 29.041	39.461 39.771	19.11 19.29	39.261 39.18	18.35 17.99	16.071 15.631	31.64 31.63		11
12	-		27.141 26.581	32.821 32.321	18.18 18.04	37.09 37.39	18.151 18.54	35.70 35.95	18.29 18.54	37.68 37.39	18.30 18.04	32.65 32.32	26.711 26.58			12
13		-		27.081 26.701	16.131 15.67	17.77 17.65	36.091 36.291	35.031 35.751	36.29 36.29	17.84 17.65	15.92 15.67	26.68 26.70				13
14			-		31.85 31.72	26.01 25.80	15.34 15.38	30.841 30.901	15.44 15.38	25.77 25.80	31.73 31.72					14
15				-		<u> </u>	24.38 24.15	11.53 11.49	23.85 24.15							15
	•									_	_	-	-			

Figure 2.4

.

SURRY 2 - CYCLE 7 ASSEMBLYWISE ACCUMULATED BURNUP COMPARISON OF MEASURED AND PREDICTED (1000 MWD/MTU)

ŝ

ŝ

	R	Р	N	м	L	ĸ	J	н	G	F	E	D	С	8	A
						-	23.90 -1.04	11.28 -1.83	24.77 2.56				-	MEASU M/P %	RED DIFF
				Ī	31.78 0.18	25.641 -0.601	15.17 -1.30	30.28 -2.00	15.33 -0.27	26.481 2.641	32.31 1.86				
			Ī	26.851 0.561	15.70 0.24	17.64 -0.05	36.061 -0.641	35.57 -0.50	35.691 -1.65	17.90 1.47	16.14 3.04	27.31			
			26.651	32.271 -0.171	18.00 -0.25	37.511	18.34 -1.04	35.461 -1.351	18.26 -1.49	37.01 -1.031	18.351 1.691	32.661 1.03	26.79 0.80		
	-	31.49 -0.44	15.38 -1.63	17.87 -0.69	39.021 -0.411	19.00 -1.49	39.50 -0.69	28.32 -2.46	39.281 -1.231	19.26 -0.16	39.64 1.17	18.07 0.41	15.89 1.65	32.021	
	- 	25.64 -0.53	17.47	37.141 -0.551	18.75 -2.47	39.26 -0.55	18.471 -2.16	36.35 -1.16	18.551 -1.781	39.43 -0.10	19.27 0.24	37.391 0.121	17.77 0.94	26.071	
	23.83	15.08 -1.75	36.72 0.84	18.17 -1.65	39.03 -1.47	18.35 -2.29	40.35 -1.12	32.10 -1.10	40.77	18.53 -1.32	39.731 0.301	18.511 0.191	36.49 0.21	15.47	24.32 1.31
	10.971	30.12 -2.64	35.98 0.57	35.99 0.08	27.671	35.951 -1.491	32.52 0.76	17.93 -0.72	31.61 -2.05	36.381 -0.321	28.92 0.58	35.541 -1.181	35.51 -0.75	31.25	11.61 1.05
	23.99 -0.05	15.05 -1.96	36.331	18.261 -1.17	38.75 ~2.18	18.14 -3.39	40.361	32.23 -0.72	40.74 -0.17	18.06 -3.80	39.63 0.04	18.47 -0.06	36.43 0.05	15.69 2.19	23.89 -0.48
-		26.21	17.80 1.12	37.19 -0.43	19.36 0.70	39.08 -1.00	18.17 -3.78	36.21 -1.55	18.39 -2.58	38.861 -1.541	19.09 -0.67	37.631 0.751	17.92 1.80	26.01	
	-	32.071	16.03 2.55	18.36 2.03	39.021 -0.41	19.06 -1.15	39.53 -0.62	28.761 -0.961	39.46 -0.79	19.111 -0.91	39.261 0.20	18.35 2.00	16.07 2.78	31.64 0.04	
	-		27.14	32.821	18.18 0.74	37.091	18.15 -2.09	35.701 -0.691	18.291 -1.351	37.68 0.77	18.30	32.65 1.00	26.71 0.46	 	
		-		27.081	16.13 2.98	17.771	36.09 -0.57	35.03 -2.01	36.291 -0.001	17.84	15.92 1.62	26.681 -0.071		ARITHM	ETIC AVG
			-		31.85 0.41	26.01 0.83	15.34 -0.25	30.84 -0.18	15.44 0.43	25.771 -0.111	31.73 0.04		-	PCI DIF	+ = -0.20
1	STANDA = 0	RD DEV .89		-			24.38 0.95	11.53 0.32	23.85 -1.23				-	AVG AB DIFF =	S PCT 1,13

BURNUP SHARING (MWD/MTU)

Batch	Cycle 4	Cycle 5	Cycle 6	Cycle 7	Total	BURNUP TILT
6B5	9376	8310	6729	14949	39364	
7A2		16441	7694	15062	39197	NW = -0.53
7B2		14619	10991	9147	34757	
8A			17681	13632	31313	NE = +0.44
9				17568	17568	
S1/9C				11348	11348	SW = -0.04
Core	Average			14802		SE = +0.14

н

G

Ε

р

с

SURRY UNIT 2 - CYCLE 7

4

SUB-BATCH BURNUP SHARING

SURRY UNIT 2 - CYCLE 7

ł

.

SUB-BATCH BURNUP SHARING

Section 3

REACTIVITY DEPLETION FOLLOW

The primary coolant critical boron concentration is monitored for the purposes of following core reactivity and to identify any anomalous reactivity behavior. The FOLLOW⁴ computer code was used to normalize "actual" critical boron concentration measurements to design conditions taking into consideration control rod position, xenon and samarium concentrations, moderator temperature, and power level. The normalized critical boron concentration versus burnup curve for the Surry 2, Cycle 7 core is shown in Figure 3.1. It can be seen that the measured data typically compare to within 56 ppm of the design prediction. This corresponds to less than $\pm 0.47\%$ Δ K/K which is within the $\pm 1\%$ Δ K/K criterion for reactivity anomalies set forth in Section 4.10 of the Technical Specifications. In conclusion, the trend indicated by the critical boron concentration verifies that the Cycle 7 core depleted as expected without any reactivity anomalies.

Figure 3.1

SURRY UNIT 2 - CYCLE 7

ţ

CRITICAL BORON CONCENTRATION VS. BURNUP

HFP-ARO

Section 4

POWER DISTRIBUTION FOLLOW

Analysis of core power distribution data on a routine basis is necessary to verify that the hot channel factors are within the Technical Specifications limits and to ensure that the reactor is operating without "uneven" burnup any abnormal conditions which could cause an distribution. Three-dimensional core power distributions are determined from movable detector flux map measurements using the INCORE⁵ computer program. A summary of all full core flux maps taken since the completion of startup physics testing for Surry 2, Cycle 7 is given in Table 4.1. Power distribution maps were generally taken at monthly intervals with additional maps taken as needed.

Radial (X-Y) core power distributions for a representative series of incore flux maps are given in Figures 4.1 through 4.3. Figure 4.1 shows a power distribution map that was taken early in cycle life. Figure 4.2 shows a power distribution map that was taken near mid-cycle burnup. Figure 4.3 shows a map that was taken late in Cycle 7 life. The radial power distributions were taken under equilibrium operating conditions with the unit at approximately full power. In each case, the measured relative assembly powers were generally within 4.2% of the predicted values with an average percent difference of less than 2.0% which is considered good agreement. In addition, as indicated by the INCORE tilt factors, the power distributions were essentially symmetric for all cases.

An important aspect of core power distribution follow is the monitoring

of nuclear hot channel factors. Verification that these factors are within Technical Specifications limits ensures that linear power density and critical heat flux limits will not be violated, thereby providing adequate thermal margins and maintaining fuel cladding integrity. The Technical Specifications limit on the axially dependent heat flux hot channel factor, $F_{\Omega}(Z)$, was 2.18 x K(Z), where K(Z) is the hot channel factor normalized operating envelope. Figure 4.4 is a plot of the K(Z) curve associated with the 2.18 $\rm F_{\Omega}(Z)$ limit. The axially dependent heat flux hot channel factors, $F_0(Z)$, for a representative set of flux maps are given in Figures 4.5 through 4.7. Throughout Cycle 7, the measured values of $F_{\Omega}(Z)$ were within the Technical Specifications limit. A summary of the maximum values of axially-dependent heat flux hot channel factors measured during Cycle 7 is given in Figure 4.8. Figure 4.9 shows the maximum values for the Heat Flux Hot Channel Factor measured during Cycle 7. As can be seen from the figure, there was a 20% margin to the limit at the beginning of the cycle, with the margin generally remaining unchanged throughout cycle operation.

The value of the enthalpy rise hot channel factor, F-delta H, which is the ratio of the integral of the power along the rod with the highest integrated power to that of the average rod, is routinely followed. The Technical Specifications limit for this parameter is set such that the critical heat flux (DNB) limit will not be violated. Additionally, the F-delta H limit ensures that the value of this parameter used in the LOCA-ECCS analysis is not exceeded during normal operation. The Cycle 7 limit on the enthalpy rise hot channel factor was set at 1.55(1+0.3(1-P)), where P is the fractional power level. A summary of the maximum values for the Enthalpy Rise Hot Channel Factor measured during Cycle 7 is given in Figure 4.10.

The Technical Specifications require that target delta flux* values be determined periodically. The target delta flux is the delta flux which would occur at conditions of full power, all rods out, and equilibrium xenon. Therefore, the delta flux is measured with the core at or near these conditions and the target delta flux is established at this measured point. Since the target delta flux varies as a function of burnup, the target value is updated monthly. Operational delta flux limits are then established about this target value. By maintaining the value of delta flux relatively constant, adverse axial power shapes due to xenon redistribution are avoided. The plot of the target delta flux versus burnup, given in Figure 4.11, shows the value of this parameter to have been approximately -1.5% at the beginning of Cycle 7. After approximately two-thirds of the cycle, delta flux values had shifted to -4% and then moved to -2.5% by the end of Cycle 7.

This axial power shift can also be observed in the corresponding core average axial power distribution for a representative series of maps given in Figures 4.12 through 4.14. In Map S2-7-05 (Figure 4.12), taken at approximately 200 MWD/MTU, the axial power distribution had a slightly peaked cosine shape with a peaking factor of 1.18. In Map S2-7-23 (Figure 4.13), taken at approximately 7,500 MWD/MTU, the axial power distribution had shifted toward the bottom of the core with an axial peaking factor of 1.15. Finally, in Map S2-7-45 (Figure 4.14), taken at approximately 14,150 MWD/MTU, the axial power shape was slightly concave with a peaking factor was 1.14. The history of F-Z during the cycle can be seen more clearly in a plot of F-Z versus burnup given in Figure 4.15.

In conclusion, the Surry 2, Cycle 7 core performed satisfactorily with

^{*}Delta Flux = ----- X 100 where Pt = power in top of core (MW(t)) -2441 Pb = power in bottom of core (MW(t))

power distribution analyses verifying that design predictions were accurate and that the values of the $F_Q(Z)$ and F-delta H hot channel factors were within the limits of the Technical Specifications.

ŝ

TABLE 4.1

SURRY UNIT 2 - CYCLE 7

SUMMARY OF FLUX MAPS FOR ROUTINE OPERATION

 MAP NO.		DATE	A BURN F-Q(T) HOT UP BANK CHANNEL FACTOR DATE MWD/ PWR D MTU (%) STEPS ASSY PIN AXIAL								(N) FAC1	2 HOT TOR	CORE I MA>	-(Z) <	3 F(XY)	QP'	4 TR	AXIAL OFF	NO.
 		 	MTU	(%)	STEPS	ASSY	PIN	AXIAL POINT	F-Q(T)	ASSY	PIN	F-DH(N)	AXIAL POINT	F(Z)		MAX 		SET (%)	THIM
5	(5)	10-05-83	198	100	228	E10	TH	33	1.761	L10	GΗ	1.420	34	1.177	1.378	1.007	NE	-1.35	38
8	(5)	10-21-83	621	100	228	E06	11	34	1.744	E06	ін	1.421	33	1.171	1.380	1.008	SE	-1.14	38
11	(0)	10-26-83	825	100	214	F11	HG	35	1.784	E06	сн	1.424	43	1.192	1.386	1.010	Sε	-4.51	38
13		11-23-83	1647	99	226	F11	НG	34	1.764	E06	тн	1.433	34	1.170	1.396	1.008	SE	-1.23	38
14		1-10-84	2493	100	228	F11	НG	35	1.765	F05	ні	1.432	34	1.163	1.396	1.008	NE	-1.64	43
15	(7)	2-08-84	3445	100	227	L10	GH	22	1.743	E06	тн	1.444	34	1.154	1.393	1.010	NE	-1.58	42
18	(1)	4-16-84	4668	75	185	L10	GH	34	1.814	L10	GH	1.444	34	1.185	1.408	1.007	NE	-3.29	41
19		5-23-84	5781	100	226	L10	GH	42	1.755	L10	СН	1.450	44	1.147	1.412	1.009	NE	-2.43	44

NOTES: HOT SPOT LOCATIONS ARE SPECIFIED BY GIVING ASSEMBLY LOCATIONS (E.G. H-8 IS THE CENTER-OF-CORE ASSEMBLY), FOLLOWED BY THE PIN LOCATION (DENOTED BY THE "Y" COORDINATE WITH THE FIFTEEN ROWS OF FUEL RODS LETTERED A THROUGH R AND THE "X" COORDINATE DESIGNATED IN A SIMILAR MANNER). IN THE "Z" DIRECTION THE CORE IS DIVIDED INTO 61 AXIAL POINTS STARTING FROM THE TOP OF THE CORE.

1. F-Q(T) INCLUDES A TOTAL UNCERTAINTY OF 1.08

2. F-DH(N) INCLUDES A MEASUREMENT UNCERTAINTY OF 1.04

3. F(XY) IS EVALUATED AT THE MIDPLANE OF THE CORE

4. QPTR - QUADRANT POWER TILT RATIO.

5. MAPS 6 AND 7 WERE QUARTER-CORE FLUX MAPS TAKEN FOR INCORE-EXCORE DETECTOR CALIBRATION.

6. MAPS 9, 10 AND 12 WERE QUARTER-CORE FLUX MAPS TAKEN FOR INCORE-EXCORE DETECTOR CALIBRATION.

7. MAPS 16 AND 17 WERE QUARTER-CORE FLUX MAPS TAKEN FOR INCORE-EXCORE DETECTOR CALIBRATION.

.21

TABLE 4.1 (CONTINUED)

.

. 22

 MAP NO.	DATE	BURN UP MWD/	 PWR	BANK D	СН	F-Q(ANNEL	T) HO FACT	1 r DR	F-DH CHNL	H(N) , FAC1	2 HOT FOR	CORE MAX	F(Z)	3 F(XY)	QP ⁻	4 rr	AXIAL OFF	NO.
		ΜΤυ	(%)	STEPS	ASSY	PIN	AXIAL POINT	F-Q(T)	ASSY	PIN	F-DH(N)	AXIAL POINT	F(Z) 		MAX	LOC	SET (%)	THIM
20	6-06-84	6255	100	226	L10	GH	43	1.751	L10	GH	1.449	44	1.146	1.410	1.009	NE	-2.53	44
23	7-12-84	7485	100	222	F11	HG	34	1.757	F11	HG	1.466	45	1.148	1.447	1.008	SE	-3.12	40
24	8-15-84	8590	94	210	L10	GH	45	1.755	L10	GH	1.449	45	1.154	1.415	1.008	NE	-3.62	45
25	9-21-84	9702	99	205	E06	LG	48	1.755	F05	IL	1.464	47	1.136	1.421	1.009	NE	-3.94	38
28	10-04-84	10173	99	228	L10	DI	43	1.745	L10	DI	1.457	45	1.141	1.411	1.007	NE	-3.35	45
36	11-28-84	11260	100	228	L06	DG	46	1.777	L06	DG	1.465	47	1.151	1.411	1.007	NE	-4.68	47
37	12-24-84	12003	86	201	L10	DI	43	1.712	L10	DG	1.458	46	1.125	1.419	1.009	NE	-2.92	47
38	01-30-85	13122	100	223	L10	DI	52	1.719	L10	DI	1.450	53	1.132	1.414	1.008	NE	-2.53	47
45	03-01-85	14150	100	223	L10	DG	53	1.716	F05		1.433	53	1.141	1.389	1.009	NE	- 2.71	47

8. MAPS 21 AND 22 WERE QUARTER-CORE FLUX MAPS TAKEN FOR INCORE-EXCORE DETECTOR CALIBRATION.

9. MAPS 26 AND 27 WERE QUARTER-CORE FLUX MAPS TAKEN FOR INCORE-EXCORE DETECTOR CALIBRATION.

10. MAPS 29 THROUGH 35 WERE QUARTER-CORE FLUX MAPS TAKEN FOR INCORE-EXCORE DETECTOR CALIBRATIONS.

11. MAPS 39 THROUGH 44 WERE QUARTER-CORE FLUX MAPS TAKEN FOR INCORE-EXCORE DETECTOR CALIBRATIONS.

SURRY UNIT 2 - CYCLE 7

ŝ

ASSEMBLYWISE POWER DISTRIBUTION S2-7-05

R	P	N	м	L	к	J	н	G	۴	E	D	С	в	A	
	. PRE . MEA . PCT DI	EDICTED SURED				0.53	0.88	0.53 0.55 2.8			 . PC	PREDI MEASU	CTED . RED . ERENCE.		1
	•••••		• • •	0.40 0.39 -0.7	0.75 0.75 -0.2	. 1.09 . 1.09 . 0.3	1.16 1.17 0.5	1.09 1.09 0.7	0.75 0.74 -0.9	0.40 0.41 4.5	· · · ·		•••••		2
			0.50 0.50 -0.7	1.02 1.01	1.15 1.14 -0.4	. 1.18 . 1.17 0.5	1.21 1.19 -1.3	1.18 1.16 -1.3	1.15 1.14 -0.9	1.02 1.04 2.4	0.50 0.53 4.5	•			:
		0.50 0.49 -2.2	0.86	. 1.13 . 1.12 0.8	1.19 1.18 -0.7	. 1.19 . 1.18 1.0	1.15 1.13 -1.5	1.19 1.17 -1.3	1.19 1.18 -0.8	1.13	0.86 0.88 2.1	0.50 0.52 3.2	• • •		1
	. 0.39 . 0.39 2.2	1.01 0.99 -2.2	1.13 1.11 -1.9	0.99 0.97 -1.4	1.22 1.20 -1.7	. 1.03 . 1.01 . 2.5	1.23 1.20 -2.5	1.03 1.01 -1.9	1.22 1.21 -0.6	0.99	1.13 1.14 0.9	1.01 1.04 2.5	. 0,39 . 0,41 . 3.9		:
	. 0.74 . 0.74 0.2	1.14 1.14 -0.2	1.18	1.21 1.17 -3.3	1.01 0.99 -2.1	1.22 1.20 -1.9	1.20 1.17 -2.7	1.22 1.21 -1.5	1.01 1.01 0.1	1.21 1.22 0.7	1.18 1.19 1.0	1.14 1.17 2.4	. 0.74 . 0.77 . 3.4	• • •	
0.53 0.51 -3.7	. 1.08 . . 1.08 . . - 0.4	1.17 1.19 1.7	1.18 1.18 -0.4	1.03 0.99 -3.7	1.21 1.19 -1.8	1.03 1.02 -0.8	1.15 1.14 -1.1	1.03	1.21 1.22 0.4	1.03 1.04 1.7	1.18 1.20 1.7	1.17 1.20 2.3	. 1.08 . 1.11 . 2.8	. 11.53 . . 0.55 . . 2.6 .	-
0.88 0.84 -3.7	. 1.16 . . 1.14 .	1.20	1.14 1.16 1.4	1.23	1.19 1.19 0.3	1.14 1.14 -0.5	1.15 1.15 -0.2	1.14 1.14 -0.0	1.19 1.19 -0.0	1.23 1.25 1.7	1.14 1.16 1.7	1.20 1.23 2.3	. 1.16 . 1.19 . 2.9	. 0.88 . . 0.92 . . 4.6 .	٤
0.53 0.51 -3.7	. 1.08 . . 1.06 . 1.8 .	1.17	1.18 1.19 0.7	1.03	1.21 1.21 -0.4	1.03 1.00 -2.7	1.15 1.14 -1.3	1.03 1.02 -0.5	1.21 1.21 -0.5	1.03 1.03 0.3	1.18 1.20 1.7	1.17	1.08 1.13 - 4.5	. 0.53 . 0.57 . . 7.0	9
	. 0.74 . . 0.75 . . 0.1 .	1.14	1.18	1.21 1.23 1.0	1.01 1.00 -1.2	1.22 1.19 -2.9	1.20 1.17 -3.0	1.22 1.20 -1.8	1.01 1.00 -0.4	1.21 1.21 -0.2	1.18 1.18 0.3	1.14 1.18 3.2	0.74 0.74 0.77	• • • • • • • • • • • • • • • • • • •	10
	. 0.39	1.01	1.13	0.99	1.22 1.20 -1.4	1.03 1.01 -2.6	1.23	1.03 1.00 -2.8	1.22 1.21 -0.7	0.99	1.13	1.01 1.04 3.1	0.39		1
	••••••	0.50 0.52 2.9	0.86	1.13 1.16 2.1	1.19 1.19 -0.1	1.19 1.18	1.15 1.12 -2.8	1.19 1.15 -3.1	1.19 1.18 ~0.4	1.13	0.86 0.88 2.4	0.50 0.52 3.3	•		12
			0.50	1.02	1.15 1.16 1.0	. 1.18 . 1.16 1.8	1.21 1.17 -2.8	1.18	1.15	1.02	0.50	••••	•		13
				0.40	0.75 0.77 2.4	. 1.09 . . 1.09 .	1.16 1.16 -0.1	1.09	0.75 0.76 1.5	0.40					14
	. STA . DEV . =1	NDARD 1ATION	· · · · ·		••••	0.53	0.88	0.53 0.54 1.5	•••••••		 . PC	AVER T DIFFI = 1	ACI ERENCE.		15

SUMMARY

MAP NO: S2-7-5	DATE: 10/05/83	POWER: 100%
CONTROL ROD POSITIONS:	F-Q(T) = 1.761	QPTR:
D BANK AT 228 STEPS	F-DH(N) = 1.420	NW 0.9888 NE 1.0071
·	F(Z) = 1.177	SW 0.9971 SE 1.0070
	F(XY) = 1.378	
	BURNUP = 198 MWD/MTU	A.O. = -1.351(%)

SURRY UNIT 2 - CYCLE 7

1

ASSEMBLYWISE POWER DISTRIBUTION S2-7-23

R	P	N	м	L	к	J	н	G	F	E	D	С	B	A	
	PR ME PCT D	EDICTED ASURED IFFEREN	CE.			0.48 0.48 -0.5	0.74 0.74 -0.75	0.48 . 0.48 . 0.3 .				PREDIO MEASUI PCT DIFFI	ERENCE.		1
				. 0.42 . 0.42 . 0.9	. 0.73 . 0.74 . 1.0	1.02 1.01 -0.2	0.99 0.98 -0.7	1.02 1.02 0.1	0.73 . 0.74 . 1.5 .	0.42 . 0.42 . 1.5 .	••	•••••			2
			. 0.53 . 0.54 . 0.9	. 1.06 . 1.07 . 0.9	. 1.19 . 1.21 . 1.0	1.09 1.09 0.3	1.07 1.06 -1.5	1.09 1.08 -1.1	1.19 1.21 1.5	1.06 . 1.08 . 1.5 .	0.53 0.54 0.9				3
		. 0.53 . 0.53 1.0	. 0.89 . 0.89 0.2	. 1.23 . 1.24 . 0.5	. 1.18 . 1.18 . 0.6	1.26 1.25 -1.1	1.11 1.08 -2.3	1.26 . 1.23 . -2.3 .	1.18 . 1.20 . 1.9 .	1.23 . 1.25 . 1.5 .	0.89 0.91 1.3	0.53			4
	. 0.42 . 0.41 2.3	. 1.06 . 1.04 2.3	. 1.23 . 1.21 . - 1.5	. 1.03 . 1.03 0.3	. 1.32 . 1.30 0.9	1.03 1.00 -2.9	1.19 1.16 -2.9	1.03 . 1.01 . -2.0 .	1.32 . 1.33 . 0.9 .	1.03 . 1.05 . 1.6 .	1.23 1.24 1.0	1.06 1.08 1.8	0.42	•	5
	0.73 0.72 -0.9	. 1.19 . 1.18 0.9	. 1.17 . 1.16 . - 1.3	. 1.31 . 1.28 2.3	. 1.03 . 1.02 . - 1.1	1.28 1.26 -1.4	1.14 1.11 -2.3	1.28 . 1.27 . -1.0 .	1.03 . 1.03 . -0.1 .	1.31 . 1.32 . 0.8 .	1.17 1.18 1.0	. 1.19 . 1.21 . 1.4	0.73 0.74 2.2		6
0.48 0.47 -2.3	1.02 1.01 -0.6	. 1.08 . 1.09 . 0.5	1.26 1.24 -1.6	1.03 1.00 -3.1	. 1.28 . 1.25 1.7	1.01 1.01 -0.2	1.13 1.12 -0.9	1.01 . 1.01 . -0.3 .	1.28 . 1.27 . -0.5 .	1.03 . 1.03 . -0.3 .	1.26 1.26 0.1	. 1.08 . 1.08 0.0	1.02	. 0.48 . 0.49 . 1.3	7
0.74 0.73 -2.4	0.99 0.97 -1.2	. 1.07 . 1.07 . 0.5	. 1.11 . 1.09 2.0	. 1.19 . 1.15 3.6	. 1.13 . 1.11 2.1	1.12 1.12 0.2	1.23 . 1.23 . 0.0 .	1.12 . 1.11 . -1.1 .	1.13 . 1.12 . -1.5 .	1.19 . 1.17 . -1.5 .	1.11 1.10 -1.2	. 1.07 . 1.05 1.7	0.99	. 0.74 . . 0.76 . . 2.7 .	8
0.48 0.47 -2.3	1.02 1.01 -0.4	. 1.08 . 1.10 . 1.5	. 1.26 . 1.24 1.0	1.03 0.99 -3.6	1.28 1.23 -3.6	1.01	1.13 1.13 -0.3	1.01 . 1.00 . -0.8 .	1.28 . 1.24 . -2.8 .	1.03 . 1.00 . -2.7 .	1.26 1.22 -2.8	. 1.08 . 1.08 . 0.1	1.02	. 0.48 . . 0.51 . . 4.8 .	9
	0.73	. 1.19 . 1.21 . 1.5	. 1.17 . 1.19 . 1.4	1.31	1.03 1.04 1.3	1.28 1.25 -2.3	1.14 1.12 -1.5	1.28 . 1.26 . -1.8 .	1.03 . 1.02 . -1.1 .	1.31 . 1.31 . -0.3 .	1.17 1.19 1.9	. 1.19 . 1.24 . 3.7	U.73 U.76 3.8	• • • • • • • • • • • • • • • • • • •	10
	0.42 0.42 2.1	. 1.06 . 1.08 . 2.1	. 1.23 . 1.25 . 1.7	1.03 1.04 1.3	1.32 1.32 0.4	1.03 1.02 -1.6	1.19 1.17 -2.2	1.03 . 1.01 . -2.3 .	1.32 . 1.34 . 1.9 .	1.03 . 1.05 . 1.9 .	1.23 1.25 2.0	. 1.06 . 1.09 . 2.6	0.42 0.43 3.1	• • •	11
		. U.53 . 0.55 . 2.6	. 0.89 . 0.91 . 2.1	1.23	1.18 1.18 -0.1	1.26 1.24 -1.2	1.11 1.09 -1.9	1.26 . 1.25 . -1.1 .	1.18 . 1.20 . 1.6 .	1.23 . 1.26 . 1.8 .	0.89 0.91 2.0	. 0.53 . . 0.55 . . 2.2 .	••••	•	12
			. 0.53 . 0.55 . 3.0	1.06 1.10 3.4	1.19 1.21 1.2	1.09 1.07 -1.6	1.07 1.05 -1.9	1.09 . 1.09 . 0.2 .	1.19 . 1.21 . 1.4 .	1.06 . 1.08 . 1.7 .	0.53 0.55 2.1	· · · · · · · · · · · · · · · · · · ·			13
				0.42 0.43 3.4	U./3 U./5 3.4	1.02 0.99 -2.4	0.99 . 0.98 . -0.6 .	1.02 . 1.03 . 1.0 .	0.73 . 0.74 . 1.4 .	0.42 . 0.42 . 1.4 .		•			14
	. SI . DE	ANDARD VIA110N 0.948			••••••	0.48 0.50 3.4	0.74 0.75 1.3	0.48 . 0.49 . 1.3 .	• • • • • • •		. F	AVIRA CT DIFFE = 1.	AGI RENCI 5		15
											••				

SUMMARY

MAP NO: S2-7-23	DATE :	7/12/84	POWER: 100%
CONTROL ROD POSITIONS:	F-Q(T)	= 1.757	QPTR:
D BANK AT 222 STEPS	F-DH(N)	= 1.466	NW 0.9859 NE 1.0061
	F(Z)	= 1.148	SW 1.0001 SE 1.0079
	F(XY)	= 1.447	
	BURNUP	= 7485 MWD/MTU	A.O. = $-3.117(\circ)$

SURRY UNIT 2 - CYCLE 7

ASSEMBLYWISE POWER DISTRIBUTION S2-7-45

R	P N	M	L	к	J	н	G	F	ε	D	С	в	A	
	PREDICTED MEASURED PCT DIFFERED	D NCE			0.49	0.73	0.49 0.50 1.3			. PC	PREDIC MEASUR T DIFFE	TED ED RENCE		1
		••••	. 0.44 . . 0.45 . . 1.8 .	0.74 0.74 0.3	1.02 1.02 -0.1	0.95 0.95 -0.3	1.02 1.03 0.8	0.74 . 0.76 . 2.4 .	0.44 0.45 2.9					2
		. 0.56 . 0.57 . 1.4	. 1.08 . . 1.08 . 0.1 .	1.22 1.21 -0.6	. 1.06 . 1.06 0.1	1.03 1.02 -1.2	1.06 . 1.05 . -0.5 .	1.22 . 1.25 . 2.4 .	1.08 1.12 3.1	0.56 0.58 3.6				3
	. 0.56 . 0.55 1.1	. 0.91 . 0.90 0.6	. 1.26 . . 1.25 . 1.4 .	1.15 1.15 -0.4	. 1.28 . 1.28 0.6	1.09 1.08 -1.5	1.28 . 1.26 . -1.7 .	1.15 . 1.16 . 0.5 .	1.26	0.91 . 0.92 . 1.2 .	0.56 . 0.57 . 1.8 .			4
	. 0.44 . 1.08 . 0.43 . 1.05 2.92.9	. 1.26 . 1.24 1.7	. 1.03 . . 1.03 . 0.2 .	1.32 1.31 -0.6	. 1.02 . 1.02 0.0	1.15 1.14 -1.3	1.02 . 1.01 . -1.3 .	1.32 1.33 0.5	1.03 1.04 0.3	1.26 1.25 -0.7	1.08 . 1.09 . 0.9 .	0.44 0.45 2.6		5
	. 0.74 . 1.22 . 0.74 . 1.21 0.90.9	. 1.15 . 1.14 1.2	. 1.32 . . 1.29 . 2.3 .	1.02 1.02 -0.4	. 1.28 . 1.27 0.2	1.09 1.08 -1.4	1.28 . 1.28 . -0.0 .	1.02 . 1.03 . 0.4 .	1.32 1.32 -0.2	1.15 . 1.14 . -0.8 .	1.22 . 1.23 . 0.6 .	U.74 U.76 2.3		6
0.49 0.49	. 1.02 . 1.06 . 1.03 . 1.07 . 0.5 . 1.1	. 1.28 . 1.27 1.3	. 1.02 . . 0.99 . 3.1 .	1.27 1.26 -1.2	. 0.99 . 1.00 . 0.9	1.10 1.10 0.3	0.99 . 1.00 . 1.1 .	1.27 . 1.28 . 0.3 .	1.02 1.01 -0.9	1.28 1.27 -1.4	1.06 . 1.06 . 0.4 .	1.02	. (1.49 . 0.50 . . 1.9	7
0.73 0.72 -0.6	. 0.95 . 1.03 . 0.95 . 1.04 . 0.0 . 1.1	. 1.09 . 1.07 . - 1.7	. 1.15 . . 1.11 . . - 3.5 .	1.09 1.07 -1.7	. 1.10 . 1.11 . 1.2	1.25	1.10 . 1.09 . -0.4 .	1.09 . 1.08 . -1.2 .	1.15 1.13 -2.2	1.09 . 1.08 . -0.9 .	1.03 . 1.03 . 0.2 .	0.95 0.97 1.8	0.73 0.76 3.9	8
0.49 0.49 0.49	. 1.02 . 1.06 . 1.02 . 1.06 0.2 . 0.0	. 1.28 . 1.26 . - 1.7	. 1.02 . . 0.98 . . - 3.5 .	1.27 1.23 -3.6	0.99 0.96 3.6	1.10 1.09 -1.0	0.99 . 0.99 . - 0.1 .	1.27 . 1.23 . -3.2 .	1.02 0.99 -2.3	1.28 1.28 -0.3	1.06 . 1.07 . 1.0 .	1.02 1.06 3.4	0.49 0.52 6.5	9
	. 0.74 . 1.22 . 0.74 . 1.22 . 0.0 . 0.0	. 1.15 . 1.15 . 0.2	. 1.32 . . 1.33 . . 0.6 .	1.02 1.00 -2.0	. 1.28 . 1.23 3.4	1.09 . 1.07 . -1.7	1.28 . 1.26 . -1.5 .	1.02 . 1.01 . -1.7 .	1.32	1.15 1.15 -0.3	1.22 . 1.24 . 1.4	0.74 0.77 0.77 3.8	• • • • • • • •	10
	. 0.44 . 1.08 . 0.45 . 1.11 . 2.3 . 2.3	. 1.26 . 1.28	. 1.03	1.32 1.30 -1.7	. 1.02 . 0.99 2.7	1.15 1.13 -1.8	1.02 . 1.00 . -1.9 .	1.32 1.30 -2.0	1.03	1.26 1.27 0.8	1.08 .	0.44		11
	. 0.56 . 0.58 . 4.6	. 0.91 . 0.94 . 3.0	. 1.26 . . 1.27 . . 0.5 .	1.15 1.13 -1.7	. 1.28 . 1.25 3.0	1.09 . 1.07 . -2.4 .	1.28 . 1.26 . -1.8 .	1.15 1.14 -1.0	1.26 1.26 -0.0	0.91.	0.56 . 0.57 . 2.2 .	• • • • • • •		12
		. 0.56 . 0.58 . 4.5	. 1.08 .	1.22 1.23 0.6	. 1.06 . 1.03 2.9	1.03 .	1.06 . 1.05 . -1.0 .	1.22 . 1.21 . -0.6 .	1.08	0.56 . 0.57 . 1.6	• • • • • • • • •			13
			. 0.44 . . 0.46 . . 4.5 .	0.74 0.78 5.2	. 1.02 .	0.95 . 0.96 . 0.6 .	1.02 . 1.02 . 0.0 .	0.74 . 0.74 . -0.1 .	0.44					14
	. STANDARD . DEVIATION . =1.293	• • • • • • •			. 0.49 . 0.52 . 6.1	0.73 0.75 3.8	0.49 0.49 0.4			 . PC	AVERA T DIFFE = 1.	GI . RENGE. 5 .		15

SUMMARY

MAP NO: S2-7-45	DATE :	3/01/85	POWER: 100%
CONTROL ROD POSITIONS:	F-Q(T)	= 1.716	QPTR:
D BANK AT 223 STEPS	F-DH(N)	= 1.433	NW 0.9977 NE 1.0023
	F(Z)	= 1.141	SW 1.0002 SE 0.9998
	F(XY)	= 1.389	
	BURNUP	= 14150 MWD/MTU	A.O. = $-2.712(\%)$

HOT CHANNEL FACTOR NORMALIZED OPERATING ENVELOPE

BGTTOM .

ţ

4

TOP

AXIAL POSITION (NODES)

SURRY UNIT 2 - CYCLE 7

MAXIMUM HEAT FLUX HOT CHANNEL FACTOR, FQ * P VS AXIAL POSITION

- FQ * P LIMIT

* MAXIMUM FQ * P

BOTTOM OF CORE

.

1 5

. -

TOP OF CORE

SURRY UNIT 2 - CYCLE 7

1 4

MAXIMUM HEAT FLUX HOT CHANNEL FACTOR, F-Q VS. BURNUP

- TECH SPEC LIMIT

CYCLE BURNUP (MWD/MTU)

SURRY UNIT 2 - CYCLE 7

ENTHALPY RISE HOT CHANNEL FACTOR, F-DH(N) VS. BURNUP

1

CYCLE BURNUP (MWD/MTU)

ີ

SURRY UNIT 2 - CYCLE 7 CORE AVERAGE AXIAL POWER DISTRIBUTION

7 (5

S2-7-05

SURRY UNIT 2 - CYCLE 7 CORE AVERAGE AXIAL POWER DISTRIBUTION

S2-7-23

SURRY UNIT 2 - CYCLE 7

CORE AVERAGE AXIAL POWER DISTRIBUTION

S2-7-45

Section 5

PRIMARY COOLANT ACTIVITY FOLLOW

Activity levels of iodine-131 and 133 in the primary coolant are important in core performance follow analysis because they are used as indicators of defective fuel. Additionally, they are also important with respect to the offsite dose calculation values associated with accident analyses. Both I-131 and I-133 can leak into the primary coolant system throught a breach in the cladding. As indicated in the Surry Technical Specifications, the dose equivalent I-131 concentration in the primary coolant is limited to 1.0 μ Ci/gm for normal steady state operation. Figure 5.1 shows the dose equivalent I-131 activity level history for the Surry 2, Cycle 7 core. The demineralizer flow rate averaged 105 gpm during power operation. The data shows that during Cycle 7, the core operated substantially below the 1.0 $\mu\text{Ci}/\text{gm}$ limit during steady state operation (the spike data is associated with power transients and unit shutdown). Specifically, the average dose equivalent I-131 concentration of 1.0 x 10^{-3} µCi/gm is equal to much less than 1% of the Technical Specifications limit.

The ratio of the specific activities of I-131 to I-133 is used to characterize the type of fuel failure which may have occurred in the reactor core. Use of the ratio for this determination is feasible because I-133 has a short half-life (approximately 21 hours) compared to that of I-131 (approximately eight days). For pinhole defects, where the diffusion time through the defect is on the order of days, the I-133

decays out leaving the I-131 dominant in activity, thereby causing the ratio to be 0.5 or more. In the case of large leaks, uranium particles in the coolant, and "tramp" uranium*, where the diffusion mechanism is negligible, the I-131/I-133 ratio will generally be less than 0.1. Figure 5.2 shows the I-131/I-133 ratio data for the Surry 2, Cycle 7 core. An evaluation of the measured values for dose equivalent I-131 and the I-131/I-133 ratio indicates that there were essentially no fuel defects in the Cycle 7 core, but there was a trace of uranium in the primary coolant system.

"Tramp" uranium consists of small particles of uranium which adhere to the outside of the fuel during the manufacturing process.

FIGURE 5.1

SURRY UNIT 2 - CYCLE 7

FIGURE 5.2 SURRY UNIT 2 - CYCLE 7 I-131/I-133 ACTIVITY RATIO vs. TIME 1.40 Ø .20 O Ο RATIO 1.00 0 I - 1 31 / I - 1 33 ACTIVITY 0.40 0.60 0.80 O m Ø መ O 00 O ዊ Φ Ø Ο O ٥ 00 ዔ Ø 0 ൙ൿ യ OO Ο Ø ጣ o_c စစစ O O Φ œ 0.20 ٥٥ 0 A **6 0** Ο Ο `ە[`] 0.00 100 POWER (X) OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR 1983 1984 1985

Y

Section 6

CONCLUSIONS

The Surry 2, Cycle 7 core has completed operation. Throughout this cycle, all core performance indicators compared favorably with the design predictions and the core related Technical Specifications limits were met with significant margin. No significant abnormalities in reactivity or burnup accumulation were detected. In addition, the excellent mechanical integrity of the fuel has not changed throughout Cycle 7 as indicated by the radioiodine analysis.

Section 7

REFERENCES

- E. S. Hendrixson, "Surry Unit 2, Cycle 7 Startup Physics Test Report," VEP-NOS-7, October, 1983
- 2) Surry Power Station Technical Specifications, Sections 3.1.D, 3.12.B, and 4.10.
- 3) T. K. Ross, "NEWTOTE Code", NFO-CCR-6, Vepco, April, 1984.
- 4) R. D. Klatt, W. D. Leggett, III, and L. D. Eisenhart, "FOLLOW Code," WCAP-7482, February, 1970.
- 5) W. D. Leggett, III and L. D. Eisenhart, "INCORE Code," WCAP-7149, December, 1967.