REACTOR CONTAINMENT BUILDING INTEGRATED LEAK RATE TEST

TYPES A, B, AND C PERIODIC TEST

VIRGINIA ELECTRIC AND POWER COMPANY

Surry Nuclear Power Station Unit No. 2

September 1983

PREPARED BY STONE & WEBSTER ENGINEERING CORPORATION

BOSTON, MASS

8312200472 831213 PDR ADOCK 05000281 P PDR

TABLE OF CONTENTS

Section	Title	Page
	REFERENCES	iii
	LIST of ATTACHMENTS	iv
1.	PURPOSE	1-1
2	SUMMARY	2.1- 1
2.1	TYPE A TEST	2.1-1
2.2	LOCAL LEAK RATE TESTS (TYPES B AND C)	2.2-1
3	TYPE A TEST	3.1-1
3.1	EDITED LOG OF EVENTS	3.1-1
3.2 3.2.1 3.2.2 3.2.3 3.2.4	GENERAL TEST DESCRIPTION	3.2-1 3.2-1 3.2-2
3.3 3.3.1 3.3.2	TEST RESULTS	3.3-1
4	LOCAL LEAK RATE TESTS (TYPES B AND C)	4-1

REFERENCES

- 1. 10CFR50 Appendix J, Primary Reactor Containment Leakage Testing for Water-Cooled Power Reactors, October 22, 1980.
- 2. 2-PT-16.3, Reactor Containment Building Integrated Leak Rate Test, 1983.
- 3. ANSI N45.4, American National Standard Leakage-Rate Testing of Containment Structures for Nuclear Reactors, March 16, 1972.
- 4. ANSI/ANS-56.8, Containment System Leakage Testing Requirements, February 19, 1981¹.

¹This document used only as a guideline and any reference to said document in no way implies compliance.

LIST OF ATTACHMENTS

Attachme	ent <u>Title</u>
3.2A	Site Meteorology
3.2B	Instrumentation
3.2C	CILRT Temperature Detector Locations
3.2D	CILRT Dewpoint Temperature Sensor Locations
3.3A	CILRT Input Variables
3.3B	CILRT Absolute Method-Total Time Analysis Test Results
3.3C	CILRT Absolute Method-Mass Point Analysis Test Results
3.3D	Graph - Containment Mass vs. Time
3.3E	Graph - Leak Rate and UCL vs. Time Total Time Analysis
3.3F	Graph - Leak Rate and UCL vs. Time Mass Point Analysis
.4A	Local Leak Rate Test Data

iv

SECTION 1

PURPOSE

The purpose of this report is to present a description and analysis of the September 1983, Type A Periodic Containment Integrated Leak Rate Test (CILRT), and a summary of the Type B and C tests conducted on the Virginia Electric and Power Company's Surry Nuclear Power Station, Unit No. 2.

This report is submitted as required by 10CFR50, Appendix J, Paragraph V.B.

1-1

SECTION 2

SUMMARY

2.1 TYPE A TEST

Pressurization for the CILRT was started at 1620 hours on September 10, 1983. Equipment problems with the refrigerant airdryer control circuitry and with the mechanical chillers interrupted containment pressurization at 1716 hours. The drver pressurization was restarted at 2147 hours and continued until 2330 hours. The compressors were secured due to the loss of the chillers. The containment pressure at 2354 hours on September 10, 1983, was 26.016 psia. Repairs on the chillers continued through the night. At 0705 hours on September 11, 1983, the compressors were restarted. The containment pressure was 25.989 psia, the containment weighted average temperature was 85.23 DEGF, and the containment weighted average dewpoint temperature was 70.96 DEGF.

Containment pressurization was secured at 1549 hours on September 11, 1983, with a peak pressure of 61.550 psia. Containment weighted average air temperature was 89.77 DEGF and the containment weighted average dewpoint temperature was 77.69 DEGF. The temperature stabilization criterion was satisfied at 2008 hours.

During the pressurization sequence, periodic leakage investigations were conducted. Leakage paths, identified during these investigations, were closely monitored into the leakage data collection interval. The following leakage paths were contributing to the leakage rate:

- 1. Secondary side leakage (steam generator to the main steam header)
- 2. The "A" Recirculation Spray Loop
- 3. The electrical penetration E18

From 2008 hours on September 11, 1983, to 1023 hours on September 12, 1983, the average mass loss per hour was decreasing. The average mass loss over these 14 hours was -18.8 lbm/hr; however, over the last 6 hours of this interval, the average mass loss was -12.83 lbm/hr. The acceptance criteria of less than 0.75LA is equivalent to -17.36 lbm/hr.

This encouraging decreasing trend did not last. Over the next 7 hours, from 1023 hours to 1724 hours on September 12, 1983, the average mass loss sharply increased to approximately - 35.4 lbm/hr. This is equivalent to a 7.77 standard cubic feet per minute (scfm) leak. This sudden and dramatic increase in the

2.1-1

leakage could only be attributable to a component failure. Leakage investigations were instituted without corroborating results. No new leakage paths were identified and no significant increases in known leakage paths were observed.

The secondary system was monitored for leakage by observation of pressure gages on the main steam headers. The lineup for main steam is not specifically included in the Type A procedure. Thus, leakage from containment through the steam generators could pass through the main steam system without showing significant pressure increase. Upon further investigation, drain lines were opened and significant air leakage was detected.

Since the secondary side is not considered a Type A leakage path, the decision was made to fill the main steam headers with water to create a water seal. The headers were only filled with water, i.e., they were not pressurized.

From 1724 hours on September 12, 1983, to 0530 hours on September 13, 1983, the average mass loss was less than 4 lbm/hr. Each header was filled one at a time with the last completed around midnight. The essentially flat mass trend continued until around 0530 hours, when the mass loss started increasing. From 0530 to 1132 hours on September 13, 1983, the average mass loss was -33.3 lbm/hr. This trend was almost identical to the previous interval (1023 to 1724 hours on September 12, 1983). It was concluded that the effect of the water seal had diminished.

The filling of the headers had confirmed the secondary side as the primary leakage path. However, the water seal would not last the 12-20 hrs required to complete the leakage test. Instead of refilling, it was decided to double valve the entire main steam Double valving was initiated at system outside containment. approximately 1000 hours on September 13, 1983. In addition to double valving, the non-return valves were manually torgued. There was a slight improvement in the mass loss trend, however, not what had been achieved with the water seal. At approximately 1800 hours on September 13, 1983, the non-return valves were manually torgued again and an open manual isolation valve to the main steam PORV was closed. These actions created a "tight" boundary to essentially minimize the secondary side leakage from the Type A analysis. The start of the Type A leakage period was conservatively set at 1300 hours on September 13, 1983. The test was run for 16 hours and was successfully completed at 0500 hours on September 14, 1983.

At 0609 hours on September 14, 1983, the mass pump-back verification test started. At 0749 hours, the mass-pump back test was completed. The verification test satisfied the requirements of the procedure.

Depressurization of the containment began at 1044 hours and was completed at 2004 hours on September 14, 1983.

2.2 LOCAL LEAK RATE TESTS (TYPES B AND C)

The Local Leak Rate Tests of containment isolation values and primary containment penetrations were conducted as required by station surveillance procedures since the last Type A Test performed in December of 1981.

In accordance with Appendix J to 10CFR50, Paragraph V.B., data for the Local Leak Rate Tests are summarized in Section 4 of this report.

2.2-1

SECTION 3

TYPE A TEST

3.1 EDITED LOG OF EVENTS

This log was edited from the Official Log of Events

September 10, 1983

1530 - Completed containment inspection

1620 - Commenced containment pressurization

1621 - Declared Dewpoint Analyzer No. 10 as a failed sensor

1716 - Secured pressurization due to inoperable air dryer and loss of chilled component cooling water

2147 - Restarted pressurization

2306 - Containment pressue 23.4 psig

Containment temperature 87.9°F

Containment dewpoint 69°F

2330 Lost chillers, stopped compressors

September 11, 1983

- 0705 Containment pressure 26.02 psig. Compressors restarted.
- 0810 Pressure observed on gauges installed on main steam lines to monitor steam generator pressure were:

"A" 19 psig; "B", 6 psig; "C", 5 psig

- 0957 Identified slight packing leak on MOV-2860B suction to low head pump.
- 1022 Lost "C" containment air recirculation fan.
- 1217 Lost "A" containment air recirculation fan.

1549 - Secured pressurization.

1725 - Observed electrical penetration E18 leaking at flange at approximately three o'clock position.

3.1-1

1758 - Observed minor packing leak on MOV-CS-201D and body to bonnet leak on TV-SI-200.

September 12, 1983

- 0221 Observed minor packing leaks and/or body to bonnet leaks on penetrations 57B, 42 and 58.
- 1616 Opened drain valve between NRV and TV on "A" and "B" steam generator main steam lines.
- 1730 Filling main steam lines in accordance with Attachment of Type A Procedure.

September 13, 1983

- 0030 Completed filling of main steam lines
- 1005 Torqued each main steam NRV two turns.
- 1215 Performed double valve isolation of main steam system in safeguards area.
- 1808 Torqued each main steam NRV again. Found manual isolation to "B" main steam PORV open. Closed valve.

September 14, 1983

- 0204 Removed one manometer U0963 from program. Failed at 0100 hours.
- 0530 Leak rate satisfied.
- 0750 Pump back verification test satisfied.
- 0800 Torqued E-18 electrical penetration to stop leak. No significant improvement observed.
- 1044 Commenced depressurization.
- 2004 Completed depressurizaiton.
- 2015 Containment inspection for pretest deviations complete.

3.2 GENERAL TEST DESCRIPTION

3.2.1 Prerequisites

In accordance with the Surry Unit No. 2 CILRT procedure, 2-PT-16.3 (Reference 2), the following is a partial listing of the prerequisites that were completed and documented prior to containment pressurization:

- a. Controlled access plan in effect
- b. General inspection of the accessible interior and exterior surfaces of the containment structure was performed
- c. All required Type B and C leak rate testing completed
- d. All test instrumentation calibrated or functionally verified within 6 months of the test.
- e. All required system valve line-ups completed
- f. Component cooling and chilled water systems were operable.
- g. Plant computers were operational and programmed for the CILRT.
- h. The Official Log of Events was established and available prior to commencement of the test.
- i. Site meteorology data recorded during the performance of the CILRT (Attachment 3.2A).
- 3.2.2 Equipment and Instrumentation

Pressurization of the containment was achieved by utilization of eight air compressors. Air was piped through two aftercoolers in parallel and a refrigerated air dryer. Instrumentation and valving were installed to maintain proper monitoring and control during pressurization. The total capacity of the pressurization system as installed was rated at 9,900 scfm.

During the test the necessary variables used to determine continually monitored containment leakage were using instrumentation which consisted of multiple resistance temperature detectors (RTDs), chilled mirror dew point indicators, and two absolute pressure quartz manometers (Attachment 3.2B). The general locations of the temperature and moisture sensors are shown in Attachments 3.2C and 3.2D.

A mass flowmeter in the service air system was used during the mass pump back verification test. All test instrumentation

readings were input into the plant computer for data acquisition and averaging.

3.2.3 Data Acquisition System

The Surry Unit No. 2 CILRT utilized a Westinghouse Prodac P250 to scan, log, average, and analyze data received from the containment instrumentation.

The P250 analog scan package reads all the analog inputs in a preestablished manner, converts these readings into engineering units, and then stores these values for use by the plant operators and by the plant application programs.

For the CILRT, the P250 Plant Computer monitored the following instrumentation:

Туре	<u>Scan Rate (sec)</u>
22 RTDs	20
5 chilled mirrors	20
2 guartz manometers	2

Instantaneous values of the CILRT instruments were recorded every 5 minutes during the test period, using the P250 digital trend function on the operator's console.

A 10-minute time average of the readings, calculated by the P250 Average and Integrate (A&I) package, was used as input in the plant computer CILRT programs.

The plant computer CILRT program consists of ILRTDATA, which runs every 10 minutes, collects A&I data for all the instrumentation, performs sensor validity checks, and calculates weighted average dew point temperature, vapor pressure, weighted average containment temperature, and containment air mass.

3.2.4 Data Resolution System

After the appropriate data have been acquired and averaged, utilizing the plant computer system, the results are manually input to a remote computer system for leakage rate calculations.

Absolute Method of Mass Point Analysis

The Absolute Method of Mass Point Analysis consists of calculating air masses within the containment structure, over the test period, from pressure, temperature, and dew point observations made during the CILRT. The air masses are computed using the ideal gas law as follows:

 $M = \frac{144V (P-Pv)}{RT}$

(Eq 1)

3.2-2

where:

M = air mass, lbm

- P = total pressure, psia
- Pv = average vapor pressure, psia
- R = 53.35 ft lbf/lbm °R (for air)

T = average containment temperature, °R

 $V = \text{containment free volume}, 1.8 \times 10^6 \text{ ft}^3$

The leakage rate is then determined by plotting the air mass as a function of time, using a least-squares fit to determine the slope, A = dM/dt. The leakage rate is expressed as a percentage of air mass lost in 24 hours or symbolically:

Leakage rate = (A/B) (-2400) (Eq 2)

where A is the slope of the least-squares curve and B is the yintercept. The sign convention is such that leakage out of the containment is positive and the units are in percent/day. The air mass is computed and the result is correlated as a function of time by means of a least-squares fit of the form:

m = At + B

(Eq 3)

The slope A and the y-intercept B are then used in Equation 2 to determine the leakage rate.

A 95 percent confidence interval is calculated using a Student's t distribution. The sum of the leakage rate and the 95 percent confidence interval is the UCL. The measured leakage rate may be described as 95 percent accurate to within the value of the UCL.

Absolute Method Total Time Analysis

The absolute method of total time analysis consists of calculating air lost from the containment pressure, temperature, and dew point observations during the CILRT.

The containment air mass is computed using Equation 1. The measured leakage rate at any time (t) is then determined by subtracting the mass at the time (Mt) from the initial mass (Mi) and dividing by the initial mass. The measured leak rate is expressed as a percentage of containment mass lost in 24 hours or symbolically:

Measured Leak Rage =
$$\underline{Mi - Mt}$$
 (2400) (Eq 4)
Mi (t)

The sign convention is such that an outward leak is positive and the units are in percent/day.

3.2-3

The estimated leakage rate is then determined by plotting the measured leak rate as a function of time and then performing a least-squares fit of the mesasured leak rate values as follows:

Estimated Leak Rate = At + B

where A is the slope and B is the y intercept of the least-squares curves.

The 95 percent confidence interval is determined withe the T distribution.

The analysis method was used in conjunction with procedure 2-PT-16.3 (Reference 3).

ATTACHMENT 3.2A

SITE METEOROLOGY

Date	Time	Drybulb Temperature (°F)	Barometric Pressure _(in Hg)
9-10-83	1620 1720 1820 1920 2020 2120 2220 2320	93.2 93.2 89.6 86.0 75.0 75.0 77.0 73.4	30.08 30.08 30.06 30.02 30.04 30.05 30.05 30.05
9-11-83	0020 0120	73.4 69.8	30.09 30.08
	0745 0845 0945 1045 1145 1245 1345 1445 1545 1645 1745 1845 1945 2045 2145 2245 2345	71.6 77.0 82.0 86.0 91.0 95.0 95.0 95.0 95.0 98.6 97.0 90.0 86.0 80.6 80.6 80.6 80.6	30.09 30.08 30.08 30.08 30.06 30.05 30.03 30.03 30.03 30.08 30.09 30.08 30.09 30.08 30.07 30.07 29.99 29.97 29.97
9-12-83	0045 0145 0245 0345 0445 0545 0645 0745 0845 0945 1045 1145 1245 1345	78.8 77.0 75.4 72.0 68.0 72.0 73.0 76.0 78.0 83.6 89.0 90.0 93.0	29.97 29.97 29.97 29.97 29.97 29.97 29.97 29.97 29.97 29.97 30.00 30.01 30.00 30.00

ATTACHMENT 3.2A (Cont)

. . .

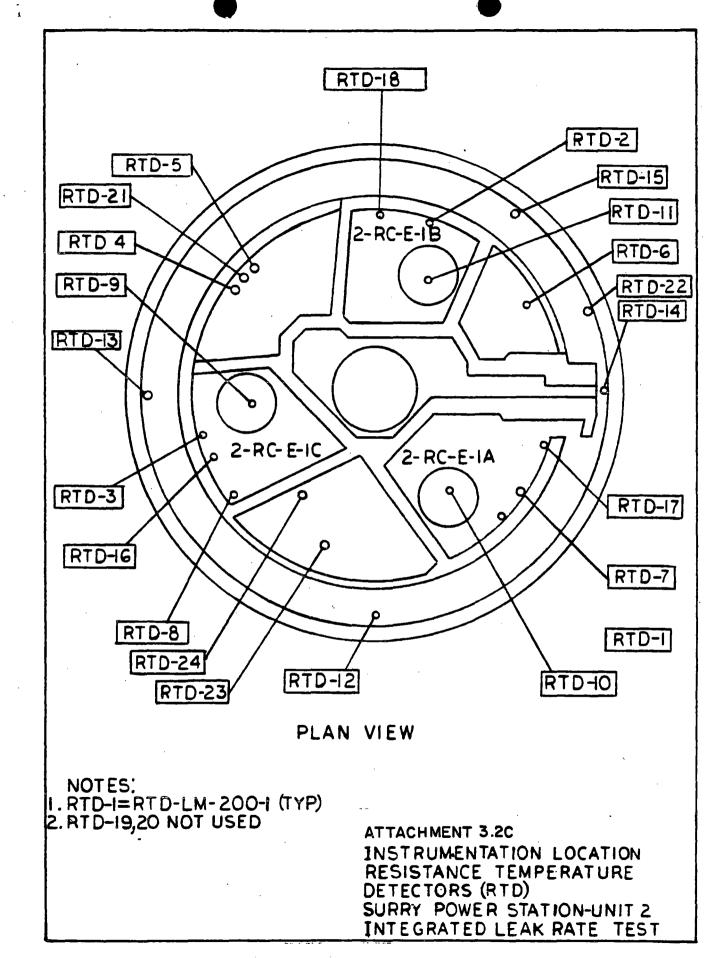
	Time	Drybulb Temperature (°F)	Barometric Pressure (in Hg)
	$1445 \\ 1545 \\ 1645 \\ 1745 \\ 1845 \\ 1945 \\ 2045 \\ 2145 \\ 2245 \\ 2345 $	95.0 94.5 93.0 92.0 90.5 88.0 81.0 80.0 77.6 77.0	29.99 29.99 29.98 29.97 29.96 29.97 29.97 29.97 29.98 29.99 29.99
9-13-83	0045 0145 0245 0345 0445 0545 0645 0745 0845 0945 1045 1145 1245 1345 1445 1545 1645 1745 1845 1945 2045 2145 2045 2145 2245 2345	$\begin{array}{c} 75.0\\ 73.5\\ 73.0\\ 71.5\\ 70.0\\ 70.0\\ 70.0\\ 71.5\\ 72.0\\ 73.0\\ 74.0\\ 74.0\\ 74.0\\ 74.0\\ 74.0\\ 74.0\\ 74.0\\ 79.0\\ 80.6\\ 82.0\\ 81.0\\ 79.0\\ 80.6\\ 82.0\\ 81.0\\ 79.0\\ 75.2\\ 74.0\\ 75.2\\ 74.0\\ 75.5\\ 73.0\\ 71.0\\ 70.6\end{array}$	$\begin{array}{c} 29.99\\ 30.01\\ 30.00\\ 30.00\\ 30.03\\ 30.03\\ 30.03\\ 30.03\\ 30.03\\ 30.04\\ 30.05\\ 30.04\\ 30.05\\ 30.08\\ 30.08\\ 30.05\\ 30.02\\ 30.02\\ 30.01\\ 30.00\\ 30.00\\ 30.01\\ 30.01\\ 30.01\\ 30.01\\ 30.02\\ 30.03\\ \end{array}$
9-14-83	0045 0145	70.5 68.6	30.03 30.02
· 、 、	0245 0345 0445 0545 0645 0745	68.5 67.0 65.5 65.0 67.0 69.5	30.00 30.00 30.01 30.01 30.02 30.02

ATTACHMENT 3.2B

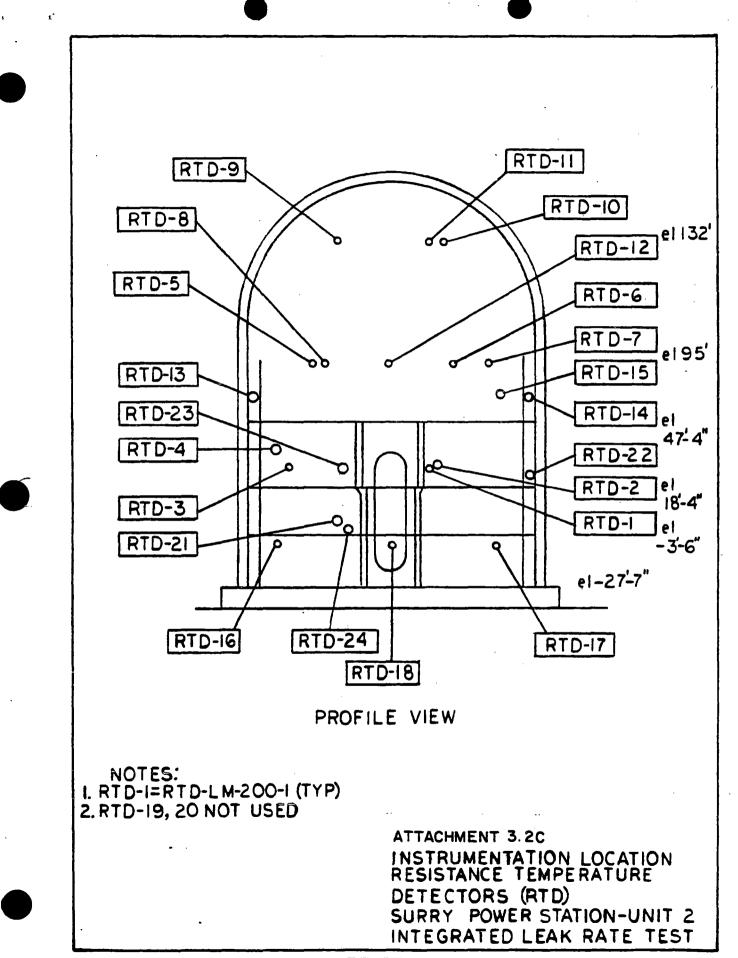
INSTRUMENTATION

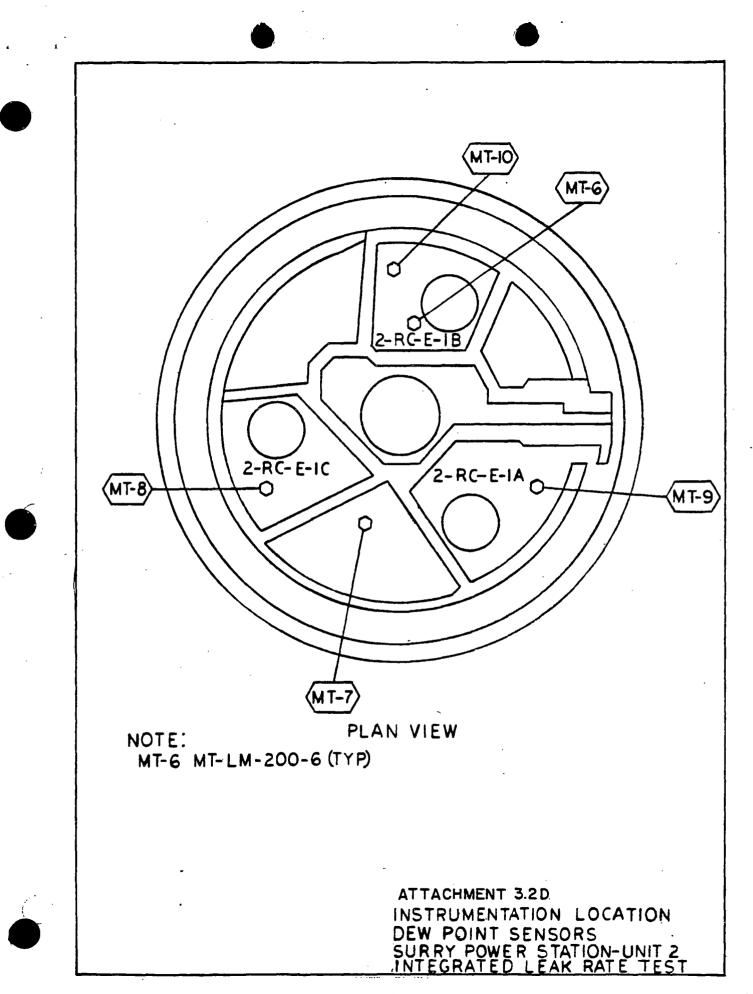
The following instrumentation was calibrated, and functionally tested no longer than 6 months prior to the performance of this test and in accordance with 10CFR50, Appendix J, and field calibration procedures using instrumentation traceable to the National Bureau of Standards.

Instrument	Weight <u>Factor</u>	Computer Point	Range	Zone	Accuracy	Sensitivity
RTD-LM-200-1	0.02683	T 1000A	55-105° F	F	±0.1°F	±0.09'F
RTD-LM-200-2	0.02322	T 100 1A	55-105°F	F	±0.1 [•] F	±0.09'F
RTD-LM-200-3	0.02427	T 1002A	55-105° F	F	±0.1 [•] F	±0.09°F
RTD-LM-200-4	0.01820	T 1003A	55-105° F	E	±0.1°F	±0.09' F
RTD-LM-200-5	0.08884	T 1004A	55-105° F	В.	±0.1°F	±0.09'F
RTD-LM-200-6	0.08884	T1005A	55-105° F	в	±0.1°F	±0.09° F
RTD-LM-200-7	0.08884	T 1006A	55-105°F	С	±0.1°F	±0.09° F
RTD-LM-200-8	0.08884	T 1007A	55-105° F	с	±0.1°F	±0.09' F
RTD-LM-200-9	0.04975	T 1008A	55-105° F	Α	±0.1°F	±0.09°F
RTD-LM-200-10	0.04975	T 1009A	55-105° F	Α	±0.1°F	±0.09°F
RTD-LM-200-11	0.04975	T 1010A	55-105°F	A	±0.1°F	±0.09 F
RTD-LM-200-12	0.02460	T1011A	55-105° F	D	±0.1°F	±0.09'F
RTD-LM-200-13	0.02460	T1012A	55-105°F	D	±0.1 F	±0.09'F
RTD-LM-200-14	0.02460	T1013A	55-105° F	E	±0.1°F	±0.09'F
RTD-LM-200-15	0.02460	T4024A	55-105° F	Е	±0.1°F	±0.09°F
RTD-LM-200-16	0.04766	T4025A	55-105 F	I	±0.1°F	±0.09°F
RTD-LM-200-17	0.04766	T4026A	55-105°F	I	±0.1°F	±0.09°F
RTD-LM-200-18	0.04766	T4027A	55-105°F	I	±0.1°F	±0.09°F
RTD-LM-200-21	0.03608	T4009A	55-105° F	н	±0.1 F	±0.09'F
RTD-LM-200-22	0.03961	T4020A	55-105°F	н	±0.1 F	±0.09'F
RTD-LM-200-23	0.01782	T4021A	55-105° F	G	±0.1°F	±0.09°F

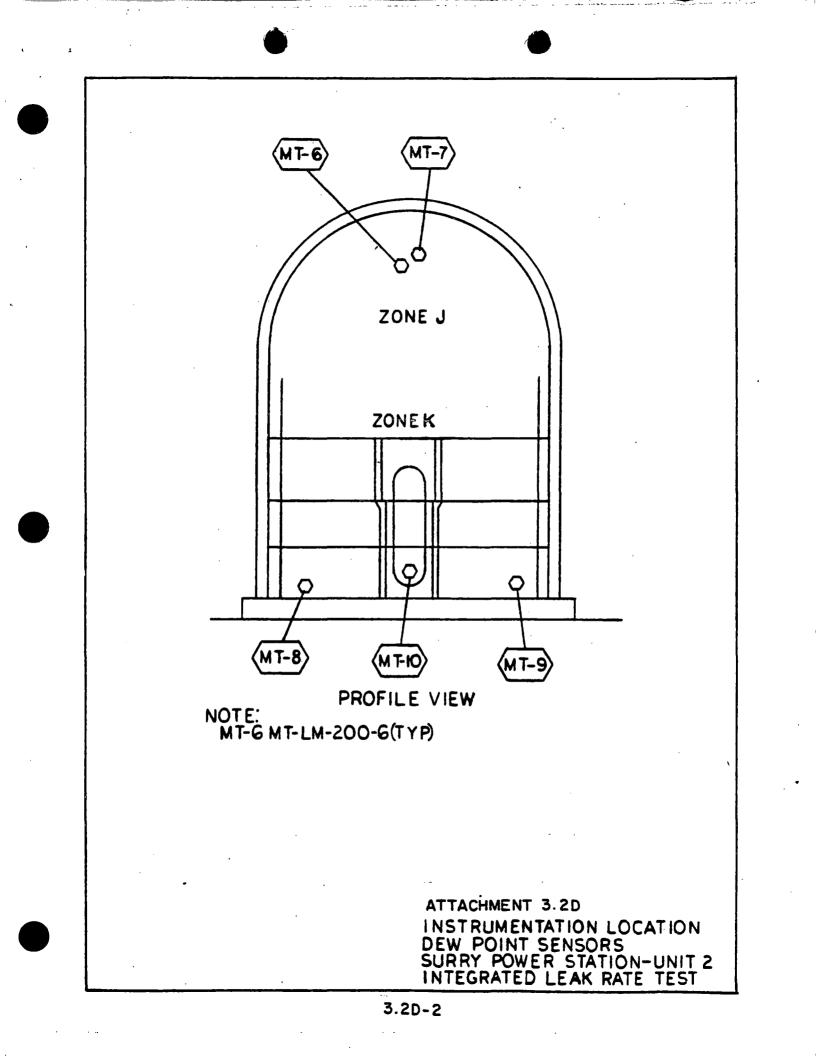

ATTACHMENT 3.2B (Cont)

•	Instrument	Weight <u>Factor</u>	Computer Point	Range	Zone	Accuracy	<u>Sensitivity</u>
	RTD-LM-200-24	0.06800	T4022A	55-105° F	G	±0.1°F	±0.09°F
	MT-LM-200-6	0.14064	T4039A	-40 to +200°F	к	±0.4 F	±0.05°F
	MT-LM-200-7	Ö. 14064	T4040A	-40 to +200° F	к.	±0.4 F	±0.05'F
	MT-LM-200-8	0.23959	T4041A	-40 to +200'F	L	±0.4 F	±0,.05° F
	MT-LM-200-9	0.23959	T4042A	-40 to +200°F	L	±0.4 F	±0.05°F
	MT-LM-200-10	0.23959	T4043A	-40 to +200'F	L	±0.4 F	±0.05'F
	PI-LM-206	0.5	U0962	0-100 psia		±0.030 psia	±0.001%
	PI-LM-207	0.5	00963	0-100 psia		±0.030 psia	±0.001%


.


2 of 2

.



3.2C-1

3.2D-1

3.3 TEST RESULTS

3.3.1 Analysis of Test Results

The test data for the period of 1300 hours on September 13, 1983, through 0500 hours on September 14, 1983, were analyzed for the final test results using VEPCO's time sharing computer program. The reduced input data, test results, and representative graphs are contained in Attachments 3.3A through 3.3F.

As discussed in Section 2.1, Type A Test Summary, there were three leakage paths that were contributing to the leakage rate. These leakage paths were as follows:

- 1. Secondary side leakage (steam generator to the main steam header)
- 2. The "A" recirculation spray loop
- 3. The electrical penetration E18

The "A" Recirculation Spray Loop eventually pressurized to approximately test pressure. The piping and components outside containment were inspected for leakage. It is concluded that this was not a major leakage path. The valve lineup for this loop was not changed during the test, so any leakage outside the loop is accounted for in the reported leakage rates.

The electrical penetration E18 was leaking at the flanged connection past the double O-rings. Leakage was at the three o'clock position when facing the penetration assembly. The bolting torque was increased after the completion of the pumpback test in an attempt to quantify leakage using the Type A analysis program. No appreciable change in the leakage rate at the penetration was obtained from torquing. Leakage from this penetration is accounted for in the reported leakage rates.

Leakage through the secondary side resulted in a delay of approximately forty hours. This leakage path is not a path that would exist during the Design Basis Loss-of-Coolant-Accident (DBA LOCA), as the secondary side would always be at a higher pressure than the primary side. During the Type A Test, the main steam system cannot be pressurized to a pressure greater than test pressure (inleakage concerns). Therefore, leakage thru the main steam system had to be either repaired or isolated before commencing with the Type A Test. The isolation of the main steam headers using the water seal and the double valving was enough to choke off this leakage path. This isolation was not a "zero leakage" boundary, so the reported leakage results still include some main steam leakage contributions.

The Absolute Method-Total Time Analysis test results are 0.060643 percent/day. This satisfies the procedural acceptance criteria

of 0.1 percent/day. The Absolute Method-Mass Point Analysis test results are 0.029158 percent/day. This satisfies the procedural acceptance criteria of 0.075 percent/day.

The Type A test calculations were verified by the mass pump back method. The computer calculated air mass was within 0.25LA of the metered mass as shown in Section 3.3.2.3.

3.3.2 CILRT Results

The CILRT was conducted in accordance with Section 5.0 of the surveillance test procedure 2-PT-16.3.

3.3.2.1 Total Time Analysis

Item

(Percent/Day)

1.	Leakage rate	0.023354
2.	Confidence level	0.036489
3.	Type C leakage penalty	0.000800
4.	Total	0.060643

3.3.2.2 Mass Point Analysis

Item

(Percent/Day)

(LBM)

1.	Leakage rate	0.022939
2.	Confidence level	0.005419
3.	Type C leakage penalty	0.000800
4.	Total	0.029158

3.3.2.3 Mass Step Change (Pumpback)

Item

- 1. Total measured gas 597.5 flow into containment
- 2. Difference between initial 572.62 and final computer mass readings
- 3. Difference between measured -24.88 and calculated mass (1-2)
- 4. 0.25 LA verification limit ±138

3.3.2.4 Types B and C Penetration Leakage to be added since these pentrations could not be vented and drained.

3.3-3

Penetration No./Leakage (SCFH)

20 24 28 55d 57c 97b 97c 101 105b		-	0	. 2 . 6 . 6	
			0		
105c			0		
Total	Type	В	and	С	

2.4 SCFH

Total Type B and C

0.0008 percent/day

ATTACHMENT 3.3A

CONTAINMENT INTEGRATED LEAK RATE TEST FROM 1300 HOURS ON 9/13/83 TO 0500 ON 9/14/83

INPUT VARIABLES

Time (hr)	Abs. Press. (psia)	Vap. Press. (psia)	Abs. Temp. (°R)	Dewpoint (°F)
			Abs. Temp. (°R) 547.51 547.51 547.50 547.50 547.50 547.50 547.50 547.50 547.49 547.49 547.49 547.49 547.49 547.49 547.48 547.49 547.48 547.49 547.48 547.49 547.50 547.50 547.51	Dewpoint (°F) 78.92 78.83 78.89 78.98 78.94 78.99 78.94 78.99 78.94 78.89 79.00 79.08 79.00 79.08 79.25 79.27 79.30 79.58 79.31 79.35 79.32 79.32 79.37 79.42 79.42 79.57 79.78
2020 2040 2120 2120 2220 2220 2240 2300 2320 2340 0000 0020 0040 0100 0120 0140 0200 0220 0240	61.162 61.161 61.162 61.161 61.163 61.163 61.164 61.166 61.167 61.168 61.169 61.170 61.170 61.171 61.171 61.171 61.172 61.172 61.172	0.5032 0.5042 0.4993 0.4999 0.5009 0.5001 0.5009 0.5015 0.5022 0.5027 0.5027 0.5027 0.5027 0.5027 0.5027 0.5027 0.5027 0.5025 0.5030 0.5030 0.5060	547.51 547.51 547.52 547.52 547.51 547.53 547.55 547.55 547.55 547.57 547.57 547.57 547.59 547.59 547.59 547.59 547.59 547.60 547.60	79.78 79.84 79.54 79.58 79.64 79.64 79.68 79.68 79.72 79.75 79.75 79.75 79.75 79.75 79.65 79.64 79.65 79.64 79.50 79.74 79.77 79.95

Time (hr)	Abs. Press. (psia)	Vap. Press. (psia)	Abs. Temp. (°R)	Dewpoint (°F)
0300	61.172	0.5029	547.60	79.76
0320	61.171	0.5019	547.60	79.70
0340	61.171	0.5014	547.60	79.67
0400	61.171	0.5024	547.60	79.73
0420	61.171	0.5009	547.60	79.64
0440	61.170	0.5037	547.59	79.81
0500	61.170	0.5039	547.59	79.82

ATTACHMENT 3.3B

CONTAINMENT INTEGRATED LEAK RATE TEST

FROM 1300 HOURS ON 9/13/83 TO 0500 HOURS ON 9/14/83

ABSOLUTE TEST METHOD - TOTAL TIME ANALYSIS

Time (Hrs)	Mass (Lbm)	Measure Leakage (Pct/day)	Estimate Leakage (Pct/day)	Confidence (Pct/day)	UCL (Pct/day)
				<u> </u>	
0.0	538384.69	0.0	0.0	0.0	0.0
0.333	538379.76	0.066015	0.0	0.0	0.0
0.667	538372.18	0.083627 /	0.0	0.0	0.0
1.000	538359.34	0.113011	0.111034	0.046832	0.157866
1.333	538365.05	0.065684	0.086351	0.134999	0.221350
1.667	538349.04	0.095343	0.092889	0.085533	0.178421
2.000	538356.18	0.063557	0.079466	0.075186	0.154652
2.333	538372.18	0.023909	0.053308	0.082762	0.136069
2.667	538348.57	0.060380	0.052414	0.072069	0.124484
3.000	538328.25	0.083873	0.060920	0.070598	0.131518
3.333	538313.90	0.094680	0.070633	0.069608	0.140241
3.667	538303.84	0.098293	0.078772	0.066965	0.145737
4.000	538300.96	0.093319	0.083293	0.062775	0.146068
4.333	538306.47	0.080479	0.083155	0.058726	0.141881
4.667	538256.11	0.122819	0.093918	0.060127	0.154045
5.000	538252.71	0.117674	0.101073	0.058336	0.159409
5.333	538289.42	0.079636	0.098049	0.057077	0.155126
5.667	538294.71	0.070784	0.093651	0.056736	0.150386
6.000	538296.37	0.065624	0.088960	0.056480	0.145439
6.333	538305.93	0.055442	0.083078	0.056974	0.140052
6.667	538313.85	0.047371	0.076657	0.057649	0.134307
7.000	538300.98	0.053313	0.072305	0.056766	0.129071
7.333	538278.30	0.064680	0.070549	0.055062	0.125612
7.667	538260.65	0.072124	0.070271	0.053424	0.123695
8.000	538303.42	0.045289	0.065840	0.052989	0.118828
8.333	538297.61	0.046587	0.062210	0.052155	0.114365
8.667	538298.57	0.044299	0.058727	0.051305	0.110031
9.000	538287.93	0.047930	0.056206	0.050204	0.106410
9.333	538285.37	0.047443	0.053941	0.049123	0.103064
9.667	538277.14	0.049598	0.052237	0.048040	0.100276
10.000	538289.06	0.042632	0.049863	0.047116	0.096979
10,333	538292.10	0.039946	0.047486	0.046257	0.093693
10.667	538282.77	0.042594	0.045596	0.045358	0.090954
11.000	538285.81	0.040074	0.043676	0.044516	0.088182
11.333	538294.68	0.035407	0.041441	0.043763	0.085204
11.667	538279.01	0.040382	0.039982	0.042985	0.082967
12.000	538298.47	0.032031	0.037793	0.042304	0.080097
12.333	538299.93	0.030640	0.035678	0.041644	0.077322
12,667	538320.26	0.022676	0.032961	0.041152	0.074113
13.000	538294.22	0.031023	0.031326	0.040508	0.071835
13.333	538280.01	0.034999	0.030232	0.039930	0.070163
.0.000	200200.01	0.004000	0.000202	0.000000	0.070100

 $\tilde{\mathcal{O}}$

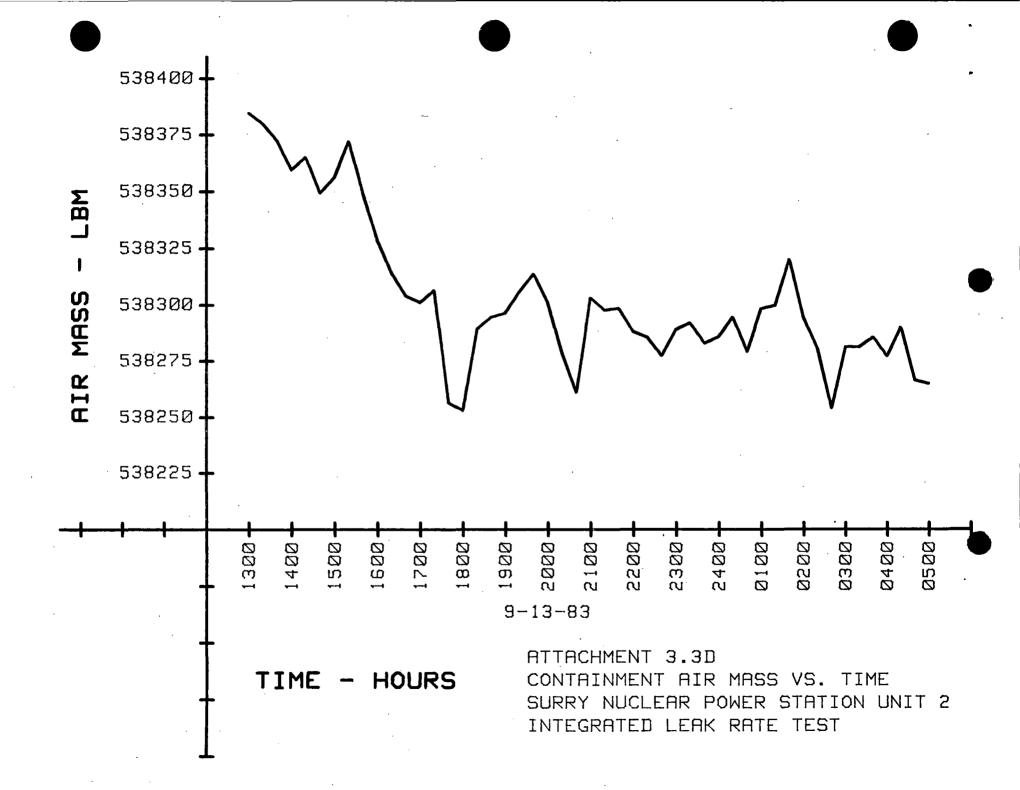
ATTACHMENT 3.3B (Cont)

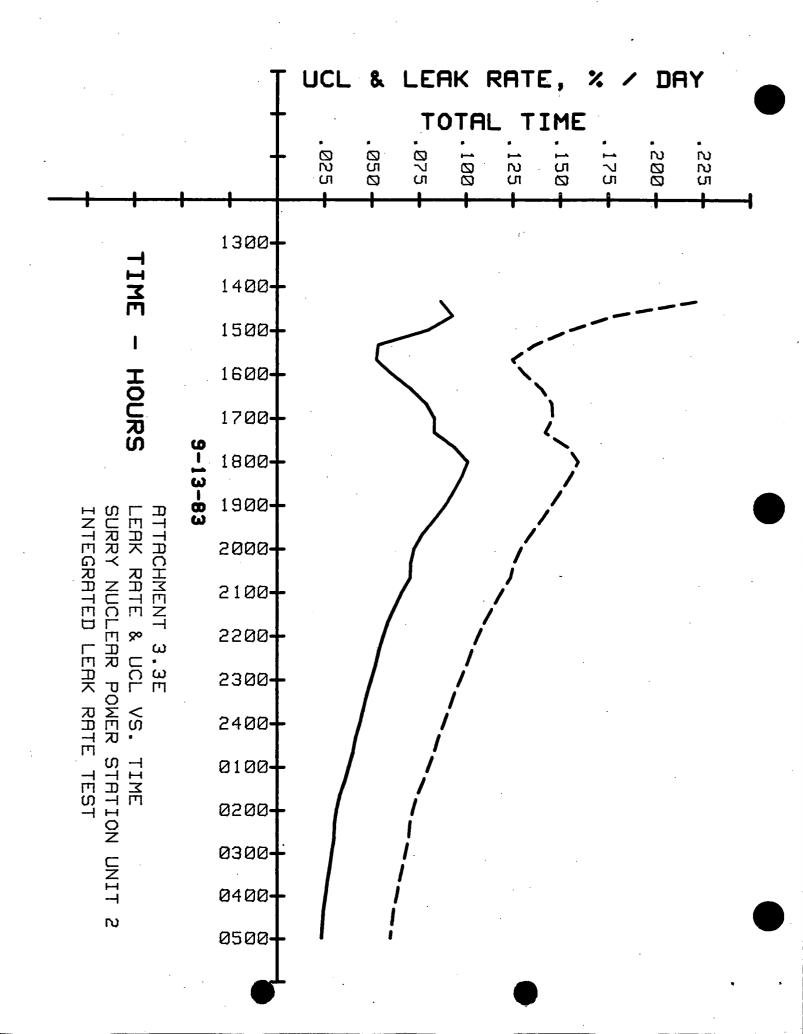
Time <u>(Hrs)</u>	Mass <u>(Lbm)</u>	Measure Leakage (Pct/day)	Estimate Leakage (Pct/day)	Confidence (Pct/day)	UCL (Pct/day)
13.667	538253.65	0.042742	0.029971	0.039603	0.069574
14.000	538281.47	0.032867	0.028844	0.039061	0.067905
14.333	538281.36	0.032140	0.027758	0.038545	0.066303
14.667	538285.73	0.030079	0.026586	0.038040	0.064626
15.000	538276.98	0.032011	0.025688	0.037597	0.063285
15.333	538290.10	0.027503	0.024493	0.037125	0.061618
15.667	538266.25	0.033701	0.023905	0.036797	0.060702
16.000	538264.79	0.033407	0.023354	0.036489	0.059842

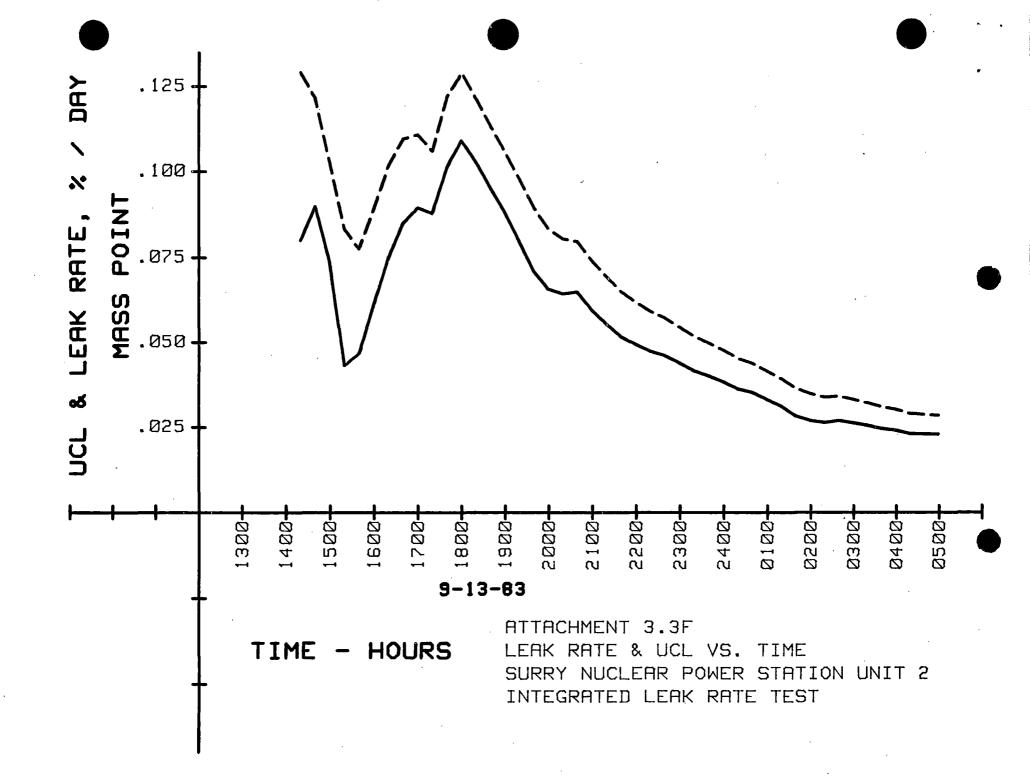
ATTACHMENT 3.3C

CONTAINMENT INTEGRATED LEAK RATE TEST FROM 1300 HRS ON 9/13/83 TO 0500 HOURS ON 9/14/83

ABSOLUTE TEST METHOD - MASS POINT ANALYSIS


Time	Mass	Leakage	Confidence	UCL
(hrs)	(lbm)	(Pct/day)	(Pct/day)	(Pct/day)
0.0 0.333 0.667 1.000 1.333 1.667 2.000 2.333 2.667 3.000 3.333	538384.69 538379.76 538372.18 538359.34 538365.05 538349.04 538356.18 538372.18 538372.18 538348.57 538328.25 538313.90	0.0 0.083635 0.111823 0.079859 0.089881 0.073611 0.042874 0.046712 0.060942 0.074655	0.0 0.086876 0.049737 0.049183 0.031646 0.028385 0.040079 0.030556 0.028387 0.027071	0.0 0.170511 0.161561 0.129041 0.121526 0.101997 0.082953 0.077268 0.089329 0.101726
3.667	538303.84	0.084870	0.024701	0.109571
4.000	538300.96	0.089517	0.021239	0.110756
4.333	538306.47	0.087778	0.018140	0.105918
4.667	538256.11	0.101285	0.020840	0.122125
5.000	538252.71	0.109093	0.019788	0.128882
5.333	538289.42	0.102689	0.018541	0.121230
5.667	538294.71	0.095148	0.018081	0.113230
6.000	538296.37	0.087901	0.017682	0.105583
6.333	538305.93	0.079540	0.017933	0.097473
6.667	538313.85	0.070939	0.018313	0.089252
7.000	538300.98	0.065681	0.017408	0.083089
7.333	538278.30	0.064264	0.015917	0.080181
7.667	538260.65	0.064889	0.014571	0.079460
8.000	538303.42	0.059498	0.014402	0.073901
8.333	538297.61	0.055415	0.013869	0.069284
8.667	538298.57	0.051632	0.013352	0.064983
9.000	538287.93	0.049274	0.012594	0.061868
9.333	538285.37	0.047268	0.011874	0.059142
9.667	538277.14	0.046041	0.011133	0.057174
10.000 10.333 10.667 11.000 11.333 11.667 12.000 12.333 12.667 13.000 13.333 13.667	538289.06 538292.10 538282.77 538285.81 538294.68 538279.01 538298.47 538299.93 538320.26 538294.22 538280.01 538253.65	0.043795 0.041465 0.039978 0.038333 0.036207 0.035197 0.033081 0.031069 0.028186 0.026885 0.026334 0.026941	0.010632 0.010215 0.009695 0.009256 0.008963 0.008515 0.008309 0.008106 0.008182 0.007870 0.007500 0.007163	0.037174 0.054427 0.051680 0.049674 0.047590 0.045170 0.043712 0.041389 0.039175 0.036367 0.034754 0.033834 0.034104




ATTACHMENT 3.3C (Cont)

Time	Mass	Leakage	Confidence	UCL
(hrs)	(1bm)	(Pct/day)	(Pct/day)	(Pct/day)
14.000	538281.47	0.026203	0.006863	0.033066
14.333	538281.36	0.025486	0.006584	0.032070
14.667	538285.73	0.024617	0.006344	0.030961
15.000	538276.98	0.024113	0.006085	0.030198
15.333	538290.10	0.023140	0.005899	0.029039
15.667	538266.25	0.023038	0.005652	0.028689
16.000	538264.79	0.022939	0.005419	0.028359

SECTION 4

LOCAL LEAK RATE TESTS (TYPE B AND C)

Section 4 analyzes the Local Leak Rate Test (LLRT) data performed since the December 1981 Type A Test. This analysis is comprised of LLRT Penetration Data (see Attachment 4A).

Multiple penetration designations have been reassigned in accordance with VEPCO drawings 11448-FV-1A and 11448-FV-1R. These designations are as follows:

Alphanumeric	Old	New
Designation	Designation	Designation
XXXA	Upper Left	Upper Left
XXXB	Upper Right	Lower Left
XXXC	Lower Right	Upper Right
XXXD	Lower Left	Lower Right

The penetrations, as designated above the XXX's, that were affected are 55, 56, 57, 97, and 105. Those penetrations not listed in Attachment 4B, such as 55A, are spares.

The combined "as-left" leakage rate for all the valves and penetrations subject to Type B and C testing is well below the acceptance criteria of less than 0.60LA. See Attachment 4A.

ATTACHMENT 4A

٠.

LOCAL LEAK RATE TEST PENETRATION DATA

Pen	etration	Type <u>Test</u>	Equipment/Valves Tested	Prerepair <u>Leakage (scfh),</u>	Postrepair <u>Leakage (scfh),</u>	<u>MR No., Repair</u>
7	Safety Injection	C	2-SI-150 MOV-2867C MOV-2867D	0.1 0.0 0.0	0.0 0.0 0.0	
15	Cha rg i ng	С	2-CH-309 MOV-2289A	0.0 0.0	0.0 0.0	
19	Cha rg i ng	с	MOV-2381	0.0	0.0	
20	Safety Injection	С	2-51-32	0.0	0.0	
21	Safety Injection	С	MOV-2842	0.0	0.0	
23	Safety Injection	С	MOV-2869B	0.0	0.0	
24	Residual Heat Remo∨al	С	MOV-RH-200	1.2	1.2	
28	Chemical and Volume Control	С	HCV-2200 A,B,C TV-2204	>40 0.0	0.6	S2307110656 lapped seat, new gaskets S2307110655 Reworked plug and cage S2307110654 Reworked plug and cage
32	Gaseous Waste	С	TV-GW-203 TV-GW-202	0.0	0.0 0.0	
33	Gaseous Drains	С	TV-DG-208A TV-DG-208B	0.5 0.0	0.0 0.0	
38	Aerated Drain	С	TV-DA-200A TV-DA-200B	>40 >40	4.1 3.0	S2307120532 Grind plug and seat
42	Service Air	С	2-SA-81 2-SA-82	0.0 0.0	0.0	
43	Air	C	2-RM-3 TV-RM-200A	3.0 0.0	3.0 0.0	S2307080602 Grind seat on flapper
• /		NA				
44	Air Monitoring	С	TV-RM-200B TV-RM-200C	0.0	0.0 0.0	. 1

ATTACHMENT 4A (Cont)

Pen	etration	Typ e <u>Test</u>	Equipment/Valves <u>Test</u> ed	Prerepair <u>Leakage (scfh),</u>	Postrepair Leakage (scfh),	<u>MR No., Repair</u>
45	Primary Grade Water	C	2-RC-160 TV-2519A	0.6 0.0	0.0 0.0	
46	Cha rg i ng	С	FCV-2160	>40 ·	0.0	
47	Instrument Air	С	2-1A-864 2-1A-704	1.1 1.9	0.0 0.0	S2307081046 Lapped seat and replaced gasket
			TV-1A-200	0.0	0.0	repraced gasket
48	Vent and Drain	С	TV-VG-209A TV-VG-209B	0.0 0.0	0.0 0.0	
50	Safety Injection	С	TV-SI-201A TV-SI-201B	>40 0.0	0.0 0.0	
51	Service Water	С	2-SW-206 2-SW-208	0.0 0.0	0.0 0.0	
53	Safety Injection	С	2-SI-234 TV-SI-200 ·	0.0 0.0	0.0 0.0	
54	Primary Vent	C	2-VA-1 2-VA-9	0.0 0.0	0.0	
55D	Leakage Monitoring	С	TV-LM-200G TV-LM-200H	0.0 0.0	0.0	· ·
56A	Sample System	С	TV-SS-206A TV-SS-206B	0.0 0.0	0.0	
56B	Sample System	С	TV-SS-202A TV-SS-202B	0.0 1.6	0.0 0.0	
56D	Sample System	С	TV-SS-200A TV-SS-200B	0.0 0.0	0.0 0.0	
57A	Leakage Monitoring	С	TV-LM-100G TV-LM-100H	0.0 0.0	0.0 0.0	
57B	Drain System	С	TV-DA-203A TV-DA-203B	0.0	0.0	
57C	Leakage Monitoring	С	TV-LM-200E TV-LM-200F	0.0 0.0	0.0 0.0	}

ATTACHMENT 4A (Cont)

<u>Pen</u>	<u>etration</u>	Type <u>Test</u>	Equipment/Valves Tested	Prerepair <u>Leakage (scfh),</u>	Postrepair <u>Leakage (scfh),</u>	<u>MR No., Repair</u>
57D	Sample System	• C	TV-SS-204A TV-SS-204B	0.0 0.0	0.0 0.0	
58	Instrument	С	2-IA-868	0.0	0.0	
	Air		1-IA-704	0.0	0.0	
60	Safety Injection	С	MOV-2890A	0.0	0.0	
61	Safety Injection	С	MOV-2890C	0.0	0.0	
62	Safety Injection	C	MOV-2890B	0.0	0.0	
63	Containment Spray	С	2-CS-24 MOV-CS-201C,D	0.0 0.0	0.0 0.0	
64	Containment Spray	С	2-CS-13 MOV-CS-201A,B	0.0 0.0	0.0 0.0	
66	Recirculation Spray	С	MOV-RS-255B	1.0	1.0	
67	Safety Injection	C .	MOV-2860B	0.0	0.0	
68	Safety Injection	C	MOV-2860A	1.4	1.4	
69	Recirculation Spray	C ·	MOV-RS-255A	>40	0.0	S2307300730 Adju
70	Recirculation Spray	С	2-RS-11 MOV-RS-256B	0.0 0.0	0.0 0.0	
71	Recirculation	С	1-RS-17	0.0	0.0	
	Spray		MOV-RS-256A	0.0	0.0	
89	Air Ejector Discharge	С	2-VP-12 TV-SV-202A	0.0 0.0	0.0 0.0	
90	Ventilation	С	MOV-VS-200C MOV-VS-200D, 201	0.0 0.6	0.0	

2307300730 Adjusted valve stroke

έ

ATTACHMENT 4A (Cont)

6

<u>Penetration</u>	Typ e <u>Test</u>	Equipment/Valves Tested	Prerepair <u>Leakage (scfh),</u>	Postrepair <u>Leakage (scfh),</u>	<u>MR No., Repair</u>
91 Ventilation	С	- MOV-VS-200A MOV-VS-200B, 202	0.0 1,35	0.0 1.35	
92 Containment Vacuum	С	TV-GW-204 TV-GW-205 TV-CV-250C TV-CV-250D	0.0 0.0 12.0 7.0	0.0 0.0 0.0 0.0	
93 Containment Vacuum	C	TV-GW-200 TV-GW-201 TV-CV-250A TV-CV-250B	0.0 0.0 0.8 >40	0.0 0.0 0.0 0.0	S2307030023 Lapped seat
94 Containment Vacuum	С	HCV-CV-200 2-CV-2	0.3 0.5	0.0 0.0	
97B Sample System	С	TV-SS-203A TV-SS-203B	0.0 0.0	0.0 0.0	
97C Leakage Monitoring	С	TV-LM-200A TV-LM-200B	0.0 0.0	0.0 0.0	
100 Gaseous Waste	С	TV-GW-206 TV-GW-207	0.0 0.0	0.0 0.0	
101 Fire Protection	С	2-FP-151 2-FP-152	0.0 0.0	0.0 0.0	
103 Reactor Cavity Purification	C	2-RL-3 2-RL-5	0.0 0.0	0.0 0.0	
104 Reactor Cavity Purification	C	2-RL-13 2-RL-15	0.0 0.0	0.0 0.0	
105B Leakage Monitoring	С	TV-LM-200C TV-LM-200D	0.0 0.0	0.0 0.0	
105C Post Accident Sampling	C	TV-GW-211A TV-GW-211B	0.0 0.0	0.0 0.0	
106 Safety Injection	С	2-51-73	0.0	0.0	

I.

٩,

\$

Penetration	Type <u>Test</u>	Equipment/Valves Tested	Prerepair <u>Leakage (scfh),</u>	Postrepair <u>Leakage (scfh),</u>	<u>MR No., Repair</u>
112 Instrument Air	С	TV-1A-201A TV-1A-201B	0.0 0.0	0.0 0.0	
113 Safety Injection	C	2-51-174 MOV-2869A	0.0	0.0 0.0	
Personnel Air Lock	В	0-ring	0.0	0.0	
Equipment Hatch	В	0-ring	0.0	0.0	
Fuel Transfer Tube	В	0-ring	3.1	3.1	
Emergency Air Lock	В	0-ring	0.0	0.0	

All electrical penetrations and other Type B penetrations were tested prior to performance of the CILRT with a combined leakage of 0.052 scfh.