

HF Controls Corp. • 1624 West Crosby Road Suite 124 • Carrollton, TX 75006 USA • Phone 469.568.6500 • Fax 469.568.6599 • www.hfcontrols.com

April 5, 2018

United States Nuclear Regulatory Commission 11555 Rockville Pike, Rockville, Maryland 20852

PROJ0731

Document Control Desk U.S. Nuclear Regulatory Commission Washington, DC 20555-0001

Subject:

Submittal of Non-proprietary information for Amendment 4 to the HFC-6000

Safety Platform

Reference:

HFC-6000 Safety Control System

Ladies and Gentlemen:

In 2017, HF Controls formally requested the beginning of an Acceptance Review on Amendment 4 to the HFC-6000 Safety Platform. The documents in that submittal were strictly proprietary. This submittal contains non-proprietary versions of three of the documents submitted to the USNRC for the Amendment 4 to the HFC-6000 Safety Platform Acceptance Review: RR901-107-03 EPRI TR 107330 RTM FPGA Controllers, TR901-302-01 HFC-FPGA Control System of HFC-6000 Safety Platform Qualification Test Report, and VV901-300-10 HFC-6000 FPGA Test Specimen Design Description.

Additionally, the document RR901-107-10 Amendment for HFC-FPGA System to HFC-6000 Safety Platform has been updated to Revision D after incorporating feedback from the USNRC in February 2018. This submittal contains the proprietary and nonproprietary versions of this document.

We thank the agency for the work.

I declare under penalty of perjury that the foregoing is true and correct.

Executed on April 544 2016 Em adm

Yours Truly, Eugene O'Donnell V&V Department Manager Doosan HF Controls

YG01 NRR

Enclosures:

1. Supporting documents in Proprietary and Non-Proprietary versions:

Non-Proprietary	Proprietary	Description	Rev.
Version	Version		
RR901-107-03-NP	N/A	EPRI TR 107330 RTM FPGA Controllers	В
RR901-107-10-NP	RR901-107-10-PI	Amendment for HFC-FPGA System to	D
		HFC-6000 Safety Platform	
TR901-302-01-NP	N/A	HFC-FPGA Control System of HFC-6000	В
	1	Safety Platform Qualification Test Report	
VV901-300-10-NP	N/A	HFC-6000 FPGA Test Specimen Design	A
		Description	

- 2. Justification of Proprietary Information
- 3. Proprietary Information Notice

CC: Joseph J. Holonich, Sr. Project Manager Licensing Process Branch Division of Policy and Rulemaking Office of Nuclear Reactor Regulation MS O-12D1

> Dr. Steve Yang Senior VP of Operations Doosan HF Controls

Justification for Proprietary Information Affidavit

- (1) My name is Eugene O'Donnell. I am the V&V Department Manager of Doosan HF Controls (HFC) Corporation and as such, I have been specifically delegated the function of reviewing the proprietary information sought to be withheld from public disclosure in connection with nuclear power plant licensing and rulemaking proceedings, and am authorized to apply for its withholding on behalf of Doosan-HFC Corporation.
- (2) I am making this Affidavit in conformance with the provisions of 10 CFR Section 2.390 of the Commission's regulations and in conjunction with the Doosan HFC application for withholding accompanying this affidavit.
- (3) I have personal knowledge of the criteria and procedures utilized by Doosan HFC in designating information as trade secret, privileged or as confidential commercial or financial information.
- (4) Pursuant to the provisions of paragraph (b)(4) of Section 2.390 of the Commission's regulations, the following is furnished for consideration by the Commission in determining whether the information sought to be withheld from public disclosure should be withheld.
 - (a) The information sought to be withheld from public disclosure is owned and has been held in confidence by Doosan HFC Corporation.
 - (b) The information is of a type customarily held in confidence by Doosan HFC and not customarily disclosed to the public. Doosan HFC has a rational basis for determining the types of information customarily held in confidence by it and, in that connection, uses a uniform method to determine when and whether to hold certain types of information in confidence. The application of our method and the substance of constitute Doosan HFC's policy and provide the rational basis required.

Under the Doosan HFC method, information is held in confidence if it falls in one or more of several types of information, the release of which might result in the loss of an existing or potential competitive advantage as follows:

- Its use by a competitor would reduce his expenditure of resources and improve his competitive position in the design, manufacture, installation, assurance of quality, or licensing a digital based I&C system.
- It reveals cost or price information, production capacities, budget levels, or commercial strategies of Doosan HFC, its customers or suppliers.

- ❖ It reveals aspects of past, present or future Doosan HFC or customer funded development plans and programs of potential commercial value to Doosan HFC.
- ❖ It contains patentable ideas, for which patent protection may be desirable.

For this affidavit, all of the information marked proprietary is because its use by a competitor would reduce his expenditure of resources and improve his competitive position in the design, manufacture, installation, assurance of quality, or licensing a digital based I&C system (type one above). This leads to a Doosan HFC need to restrict certain commercial information from the public to prevent its use by competitors and creating a commercial advantage for them to the detriment of Doosan HFC.

The development of the HFC-6000 system design is the result of many years of development by uniquely experienced personnel in an intensive effort along with the expenditure of a considerable sum of money. In order for competitors to duplicate the Doosan HFC design and applicable information, similar technical programs would have to be performed and a significant manpower effort, having the requisite talent and experience would have to be expended for the development of a digital design to equal the HFC-6000 system design.

There are sound Doosan HFC policy reasons behind the Doosan HFC proprietary designation system which include the following:

- a) The Use of such information by Doosan HFC gives Doosan HFC a competitive advantage over its competitors. It is therefore, withheld from disclosure to protect the Doosan HFC competitive position.
- b) It is information which is marketable in many ways. The extent to which such information is available to competitors diminishes the Doosan HFC ability to sell products involving the use of the information.
- c) Use by our competitors would put Doosan HFC at a competitive disadvantage by reducing their expenditure or resources at Doosan HFC expense.
- d) Each component of proprietary information pertinent to a particular competitive advantage is potentially as valuable as the total competitive advantage. If competitors acquire components of proprietary information, any one component may be the key to the entire puzzle, thereby depriving Doosan HFC of a competitive advantage.
- e) Unrestricted disclosure would jeopardize the position of Doosan HFC in the world market such as South Korea, and thereby give a market advantage to the competition in those countries.

- (5) The information is being transmitted to the Commission in confidence and, under the provisions of 10 CFR 2.390, it is to be received in confidence by the Commission.
- (6) Available information has not been previously employed in the same original. The information sought to be protected is not available in public sources or manner or method to the best of our knowledge and belief.
- (7) All documents in this submittal are to be held as proprietary in their entirety, as listed in the table below:

Proprietary Version	Description	Rev.
RR901-107-10-PI	Amendment for HFC-FPGA System to HFC-6000 Safety Platform	D

(8) The proprietary information sought to be withheld in the submittal is that which is appropriately marked by deletion, with brackets in some documents, in the following HFC non-proprietary documents:

Document Number	Description	Revision
RR901-107-03-NP	EPRI TR 107330 RTM FPGA Controllers	В
RR901-107-10-NP	Amendment for HFC-FPGA System to HFC-6000 D	
	Safety Platform	
TR901-302-01-NP	HFC-FPGA Control System of HFC-6000 Safety	В
	Platform Qualification Test Report	
VV901-300-10-NP	HFC-6000 FPGA Test Specimen Design Description	A

Eugene O'Donnell

Sworn to and subscribed

Sworn to and subscribed

574 da

of APRIL

Before me this

2018

Notary Public

3 of 3

Proprietary Information Notice

On April 5, 2018, Doosan HF Controls transmitted the following documents in non-proprietary format:

Document Number	Description	Revision
RR901-107-03-NP	Full Document	В
RR901-107-10-NP	Full Document	D
TR901-302-01-NP	Full Document	В
VV901-300-10-NP	Full Document	A

In order to conform to the requirements of 10 CFR 2.390 concerning the protection of proprietary information submitted to the NRC, the proprietary version of the document listed above is marked "HFC Proprietary" on the title page and on each subsequent page containing proprietary information. For the corresponding non-proprietary versions, all proprietary information has been deleted, with brackets or greyed-in fields in some documents, such that only non-proprietary information remains. In addition, the deletion was done in the manner such that the formatting of the documents was preserved so that page numbers, headings and section numbers remain unchanged. Since the basis for deleting the information in all instances is to protect Doosan HFC corporation confidential commercial information; there is no adjacent marking for each deletion as specified in 2.390(b)(1)(a)(i)(B). Instead, in order to facilitate the review process, the locations of the proprietary information in each file are listed in the table below:

Document Number	Locations of the proprietary information as
	deleted in the non-proprietary version
RR901-107-03-PI	Pages 10-65, Comments column text has been
	removed.
RR901-107-10-PI	Page 17: Figure 1
	Page 24: Figure 2
	Page 26: Figure 3
	Pages 28 and 29: Module adoption from HFC-
	6000 system to HFC-FPGA system details
	Page 29: Centralized Controller
	communication protocol details
	Page 30: Figure 4, Clock circuit specifics
	Page 31: Figure 5, I/O Module specifics
	Page 48: Testing locations
· ·	Page 50: Figure 6
TR901-302-01-PI	Page 17: AI and AO channel details, Table 2
	Page 18: Table 2, file name
	Pages 19, 29-33, 51, 52, 64, 65, 72, 76, 82-85,
	90, 91, 93- 96, 106, 107, 118-123, 135-138,
	141, 142, 151, 152, 171-173, 178-182, 184,
	187-202, 205, 213, 214: Analog values
	Page 20, 24, 34-36, 38, 42-46, 49, 50, 54-58,
	66-68, 70-72, 75, 77-82, 86-88, 90, 97-100,

	105, 107-115, 119-122, 139-141, 143-145,
	147, 150, 152-160, 168, 169, 173, 174, 179,
	180, 182, 184, 203-207, 210, 212, 213, 215-
	223: Response times
	Page 30: Figure 6
	•
	Page 33, 34, 39-45, 50-53, 58, 59, 65, 67, 68,
•	70, 71, 73, 76, 77, 83, 89, 91, 92, 96-106, 109,
	111-113, 116, 118, 120, 122, 123, 126-135,
	138-140, 144-150, 152, 156, 158-170, 172-
	180, 182, 183, 185, 186, 188-192, 194, 196,
	197, 202-204, 206-215, 220-225: Test result
	evaluation
	Page 62, 63, 66, 74, 75, 77, 78, 80, 83, 85-88,
	117, 118, 123-125, 150, 161-163, 167, 170,
	171, 177, 178, 196, : Test configuration details
	Page 34: Figure 7
	Pages 35, 62: Voltages
	Page 37: Figures 8-10
	Page 41: Figure 12
	Page 47: Figure 13
	Page 48: Figure 14
	Page 62: Figure 16
	Page 65: Figure 17
	Page 69: Figure 18
•	Page 70: Figure 19
	Pages 75, 76: Figure 20
	Page 79: Figure 21
•	Page 81: Figure 22
	Page 85: Figure 23
	Page 88: Figure 24
	Page 89: Figure 25
	Page 99: Figure 26
	Page 102: Figures 27 and 28
	Page 104: Figure 29
	Page 117: Figure 30
	All attachments removed
VV901-300-10-PI	Page 6: details of differences between racks, F-
	Link details.
	Page 7: F-Link details, G-Link details
	Page 8: Configuration details
	Page 15: FPC08 Function details
	Pages 17 and 18: Master Configuration List
	details

.