
Software Quality Assurance Plan for
PEST

Tad S. Whiteside

June 2016

Q-SQP-G-00004, Revision 0

Q-SQP-G-00004, Revision 0

DISCLAIMER

This work was prepared under an agreement with and funded by the U.S. Government. Neither the
U.S. Government or its employees, nor any of its contractors, subcontractors or their employees,
makes any express or implied:

1. warranty or assumes any legal liability for the accuracy, completeness, or for the use or
results of such use of any information, product, or process disclosed; or

2. representation that such use or results of such use would not infringe privately owned rights;
or

3. endorsement or recommendation of any specifically identified commercial product, process,
or service.

Any views and opinions of authors expressed in this work do not necessarily state or reflect those
of the United States Government, or its contractors, or subcontractors.

Printed in the United States of America
Prepared for

U.S. Department of Energy

ii

Q-SQP-G-00004, Revision 0

Keywords: Groundwater Modeling
PEST
Code Verification

Retention: permanent

Software Quality Assurance Plan for
PEST

Tad S. Whiteside

June 2016

Prepared for the U.S. Department of Energy under
contract number DE-AC09-08SR22470.

iii

Q-SQP-G-00004, Revision 0

Reviews and Approvals

G. P. Flach, Design Authority / Cognizant Technical Function Date
Environmental Modeling

T. S. Whiteside, Design Check Date
Environmental Modeling

C. G. Sherer, Cognizant Quality Function Date
SRNL Quality Assurance

B. T. Butcher, Design Agency Date
Environmental Modeling

D. A. Crowley, Design Agency Manager / Performing Manager Date
Environmental Modeling

iv

Q-SQP-G-00004, Revision 0

Contents

List of Abbreviations vi

1 Introduction 1

2 Software Classification 1

3 SQA Procedures/Plans 2

4 Roles and Responsibilities 2

5 Life Cycle Plans 3
5.1 Requirements . 3

5.1.1 Functionality . 3
5.1.2 Performance . 3
5.1.3 Design . 3
5.1.4 Attributes . 4
5.1.5 External Interfaces . 4
5.1.6 Cyber-Security Analysis . 4
5.1.7 Risk and Safety Analysis . 4

5.2 Design . 4
5.3 Implementation . 5
5.4 Testing . 5

5.4.1 Soil Specific Volume vs Water Content . 6
5.4.2 Multi-layer Hydroconductivity . 14
5.4.3 Unconfined Aquifer Subject to Recharge and Drain Boundary Conditions . . 16

5.5 Installation and Acceptance . 17
5.5.1 User Instructions . 18
5.5.2 Review and Approval . 18

5.6 Operation and Maintenance . 18
5.7 Retirement . 19

6 SQA Actions 19
6.1 Configuration Control . 19
6.2 Evaluation . 20
6.3 Problem Reporting and Corrective Action . 20

7 References 21

Appendix A Code Listings 22

v

Q-SQP-G-00004, Revision 0

List of Abbreviations

CQF Cognizant Quality Function

CTF Cognizant Technical Function

DOE Department of Energy

EPA U.S. Environmental Protection Agency

GSA General Separations Area

HPC High Performance Computing

PA Performance Assessment

PEST Parameter ESTimation software

QA Quality Assurance

RMSD Root-Mean-Square Deviation

SQAP Software Quality Assurance Plan

SRNL Savannah River National Laboratory

SRNS Savannah River Nuclear Solutions

SWCD Software Classification Document

TCP/IP Transmission Control Protocol / Internet Protocol

SRS Savannah River Site

vi

Q-SQP-G-00004, Revision 0

1 Introduction

The PEST “Parameter ESTimation” software is existing software and is classified as M&O/LW
Level “C” software. As such, in compliance with Manual 1Q Procedure 20-1, this document, the
Software Quality Assurance Plan (SQAP), is done as part of the required SQA Activities. The
SQAP documents the Life Cycle Plans and the SQA Actions. The Life Cycle Plans document
the Requirements, Design, Implementation, Testing, Installation and Acceptance, Operation and
Maintenance, and Retirement of the software. Because PEST is existing software, these plans shall
be created using a graded approach. The required SQA Actions are Configuration Control and
Evaluation. The SQA Actions “Problem Reporting and Corrective Action” and “Risk and Safety
Analysis” shall be done using a graded approach. The Cyber Security Analysis will be done using
the requirements per Manuals 10Q and 7Q.

As described in the PEST manual (Doherty, 2016a), PEST was originally written to expedite the
process of model calibration wherein values for model parameters are back-calculated by matching
model outputs to measurements of system state. “Parameters” used within a model can represent
the properties of the materials in which the processes simulated by the model take place, the
stresses which initiate and support those processes, or both. What makes PEST different from
the parameter estimation software which preceded it was the fact that PEST operates in a model-
independent manner; it interacts with a model through the model’s own input and output files.
Hence no programming is required to use PEST to calibrate a model.

The model calibration is done by varying specified parameters and calculating the impact of those
variations on the model output. PEST automatically continues the model variation until a specified
number of iterations are complete or the convergence criteria are met. The result of this model
calibration is a description of the uncertainty contained within the model parameters, which is an
essential piece of information for models that support environmental decision-making.

2 Software Classification

Following Attachment 8.1 in Manual 1Q, Procedure 20-1, PEST is not exempt software and has been
classified as Level “C” Software. This classification is recorded in Q-SWCD-A-00035, Rev 0. “Level
C” software is generally associated with regulatory laws, environmental permits or regulations,
and/or commitments to compliance. PEST will specifically be used in a supporting role with other
software to provide reasonable assurance that the Performance Objectives of DOE Order 435.1 will
be met.

1

Q-SQP-G-00004, Revision 0

3 SQA Procedures/Plans

To assure software quality, this document identifies the following information, and if required, where
it can be found within the referenced sections:

� A description of the overall nature and purpose of the software - Section 5.1

� The software products to which it applies - PEST manual (Doherty, 2016a)

� The organizations responsible for performing the work and achieving software quality, includ-
ing tasks and responsibilities - Not Applicable because this is externally developed, Existing
Software

� The following:

– software engineering methods - Not Applicable because this is externally developed,
Existing Software

– software life cycle phases and requirements for each phase - Section 5

� A risk and safety analysis - As appropriate within each Life Cycle subsection

� The required documentation to be maintained - As appropriate within each Life Cycle sub-
section

� The standards, conventions, techniques, or methodologies that shall be used to guide the
software development, as well as methods to assure compliance to the same - Not Applicable
because this is externally developed, Existing Software

� The required software review - Section 5.4

� The methods for error reporting and corrective action - Section 6.3

� Software configuration control requirements per this procedure and methodologies used -
Section 6.1

� The security capabilities to be implemented, using approved cyber security procedures and
guidance - As appropriate within each Life Cycle subsection

4 Roles and Responsibilities

Oversight and assignment of all PA related work, including PEST code use, is provided by the Per-
forming Manager, Environmental Modeling. The Cognizant Technical Function (CTF) associated
with PEST code use is Greg Flach of the Environmental Modeling group of SRNL. The Cognizant
Quality Function (CQF) is the SRNL Quality Assurance group. Should other SRNL business pro-
grams choose to use PEST code at the same Level “C” functional classification, oversight will be

2

Q-SQP-G-00004, Revision 0

provided by the appropriate Performing Manager. The CTF, CQF, and this SQAP can remain
unchanged.

5 Life Cycle Plans

Manual 1Q, Procedure 20-1 will be used to assure quality throughout the Software Life Cycle.
Software specific implementation of 1Q, 20-1 for PEST is discussed below as needed to supplement
1Q, 20-1.

5.1 Requirements

PEST is existing software and was chosen for its significant user base and for the following capa-
bilities to produce inverse solutions. These are the capabilities of interest for GSA flow modeling:
parameter-estimation/calibration, prediction, and uncertainty analysis. PEST performs non-linear
regression using a weighted least-squares method, and provides methods for dealing with parameter
non-uniqueness such as Singular Value Decomposition and Tikhonov regularization. PEST inter-
faces with the flow simulation code through its existing input and output text file structures and
formats. PEST offers the optimization capabilities needed to perform model calibration, making it
a suitable choice.

5.1.1 Functionality

PEST is “Parameter ESTimation” software which uses a model control file to input parameter values
to a model, run the model, parse the output, compare the results to previous runs, and continue
running the model until the parameter values stabilize or the limit to the number of model runs is
reached. The PEST manual (Doherty, 2016a) provides a full description of PEST’s capabilities.

5.1.2 Performance

The performance of PEST is dependent on the number of parameters and number of model runs
required to reach convergence. The main performance bottleneck is in the running of the model,
which is independent of PEST. As existing software, we did not have any input on the design or
implementation of algorithms used to perform it’s functions, however based on inspection of the
code and experience in trial-usage, performance is not an issue.

5.1.3 Design

Because PEST is existing software there are no constraints imposed on the design of the software.

3

Q-SQP-G-00004, Revision 0

5.1.4 Attributes

For PA purposes, PEST will run under the GNU/Linux operating system. PEST is written in FOR-
TRAN and we have the source code and the capability to install all necessary external dependencies
and compile the code to executable format.

5.1.5 External Interfaces

PEST is run by inputting a PEST control file. This PEST control file follows a specified format and
must be constructed prior to running PEST. Once executing, PEST requires no further interactions
with the user. PEST does not alter any hardware controls. PEST does interact with the model
software, for example PORFLOW, by creating model input files, with varying input parameters,
and then executing the model code. PEST can run on a single computer or on multiple computers
and can communicate either through writing and reading of files or through TCP messaging.

5.1.6 Cyber-Security Analysis

In compliance with Manual 10Q, Procedure 300, PEST meets all cyber-security requirements. PEST
runs under the end-user’s account and can only read or write files in locations specified by the end
user. In addition the TCP communication is only with user specified computers (IP addresses).

5.1.7 Risk and Safety Analysis

A more complete discussion the risk of using PEST (and models) alone to create a decision-support
tool is found in the PEST manual (Doherty, 2016a). In summary, using PEST will not increase the
risk of a poor environmental outcome and should provide greater confidence in the model results.
Using PEST and expert analysis will not cause any additional safety concerns.

5.2 Design

Because PEST is existing software, the design portion of the software life cycle is not applicable to
this SQAP. However, the source code for PEST is available to examine the design. Also, there are
two user manuals (Doherty, 2016a,b) that provide a technical description of the software and how
it interacts with input and produces output. In addition, these provide a description of how each
module performs.

4

Q-SQP-G-00004, Revision 0

5.3 Implementation

Because PEST is existing software, the implementation phase of the software life cycle is not
applicable. However, the source code for PEST is available to examine the implementation of the
design. Also, should it be necessary to report a problem in the software, the code can be examined
to see if there is a logic or other error that could help the author correct the problem.

5.4 Testing

Because PEST is existing software, it was tested by compiling and using the software. PEST was
tested using three different problems in four different modes of operation. The computer code
created to run the different test cases is included as Listing 10, in the Appendix.

PEST was compiled on Red Hat Enterprise Linux Workstation release 6.7 (Santiago). It was tested
on a single computer (skink4) as well as multiple SRNL HPC compute-nodes within the “pople”
queue.

PEST has several modes of operation and are described as follows. PEST has the capability of
being run serially on a single processor-core (“s”), in parallel on a single machine using multiple
processor-cores with a file-based communications system (“sp”), in parallel on a single machine
using a TCP-based (Transmission Control Protocol) communications system (“sb”), in parallel
on multiple machines using a TCP-based communications system (“hb”). These are the most
probable use cases at SRNL for PEST and so were the ones tested to ensure the results produced
are consistent. PEST also has the capability to be run in parallel on multiple machines using
file-based communications, but the TCP based method is much faster and more robust, so this
capability was not tested.

The TCP-based modes of operation (“sb” and “hb”), which use the BEOPEST version of PEST,
produce identical results. The file-based modes of operation (“s” and “sp”), which use the PEST and
PARALLELPEST versions of PEST, produce identical results. There are no differences between
these two communication systems for case 5.4.3 (1 parameter to fit). With multiple parameters,
cases 5.4.1 and 5.4.2, the differences between parameter estimates are on the order of 1× 10−3.
This difference is within the tolerance set within the PEST control file.

A description of the steps necessary to run PEST is found within in Section 5.4.1, these steps will
be abbreviated in Sections 5.4.2 and 5.4.3. Complete details of the various PEST-specific files and
settings are found within the PEST manual (Doherty, 2016a).

Test case 5.4.1 was done to ensure PEST reproduces reported results. Test cases 5.4.2 and 5.4.3
test likely usage scenarios and how well PEST can converge on a solution for specified parameters.

5

Q-SQP-G-00004, Revision 0

5.4.1 Soil Specific Volume vs Water Content

This test case was taken from the PEST manual (Doherty, 2016a) to ensure PEST was compiled
properly and the results found match those reported within the PEST manual.

In this experiment, the specific volume of a soil clod is measured at a number of different water
contents as the clod is desiccated through oven heating. The results from this experiment are shown
in Figure 5.4.1. From these observations, a model consisting of two line segments should provide a
description of the soil physics. The line segment fitted through the points of low water content is
referred to as the “residual shrinkage” segment; the segment covering the remainder of the data is
referred to as the “normal shrinkage” segment, see Figure 5.4.2.

Figure 5.4.1: Soil clod shrinkage data.

6

Q-SQP-G-00004, Revision 0

Figure 5.4.2: Soil clod shrinkage model.

The equation for the two-line system can be expressed as

y = s1x+ y1 x ≤ xc (5.4.1a)

y = s2x+ (s1 − s2)xc + y1 x > xc (5.4.1b)

where x is the water content, y is the specific volume, s1 and y1 are the slope and intercept of
the low water content segment and s2 is the slope of the higher water content segment and the
x-coordinate of the point of intersection of the two line segments is xc.

A simple FORTRAN computer program that implements this model reads an input file which
supplies values for s1, s2, y1, and xc and the measured water contents values. This program
writes an output file which lists both the input water content values and the calculated specific
volumes, based on the parameter and input values. This program needs to be compiled with the
command gfortran -static -o twoline, this ensures the necessary libraries are available within
the executible (important when testing on multiple machines).

PEST adjusts the model parameters and automatically runs and reruns the model until the dif-
ferences between the observed and calculated output values are minimized through least-squares
analysis. The full mathematical details of how the number of model runs are chosen and the specific
analyses done is found in the PEST manual (Doherty, 2016a).

7

Q-SQP-G-00004, Revision 0

To setup a model for use by PEST requires a series of steps. In order to simplify PEST’s operation,
the model may need to be wrapped in a script that calls the model and then a post-processing
program to create a simple output file. The basic workflow to create a PEST-ready model is as
follows:

1. Gather necessary files: input file, model, output file generated by model

2. Make the PEST instruction file. This file describes how to handle model output.

(a) Copy the original output file, Listing 1, to a new file called “output.ins”

(b) Edit output.ins to tell PEST where to look for specific output, a complete description of
how PEST parses the instruction file to look for specific output is found in the instruction
manual in the section “Instruction Files” (Doherty, 2016a). Add the command “pif#”
and then the appropriate instructions, see Listing 2.

(c) Check if the instruction file is formed correctly by running the program “inscheck out-
put.ins”.

(d) If you see any errors, fix those and rerun “inscheck output.ins”

(e) If no errors run “inscheck output.ins output file”, this will create the file “output.obf”
using the original model output file. Look at “output.obf” to make sure all the desired
output observations are read correctly.

3. Copy “output.obf” to “measure.obf”

4. Edit “measure.obf” and replace the model output with measured output. In the two-line
model this is the observed specific volumes.

5. Make the PEST template file. This file describes how to handle model input.

(a) Copy the input file, Listing 3, to a new file called input.tpl

(b) Edit input.tpl, Add the command “ptf #” and replace parameter values with variables.
This will tell PEST which parameter values to replace, see Listing 4.

(c) Check the template file by running the program “tempchek input.tpl”. This creates a
file with all the parameter variables listed called “input.pmt”.

6. Make the PEST parameter value file.

(a) Copy “input.pmt” to “input.par”

(b) Edit “input.par” so that it has the form like Listing 5. Where PRECIS is either “single”
or “double”, DPOINT is either “point” or “nopoint”, p1 is the name of parameter 1,
init val is the initial value, SCALE is a multiplier of the initial value, and OFFSET is
added to the initial value, such that the parameter value is of the form p1 = init val ∗
SCALE +OFFSET , see Listing 6.

8

Q-SQP-G-00004, Revision 0

(c) Check these files are correct by running “tempcheck input.tpl input.dat input.par”, which
creates the input.dat file based on the template and parameter files.

7. Make the PEST control file by running “pestgen twoline.pcf input.par measure.obf”

(a) Edit the twoline.pcf by changing the following

i. model → model.exe (eg twoline or model.sh or file that actual runs the model and
postprocesses the output)

ii. model.tpl model.inp → input.tpl input.dat

iii. model.ins model.out → output.ins output.dat

iv. other adjustments, such as parameter bounds can be done here as well, see the PEST
user manual for full details.

(b) Check the PEST control file, run “pestchek twoline.pcf”

(c) If you see any errors, correct those.

(d) If no errors, all is good, now PEST is ready to run, see Listing 7.

8. Run Pest, “pest twoline”

After running PEST, a run record file is created, which contains a record of the runs. In addition,
a parameter file containing the estimated parameter set is also created. Figure 5.4.3 show the lines
of best fit superimposed on the laboratory data.

9

Q-SQP-G-00004, Revision 0

Figure 5.4.3: Soil clod shrinkage data with lines of best fit superimposed.

Table 5.4.1 shows the parameter values from the PEST manual, these can be compared with Ta-
ble 5.4.2, which shows our results. There are minimal differences between the original and our
results are are within 1× 10−3, which is how the PEST control file is setup.

As can be seen, the parameter values for the different modes of operation are also consistent to
within 1× 10−3, which is how the PEST control file is set up. The φ value is within 1× 10−5.
These differences can be accounted for by how PEST alters the parameter values while exploring
the parameter space and are acceptable for the usage of PEST at SRNL.

Table 5.4.1: Parameter Values from PEST manual

Parameter Value

φ 6.71E-4
s1 0.238
s2 0.963
y1 0.497
xc 0.174

10

Q-SQP-G-00004, Revision 0

Table 5.4.2: Showing the mode of PEST operation, the
parameter name, and the parameter value. The φ pa-
rameter is the Sum of squared weighted residuals.

Mode Parameter Value

hb phi 6.7098E-04
sb phi 6.7098E-04
s phi 6.7127E-04
sp phi 6.7127E-04
hb s1 0.2358606700000000
sb s1 0.2358606700000000
s s1 0.2393573700000000
sp s1 0.2393573700000000
hb s2 0.9625417100000000
sb s2 0.9625417100000000
s s2 0.9639391800000000
sp s2 0.9639391800000000
hb y1 0.4966959400000000
sb y1 0.4966959400000000
s y1 0.4964718000000000
sp y1 0.4964718000000000
hb xc 0.1733005600000000
sb xc 0.1733005600000000
s xc 0.1742852500000000
sp xc 0.1742852500000000

Listing 1: output file

0 .520000 E01 0.415600
0.680000 E01 0.420400
0.103000 0.430900
0.128000 0.438400
0.172000 0.451600
0.195000 0.458500
0.230000 0.469000
0.275000 0.482500
0.315000 0.502000
0.332000 0.515600
0.350000 0.530000
0.423000 0.588400
0.488000 0.640400

11

Q-SQP-G-00004, Revision 0

Listing 2: output ins

p i f #
l 1 (o1)19 : 26
l 1 (o2)19 : 26
l 1 (o3)19 : 26
l 1 (o4)19 : 26
l 1 (o5)19 : 26
l 1 (o6)19 : 26
l 1 (o7)19 : 26
l 1 (o8)19 : 26
l 1 (o9)19 : 26
l 1 (o10)19 : 26
l 1 (o11)19 : 26
l 1 (o12)19 : 26
l 1 (o13)19 : 26

Listing 3: input file

0 . 3 0 .8
0 .4
0 .3
13
0 .052
0 .068
0 .103
0 .128
0 .172
0 .195
0 .230
0 .275
0 .315
0 .332
0 .350
0 .423
0 .488

Listing 4: The template file input.tpl

p t f #
s1 # # s2
y1
xc
13
0 .052

12

Q-SQP-G-00004, Revision 0

0 .068
0 .103
0 .128
0 .172
0 .195
0 .230
0 .275
0 .315
0 .332
0 .350
0 .423
0 .488

Listing 5: The input parameter file input.par

PRECIS DPOINT
p1 i n i t v a l SCALE OFFSET
p2 i n i t v a l SCALE OFFSET
.
.
.

Listing 6: The actual input parameter file for two-line

s i n g l e po int
s1 0 .3 1 .0 0 .0
s2 0 .8 1 .0 0 .0
y1 0 .4 1 .0 0 .0
xc 0 .3 1 .0 0 .0

Listing 7: The actual PEST control file for two-line

pc f
* c o n t r o l data
r e s t a r t e s t imat ion
4 13 4 0 1
1 1 s i n g l e po int 1 0 0
5 .0 2 .0 0 .3 0 .03 10
3 .0 3 .0 0 .001
0 .1
30 0 .01 3 3 0 .01 3
1 1 1
* parameter groups
s1 r e l a t i v e 0 .01 0 .0 switch 2 .0 p a r a b o l i c
s2 r e l a t i v e 0 .01 0 .0 switch 2 .0 p a r a b o l i c

13

Q-SQP-G-00004, Revision 0

y1 r e l a t i v e 0 .01 0 .0 switch 2 .0 p a r a b o l i c
xc r e l a t i v e 0 .01 0 .0 switch 2 .0 p a r a b o l i c
* parameter data
s1 none r e l a t i v e 0 .300000 1.00000E+10 1.00000E+10 s1 1 .0000 0 .000 1
s2 none r e l a t i v e 0 .800000 1.00000E+10 1.00000E+10 s2 1 .0000 0 .000 1
y1 none r e l a t i v e 0 .400000 1.00000E+10 1.00000E+10 y1 1.0000 0 .000 1
xc none r e l a t i v e 0 .300000 1.00000E+10 1.00000E+10 xc 1 .0000 0 .000 1
* obse rvat i on groups
obsgroup
* obse rvat i on data
o1 0.501000 1 .0 obsgroup
o2 0.521000 1 .0 obsgroup
o3 0.520000 1 .0 obsgroup
o4 0.531000 1 .0 obsgroup
o5 0.534000 1 .0 obsgroup
o6 0.548000 1 .0 obsgroup
o7 0.601000 1 .0 obsgroup
o8 0.626000 1 .0 obsgroup
o9 0.684000 1 .0 obsgroup
o10 0.696000 1 .0 obsgroup
o11 0.706000 1 .0 obsgroup
o12 0.783000 1 .0 obsgroup
o13 0.832000 1 .0 obsgroup
* model command l i n e
model
* model input / output
model . t p l model . inp
model . i n s model . out
* p r i o r in fo rmat ion

5.4.2 Multi-layer Hydroconductivity

The second test case for PEST uses Problem 4.3 from the PORFLOW QA (Whiteside, 2016), which
describes a problem involving steady-state groundwater flow through a heterogeneous subsurface
system, as seen in Figure 5.4.4.

14

Q-SQP-G-00004, Revision 0

Figure 5.4.4: A Heterogeneous Subsurface System Consisting of an Unconfined Aquifer, Confining
Unit, and Confined Aquifer.

There is a known analytical solution to this problem and the results of that solution are used
as the observed values when creating the PEST model. The parameters being adjusted are the
unconfined aquifer hydraulic conductivity, Kxu, the confined aquifer hydraulic conductivity, Kxc,
and the confining unit’s hydraulic conductivity, Kc. The analytical solution is based on a value of
1.0 for both Kxu and Kxc and a value of 1.142× 10−3 for Kc. In this test problem, we set the Kxu

value to 0.9, the Kxc value to 1.1, and the Kc value to 1.1× 10−3.

This model is more complicated than the other models and has a higher run time, so we limited
testing to the “hb” mode of operation. Table 5.4.3 shows the results of PEST testing. The reported φ
value, when divided by the number of observations (102) and square-rooted becomes the RMSD =
9.9× 10−5, which is better than the equivalent RMSD (= 0.228) reported in (Whiteside, 2016).
Where the equivalent RMSD is the combination of the RMSD = 0.28 for the confined aquifer and
the RMSD = 0.16 for the unconfined aquifer.

Looking at the Sensitivity file, it should be noted the sensitivity of Kxu is 7.742× 10−2, Kxc is
1.60× 10−1, and Kc is 130.167. This shows that a small change in Kc can have a large impact
on the overall performance of the model. An example of this impact can be seen in the following
subtest.

As part of this test case, we also tested leaving Kc fixed at the initial analytical value of 1.142× 10−3

and allowing Kxc and Kxu to vary, after setting those to 1.10 and 0.90 respectively. Under these
conditions, these parameters converged to Kxu = 1.216072 and Kxc = 1.151417, with a φ value of

15

Q-SQP-G-00004, Revision 0

Table 5.4.3: Showing the mode of PEST operation, the
parameter name, and the parameter value. The φ pa-
rameter is the Sum of squared weighted residuals.

Mode Parameter Value

hb phi 1.0000E-06
hb kxu 1.007823400000000
hb kxc 1.007824100000000
hb kc 1.1509399000000000E-03

0.7234. This φ value, when divided by the number of observations (102) and square-rooted becomes
the RMSD = 0.084. This large difference shows the impact of the Kc parameter on the system.

5.4.3 Unconfined Aquifer Subject to Recharge and Drain Boundary Conditions

The third test case for PEST uses Problem 4.4.2 from the PORFLOW QA (Whiteside, 2016),
which describes a problem where an unconfined aquifer experiences both recharge and drainage at
the ground surface, as seen in Figure 5.4.5.

Figure 5.4.5: Schematic illustration of an unconfined aquifer experiencing both recharge and
drainage at the ground surface; the seepline is unknown a priori.

There is a known analytical solution to this problem and the results of that solution are used as
the observed values when creating the PEST model. The parameter being adjusted is the hydraulic

16

Q-SQP-G-00004, Revision 0

conductivity, Kx. The analytical solution is based on a value of 1.0 for this parameter. In this test
problem, we set the Kx value to 0.9, to see how PEST does at estimating the correct value.

Table 5.4.4 shows the results of PEST testing. As can be seen, with only one parameter value to
estimate, the parameter value estimated by the different modes of operation are identical to each
other, Kx = 0.980. The φ value is also identical (φ = 1.6536× 10−2). When the φ value is divided
by the number of observations (21) and square-rooted becomes the RMSD = 0.028, which is better
than the RMSD reported in (Whiteside, 2016), RMSD = 0.050.

Because the PEST estimated value (0.98) is within the tolerance defined within the PEST control
file (1× 10−3), PEST meets the criteria established in this test.

Table 5.4.4: Showing the mode of PEST operation, the
parameter name, and the parameter value. The phi pa-
rameter is the sum of the squared weighted residuals.

Mode Parameter Value

hb phi 1.6536E-02
sb phi 1.6536E-02
s phi 1.6536E-02
sp phi 1.6536E-02
hb kx 0.9804200000000000
sb kx 0.9804200000000000
s kx 0.9804200000000000
sp kx 0.9804200000000000

5.5 Installation and Acceptance

To install PEST, the code must be compiled according to the instructions in the PEST manual and
website and installed by the SRNL HPC personnel and located in the SRNL HPC apps directory.
This will provide configuration change control, as this is a read-only directory only write-accessible
by authorized personnel. See Listing 8 for a script to compile PEST.

Once compiled and installed in the appropriate location, all of the tests described in the Section
5.4 must be successfully executed from the production machines (including anolis, skinks, and/or
compute nodes) in order for PEST to be accepted. The results from these tests will be compiled
into a report similar to Section 5.4. Should a new version of PEST be installed, the test cases will
be run and a new test report generated, as described in the Section 5.6.

17

Q-SQP-G-00004, Revision 0

5.5.1 User Instructions

The approved operating system for PEST is the GNU/Linux operating system.

The user’s interaction with the software will primarily be through a shell script, an example of one
that sends model runs to the SRNL HPC is included in Listing 9.

The necessary training for a user includes how to write PEST control files and edit the model
template files. Full instructions and examples are found in the PEST manual (Doherty, 2016a) and
can also be seen in the test case code.

Input and Output formats for PEST are simple text files, a full description of the input and output
specifications are found in the PEST manual (Doherty, 2016a).

Because parameter estimation and convergence is dependent on the model, the limitation of PEST
is dependent on the complexity of the model code and its execution time. This limit will need to
be determined by the user.

A description of error messages and PEST’s response can be found in the PEST manual (Doherty,
2016a). If further support is needed, please see Section 6.3 for proper handling of those issues as
well as obtaining additional user and maintenance support.

Installation will be done by SRNL HPC staff. Available sample/examples of execution are found
in Section 5.4.

To test PEST, you may execute the test cases described in Section 5.4.

There are no end-user specifications regarding cyber security or risk and safety beyond understand-
ing PEST’s limitations, as described in Section 5.1.

5.5.2 Review and Approval

The Design Agency shall assure the installed version of PEST reproduces the test cases described
in Section 5.4.

5.6 Operation and Maintenance

The active use of PEST will follow the instructions provided within the manuals (Doherty, 2016a,b).

Should problems or errors within PEST be discovered during this phase, they will be handled
according to Section 6.3. If this action results in software modifications, those modifications shall
be approved, documented, verified and validated, and controlled in accordance with the appropriate
Life Cycle Plans. This will include creating new test cases to document the problem. After the
software is modified these new and previous test cases will be run to ensure regressions are not
introduced into the software.

18

Q-SQP-G-00004, Revision 0

When the software is run in a new computer environment, the test cases will be run to ensure
all software dependencies are available. Periodic in-use tests are not necessary for PEST, as the
computing environment will not affect required performance.

5.7 Retirement

Because PEST is existing software, retiring PEST from service shall follow these steps:

1. The CTF will notify other users that PEST is being retired

2. There are no Cyber-Security implications for retiring PEST

3. Retiring PEST implies either there is software available to replace its functions or that the
functions provided by PEST are no longer needed. In this situation, there are no future Risk
and/or Safety issues with retiring PEST. After PEST is retired, the only Risk and/or Safety
implications would be if there is a need to re-run models that used PEST. In this case PEST
could either be “unretired” or a case could be made for using the current methods to examine
those models.

4. Delete PEST and it’s supporting software from the installation location, likely the SRNL HPC
servers

5. The CTF will change the status of the SWCD Documentation to retired

6 SQA Actions

The Configuration Control and Evaluation of the software are required under Level “C” classification
and the Problem Reporting and Corrective Action and the Risk and Safety Analysis components
will be done via a graded approach.

6.1 Configuration Control

The method used to control, uniquely identify, describe, and document the configuration of each
version or update of a computer program and its related documentation shall be accomplished as
described within the Installation and Acceptance (Section 5.5) and Operation and Maintenance
(Section 5.6) portions of the Life Cycle Plans (Section 5).

19

Q-SQP-G-00004, Revision 0

6.2 Evaluation

The evaluation of PEST per Manual 1Q Procedure 20-1 section 5.6 is documented within this
SQAP. The following requirements are documented within the referenced sections:

� Determine the classification - Section 2

� Determine the adequacy of software documentation to support testing, operation, and main-
tenance - Sections 5.4 and 5.6

� Identify activities to be performed throughout the applicable life cycle of the software including
preparation of required documentation and performance of required reviews and/or tests -
Section 5

� Determine the software’s capabilities and limitations for intended use - Section 5.4

� Specify test plans and test cases required to validate the capabilities within the stated limi-
tations - Section 5.4

� Identify instructions for software use within the limits of its capabilities - Section 5.6

� Identify any exceptions to the life cycle documentation and its justification - Section 5

� Identify adequacy of cyber security requirements for use at SRS - As appropriate within each
Life Cycle subsection

� Identify adequacy of the risk and safety requirements for use at SRS - As appropriate within
each Life Cycle subsection

� The acquired software shall be identified and controlled during the dedication process - Sec-
tion 5.5 and Section 6.1

6.3 Problem Reporting and Corrective Action

If a problem (bug) is discovered in PEST, it will be reported to the CTF. The CTF will submit it
to the PEST program author, John Doherty, at pestsupport@ozemail.com.au.

In addition, the CTF and designated users shall report software problems/issues to the Performing
Manager. The Performing Manager will notify recipients of information generated by PEST, and
with input from the CTF and information recipients, shall determine appropriate corrective action.
All software problem reporting and corrective actions, where applicable, shall comply with the
requirements of Manual 1Q, QAP 20-1 Section 5.8. Problem reporting and corrective action for
other potential business programs will be controlled by the respective Performing Manager.

20

Q-SQP-G-00004, Revision 0

7 References

Doherty, J. (2016a). PEST Model-Independent Parameter Estimation User Manual Part I: PEST,
SENSAN and Global Optimisers. Watermark Numerical Computing, 6th edition.

Doherty, J. (2016b). PEST Model-Independent Parameter Estimation User Manual Part II: PEST
Utility Support Software. Watermark Numerical Computing, 6th edition.

Whiteside, T. (2016). PORFLOW testing and verification document. Technical Report SRNL-TR-
2016-00012, Rev. 0., Savannah River National Laboratory, Savannah River Site, Aiken SC.

21

Q-SQP-G-00004, Revision 0

Appendix A Code Listings

Listing 8: compile pest.sh

#!/ bin /bash

make c l ean
make cppp
make −f pes t . mak a l l
make c l ean
make −f ppest . mak a l l
make c l ean
make −f p e s t u t l 1 . mak a l l
make c l ean
make −f p e s t u t l 2 . mak a l l
make c l ean
make −f p e s t u t l 3 . mak a l l
make c l ean
make −f p e s t u t l 4 . mak a l l
make c l ean
make −f p e s t u t l 5 . mak a l l
make c l ean
make −f p e s t u t l 6 . mak a l l
make c l ean
make −f sensan . mak a l l
make c l ean

echo ” type t h i s : \n make f beopest . mak a l l ”
echo ” type t h i s : \n make c l ean ”
echo ” type t h i s : \n make i n s t a l l ”

22

Q-SQP-G-00004, Revision 0

Listing 9: run hpc beopest.sh

#!/ bin /bash

PWD=‘pwd ‘
BEOPEST=${PWD}/ bin / beopest
HOSTNAME=‘hostname ‘
HPCSUBMIT=/hpc/home/ us e r s / submitjob . s c r i p t

echo ${BEOPEST}

MODEL=”model . sh” #I picked t h i s name − maybe b e t t e r way could be found”

PST=”*. pst ”

MPATHS=(‘ f i n d t e s t c a s e s −maxdepth 2 −name ${PST} ‘)

echo ” Pick which QA case to run (d i g i t) , f o l l owed by [ENTER] : ”

I=0
f o r MPATH in ${MPATHS[@] } ; do
echo ”${ I }) ${MPATH}”
I=$ ((I +1))
done

read QA CASE NUM

QA CASE=${MPATHS[QA CASE NUM]}

p r i n t f ”How many s l a v e s do you want? (1−9) , f o l l owed by [ENTER] : \ n”
read NUMSLAVES

p r i n t f ”Running ${QA CASE}\n”

DIR=${PWD}/$ (dirname ”${QA CASE}”)
PST=$ (basename ”${QA CASE}”)

PST=${PST%. pst }

#change to the ac tua l t e s t case d i r e c t o r y
cd ${DIR}

23

Q-SQP-G-00004, Revision 0

#sk ip making a RMF f i l e
i f f a l s e ; then
p r i n t f ” c r e a t i n g RMF f i l e \n”

PARLAM=−3
CWAIT=.2
RUNTIME=5
RMFFILE=””
RMFFILE=”${RMFFILE} pr f \n”
RMFFILE=”${RMFFILE}${NUMSLAVES} 0 ${CWAIT} ${PARLAM}\n”
f o r ((I =1; I<=${NUMSLAVES} ; I ++)); do
RMFFILE=”${RMFFILE} s l a v e $ { I } . / s l a v e $ {PST} $ { I }\n”
done
RTIMELINE=””
f o r ((I =1; I<=${NUMSLAVES} ; I ++)); do
RTIMELINE=”${RTIMELINE}${RUNTIME} ”
done
RTIMELINE=”${RTIMELINE}\n”
RMFFILE=”${RMFFILE}${RTIMELINE}”
p r i n t f ”${RMFFILE}” > ${PST} . rmf
f i

#end o f coment out

pwd

rm s c r e e n l o g . 0
rm s t d e r r . txt

p r i n t f ” S ta r t i ng master . . . \ n”
sc r e en −A −d −m −L −S master
RUNNING=””
SLEEP=1
PORT=0
read lowerPort upperPort < / proc / sys / net / ipv4 / i p l o c a l p o r t r a n g e
f o r ((PORT = lowerPort ; PORT <= upperPort ; PORT++)) ; do
echo ” t ry ing ${PORT}”
sc r e en −S master −p 0 −X s t u f f ”${BEOPEST} ${PST} /h : ${PORT} 2> s t d e r r . txt$ (p r i n t f \\ r)”
s l e e p ${SLEEP}
RUNNING=‘wc − l s t d e r r . txt | cut −d ’ ’ −f 1 ‘
i f [${RUNNING} −eq 0] ; then
break

24

Q-SQP-G-00004, Revision 0

f i
done
echo ” master i s running ”

SLAVEFILE=”s l a v e . sh”
rm ${SLAVEFILE}
JOB=‘echo ”${SLAVEFILE}” | cut −d . −f1 ‘

p r i n t f ” c r e a t i n g s l a v e f i l e \n”
SLAVE=””
SLAVE=”${SLAVE}\#!/ bin /bash\n”
SLAVE=”${SLAVE}${BEOPEST} ${PST} /h ${HOSTNAME} : ${PORT}\n”
p r i n t f ”${SLAVE}” > ${SLAVEFILE}
chmod +x ${SLAVEFILE}

p r i n t f ” S ta r t i ng s l a v e s . . . \ n”
f o r ((I =1; I<=${NUMSLAVES} ; I ++)); do
SDIR=”s l a v e $ { I }”
mkdir ${SDIR}
cd ${SDIR}
cp . . / * .

echo ”\ r ” | ${HPCSUBMIT} ${SLAVEFILE} ${JOB} 10

cd . .
done
RUNNING=””
SLEEP=5

#wait u n t i l done (Speedup i s l a s t l i n e pr in ted out by beopest master)
u n t i l [${#RUNNING} −gt 0] ; do
p r i n t f ” s l e e p i n g f o r ${SLEEP} seconds \n”
s l e e p ${SLEEP}
RUNNING=‘ t a i l −2 s c r e e n l o g . 0 | grep ”Speedup ” ‘
done

#get beopest to hang up the port . . .
#send return to qu i t beopest?−maybe (doesn ’ t seem to work)
s c r e en −S master −p 0 −X s t u f f ”$ (p r i n t f \\ r)”
s c r e en −S master −X qui t

25

Q-SQP-G-00004, Revision 0

#make beopest hang up the port
f u s e r −k −n tcp ${PORT}

rm s c r e e n l o g . 0
rm s t d e r r . txt

cd ${PWD}

e x i t

26

Q-SQP-G-00004, Revision 0

Listing 10: run qa.sh

#!/ bin /bash

get param val (){
f o r TYPE in $ { !TYPES[@] } ; do #type o f PEST to run
cd ${TYPE}
VAL=‘grep ${PARAM} * . par | cut −d ’ ’ −f 17 | t r −d ’\n ’ ‘
echo ${PARAM} ${VAL}
echo ${VAL}
PARAMTMP=”${PARAMTMP}${TYPE}\ t${PARAM}\ t${VAL}\n”
cd . .
done
PARAMTMP=”${PARAMTMP}−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n”
}

#−−−−−−−−−−−−−− PARALLEL PEST

make rmf (){
p r i n t f ” c r e a t i n g RMF f i l e \n”
l o c a l PARLAM=0 #s e t the p a r a l l e l−za t i on o f the Marquardt lambda search to o f f
l o c a l CWAIT=.2
l o c a l RUNTIME=5
l o c a l RTIMELINE=””
l o c a l RMFFILE=””

RMFFILE=”${RMFFILE} pr f \n”
RMFFILE=”${RMFFILE}${NUMSLAVES} 0 ${CWAIT} ${PARLAM}\n”
f o r ((I =1; I<=${NUMSLAVES} ; I ++)); do
RMFFILE=”${RMFFILE} s l a v e $ { I } . / s l a v e $ { I }\n”
done
f o r ((I =1; I<=${NUMSLAVES} ; I ++)); do
RTIMELINE=”${RTIMELINE}${RUNTIME} ”
done
RTIMELINE=”${RTIMELINE}\n”
RMFFILE=”${RMFFILE}${RTIMELINE}”
p r i n t f ”${RMFFILE}” > ${PST} . rmf
}

27

Q-SQP-G-00004, Revision 0

make s laves (){
p r i n t f ”Making s l a v e d i r s and s t a r t i n g s l a v e s \n”
f o r ((I =1; I<=${NUMSLAVES} ; I ++)); do
SDIR=”s l a v e $ { I }”
mkdir ${SDIR}
cp * ${SDIR}/ .
cd ${SDIR}
s c r e en −A −d −m −S ”${SDIR}” ”${PARASLAVE}”
sc r e en −S ”${SDIR}” −p 0 −X s t u f f ” . / ${MODEL}$ (p r i n t f \\ r)”
cd . .
done
}

k i l l s l a v e s (){
p r i n t f ” K i l l i n g s l a v e s \n”
f o r ((I =1; I<=${NUMSLAVES} ; I ++)); do
SDIR=”s l a v e $ { I }”
sc r e en −S ”${SDIR}” −X qui t
rm −r f ${SDIR}
done
}

#−−−−−−−−−−−−−− BEOPEST

s t a r t m a s t e r (){

#cleanup old s t u f f i f i t ’ s around
rm s c r e e n l o g . 0
rm s t d e r r . txt

p r i n t f ” S ta r t i ng master . . . \ n”
sc r e en −A −d −m −L −S master
RUNNING=””
SLEEP=1
PORT=0
read lowerPort upperPort < / proc / sys / net / ipv4 / i p l o c a l p o r t r a n g e
f o r ((PORT = lowerPort ; PORT <= upperPort ; PORT++)) ; do
echo ” t ry ing ${PORT}”
sc r e en −S master −p 0 −X s t u f f ”${BEOPEST} ${PST} /h : ${PORT} 2> s t d e r r . txt$ (p r i n t f \\ r)”
s l e e p ${SLEEP}
RUNNING=‘wc − l s t d e r r . txt | cut −d ’ ’ −f1 ‘

28

Q-SQP-G-00004, Revision 0

i f [${RUNNING} −eq 0] ; then
break
f i
done
echo ” master i s running ”
}

m a k e s l a v e f i l e (){
SLAVEFILE=”s l a v e . sh”
rm ${SLAVEFILE}
JOB=‘echo ”${SLAVEFILE}” | cut −d . −f1 ‘

p r i n t f ” c r e a t i n g s l a v e f i l e \n”
l o c a l SLAVE=””

SLAVE=”${SLAVE}\#!/ bin /bash\n”
SLAVE=”${SLAVE}${BEOPEST} ${PST} /h ${HOSTNAME} : ${PORT}\n”
p r i n t f ”${SLAVE}” > ${SLAVEFILE}
chmod +x ${SLAVEFILE}
}

s t a r t b e o p e s t s l a v e s (){

p r i n t f ” S ta r t i ng s l a v e s . . . \ n”
f o r ((I =1; I<=${NUMSLAVES} ; I ++)); do
SDIR=”s l a v e $ { I }”
mkdir ${SDIR}
cd ${SDIR}
cp . . / * .

i f [[${TYPE} == ”sb”]] ; then
sc r e en −A −d −m −S ${SDIR}
s c r e en −S ”${SDIR}” −p 0 −X s t u f f ”${BEOPEST} ${PST} /h ${HOSTNAME} : ${PORT}$ (p r i n t f \\ r)”

e l i f [[${TYPE} == ”hb”]] ; then
p r i n t f ”\ r ” | ${HPCSUBMIT} ${SLAVEFILE} ${JOB} 10
f i

cd . .
done

}

29

Q-SQP-G-00004, Revision 0

w a i t t h e n k i l l a l l (){
l o c a l RUNNING=””
l o c a l SLEEP=5

#wait u n t i l done (Speedup i s l a s t l i n e pr in ted out by beopest master)
u n t i l [${#RUNNING} −gt 0] ; do
p r i n t f ” s l e e p i n g f o r ${SLEEP} seconds \n”
s l e e p ${SLEEP}
RUNNING=‘ t a i l −2 s c r e e n l o g . 0 | grep ”Speedup ” ‘
done

f o r ((I =1; I<=${NUMSLAVES} ; I ++)); do
SDIR=”s l a v e $ { I }”
sc r e en −S ”${SDIR}” −X qui t #t h i s only needed f o r sb types , but whatever
rm −r f ${SDIR}
done

#get beopest to hang up the port . . .
#send return to qu i t beopest?−maybe (doesn ’ t seem to work)
s c r e en −S master −p 0 −X s t u f f ”$ (p r i n t f \\ r)”
s c r e en −S master −X qui t

#make beopest hang up the port
f u s e r −k −n tcp ${PORT}

#cleanup
rm s c r e e n l o g . 0
rm s t d e r r . txt
}

#−−

MODEL=”model . sh” #I picked t h i s name − maybe b e t t e r way could be found”

PWD=‘pwd ‘
PEST=${PWD}/ bin / pest
PARAPEST=${PWD}/ bin / ppest
PARASLAVE=${PWD}/ bin / ps lave
BEOPEST=${PWD}/ bin / beopest

30

Q-SQP-G-00004, Revision 0

HOSTNAME=‘hostname ‘
HPCSUBMIT=/hpc/home/ us e r s / submitjob . s c r i p t

NUMSLAVES=3

d e c l a r e −A TYPES
#TYPES[” s ”]=${PEST}
TYPES[” sp ”]=${PARAPEST}
#TYPES[” sb ”]=${BEOPEST}
#TYPES[” hb”]=${BEOPEST}

#runPEST=f a l s e
runPEST=true

PARAMFILEFRONT=”${PWD}/ paramvals ”

#TESTCASES
T1=${PWD}/ t e s t c a s e s / t1 #two l ine − PEST manual
T2=${PWD}/ t e s t c a s e s / t2 #43 − PORFLOW QA
T3=${PWD}/ t e s t c a s e s / t3 #442 − PORFLOW QA

T1PARAMS=(s1 s2 y1 xc)
T2PARAMS=(kxu kxc)
T3PARAMS=(kx)

#TESTCASES=(${T3} ${T2} ${T1})
TESTCASES=(${T3} ${T2} ${T1})

f o r TEST in ${TESTCASES[@] } ; do #t1 , t2 , t3 , . . .
TNUM=‘basename ${TEST} ‘
PHIVALS=${TNUM} #t1
PARAMVALS=${TNUM}

PARAMFILE=”${PARAMFILEFRONT}−${TNUM} . tx t ”
p r i n t f ”” > ${PARAMFILE}

cd ${TEST}

f o r TYPE in $ { !TYPES[@] } ; do #type o f PEST to run

31

Q-SQP-G-00004, Revision 0

echo ”Doing t e s t : ${TNUM} o f type : ${TYPE}”

i f [! −d ${TYPE}] ; then
mkdir ${TYPE}
f i
cp org /* ${TYPE}/ .

cd ${TYPE}

PST=‘ l s * . pst ‘
PST=${PST%. pst } #get the PEST c o n t r o l f i l e

i f ${runPEST} ; then
EXE=${TYPES[${TYPE}]}

i f [[${TYPE} == ” s ”]] ; then
echo ” running ${PST} us ing ${EXE}”
${EXE} ${PST}

e l i f [[${TYPE} == ”sp”]] ; then
make rmf
make s laves

echo ” running ${PST} us ing ${EXE}”
${EXE} ${PST}

k i l l s l a v e s

e l i f [[${TYPE} == ”sb”]] ; then
s t a r t m a s t e r
s t a r t b e o p e s t s l a v e s
w a i t t h e n k i l l a l l

e l i f [[${TYPE} == ”hb”]] ; then
s t a r t m a s t e r
m a k e s l a v e f i l e
s t a r t b e o p e s t s l a v e s
w a i t t h e n k i l l a l l
f i

e l s e
echo ”not running PEST”

32

Q-SQP-G-00004, Revision 0

f i

echo ” g e t t i n g Object ive Function value ”
c s p l i t * . r e c / Object ive / −s
VAL=‘grep ”Sum of squared ” xx01 | cut −d ’ ’ −f28 ‘
PARAMTMP=”${TYPE}\ tph i \ t${VAL}\n”
p r i n t f ${PARAMTMP} >> ${PARAMFILE}
rm xx*

cd . .
done #with t h i s type o f PEST

PARAMTMP=”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”
echo ${PARAMTMP} >> ${PARAMFILE}

PARAMTMP=””
echo ” g e t t i n g Parameter va lue s ”
i f [[${TEST} == *” t1 ”*]] ; then
f o r PARAM in ${T1PARAMS[@] } ; do
get param val
done
e l i f [[${TEST} == *” t2 ”*]] ; then
f o r PARAM in ${T2PARAMS[@] } ; do
get param val
done
e l i f [[${TEST} == *” t3 ”*]] ; then
f o r PARAM in ${T3PARAMS[@] } ; do
get param val
done
f i

cd ${PWD}

p r i n t f ${PARAMTMP} >> ${PARAMFILE}

done
e x i t ;

33

Distribution:

S. E. Aleman, 735-A
B. T. Butcher, 773-42A
D. A. Crowley, 773-42A
G. P. Flach, 773-42A
L. L. Hamm, 735-A
C. G. Sherer, 773-41A
T. S. Whiteside, 773-42A
Env. Model. Files, 773-42A Rm 243
Records Administration (EDWS)

	List of Abbreviations
	Introduction
	Software Classification
	SQA Procedures/Plans
	Roles and Responsibilities
	Life Cycle Plans
	Requirements
	Functionality
	Performance
	Design
	Attributes
	External Interfaces
	Cyber-Security Analysis
	Risk and Safety Analysis

	Design
	Implementation
	Testing
	Soil Specific Volume vs Water Content
	Multi-layer Hydroconductivity
	Unconfined Aquifer Subject to Recharge and Drain Boundary Conditions

	Installation and Acceptance
	User Instructions
	Review and Approval

	Operation and Maintenance
	Retirement

	SQA Actions
	Configuration Control
	Evaluation
	Problem Reporting and Corrective Action

	References
	Appendix Code Listings

