APPENDIX 5A

GILBERT ASSOCIATES, INC., REPORT

ТΟ

METROPOLITAN EDISON COMPANY

ON

SUMMARY OF AIRCRAFT IMPACT DESIGN

FOR

THREE MILE ISLAND NUCLEAR STATION UNIT 1

This Report Contains:

5 pages of text 7 tables 42 figures

TABLE OF CONTENTS

- SECTION TITLE
- 1 INTRODUCTION
- 2 DYNAMIC LOAD FACTORS
- 3 <u>ANALYSIS</u>
- 3.1 <u>SHELL ANALYSIS</u>
- 3.1.1 APEX OF THE DOME
- 3.1.1.1 ANALYSIS FOR CASE A & B IMPACT LOADINGS
- 3.1.1.1.1 STRUCTURAL RESPONSE
- 3.1.1.1.2 LOCAL MATERIAL FAILURE
- 3.1.1.2 ANALYSIS FOR CASE C IMPACT LOADING
- 3.1.1.3 ANALYSIS FOR CASE D IMPACT LOADING
- 3.1.2 DOME TO GIRDER TRANSITION
- 3.1.3 GIRDER TO CYLINDER TRANSITION (SPRING LINE)
- 3.1.4 IMPACT AT GRADE

3.2 PLATE ANALYSIS

- 3.2.1 FUNDAMENTAL FREQUENCY
- 3.2.2 FINITE-ELEMENT ANALYSIS FOR SLABS
- 3.2.3 DESIGN CRITERIA FOR REINFORCING
- 3.2.4 DESIGN CHECK
- 4 ADDITIONAL DETAIL STUDIES
- 4.1 BEARING FAILURE OF CONCRETE UNDER DIRECT IMPACT
- 4.2 <u>SHEAR-OFF THE ANCHORS</u>
- 4.2.1 CASE A: SHEAR-OFF THE ANCHORS OF VERTICAL TENDONS
- 4.2.2 CASE B: SHEAR-OFF THE ANCHORS OF DOME TENDONS
- 4.2.3 CASE C: SHEARING-OFF THE HOOP TENDONS
- 4.3 SPALLING DUE TO AIRCRAFT IMPACT ON THE OUTSIDE WALLS
- 4.4 IMPACT EFFECTS ON EQUIPMENT AND COMPONENTS
- 4.5 <u>REFERENCES</u>

LIST OF TABLES

TABLE <u>TITLE</u>

- 5A-1 Time Variable t_n
- 5A-2 Dynamic Load Factors (DLF)
- 5A-3 Kinetic Energy of The Dome
- 5A-4 Upper Bound Displacements
- 5A-5 Comparison of The Stress Resultants for Prestress Loadings
- 5A-6 Reactor Load (R) Calculations Case 1: With Wings and Engines Detached
- 5A-7 Reactor Load (R) Calculations Case 2: With Wings and Engines Attached

LIST OF FIGURES

<u>FIGURE</u>	TITLE
5A-1	Total Reaction Vs Time Curve
5A-2	Load Time Curve For 720 Aircraft At 200 Knots
5A-3	Maximum Dynamic Load Factor Vs Period or Frequency Of A One- Degree-Freedom System Under the Impact of Boeing 720
5A-4	Spherical Cap Under A Ring Load
5A-5	Spacial And Time Distribution of Load On Shell
5A-6	Grid For Dynamic Finite-Element Analysis of Aircraft Impingement on Dome
5A-7	Effect of Aircraft Impingement On Dome of Containment Structure - Constant Deceleration
5A-8	Deflections and Stresses For Aircraft Impingement for Time = 0.16 Seconds – Constant Deceleration
5A-9	Velocity Diagram For 720 Aircraft at 200 Knots Impact Speed with Wings and Engines Detached
5A-10	Velocity Diagram For 720 Aircraft at 200 Knots Impact Speed with Wings and Engines Attached
5A-11	720 Aircraft Mass Distribution
5A-12	Boeing - 720 Fuselage Buckling (Crushing) Load
5A-13	Time Variation of Shell Vertical Displacements with Wings and Engines Detached
5A-14	Time Variation of Shell Vertical Displacement with Wings and Engines Attached
5A-15	Time Variation of Shell Surface Stresses Aircraft with Wings and Engines Detached
5A-16	Time Variation of Shell Surface Stresses Aircraft with Wings and Engines Attached
5A-17	Pressure Distribution For Aircraft Impact
5A-18	Aircraft Impact At Girder to Dome Transition
5A-19	Aircraft Impact At Spring Line
5A-20	Radial Deflection Impact At Spring Line

LIST OF FIGURES (cont'd)

- FIGURE TITLE
- 5A-21 Aircraft Impact At Grade
- 5A-22 Rectangular Finite-Element
- 5A-23 For The Roof Slab Heat Exchanger Vault Moment Diagram
- 5A-24 DELETED
- 5A-25 DELETED
- 5A-26 Critical Aircraft Impact-Direction 1
- 5A-27 Concrete Cover to Protect Against Aircraft Impact
- 5A-28 Detail of Anchor Block
- 5A-29 Prestress Stresses After Nine Tendons Fail
- 5A-30 Critical Aircraft Impact-Directions 2 and 3
- 5A-31 Equal Spacing of Roof Tendons
- 5A-32 Dome Tendons
- 5A-33 Minimum Spacing of Hoop Tendons
- 5A-34 Comparison of Prestress Loading
- 5A-35 Reaction Load and Fuselage Decel. (with Wings and Engines Detached)
- 5A-36 Reaction Load and Fuselage Decel. (with Wings and Engines Attached)
- 5A-37 Hoop and Meridional Stresses at 36 Inches from the Edge of the Loaded Area
- 5A-38 Average Shear Stress in the Dome at time + = 0.20 seconds.Wing and Engines Remain Attached to Fuselage
- 5A-39 Average Shear Stress in the Dome at time + = 0.20 seconds. Wing and Engines Remain Detached to Fuselage
- 5A-40 FEM Model Radial Stresses Due to Prestress and Aircraft Impact
- 5A-41 Radial Stresses Due to Prestress and Aircraft Impact
- 5A-42 Zones in Compression or Tension Due to Prestress or Aircraft Impact