ENVIRONMENTAL MONITORING REPORT

JANUARY 1 - DECEMBER 31, 1978

SURRY POWER STATION

VIRGINIA ELECTRIC AND POWER COMPANY

MIDWESTERN FACILITY EBERLINE INSTRUMENT CORPORATION WEST CHICAGO, ILLINOIS

Reviewed By:

trisegnom. 2. S.

Chandrasekaran E. S., PhD Laboratory Manager Approved By:

Milt Trautman, Manager Midwestern Facility

VIRGINIA ELECTRIC AND POWER COMPANY SURRY POWER STATION

, **}**

LICENSE NOS. DPR-32 and DPR-37

RECORDED ANNUAL WHOLE BODY EXPOSURES CALENDAR YEAR 1978

•.

Dose Range (mrem)	Number of Individuals
No measureable exposure	1301
1–99	1077
100-249	215
250–499	111
500-749	76
750–999	77
1000–1999	341
2000–2999	147
3000–3999	75
4000-4999	. 40
5000-5999	24
6000–6999	14
7000-7999	6
8000-8999	0
9000–9999	00
L0000-10999	0
L1000-11999	0
12000-plus	00

Total Number of Individuals reported

The above information is submitted for the total number of individuals for whom individual monitoring was provided during the calendar year.

VIRGINIA ELECTRIC AND POWER COMPANY SURRY POWER STATION LICENSE NOS. DPR-32 AND DPR-37 MAN REM EXPOSURE - JOB FUNCTION JANUARY TO DECEMBER 1978

·····			TECHNICAL SPE	CIFICATION 6.6	a (3)				
St	ation Employees		ני א	tility Employed	S Para and 19	Sub-Contractural Employees			
Job Function	Number of Individuals	Total Dose Rem	Job Function	Number Individuals	Total Dose Rem	Job Function	Number of Individuals	Total Dose Rem	
Routine Surveillance	366	502.363	Routine Surveillance	21	5.928	Routine Surveillance	150	177.456	
Refueling	5	15.022	Refueling	8	5.313	Refueing	·· 6	1.941	
Steam Generator Fube Eddy Cur- rent, Removal and Plugging	17	51.495	Steam Generator Tube Eddy Cur- rent, Removal and Plugging	33	59.728	Steam Generator Tube Eddy Cur- rent, Removal and Plugging	385	676.818	
Primary System Maintenance	24	101.232	Prim <i>a</i> ry System Maintenance	0	0	Primary System Maintenance	51	83.376	
Liquid Waste I.X.	10	10.264	Liquid Waste I.X.	0	0	Liquid Waste I.X.	0	Ο΄.	
Resin Transfer	4	5.938	Resin Transfer	0	0	Resin Transfer	.0	· 0	
Rad Waste (Solid)	8	5.243	Rad Waste (Solid)	0	0	Rad Waste (Solid)	. 38	32.009	
· ·			L.	· · · ·				1	
							• • •		
	n a star anna anna an anna Anna an anna an an anna an anna an anna an an	<u></u>	<u></u>		<u></u>				

INTRODUCTION

The Surry Power Station of Virginia Electric and Power Company consists of two Westinghouse pressurized water reactors each with a generating capacity of 788 MWE. The station is located on a peninsula in the James River approximately 25 miles upstream of the Chesapeake Bay. Cooling water is taken in downstream of the site and discharged 5.7 miles upstream of the intake. The Surry Power Station has been designed to minimize radioactive releases and insure that radiation doses attributed to the operation of the station will be "as low as reasonably achievable".

Various environmental samples are collected at indicator and control or background locations and analyzed to determine if changes in radioactivity levels may be attributable to the operation of the station. This environmental radiological monitoring program provides surveillance to assure compliance with the NRC Regulations and the Surry Power Station Technical Specifications.

The program outlined in Tables I and II has in some cases more frequent collection and analysis of certain samples than called for in the Technical Specifications. The accompanying map shows the plant environs. Table III summarizes the results of the radiological environmental surveillance measurements during calendar year 1978.

TABLE I

· · · ·	Air Particulate	Ambient Radiation	Precipitation	Milk	Well Water	Surface Water	Soil
Surry Station	BW	0	М	<u> </u>	SA		A
Hog Island Reserve	BW	0 ·			SA		
Bacon's Castle Chippokes Creek	BW	Q		M(2 ea.)	SA	SA	A
Alliance	BW	0					A
Colonial Parkway	BW	Q		М		SA	А
Jamestown		0			SA		
Dow	BW	. 0	•				· A
Fort Eustis	BW	q					А
Newport News	BW	Q	М			SA	
Scotland Wharf		Q					
Lee Hall		Q		М			
Routes 10 and 676	•	Q			· ·		
Smithfield		· Q		M		SA	
Guard Booth	•	Q					
Station Intake		Q					
Kings Mill		Q					
Budweiser	4	Q					
Station Discharge		Q					

Monitoring or Sampling Locations and Frequencies

BW -	Bi-weekly	M - Monthly	
BM -	Bi-monthly	Q - Quarterly	
SA –	Semi-annually	A - Annually	
A(3)	- Annually corn, pear	nuts, and soybeans	
SM -	Summer Months (two S.	amplings: July - September	:)

.

Ν.

	Crops	Fowl	James River Water	Silt	Oyster	Clams	Fish	Crab
	·	··.			<u></u>			
Bacon's Castle	A(3)							
Hog Island Reserve		SA						
Jamestown						BM		
Newport News			BM	SA	BM			
Chickahominy			BM	SA		BM		
Station Discharge			BM	SA		BM		
Hog Island Point			BM	SA		BM		
Station Intake			BM .	SA	• •		SA	SM
Lawnes Creek		•	•			BM		
Deep Water Shoals					BM			
Point of Shoals				SA	BM			

BW - Bi-weekly	M - Monthly
BM - Bi-monthly	Q - Quarterly
SA-Semi-annually	A - Annually

A(3) - Annually corn, peanuts, and soybeansSM - Summer Months (three Samplings: July - August - September)

1.5

Environs of Surry Power Station.

TABLE II

Environmental Measurement and Sample Analysis Program

Sample or Measurement	Frequency	Analysis			
Airborne Effluent					
Air Particulate	Bi-weekly	Gross alpha and beta (1)			
	Quarterly	Gamma Isotopic (2)			
· .	Composite				
Thermoluminescent Dosimetry	Quarterly	Radiation Dose			
Precipitation	Monthly	Gross beta (3)			
- · · ·	· · ·	Tritium			
	Quarterly	Gross beta			
• ·	Composite	Tritium			
Milk	Monthly	Iodine-131			
		Sr-89,90			
		Gamma Isotopic			
		Stable Calcium			
Soil	Annually	Gamma Isotopic			
Crops	Annually	Gamma Isotopic			
•		Sr-89,90			
Surface Water	Semi-annually	Gross alpha and beta Tritium			
Liquid Effluent					
James River	Bi-monthly	Gamma Isotopic			
Water	Semi-annually Composite	Tritium			
Oysters and		•			
Clams	Bi-monthly	Gamma Isotopic (4)			
Crab	Three Summer Months	Gamma Isotopic			
Silt	Semi-annually	Gamma Isotopic			
Fish	Semi-annually	Gamma Isotopic			
Liquid and/or Airborne	· .				
Well Water	Semi-annually	Gross alpha and beta			
Fowl	Semi-annually	Gamma Isotopic (4)			

NOTES TO TABLE II

- (1) Gamma isotopic analysis if gross beta exceeds 10 pCi/m^3 .
- (2) Quarterly composites of bi-weekly air particulate samples will be analyzed for gamma emitters in three groups as follows:

Stations 1 and 2 analyzed as one sample. Stations 3,5,6,9 and 10 analyzed as one sample. Station 11 analyzed as one sample.

Strontium-90 determined radiochemically if significant amounts of fission products attributable to the Station are detected by the gamma isotopic analysis.

- (3) Perform gamma isotopic analysis if gross beta exceeds 15 nCi/m^2 .
- (4) Entire sample analyzed for gamma emitters. Sr-90 to be determined if a significant amount of fission products attributable to the Station are noted in the gamma analysis.

TABLE III

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM ANNUAL SUMMARY

Name of Facility Surry Power Plant ____ Docket No. 50-280 50-281

Location of Facility Surry, Virginia

Reporting Period 01 January through 31 December 1978

(County, State)

· · · · · · · · · · · · · · · · · · ·	Type and	Lower Limit -				,	Number of
Medium or Pathway	Total Number	of	All Indicator Locations	Location with Highest	Annual Mean	Control Locations	Nonroutine
Sampled	of Analyses	Detection	Mean (f) ^b	Name	Mean (f) ^b	Mean (f) ^b	Reported
(Unit of Measurement)	Performed	(LLD)	Range	Distance & Direction	Range	Range	Measurements
Air Particulates (pCi/m ³)	Gross ß 221	. 01	$\begin{array}{rrr} 0.11 & (187/193) \\ .01 &61 \end{array}$	Surry Station	0.12(27/28) 0.0261	0.13 (28/28)	0
	l l						
	Gross a 213	.01	.01 (1/194) .01	Ft. Eustis 4.8 Mi. N.	.01 (1/27) .01	.01 (1/27) .01	0
1	y Isotopic 12	.01					
	Ce-144		.04 (3/4)	Composite-Surry	.04 (3/4)	.08 (4/8) ·	0
1			.0207	Sta., Hog Is. Reserve	.0207	.0416	
	Ru-106		.01 (1/4)	Sta., Hog Is. Reserve	.01 (1/4)	.02 (1/8)	0
	Cs-134		A11 LLD	Not Applicable		All LLD	0
•							
	Cs-137		A11 LLD	Not Applicable		A11 LLD	
- Gamma Dose (mR/wk)	Dose 96	0.5	1.8 (76/76) 0.6 - 17.4	Surry Station On Site	17.4 (4/4) 13.4 - 21.0	1.0 (12/12) 0.8 - 1.2	0
Precipitation (pCi/1) H-3 (nCi/m ²) 8	Gross ß 28	5	1.1 (15/15) .03 - 3.4	Surry Station On Site	1.1 (15/15) .03 - 3.4	0.8 (15/15) 0.4 - 2.4	0 _.
	Tritium 30	300	780 (12/16) 400 - 2200	Surry Station On Site	780 (12/15) 400 - 2200	730 (12/16) 360 - 1700	O
Milk (pCi/l)	I-131 58	0.5	1.1 (1/35) 1.1	Bacon's Castle (Judkins)	1.1 (1/11) 1.1	0.9 (2/23) 0.6 - 1.2	0
· ·	Sr-89 58	5	A11 LLD	Not Applicable	:	A11 LLD	0
	Sr-90 58	2	5 (43/46) 1 - 17	Bacon's Castle (Judkins)	8 (9/10) 4 - 16	5 (11/11) 2 - 12	

^bMean and range based upon detectable measurements only. Fraction of detectable measurements at specified locations is indicated in parentheses. (f)

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM ANNUAL SUMMARY

Name of Facility Surry Power Plant Docket No. 50-280 50-281

Location of Facility Surry, Virginia Reporting Period Ol January through 31 December 1978 (County, State)

•				•.				
Medium or Pathway Sampled (Unit of Measurement)	Type and Total Numb of Analyse Performed	l oer es d	Lower Limit of Detection (LLD)	All Indicator Locations Mean (f) ^b Range	Location with Highest Name Distance & Direction	Annual Mean Mean (f) ^b Range	Control Locations Mean (f) ^b Range	Number of Nonroutine Reported Measurements
Milk (cont'd)	Cs-137	58	15	19 (4/35) 16 - 23	Bacon's Castle Judkins	21 (2/11) 18 - 23	17 (3/23) 13 - 21	0
	Ba-La-140	58	15	A11 LLD	Not Applicable	e	All LLD	0
River Water	Sr-89	3	5	A11 LLD	Not Applical	ble	A11 LLD	0
(pc1/1)	Sr-90	3	2	u n	9 U		11 11	0
	H-3	8	330	2500 (4/4)	Station Discharge	2500 (4/4)	A11 LLD	
. ·	Ba-La-140	34	15	A11 LLD	Not Applical	300 - 8400 ble	All LLD	0
	Cs-134	34	15		11 11		H H	D
	Cs-137	34	15	п и			" "	. 0
	Zr-Nb-95	34	10		·n n		11 11	0
	Co-58	34	15	н II	. 11 11		11 11	0 ·
	Mn-54	34	15		11 11		0 0	0
	Zn65	34	15		11 11		11 U	0
	Fe-59	34	30	0 0	11 11		u u -	· 0
Clams	Mn-54	30	130		. 11 11		tt 11	0
(pC1/kg)	Fe-59	30	260	11 11			11 11	0

^bMean and range based upon detectable measurements only. Fraction of detectable measurements at specified locations is indicated in parentheses. (f)

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM ANNUAL SUMMARY

Name of Facility Surry Power Plant Docket No. 50-280 50-281

Location of Facility Surry, Virginia Reporting Period 01 January through 31 December 1978 (County, State)

Medium or Pathway	Type Total N	and umber	Lower Limit of	All Indicator	Locations	Location with H1	ghest Anou	al Mean	Control Locations	Number of Nonroutine
Sampled	of Anal	Lyses	Detection	Mean ((£) ⁵	Name		Mean (f)	Mean (f)	Reported
(Unit of Measurement)	Perfor	cmed	(LLD)	Kang	,e	Distance & Directio	n	Range	Kange	Measurements
Clams (cont'd)	Co-58	30	130	A11 LI	D	Not App	plicable		All LLD	. 0
	Co-60	30	130		1	· · · · · · · · · · · · · · · · · · ·	н '		n 11	0
	Zn-65	30	260		1	11	Ur		10 U	0
	Cs-134	30	130	11 11	•	11			. 17 10	0
	Cs-137	30	130	All LI	.D .	Not Ap	plicable		All LLD	0
	Sr-90	3	10	. 10	(1/3) 10	Station Discharge	10	(1/3) 10	Analysis not Required	0
	Sr-89	3	10	All LI	,D	Not Ap	plicable		Analysis not Required	0
Oysters	Mn-54	16	130	11 11					A11 LLD	0
(pCi/kg)	Fe-59	16	260			. П			11 11	0
ļ	Co-58	16	· 130	i 11 11		**			- 11 11	0
1	Co-60	16	130			11	**		11 11	0
	Zn-65	16	260				. "			0
	Cs-134	16	130				"			0
	Cs-137	16	130		.D	Not App	plicable		All LLD	0.
Fish (pC1/kg)	Cs-137	4	130	190	(1/4) 190	Surry Station Vicinity	19 0	(1/4) 190	Not Required	0
	Mn-54	4	130	All LL	.D	Not App	licable		Not Required	0
l	10-59	4	200			ti			U 14	
	Co-60	4	130	11 11		. 11	"		11 11	ő

^bMean and range based upon detectable measurements only. Fraction of detectable measurements at specified locations is indicated in parentheses. (f)

Q

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM ANNUAL SUMMARY

Name of Facility Surry Power Plant Docket No. 50-280 50-281

Location of Facility Surry, Virginia Reporting Period Ol January through 31 December 1978 (County, State)

				· · · · · · · · · · · · · · · · · · ·	· · · ·	
Modium on Dathway	Type and Total Number	Lower Limit -	All Indiantar Logations	Teastion with Uishaat Annual Maan	Control Locations	Number of
nealum of Fallway	iotar Mumber	. 01	AII Indicator Locations	Location with nignest Anunal Mean	Control Locations	Nonroutine
Sampled	or Analyses	Detection	Mean (r)	Name Mean (1)	Mean (f)	Keported
(Unit of Measurement)	Performed	(LLD)	Range	Distance & Direction Range	Range	Measurements
Fish (cont'd)	Zn-65 4	260	A11 LLD	Not Applicable	Not Required	0
	Cs-134 4	130	11 11	11 11	· · · · · · · · · · · · · · · · · · ·	0
•						
Crabs	Mn-54 3	130		н н	17 11	Ò
(pCi/kg)	Fe-59 3	260 ·	н <u></u> н	11 II S	11 11	0
	Co-58 3	130	· • • •	- 11 11	· 11- P	0
	Co-60 3	130	· • • •	11 II	a a a	0
	Zn-65 3	260		91 H	u u	0
	Cs-134 3	130	11 [°] 11		11 77	0
-	Cs-137 3	130		Not Applicable	Not Required	0
Silt (pCl/kg)	Cs-134 12	150 .	620 (1/10) 620	Station Discharge 620 (1/10) 620	A11 LLD	0
	Cs-137 12	150 .	910 (8/10) 300 - 2000	Station Discharge 2000 (1/2) 2000	400 (2/2) 400	0
•	Co-58 . 12	150	A11 LLD	Not Applicable		0
	Co-60 12	150	. 700 (3/10) 300 - 1400	Station Discharge 1900 (1/2) 1400	A11 LLD	0
	Mn-54 12	150	A11 LLD	Not Applicable		0
	7-65 12	260		Not Applicable		0
	211-0J IZ	200	, AII DED	NOL Applicable		Ŭ
Soft	Cs-134 12	150	A11 LLD	Not Applicable	A11 LLD	0
(pC1/kg)	Cs-137 12	150	1600 (9/12)	Ft. Eustis 1750 (2/2)	Not Applicable	0
(10-1, 10)		200	300 - 2300	1700 - 1800		-
Foul	Co-13/ 2	80	A11 TDD .	Not Applicable	Not Applicable	0
	Ca_137 2	80		not Applicable	n n	õ
(her) vR)	C2-13/ Z	00			·	v
					· .	

^bMean and range based upon detectable measurements only. Fraction of detectable measurements at specified locations is indicated in parentheses. (f)

· .

10

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM ANNUAL SUMMARY

Name of Facility Surry Power Plant

.

Docket No. 50-280 50-281

Location of Facility Surry, Virginia

Reporting Period 01 January through 31 December 1978

(County, State)

· · ·	Type and	Lower Limit				Number of
Medium or Pathway	Total Number	of	All Indicator Locations	Location with Highest Annual M	an Control Locations	Nonroutine
Sampled	of Analyses	Detection	Mean (f) ^b	Name Mean	$(f)^{b}$ Mean $(f)^{b}$	Reported
(Unit of Measurement)	Performed	(LLD)	Range	Distance & Direction Ra	nge Range	Measurements
· · · · · · · · · · · · · · · · · · ·	1					
Food Crops	Cs-134 6	80	A11 LLD	Not Applicable	Not Applicable	0
(pCi/kg)	Cs-137 6	80	u u '	11 11	n n	0
		· · · ·				
	Sr-89 6	10	A11 LLD	Not Applicable	Not Applicable	0
	Sr-90 6	10	150 (1/6)	Slade 150 (1	(3) Not Applicable	l õ
			150		50	ſ
Well Water	Gross a 8	1 1.	3.5 (2/6)	Hog Ts. Reserve 5 (1	$\frac{1}{2}$ 2 (1/2)	1 0
(pC1/1)			2 - 5	1 9 Mł		Ĭ
	Gross B 8	1 1	4.2 (5/6)	Nog Is. Reserve 5.5(12) 3 5 (2/2)	0
		} .	2 - 5	3 - 5		U
	Tritium 8	330	300 (1/1)	Surry Station 300 (1	(1) $(1/2)$	0
1			300	500 (1	500	
Surface Water	Gross a 8	1 1	2.8 (2/4)	Williamsburg 2.5(2	12) 3 (2.4)	0
(pCi/1)			2 - 3	Reserve 2 - 3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	Gross B 8	1	3 (3/4)	Williamshuro 2 5(2	12) 6 5 (6.16)	0
		-		2 - 3	2 - 9	0
	Tritium 8	500	600 (2/4)	Williamsburg 600 (2	14) 800 (2/4)	0
		1	600	Chippokes Creek	74) $300 - 900$	
				onipponed breek (700 - 900	
1		1				
1		j				
1	}					
ł				•		
				·	· .	ļ
1					· · ·	
]						
	1			•		
	1					1

^bMcan and range based upon detectable measurements only. Fraction of detectable measurements at specified locations is indicated in parentheses. (f)

H

SUMMARY

Environmental monitoring results showed that the radiation dose to a member of the general population did not exceed Technical Specifications of 1% of the 10 CFR 20 limit during 1978.

Radionuclides released to the air and water from Surry Station may contribute to the radiation background through both external and internal exposure.

The most significant environmental dose pathways are direct dose from the gaseous effluent and thyroid dose due to ingestion of milk. The area contains only a very small milk shed which limits general population dose potential from this source and since James River water is not used for drinking, dose potential from this source is also minimal.

A nuclear explosive was detonated in the atmosphere in the People's Republic of China in mid-March of 1978. Radioactive debris (fallout) from this event was detected throughout the continental United States in the later part of March chiefly as I-131 in milk samples and elevated concentrations of beta and gamma emitters in air particulate filters collected during the following several months. Effects on other media were generally minimal or masked by the usual ambient levels encountered in those media. A second nuclear device was exploded in mid-December at the Lop Nor test site. Fallout from this event was apparently too diffused to be detected in routine environmental monitoring programs.

Table III summarizes the range and average concentrations for measurements at the indicator and control locations, and the location with the highest annual mean. Complete information is given in the Sample Data Tables. (Appendix I)

Specific findings for various environmental media are discussed below:

Air Particulate Samples

Air particulate samples collected in late March showed the arrival of fallout associated with the nuclear test conducted by the People's Republic of China. All sampling locations showed increased gross beta concentration, with elevated levels persisting until late July. The average concentration for the year for all indicator stations was 0.11 pCi/m^3 . and for the control location was 0.13 pCi/m^3 . The single highest concentration, $0.66\pm.09 \text{ pCi/m}^3$, was noted at Newport News on 04/11/78, and is attributable to fallout and not operation of nuclear power plants.

The presence of significant and variable amounts of radionuclides due to fallout in this and previous years' samples does not permit meaningful trend analysis or comparison of average concentrations in the samples. Data for analyses of individual filters are given on pages 2-1 through 2-3 of Appendix I.

Gamma spectrometry of quarterly composites of air particulate filters indicated that concentrations of Cs-134 and Cs-137 were below 0.01 pCi/m³ throughout the year. Small amounts of Ce-144 and occasionally Ru-106 were detected in first and second quarter composites from all locations. These nuclides were found to be present in similar collections throughout the continental U. S. and are attributed to fallout from the Spring Chinese nuclear test. By the third quarter of the year, concentrations of all gamma emitters had fallen below LLD's for the most part. None of the radioactivity detected is attributable to operation of Surry Station, since effects of the station, if any, are masked by the more abundant fallout. Analytical data are given on page 2-4 of Appendix I.

Environmental Dosimetry

Measurements of environmental dose rates were made at twenty-three locations plus a control (shielded) location on a quarterly basis using thermoluminescent dosimeters (TLD's). Data are summarized below and in tables on pages 6-1 of Appendix I.

ENVIRONMENTAL DOSIMETRY BY THERM	OFOLINESCENT I	JOSTUCIKI
----------------------------------	----------------	-----------

		Average mR/week								
Location		lst Q	2nd Q	3rd Q	4th Q	Year				
			_							
Control	-00	0.5±0.1	0.8±0.1	0.7±0.1	0.7±0.2	0.7				
Surry Station	-01	13.4±2.8	19.4±1.9	15.9±1.6	21.0±2.0	17.4				
Guard Booth	-02	1.3±0.2	1.6±0.2	1.5±0.2	1.6±0.2	1.5				
Surry East	-03	1.1±0.2	1.4±0.1	1.2±0.1	1.2±0.1	1.2				
Surry North	-04	0.9±0.2	1.2±0.1	0.9±0.1	1.2±0.2	1.1				
Hog Island Reserve	-05	0.7±0.1	1.1±0.1	0.9±0.1	1.0±0.1	0.9				
Surry West	-06	0.6±0.1	1.0±0.2	0.8±0.1	0.9±0.1	0.8				
Station Discharge	-07	0.6±0.1	0.8±0.1	0.6±0.1	0.5±0.1	0.6				
Station Intake	-08	0.7±0.1	0.8±0.1	0.6±0.1	0.7±0.1	0.7				
Surry South	-09	0.9±0.1	1.1±0.1	0.9±0.1	1.1±0.1	1.0				
Bacons Castle	-10	0.7±0.1	0.9±0.1	0.8±0.1	0.9±0.1	0.8				
Alliance	-11	1.0±0.1	0.9±0.1	0.7±0.1	0.8±0.1	0.9				
Scotland Wharf	-12	0.7±0.1	1.0±0.1	0.9±0.1	0.9±0.1	0.9				
Jamestown	-13	0.8±0.1	0.9±0.1	0.8±0.1	0.9±0.2	0.9				
Colonial Parkway	-14	0.8±0.2	0.9±0.1	0.8±0.1	0.9±0.1	0.9				
Kings Mill	-15	0.6±0.2	0.9±0.1	0.8±0.1	0.9±0.1	0.8				
Budweiser	-16	1.0±0.3	1.1±0.1	1.0±0.1	1.0±0.1	1.0				
Dow	-17	1.3±0.3	1.2±0.2	1.0±0.1	1.1±0.1	1.2				
Lee Hall	-18	1.4±0.2	1.2±0.1	1.2±0.1	1.4±0.3	1.3				
Fort Eustis	-19	1.1±0.2	1.0±0.1	0.9±0.1	1.1±0.1	1.0				
Newport News	-20	1.2±0.3	1.1±0.1	1.0±0.1	1.1±0.1	1.1				
Smithfield(Subst.)	-21	1.2±0.3	1.2±0.1	1.1±0.1	1.2±0.1	1.2				
Smithfield(10&258)	-22	1.1±0.2	1.1±0.2	0.9±0.1	0.9±0.2	1.0				
Rt 10 and 676	-23	0.9±0.2	0.8±0.1	0.8±0.1	0.8±0.1	0.8				

As observed in previous years, the Surry Station location displays clearly elevated dose rates throughout the year.

Other on-site locations appear to be only very slightly above nearby locations and the badges located near the station intake and discharges consistently give some of the lowest readings observed. The major fraction of the dose at the Surry Station location is undoubtedly due to operation of the station. The doses at other on-site locations may be partially due to the station, but only by a few tenths of a millirem per week at most. Doses due to the plant at locations away from the site, if they exist, are masked by doses from the usual natural environmental sources such as uranium, thorium and their daughters, and possibly worldwide fallout.

Precipitation Samples

Precipitation samples collected at the Surry Station and at Newport News. The samples are collected and analyzed on a monthly basis and as quarterly composties for gross beta deposition and tritium concentrations. Data which are summarized in Table III and on page 2-5 of Appendix I. Some samples collected at the Surry Station displayed gross beta deposition slightly higher than the Newport News location especially during the first half of the year. Gross beta measurements, the only measurements other than tritium required on these samples are not capable of indicating whether the differences are due to station operations or not. Some if not most of the activity during the first half of the year is due to worldwide fallout from both the well-known "Spring Peak" which is due to injection of long term radioactive debris from the stratosphere into the troposphere during early part of the year, and the Chinese nuclear test previously referred to.

Tritium concentrations in precipitation were comparable at both locations throughout the year, and were generally in the range to be expected from measurements of this nuclide in this medium.

The cause of the somewhat elevated concentrations in the February sample is unknown to us, but the increase was observed at both locations suggesting that it is due to large scale meteorological processes and not releases from Surry Station.

Milk Samples

Radionuclides attributable to worldwide fallout are found in milk samples throughout the country. The most prevalent nuclides are Cs-137 and Sr-90, which were detected in the usual low and variable concentrations to be expected in most of the milk samples collected during the year. Occasionally, I-131 is detected in milk samples collected for a few weeks after intrusion of debris for an atmospheric nuclear explosion. Such was the case with samples from Judkins, Gwaltney and Smith farms during March, shortly after the April nuclear detonation in the People's Republic of China (see also air particulates). All other milk samples collected during the year were below the detection limit (0.5 pCi/1) for I-131.

Strontium-89 and Ba-La-140 were below the detection limits in all samples collected during the year.

Radioactivity attributable to operation of Surry Station was not detected in any milk samples collected during the year. What activity was detected, is due to worldwide fallout and effects of the station, if any, were masked by the more abundant debris from that source.

Comparisons of average concentrations for all nuclides assayed and other statistical information are given in Table III and data for analyses on each sample are given on pages 3-1 and 3-2 of Appendix I.

Well Water Samples

Samples of water were collected from each of four wells once during the Spring and once in the Fall.

Gross alpha and gross beta activity were detected in most of the samples at the usual low levels encountered in environmental media. There was no statistically significant difference in concentrations, which were similar to those measured previously, between indicator and background stations and the activity is attributable to naturally occurring nuclides.

Tritium was detected above minimum detection limit of 330 pCi/l in only one sample (Jamestown, 04/11/78, 530±110 pCi/l). This concentration is within the range to be expected in environmental samples and is not due to operation of the Surry Plant. The Fall sample from the Jamestown location was below MDL.

Analytical data are given on page 5-1 (Appendix I) and summarized in Table III.

Surface Water Samples

Surface water samples were collected in the Spring and Fall from each of four locations. Gross alpha and gross beta concentrations were all at the low concentrations usually expected to be found in environmental surface water, with no significant differences between indicator and background stations or concentrations measured during 1977.

Tritium at typical environmental levels was detected in Spring samples, but was below the minimum detection levels in Fall samples. The tritium in the spring samples is attributable to either normal environmental level fluctuations or fallout from recent atmospheric nuclear explosions and not operation at nuclear power stations.

Average concentrations for indicator and background stations are given in Table III, and analytical data for all samples are given on page 5-1 of Appendix I.

James River Water Samples

Samples of water from the James River are collected bi-monthly from five locations including the station inlet and dishcharge and are analyzed for gamma emitters. Semi-annual composites of the collections from the Chickahominy and Newport News locations are also analyzed for tritium. Quarterly samples are collected from the discharge. These samples are split with a State agency and are analyzed for tritium, Sr-89 and Sr-90 in addition to gamma emitters. Analytical data are presented on pages 4-1 through 4-3 of Appendix I and are summarized in Table III of this report.

Gamma emitters were below the detection requirements of this program in all samples collected as were Sr-89 and Sr-90 in those samples requiring analyses for these latter nuclides.

Tritium was detected in all of the Station Discharge (State Split) samples. The April and October samples were in the range frequently encountered in environmental surface water. The January and July samples displayed concentrations somewhat higher than usually expected in the environment. It is possible that these measurements represent releases from the Station.

Tritium in the semi-annual composites from Chickahominy and Newport News was below the detection limit of 300 pCi/l for both halves of the year.

Silt Samples

Silt Samples are collected semi-annually from six locations and analyzed for gamma emitters. Silt is one of the few environmental media in which radioactive effluents from nuclear power stations are usually detected. Most of the samples collected contained measurable concentrations of Cs-137, several contained Co-60 above the MDL's, and the Fall sample from the Station Discharge contained Cs-134. The Spring sample from the same location was anomalous in that no radioactivity was detected in a sample which is expected to be one of the highest areas. This probably represents a sampling problem rather than an actual "absence" of activity in the area. The levels of activity measured are generally comparable with those encountered in previous years. Precise comparison cannot be made because of the variability of concentrations at a given location and the relatively infrequent collections.

Data are summarized in Table III and detailed in Appendix I, page 4-8.

Clam samples are collected bi-monthly from five locations near the station including the Station Discharge and are analyzed for gamma emitters. Samples from this location are frequently designated "State Split Samples" and such samples are analyzed for Sr-89 and Sr-90 as well as gamma emitters. Gamma emitters were below the LLD's of the program in all samples collected during the year. Analysis of State Split clam samples for radiostrontium revealed the presence of only Sr-90 at levels attributable to worldwide fallout in one sample (May).

Analytical data are presented on page 4-5 of Appendix I and summarized in Table III.

Oyster Samples

Samples of oysters are collected from Deep Water Shoal, Point of Shoal, and Newport News on a bi-monthly basis and analyzed for gamma emitters.

Some of the collections from Newport News are designated State Split samples. Data presented on page 4-6 of Appendix I show that concentrations of gamma emitters were below the LLD's of the program throughout the year.

Fish Samples

Fish are collected from the vicinity of the Station twice a year and analyzed for gamma emitters by gamma spectroscopy. A sample of catfish collected in February contained 1.9±1.6 pCi/kg (wet weight) Cs-137. This concentration of Cs-137 is not considered to be especially unusual in bottom feeders. This and other gamma emitters were below the LLD's for the program in other samples of this and other species collected during the year. Data are presented on page 4-7 of Appendix I.

Crab Samples

Samples of crabs from the vicinity of Surry Station are collected in July, August and September. Results of analyses on each of the collections as given on page 4-7 of Appendix I indicate that gamma emitters were below the LLD's for the program in all samples.

Soil Samples

Soil samples are collected annually from six locations and analyzed by gamma spectrometry for gamma emitters. The only nuclide detected at concentrations greater than the LLD's for the program was Cs-137. Because the samples collected during the scheduled collection yielded unexpected concentrations of Cs-137, a second series of samples were obtained and analyzed. The concentrations of Cs-137 have been quite variable throughout the years as is illustrated in the table below. This is probably due to the well recognized difficulty of obtaining truly representative samples of soil. There are no clear trends and the origin of the cesium is unclear. Long and short term worldwide fallout are probably the major factors and contributions to the total by the station can not be ruled out. If, however, the major fraction were due to the station, significant amounts of Cs-134 and Co-60 might be expected in the samples, but this was not the case. De-tailed analytical data for the current year's samples are found on page 5-2 of Appendix I.

	Cs-137 Concentrations in Soil Samples 10 ² pCi/kg*								
	1975	1976	1977	1978(Aug)	1978(Sept)				
Surry Station	35	1	17	<2	4 ·				
Ft. Eustis		18	10	17	18				
Dow	10	2	2	<2	3				
Bacon's Castle	8	24	2	23	9 .				
Alliance	2	3	2	<2	3				
Colonial Parkway		15	12	22	7				

*Data rounded to nearest whole unit, statistical errors omitted. Crop Samples

Samples of food crops (corn, peanuts) are collected from two farms in the area annually and analyzed for gamma emitters, Sr-89 and Sr-90. No radioactivity was detected in any of the samples at the LLD's applicable to this program. Data may be found on page 5-2 of Appendix I.

Fowl Samples

A Canadian Goose from the Hog Island Reserve was collected in March and an American Egret was obtained on Hog Island Point in September. The fowl were analyzed by spectrometry for gamma emitters, specifically Cs-134 and Cs-137. Concentrations of these nuclides were below the LLD of 80 pCi/kg for both samples. Data are given on page 5-2 of Appendix I.

ANALYTICAL PROCEDURES

Samples received at the laboratory are analyzed for the various radioactive components by standard radiochemical methods. These methods are equal to, and in most cases identical with, those of the U. S. DOE (1) or those of the Federal E. P. A. (2).

Brief descriptions of analytical procedures are available in the Laboratory Procedures Manual available at Surry Station and in the radioanalytical contractor's laboratory.

Air Particulate Filters

<u>Gross Beta</u> - Exposed air particulate filters are counted in low background Geiger or proportional flow beta counters using anti-coincidence background suppression. Filters are counted long enough to ensure that the required sensitivity (LLD) will be met.

<u>Gamma Isotopic</u> - quarterly composites of air particulate filters are counted in high resolution (GeLi) gamma spectrometers for periods of time long enough to ensure that the required program sensitivity (LLD) is met. (See also intro. to data tables, Appendix I).

<u>Water Samples</u> (including surface, well, James River waters and precipitation). <u>Gross Beta</u> - a measured aliquot of sample is digested, "wet-ashed", evaporated, transferred to a tared 47mm stainless steel planchet, dried and weighed. The planchetted sample is counted long enough in a low background beta counter to ensure that the LLD of the program will be met.

 HASL Procedures Manual, edited by John H. Harley, Health and Safety Laboratory, U. S. Atomic Energy Commission, 1972 edition, revised annually.

(2) National Environmental Research Center, Environmental Protection Agency; Handbook of Radiochemical Analytical Methods. Program Element 1HA 325. Office of Research and Development, Las Vegas, Nevada 89114.

<u>Gamma Isotopic</u> - a measured aliquot of the sample is evaporated to a small controlled volume and counted in a standard geometry in a high resolution (Geli) gamma spectrometer long enoungh to ensure meeting the sensitivity requirements of the program. See also the Introduction to Data Tables.

Strontium-89 and Strontium-90 - carrier strontium is added to a measured aliquot of sample. The strontium is then separated and purified by either ion exchange chromatography (EPA method) or straight wet chemistry (HASL method). The chemical yield for strontium is determined by atomic adsorption spectrometry or gravimetric methods. After a suitable period (usually 14 days) to allow for ingrowth of Y-90 the sample is counted in a low background beta counter (equilibrim or total Sr count). The strontium is next put into solution, carrier yttrium added, and the strontium and yttrium fractions separated. The yttrium is counted and from the Y-90 (Sr-90 daughter) count, the Sr-90 concentration can be determined. The difference between the total strontium concentration as determined by the equilibrium count and the Sr-90 concentration as determined from the Y-90 count is the Sr-89 concentration. Equations are available to permit calculation of Sr-89 and Sr-90 by counting the purified Sr fraction at two points during ingrowth of the Sr-90 daughter Y-90. While either method is acceptable, we find the former method to provide more consistent results.

<u>Tritium</u> - tritium as tritiated water is analyzed by liquid scintillation counting after distillation. If high sensitivity is not required (ie. LLD \sim 500 pCi/l) the sample is distilled, mixed with the appropriate counting phosphors and counted with no further treatment. If higher sensitivity is required (ie. $\langle \sim 500 \text{ pCi/l} \rangle$) the sample is isotopically enriched in tritium concentration prior to liquid scintillation counting.

Isotopic enrichment is done by the classical method of Ostlund which involves alkaline electrolysis of a purified aliquot of sample under controlled conditions of temperature and electrode current density.

Milk Samples

<u>I-131</u> - measured amounts of carrier iodide are added to a known volume of milk and the iodine extracted on anion exchange resin. The iodine is recovered and purified by classical iodine chemistry methods which are similar to those given in former Regulatory Guide 4.3. The yield or recovery of iodine is measured gravimetrically and the precipitated sample is mounted and counted in a low level beta detector for a long enough period to ensure that the required LLD is met.

<u>Gamma Isotopic</u> - a measured aliquot of sample is evaporated and oven dried to a standard volume and counted in a fixed geometry in a high resolution (GeLi) gamma spectrometer for a long enough period to ensure that the required LLD's are reached (see also Introduction to data Tables).

<u>Sr-89</u> and <u>Sr-90</u> - Stable strontium carrier is added to an aliquot of the sample which is then dried and ashed at high temperature (>700^oc). The ash is dissolved and the solution treated from this point on in the same manner as are water samples (Q.V.).

<u>Organic Samples</u> (including Clams, Oysters, Fish, Crabs, Food Crops and Fowl). <u>Gamma Isotopic Analysis</u> - a measured aliquot of sample is oven dried or ashed as appropriate, placed in a controlled geometry and counted in a high resolution (GeLi) gamma spectrometer for a period long enough to ensure that the LLD's of the program will be met (see also intro. to Data Tables).

In the case of samples such as fish and fowl, the edible flesh is separated from bones and entrails prior to drying.

<u>Sr-89 and Sr-90</u> - stable strontium carrier is added to a weighed aliquot of the sample and the sample is ashed at high temperature (>700°c). The ashed sample is then dissolved and processed in the same manner as are water or milk samples.

Soil and Silt Samples

<u>Gamma Isotopic Analysis</u> - the sample is oven dried to facilitate handling and then sieved to remove pieces of stone and/or other large pieces of material. An appropriate sized, weighed aliquot of the sample is then transferred into a standard geometry container and counted for a period long enough to ensure that the LLD of the program will be met. (See also Introduction to Data Tables).

Thermoluminescent Dosimeters (TLD)

Environmental radiation doses are measured using badges comprizing five chips sealed in plastic protective holders having a density of 50 mg/cm^2 . The TLD chips are $1/8'' \ge 1/8'' \ge 1/32$ LiF (thallium activated) known commercially as Harshaw-100. The chips are all selected to provide uniform response to within 5% of the mean for the batch.

Prior to installation, the chips are annealed by a standard cycle of 60 minutes at 400° c and immediate cooling to ambient temperature by placing the tray containing the annealed chips on an aluminum block 12" x 12" x 1".

After exposure the chips are read on an Eberline Instrument Corporation Model TLR-5 reader. The system employs a preheat cycle which removes low temperature peaks and integrates and digitizes only the light output in a selected temperature range.

The dose is calculated from the average light output for the five chips and the statistical uncertainty is the standard deviation of the five readings. Control badges are used to detect any unusual exposure to the badge which might occur during shipment.

Detection Capabilities for Environmental Sample Analysis

Lower Limit of Detection (LLD)									
Anaysis	Water (pCi/1)	Airborne Particulate or Gas (pCi/m ³)	Fish (pCi/kg,wet)	Milk (pCi/l)	Food Products (pCi/kg, wet)	Sediment (pCi/kg, dry)			
gross beta	2	1 x 10 ⁻²							
3 _H	<u>,</u> 330								
⁵⁴ Mn	15		130	·.					
⁵⁹ Fe	30		260						
58,60 _{Co}	15		130						
⁶⁵ Zn	30		260						
⁹⁵ Zr-Nb	10								
131 _I	ı	7×10^{-2}		1	25				
134,137 _{Cs}	15	1×10^{-2}	130	15	80	150			
140 _{Ba-La}	15			15					

.

Media	Analysis	LLD		
Water	Gross a	1	pCi/1	
	Sr-89	5	pCi/l	
	Sr-90	2	pCi/l	
Precipitation	Gross ß	5	pCi/1	
	Tritium	330	pCi/l	
Air Particulates	Gross a	0.0)1 pCi/m ³	
Fowl	Gamma Isotopic		(1)	
Food Crops	Sr-89	20	pCi/kg	
-	Sr-90	10	pCi/kg	
Oysters	Gamma Isotopic		(2)	
Clam	Gamma Isotopic		(2)	
	Sr-89	20	pCi/kg	
. · ·	Sr-90	10	pCi/kg	
Crab	Gamma Isotopic		(2)	
Milk	Sr-89	5	pCi/1	
	Sr-90	2	pCi/1	
Soil	Gamma Isotopic		(3)	

Lower Limits of Detection (LLD) for Analyses Not Required in Regulatory Guide 4.8

TABLE B

(1) Same as RG. 4.8 for Food Crops.
 (2) Same as RG. 4.8 for Fish.
 (3) Same as RG. 4.8 for Sediment.

. .

APPENDIX I

Data Tables

1.0 Introduction

Error Terms Sensitivity - LLD's Gamma Isotopic Analysis Exponents

2.0 Airborne Radioactivity

Air Particulates Precipitation

3.0 Milk

4.0 Samples from the Aquatic Environment

James River Water Clams Oysters Fish Crab Silt

5.0 Samples from the Terrestrial Environment

Well Water

6.1 TLD Data

1-1

3-0

2-0

4-0

5-0

1.0 Introduction to the Data Tables

In this section are given items of information helpful in understanding the presentation of the data in the Tables.

1. Error Terms

Data preceded by the "less than" symbol (<) are at the 3σ (99% confidence) level. The error terms on other data are 2σ (95% confidence).

2. Sensitivities - LLD's

Analytical sensitivities or LLD's (Lower Limits of Detection) are those given in the most recent NRC Branch Position on Regulatory Guide 4.8. (Table A) For analyses not required in RG. 4.8, Federal EPA, former requirements for similar programs, or other appropriate guides are used (Table B). The LLD's are calculated as per RG. 4.8 at the 30 level.

The Guide specifically states that the LLD's are <u>a priori not a posteriori</u>; limits for a particular measurement. When, however, RG. 4.8 or other LLD's have not been achieved, a footnote giving a brief explanation has been inserted.

3. Gamma Isotopic Analyses

All samples to be analyzed for gamma emitters are assayed using high resolution gamma spectrometers. (Geli). The spectra are computer scanned using recognized programs. The energy search programs specifically examine the peak areas of gamma energies for the expected effluents from nuclear power plants. Only the nuclides required by NRC Reg. Guide 4.8 are reported in the Data Tables. If other gamma emitters associated with either power station operation or worldwide fallout from nuclear weapons tests are detected, this information is either given in discussions of the data or entered as footnotes to the data tables.

Naturally occurring gamma emitters are frequently detected in environmental samples. Analyses of these nuclides is not required by the NRC and they are neither quantified when detected nor reported in the Data Tables.

4. Exponents

Exponents necessary to prevent data tables from being cumbersome are handled in the conventional manner of including them in column headings.

2.0 Airborne	Radioactivity
--------------	---------------

2.1 Particulate Filters

Page

2–5

2-5

2.1.1	Gross	Alpha	and	Gross	Beta	Concentrations	21
2.1.2	Gamma	Isotop	pic A	Analyse	25	•	2-4

2.2 Precipitation

2.2.1	Gross Beta and Tritium Analyses of								
	Monthly Collections								
2.2.2	Gross Beta and Tritium Analyses of								
Quarterly Composites									

VEPCO

	SS - Surry Station		UIR - Hog Island Reserve			BC - Bacon's Castle			
Collection	Volume	10-2 pCi	./m ³	Volume	10-2 pCi	/m ³	Volume	10-2 pCi	/m ³
Date	(m ³)	Gross a	Gross ß	<u>(m³)</u>	Gross a	Gross β	(m³)	Gross a	Cross ß
01/10/78	330	< 1	8 ± 1	295	< 1	2 ± 1	280	< 1	9 ± 1
01/24/78	330	< 1	2 ± 1	290	< 1	3 ± 1	285	< 1	5 ± 1
02/07/78	335	< 1	10 ± 1	295	< 1	8 ± 1	300	< 1	3 ± 1
02/22/78	355	< 1	5 ± 1	315	< 1	9 ± 1	330	< 1	3 ± 1
03/07/78	325	< 1	8 ± 1	270	< 1	$10' \pm 1$	285	< 1	9 ± 1
03/21/78	330	< 1	13 ± 1	270	< 1	11 ± 1	285	< 1	11 ± 1
04/11/78	495	< 1	61 ± 9	455	< 1	48 ± 7	445	< 1	59 ± 9
04/18/78	160	< 1	31 ± 3	140	< 1	25 ± 3	150	<`1	28 ± 3
05/02/78	330	< 1	21 ± 3	160	< 1	6 ± 1	285	< 1	17 ± 3
05/21/78	307	< 1	10 ± 1	166	< 1	15 ± 2	277	< 1	9±1
05/30/78	342	< 1	6 ± 1	319	< 1	8 ± 1	293	< 1	11 ± 2
06/13/78	330	< 1	18 ± 3	295	< 1	10 ± 2	270	< 1	18 ± 3
06/27/78	· 315	< 1	16 ± 2	300	< 1	17 ± 2	285	< 1	21 ± 2
07/11/78	310	< 1	1.4 ± 1	295	< 1.	14 ± 1	300	< 1	15 ± 2
07/25/78	312	< 1	13 ± 1	293	< 1	13 ± 1	296	< 1	13 ± 1
08/04/78	345	<`1	5 ± 1	317	.< 1	3 ± 1	306	< 1	7 ± 1
08/22/78	303	< 1	7 ± 1	275	< 1	5 ± 1	267	< 1	6 ± 1
09/05/78	201	< 1	9 ± 1	278	< 1	10 ± 2	301	< 1	6 ± 1
09/19/78	330	< 1	< 1	285	<1	7 ± 1	290	< 1	< 1 [.]
10/03/78	308	· < 1	6 ± 1	266	< 1	6 ± 1	287	< 1	1 ± 1
10/17/78	24	< 1	9 ± 3	280	< 1	5 ± 1	310	< 1	1 ± 1
10/31/78	180	< 1	4 ± 1	280	< 1	3 ± 1	290	< 1	8 ± 1
11/14/78	150	< 1	9 ± 2	280	< 1	12 ± 2	305	< 1	4 ± 1
11/29/78	178	< 1	8 ± 1	299	< 1	5 ± 1	331	< 1	4 ± 1
12/13/78	215	< 1	4 ± 1	. 245	< 1	1 ± 1	290	< 1	4 ± 1
12/1//8	125	< 1	6 ± 2	100	< 1	4 ± 2	110	< 1	1 ± 1
12/19/78	49	< 1	3 ± 1	. 40	· < 1	· 2 ± 2	43	<·1	< 1
12/21/78	43	< 1	7 ± 1	39	< 1	5 ± 1	45	· <·1	< 1

GROSS ALPHA AND BETA CONCENTRATIONS IN AIR PARTICULATES (Bi-Weekly Collections)

(a) Not available - out of order.

VEPCO

GROSS ALPHA AND BETA CONCENTRATIONS IN AIR PARTICULATES (Bi-Weekly Collections)

177 1114			CP - Colonial Parkway			Dow			
$\frac{ALL - ALL - ALLANCE}{10.2 - 0.1/-3}$			Volume	10_2 pC:	1/m ³	Volume 10^{-2} pCi/m^3			
Collection	Volume		Choose 8	(m3)	Gross a	Gross B	(m ³)	Gross a	Gross B
Date	<u>(m⁻³)</u>	Gross a	<u>Gross p</u>		<u></u>	(3	300	$\langle 1 \rangle$	7 + 1
01/10/78	310		6 I I	30	1		205	< 1	7 + 1
01/24/78	315	$\langle 1$	4 ± 1	(a)	-	-	305	$\langle 1 \rangle$	0 + 1
02/07/78	305	< 1	8 ± 1	(a)	-	: -	325		9 ± 1
02/22/78	380	< 1	9 ± 1	195	<1	7 ± 1	360		9 ± 1
03/07/78	295	< 1	7 ± 1	190	<1	6 ± 1	300		9 ± 1
03/21/78	315	< 1	12 ± 1	185	<1	11 ± 1	315		11 ± 1
04/11/78	505	< 1	60 ± 9	320	· <1	48 ± 7	470	< 1	59 ± 8
04/18/78	165	< 1	11 ± 2	90	<1	26 ± 3	170	< 1	26 ± 3
05/02/78	340	< 1	17 ± 3	.90	<1	37 ± 6	305	< 1	22 ± 3
05/21/78	461	< 1	7 ± 1	199	<1	7 ± 1	279	< 1	14 ± 1
05/30/78	216	< 1	11 ± 2	217	<1	10 ± 2	324	< 1	7 ± 1
06/13/78	340	· < 1	14 ± 2	200	<1	12 ± 2	300	< 1 ·	15 ± 2
06/27/78	300	< 1	18 ± 2	200	<1	21 ± 2	300	< 1	13 ± 1
07/11/78	320	< 1	14 ± 1	220	<1	14 ± 2	300	< 1	6 ± 1.
07/25/78	313	. < 1.	11 ± 1	218	<1 .	1.3 ± 1	302	< 1	13 ± 1
08/04/78	329	<`1	5 ± 1	235	<1	5 ± 1	313	< 1	5 ± 1 .
08/22/78	297	< 1	5 ± 1	205	<1	7 ± 1	279	< 1	6 ± 1
09/05/78	302	< 1	6 ± 1	222	<1	$10 \pm 2^{'}$	282	< 1	10 ± 2
09/19/78	315	< 1	7 ± 1	255	. <1	8 ± 2	290	< 1	7 ± 1
10/03/78	302	< 1	5 ± 1	215	<1	8 ± 2 ·	276	< 1	5 ± 1
10/17/78	280	< 1	5 ± 1	(a)	-	-	290	< 1	3 ± 1
10/31/78	285	< 1	6 ± 1 '	565	<1	6 ± 1	295	< 1	7 ± 1
11/14/78	290	< 1	16 ± 2	290	<1	29 ± 4	290	< 1	13 ± 2
11/29/78	324	< 1	5 ± 1	595	<1	4 ± 1	301	< 1	6 ± 1
12/13/78	300	< 1	3 ± 1	565	<1	5 ± 1	265	< 1	4 ± 1
12/17/78	115	< 1	0 4 + 2	120	<1	5 ± 2	105	< 1	5 ± 2
12/19/78	45	< 1	3 + 1	38	<1	2 = - 2 ± 2	43	< 1	3 ± 2
12/21/78	47	< 1	5 ± 1	44	<1	5 ± 1	53	< 1	4 ± 1

(a) Not available - out of order.

2-2

.

VEPCO

GROSS ALPHA AND BETA CONCENTRATIONS IN AIR PARTICULATES (Bi-Weekly Collections)

	FE - Fort Eustis			NN - Newport News			
Collection	Volume	10-2 pCi	/m ³	Volume	10-2 pCi/	m ³	
Date	(m ³)	Gross a	Gross ß	(m ³)	Gross a	Gross ß	
01/10/78	320	<1	2 ± 1	280	< 1	10 ± 1	
01/24/78	225	<1	8 ± 1	325	< 1	8 ± 1	
02/07/78	65	<1	8 ± 2	285	< 1	11 ± 1	
02/22/78	145	<1	6 ± 1	255	<`1	10 ± 1	
03/07/78	325	<1	9 ± 1	275	< 1	10 ± 1	
03/21/78	335	<1	9 ± 1	295	< 1	12 ± 1	
04/11/78	475	<1	50 ± 7	455	· < 1	66 ± 9	
04/18/78	160	<1	·29 ± 3	150	< 1	31 ± 3	
05/02/78	300	<1	28 ± 4	305	< 1	21 ± 3	
05/21/78	412	<1	9 ± 1	283	< 1	12 ± 1	
05/30/78	322	<1	10 ± 2	329	< 1	9 ± 2	
06/13/78	300	<1	11 ± 2	300	< 1	17 ± 3	
06/27/78	300	<1	1 ± 1	310	< 1	16 ± 2	
07/11/78	280	<1.	4 ± 1	305	< 1	15 ± 2	
07/25/78	299	<1	3 ± 1	302	< 1	14 ± 1.	
08/04/78	220	<1	5 ± 1	324	< 1	8 ± 1	
08/22/78	279	<1	6 ± 1	281	< 1	7 ± 1	
09/05/78	298	<1	8 ± 1	303	< 1	10 ± 2	
09/19/78	295	<1	8 ± 2	305	< <u>1</u>	7 ± 1	
10/03/78	286	<1	4 ± 1	291	$\langle \overline{1}$	4 + 1	
10/17/78	290	<1	5 ± 1	300	< 1	5 ± 1	
10/31/78	295	· · <1	6 ± 1	290	< 1	6 ± 1	
11/14/78	160	<1	9 ± 2	270	< 1	13 ± 2	
11/29/78	234	<1	4 ± 1	· 313	< 1	7 ± 1	
12/13/78	134	<1	2 ± 1	275	< 1	1 ± 1	
12/17/78	90	<1	5 ± 2 ·	105	< 1	9 ± 2	
12/19/78	36	1±1	< 1	45	< 1	3 ± 1	
12/21/78	36	< 1	3 + 1	40	· 1 + 1	5 + 1	

2--3

GAMMA EMITTERS IN AIR PARTICULATE FILTER COMPOSITE (Quarterly Composites of Bi-Weekly Collections)

Stations in composite: SS, HIR

Collection	10 ⁻² pCi/m ³						
Period	Ce-144	<u>Ru-106</u>	<u>Cs-137</u>	<u>Cs-134</u>			
1st Quarter	2±1	1±1	<1	<1			
2nd Quarter	7 ±2	, <2*	<1	<1			
3rd Quarter	2±1	<1	<1	<1			
4th Quarter	<1	<1	<1	. <1			

Stations in composite: BC, ALL, CP, DOW, FE

Collection	10 ⁻² pCi/m ³						
Period	Ce-144	Ru-106	<u>Cs-137</u>	<u>Cs-134</u>			
lst Quarter	4±1	<1	<1	<1			
2nd Quarter	5±1	2±1	· <1	<1			
3rd Quarter	<1	<1	<1	<1			
4th Quarter	<1	<1	<1	<1			

Stations in composite: NN

Collection		10^{-2} pCi/m^3						
Period	Ce-144	<u>Ru-106</u>	<u>Cs-137</u>	<u>Cs-134</u>				
lst Quarter	5±1	<1	<1	<1				
2nd Quarter	16±4	< 4*	<1	<1				
3rd Quarter	<3*	<2*	<1	<1				
4th Quarter	<1	<1	<1	<1				

*Higher LLD due to larger Compton and/or smaller sample composite volume.

			•			
	S	urry Station		_	Newport News	
Collection	Gross B	Gross B	Tritium	Gross ß	Gross B	Tritium
Period	pCi/l_	nCi/m ²	_pCi/1_	pCi/1	nCi/m ²	pCi/1
January	21±6	2.5±0.6	360±100	31±6	2.2±0.4	360±100
February	60±8	3.4±0.5	2200±700	50±7	1.8±0.3	1700±700
March	25±6	2.5±0.6	550±100	15±6	0.9±0.3	<500
April	57 ±6	2.6±0.3	<500	43±4	2.4±0.2	<500
May	24±2	3.3±0.3	600±100	15±2	1.9±0.2	600±100
June	11±2	1.0±0.2	<500	7 ±2	0.4±0.1	<500
July	10±2	0.3±0.1	500±300	11±2	0.3±0.1	500±300
August	8±2	0.5±0.1	500±300	11±2	0.2 ± 0.1	<500
September	14±2	0.2±0.1	400±300	3±2	0.1 ± 0.1	800±300
October	12±2	0.2±0.1	560±340	4±1	0.1±0.1	400±330
November	11±2	0.2±0.1	1700±400	7±2	0.1±0.1	950±500
December	3±2	0.2±0.1	<500	8±2	0.1±0.1	410±310

GROSS BETA DEPOSITION AND TRITIUM CONCENTRATIONS IN PRECIPITATION SAMPLES (Quarterly Composites of Monthly Collections)

	Surry St	tation	Newport News		
Collection Period	Gross β nCi/m ²	Tritium pCi/1	Gross β nCi/m ²	Tritium pCi/1	
lst Quarter	*	700±100	*	700±100	
2nd Quarter	0.38±0.04	810±130	0.11±0.02	800±130	
3rd Quarter 4th Quarter	0.13±0.03 0.03±0.01	400±300 690±100	0.05±0.02 0.04±0.02	800±300 1100±200	

*Sample lost in transit.

3.0 Radioactivity in Milk

Bacon's Castle (EPPS)	3-1
Bacon's Castle (Judkins)	3-1
Lee Hall (Ross)	3-1
Smithfield (Gwaltney)	3-2
Colonial Parkway (Smith)	3-2

ъ.

RADIOACTIVITY IN MILK SAMPLES (Monthly Collections)

Collection		pCi/l a	s of coll	ection dat	e	<u>g/1</u>
Date	<u>I-131</u>	<u>Sr-89</u>	<u>Sr-90</u>	Cs-137	Ba-La-140	Stable Ca
01/10/78	<0.5	<5	3±1	<15	<15	1.7
02/01/78	<0.5.	<5	3±1	<15	<15	1.6
03/20/78	<0.5	<5 [.]	3±1	<15	<15	1.6
04/18/78	<0.5	<5	5±1	<15	<15	1.8
05/16/78	<0.5	· <5	2±1	<15	<15	1.6
06/27/78	<0.5	<5	6±1	<15 ·	<15	2.2
07/25/78	<0.5	<5	4±1	<15	· <15	1.8
08/22/78	<0.5	<5	6±1	<15	<15	1.6
09/05/78	<0.5	<5	4±2	<15	. <15	1.2
10/03/78	<0.5	<5	17±2	<15	<15	1.6
11/28/78	<0.5	· <5	4±2	<15	<15	1.2
12/12/78	<0.5	<5	4±2	<15	<15	1.1
		•				

Bacon's Castle (EPPS) - State Split Samples

Bacon's Castle (Judkins)

	pCi/l as of collection date					g/1
· ·	· <u>I-131</u>	<u>Sr-89</u>	<u>Sr-90</u>	<u>Cs-137</u>	Ba-La-140	Stable Ca
01/24/78	<0.5	<5	5±2	· <15	<15	2.2
02/22/78	<0.5	<5	7±1	18±13	<15	1.8
03/07/78	<0.5	<5	15±2	<15	<15	1.7
04/11/78	1.1±0.3	<5	7±3	<15	<15	0.9
05/02/78	<0.5	<5	11±2	23±6	<15	2.1
06/20/78	Samp	1 e	lost	during	gshipme	nt
07/25/78	<0.5	<5	4±3	<15	<15	1.9
08/09/78	<0.5	<5	8±2	<15	<15	1.5
09/19/78	<0.5	<5	<2 ·	<15	<15	1.2
10/17/78.	<0.5	· <5	16±2	<15	<15	1.3
11/14/78	<0.5	<5	6±1	<15	<15	1.0
12/12/78	<0.5	<5	4±3	<15	<15	1.4

Lee Hall (Ross) - State Split Samples

	pCi/l as of collection date					g/1
	<u>I-131</u>	<u>Sr-89</u>	<u>Sr-90</u>	<u>Cs-137</u>	<u>Ba-La-140</u>	Stable Ca
01/10/70	(0 F	15	0.0		<u> </u>	1 0
01/10/78	<0.5	<5	2±2	16±14	<15	1.8
02/01/78	<0.5	<5	1±1	<15	<15	1.7
03/20/78	<0.5	<5	3±1	20±11	<15	1.6
04/18/78	<0.5	<5	9±4	<15	<15	1.4
05/16/78	<0.5	<5	2±1	<15	<15	1.7
06/27/78	<0.5	<5	3±1	<15	<15	1.6
07/25/78	<0.5	<5	3±2	<15	<15	1.1
08/22/78	<0.5	<5	7±3	<15 ·	·<15	1.2
09/05/78	<0.5	<5	5±2	<15	<15	1.2
10/03/78	<0.5	<5	5±2	· <15	<15	1.4
11/27/78	<0.5	<5	<2*	<15	<15	1.1
12/12/78	<0.5	· <5	2±2	<15	、 <15	1.3

*Low chemical yield.

RADIOACTIVITY IN MILK SAMPLES (Monthly Collections)

Collection		pCi/l a	as of col	lection date		g/1
Date	<u>I-131</u>	Sr-89	Sr-90	<u>Cs-137</u>	Ba-La-140	Stable Ca
					х.	
02/07/78	<0.5	<5	3±1	<15	<15	1.9
02/23/78	<0.5	<5	6±1	21±13	<15	1.7
03/07/78	<0.5	<5	5±2	۲15 ٪	<15	1.7
04/18/78	1.2±0.3	<5	2±1	<15	<15	1.6
05/30/78	<0.5	<5	6±2	<15	<15	1.7
06/27/78	<0.5	<5	4±1	<15	<15	1.1
07/25/78	<0.5	≺5	7±2	<15	<15	1.5
08/20/78	. Samp	1e 1	lost	in shi	. pment	
09/19/78	<0.5	<5	10±2	<15	<15	1.3
10/17/78	<0.5	<5	4±1	<15	<15	1.4
11/29/78	<0.5	<5	4±4	<15	<15	
12/21/78	<0.5	· <5	7±2	<15	<15	1.1
· •			•			

Smithfield (Gwaltney)

Colonial Parkway (Smith)

		g/1				
	<u>1-131</u>	Sr-89	Sr-90	<u>Cs-137</u>	Ba-La-140	Stable Ca
01/24/78	<0.5	<5	3±1	<15	<15	1.7
02/07/78	. <0.5	<5	4±1	- 16±12	<15	1.6
03/07/78	<0.5	<5	2±1	<15	<15	1.8
04/11/78	0.6±0.2	<5	3±1	<15	<15	1.1
05/02/78	<0.5	<5	7±2	13± 5	<15	1.7
06/27/78	<0.5	<5	6±1	<15	<15	1.2
07/25/78	<0.5	<5	7±2	<15	<15	1.3
08/09/78	<0.5	<5	4±1	<15	<15	1.3
09/19/78	· <0.5	<5	3±2 ·	<15	<15	1.3 -
10/17/78	<0.5	· <5	. 3±2	<15	<15	1.0
11/14/78	<0.5	< <5	3±1	<15	<15	1,5
12/19/78	<0.5	<5	<2	<15	<15	0.9

_	· ·	
		· · ·
. ·	4.0 Samples from the Aquatic Environment	
		Page
	4.1 James River Water	· · ·
	4.1.1 Gamma Isotopic Analyses	4-1
	4.1.2 State Split Sample Analyses	4-3 4-3
	4.1.5 IIIIIan maryors	
· .	4.2 Clam Samples	
	4.2 Gram Jampres	
	4.2.1 Gamma Isotopic Analyses	4-4
	4.2.2 State Spirt Samples and Other Samples from Station Discharge	4–5
· ·		
	4.3 Ovster Samples	
	4.2.1 Gamma Isotopic Analyses	4-6
	4.4 Fish Samples	· ·
	4.4.1 Gamma Isotopic Analyses	4-7
	4.5 Crab Samples	
	4.5.1 Gamma Isotopic Analysis	4-7
	4.6 Sediment	
	4.6.1 Gamma Isotopic Analysis	4-8
		•

4-0

•

. . .

.

GAMMA EMITTERS IN JAMES RIVER WATER SAMPLES (Bimonthly Collections)

Month				pCi/:	L				•
<u>Collected</u>	Ba-La-140	<u>Cs-134</u>	<u>Cs-137</u>	Zr-Nb-95	<u>Co-58</u>	Mn-54	Zn-65	Co-60	Fe-59
	•							• •	
				STATION IN	<u>NTAKE</u>				
January	<15	<15	<15	<10	<15	<15	<30	<15	<30
March	<15	<15	<15	<10	<15	<15	<30	<15	<30
May	<15	<15	<15	<10	<15	<15	<30	<15	<30
July	<15	· <15	<15	<10	<15	<15	<30	<15	<30
September	<15	<15	<15	<10	<15	<15	<30	<15	<30
November	<15	<15	<15	<10	<15	<15	<30	<15	<30
•		,							
				STATION DISC	CHARGE				
January	<15	<15	<15	<10	<15	<15	<30	<15	<30
March	<15	<15	<15	<10	<15	<15	<30	<15	<30
Mav	<15	<15	<15	<10	<15	<15	<30	<15	<30
July	<15	<15	<15	<10	<15	<15	<30	<15	<30
September	<15	<15	<15	<10	<15	<15	<30	<15	<30
November	<15	<15	<15	<10	<15	<15	<30	<15	<30

_

÷

GAMMA EMITTERS IN JAMES RIVER WATER SAMPLES (Bimonthly Collections)

Month					pCi/l	· .	•		
<u>Collected</u>	<u>Ba-La-140</u>	<u>Cs-134</u>	<u>Cs-137</u>	Zr-Nb-95	<u>Co-58</u>	<u>Mn-54</u>	Zn-65	<u>Co-60</u>	Fe-59
		· ·		CHICKAHO	MINY				
January	<15	<15	<15	<10	<15	<15	<30	<15	<30
March	<15	<15	<15	<10	<15	<15	<30	<15	<30
May	<15	<15	<15	<10	<15	<15	<30	<15	<30
July	<15	<15	<15	<10	<15	<15	<30	<15	<30
September	<15	<15	<15	<10	<15	<15	<30	<15	<30
November	<15	<15	<15	<10	<15	<15	<30	<15	໌ <30
•				HOG ISLAND	POINT		· .		
January	<15	<15	<15	<10	<15	<15	<30	<15	<30
March	<15	<15	<15	<10	<15	<15	<30	<15	<30
May	<15	<15	<15	<10	<15	<15 ·	<30	<15	<30
July	<15	<15	<15	<10	<15	<15	<30	<15	<30
September	<15	<15	<15	<10	<15	<15	<30	<15	<30
November	<15	<15	<15	<10	<15	<15	<30	<15	<30
					•	- '	• `		
					AFIIC				
				NEWFORI	NEWS				
January ·	<15	<15	<15	<10	<15	<15	<30	<15	<30
March	<15	<15	<15	<10	< <u>15</u>	<15	<30	<15	<30
May	<15	<15.	<15	<10	<15	<15	. <30	<15	<30
July	<15	<15	<15	<10	<15	<15	<30	<15	<30
September	<15	<15	<15	<10	<15	<15	<30	<15	<30
November	<15	<15	<15	<10	<15	<15	<30	<15	<30

RADIOACTIVITY IN JAMES RIVER WATER SAMPLES FROM THE STATION DISCHARGE -STATE SPLIT SAMPLES-(Quarterly Collections)

Collection Date:	01/24/78	04/11/78	07/11/78	10/03/78
Nuclide		рС	i/1	
Sr-89	Not Required	<5	<5	<5
Sr-90	this sample	<2	<2	<2
Tritium	8400±800	470±110	1000±300	300±300
Ba-La-140	<15	<15	.<15	<15
Cs-134	<15	<15	<15	<15
Cs-137	<15	<15	<15	<15
Zr-Nb-95	· <10	. <10	<10	<10
Co~58	<15	<15	<15	<15
Mn-54	<15	<15	<15	<15
Zn-65	<30	<30	<30	<30
Co-60	<15	<15	<15	· <15
Fe-59	<30	<30	<30	<30
	· ·	1 · · · ·		к.

TRITIUM IN JAMES RIVER WATER SAMPLES (Semiannual Composites of Bimonthly Samples)

•	pCi	/1
Sample Location	1st half 1978	2nd half 1978
Chickahominy	<330	<330
Newport News	<330	<330

GAMMA EMITTERS IN CLAM SAMPLES (Bi-Monthly Collections)

Sample	Month	10 ² pCi/kg Wet Weight						
Site	Collected	Mn-54	Fe-59	Co-58	Co-60	Zn-65	Cs-134	<u>Cs-137</u>
CUTCUALIONTNO	Terrere	/1 2	12 6	/1 2	/1 2	12 6	. /1 2	/1 2
CHICKAROPIINI	January	<pre><1.3</pre>	(2.0	<1.J	(1.2	12.0	(1.3	<1,3 <1 3
	March	<1.3 <1.3	(2.0	<1.J <1.3	<1.5 <1 2	<2.0	(1.3	<1.J
	May .	<1.J	(2.0	<1 3	· /1 2	(2.0	<1.J	<1.J <1 3
	Jury	<1.3 Z1 2	(2.0	\cdot	<1.3	(2.0	<1.3 ¹	<pre><1.3</pre>
	September	<pre>\1.3</pre>	12.0	×1 3	<1.5 Zi 2	22.0	21.3	· /1 · 2
	November	×τ•2	12.0	· · · · ·	11.2	12.0	1.3	11.2
					•••	•		
		· .					•	•
LAWNES CREEK	January	<1.3	<2.6	<1.3	(1 3	10 6		21 0
	March	· <1 3	<2.0	· <1 3	×1.3	12.0	<1.3	<1.3
	March	<1.J <1.3	(2.0	<1.3 <1.2	$\langle 1 \cdot 3 \rangle$	<2.6	<1.3	<1.3
	Tal	(1.)		×1.5	$\langle 1.3 \rangle$	<2.6	<1.3	<1.3
		(1.)	12.0	<1.3	<1.3	<2.6	<1.3	<1.3
	September	$\langle 1.3 \rangle$	<2.6	<1.3	<1.3	<2.6	<1.3	<1.3
	November	<1.3	<2.6	<1.3	<1.3	<2.6	<1.3	<1.3
	·					÷		
			-	·				
JAMESTOWN	January	<1.3	<2.6	<1.3	<1.3	(2 6	<1.3	<1 3
· · · · · · · · · · · · · · · · · · ·	March	<1.3	<2.6	<1.3	<1 3	<2.6	<1 3	<1 3
	May	<1.3	<2.6	<1.3	<1 3	<2.6	· <1 3	<1.3 <1.3
•	July	<1.3	<2.6	<1 3	<1 3	(2.6	<1.3	<1 3
	September	<1.3	<2 6	<1 3	×1.5	(2.0	(1.3	<1.3 <1.3
	November	<1.3	<2.6	<1.3	<1.3	<2.6	$\langle 1, 3 \rangle$	<1.3
,ı	110 1 0410 02		· .				121.0	
• •	•		·	-	·			
•								
HOG ISLAND				,	• .			
POINT	January	<1.3	<2,6	<1.3	<1.3	<2.6	<1.3	<1.3
	March	<1.3	<2.6	<1.3	<1.3	<2.6	<1.3	<1.3
	May	<1.3	<2.6	<1.3	<1.3	<2.6	<1.3	<1.3
•	July	<1.3	<2.6	<1.3	<1.3	<2.6	<1.3	<1.3
	September	<1.3	<2.6	<1.3	<1.3	<2.6	<1.3	• <1.3
	November	<1 3	<2.6	<1.3	<1.3	(2.6	<1.3	<1.3
	MOVENDET	NT • D	14 q U	(T+C	×T• 7	1490	VT• 7	27.0

GAMMA EMITTERS IN CLAM SAMPLES

State Split Samples from Station Discharge

Month		10 ² pCi/kg Net								
Collected	<u>Mn-54</u>	Fe-59	<u>Co-58</u>	<u>Co-60</u>	Zn-65	<u>Cs-134</u>	Cs-137			
January*	<1.6*	<3.2*	<1.6*	<2.0*	<3.2*	<2.0*	<1.9*			
March	<1.3	<2.6	<1.3	·<1.3	<2.6	<1.3	<1.3			
May	<1.3	<2.6	<1.3	<1.3	<2.6	<1.3	<1.3			
July	<1.3	<2.6	<1.3	<1.3	<2.6	<1.3	<1.3			
September**	<1.3	<2.6	<1.3	<1.3	<2.6	<1.3	<1.3			
November	<1.3	<2.6	<1.3	<1.3	<2.6	<1.3	<1.3			

* This sample is not a State Split. Instrument problems prevented achieving usual sensitivity.

** Not a State Split Sample.

Strontium-89 and Strontium-90 in Clams (State Split Samples from Station Discharge)

Collection	pCi/kg We	et Weight
Date	<u>Sr-89</u>	<u>Sr-90</u>
March	Insufficient	sample for Analysis.
May	< 10	10 ± 10
July	< 10	< 10
November	<200	<200(a)

(a) Insufficient sample for more sensitive analysis.

GAMMA EMITTERS IN OYSTER SAMPLES (Bi-Monthly Collections)

	Month			10 ² p(Ci/kg_Wet	Weight		
Location	Collected	Mn-54	<u>Fe-59</u>	<u>Co-58</u>	Co-60	Zn-65	<u>Cs-134</u>	<u>Cs-137</u>
Deep Water Shoal	January March	<1.3 Samp	<2.6 le lost	<1.3 in shion	<1.3 ment	<2.6	<1.3	<1.3
	May	<1.3	<2.6	<1.3	<1.3	<2.6	<1.3	<1.3
	July	<1.3	<2.6	<1.3	<1.3	<2.6	<1.3	<1.3
	September	<1.3	<2.6	<1.3	<1.3	<2.6	<1.3	<1.3
	November	<1.3	<2.6	<1.3	<1.3	<2,6	<1.3	<1.3
× .		·					•	
· · ·								
	•							• •
Point of	January	<1.3	<2.6	,<1.3	<1.3	<2.6	<1.3	<1.3
Shoal	March	Samp	le lost	in shipt	nent	10 1	(1 0	(1 0
	May	$\langle 1, 3 \rangle$	(2.0)	<1.3 <1.3	<1.3 /1.2	<2.0 72.6	(1.3	<1.3 /1.2
	July	$\langle 1 \rangle 3$	(2.0	- <1 3	(1.3	(2.0	<1 3	(1 3
	November	<1.3	<2.6	<1.3	<1.3	<2.6	<1.3	<1.3
	November		.2.0		(1.)	12.0	(1.5	.1.5
•								
· .								
•		·						
Normort	Fohrmann	<13	(2.6	(1 3	<1 3	(2.6	(1.3	(1:3
Newport	Marchà	<1.3	<2.6	<1.3	<1.3	<2.6	<1.3	<1.3
NEMD	Mav*	<1.3	<2.6	<1.3	<1.3	<2.6	<1.3	<1.3
	Julv*	<1.3	<2.6	<1.3	<1.3	<2.6	<1.3	<1.3
	September*	<1.3	<2.6	<1.3	<1.3	<2.6	<1.3	<1.3
	November*	<1.3	<2.6	<1.3	<1.3	<2.6	<1.3	<1.3
			•	•	• •			

* State Split Sample.

4–6

GAMMA EMITTERS IN FISH SAMPLES COLLECTED IN THE VICINITY OF SURRY STATION (Semi-Annual Collection)

Collection	Sample	10 ² pCi/kg Wet Weight							
Date	Туре	Mn-54	Fe-59	<u>Co-58</u>	Co-60	Zn-65	<u>Cs-134</u>	<u>Cs-137</u>	
February '78 February '78 08/24/78 08/24/78	Catfish Perch Catfish Catfish	<1.3 <2.2* <1.3 <1.3	<2.6 <4.5* <2.6 <2.6	<1.3 <2.2* <1.3 <1.3	<1.3 <2.8* <1.3 <1.3	<2.6 <4.5* <2.6 <2.6	<1.3 <2.5* <1.3 <1.3	1.9±1.6 <2.8* <1.3 <1.3	

*Insufficient sample available for more sensitive analysis.

GAMMA EMITTERS IN CRAB SAMPLES COLLECTED IN THE VICINITY OF SURRY STATION (July, August, September Collection)

Month			1	0 ² pCi/kg	Wet Weig	ht	
Collected	Mn-54	Fe-59	<u>Co-58</u>	<u>Co-60</u>	Zn-65	<u>Cs-134</u>	<u>Cs-137</u>
July August September	<1.3 <1.3 <1.3	<2.6 <2.6 <2.6	<1.3 <1.3 <1.3	<1.3 <1.3 <1.3	<2.6 <2.6 <2.6	<1.3 <1.3 <1.3	<1.3 <1.3 <1.3

GAMMA EMITTERS IN SILT SAMPLES (Semiannual Collections)

Collection Period: April

		1	0 ² pCi/kg	Dry Weight		
Collection Site	Cs-134	<u>Cs-137</u>	<u>Co-58</u>	<u>Co-60</u>	<u>Mn-54</u>	Zn-65
Chickahominy	<1.5	10.0±4.0	<1.5	<1.5	<1.5	<2.6
Station Discharge	<1.5	<1.5	<1.5	<1.5	<1.5	<2.6
Hog Island Point	<1.5	5.0±0.2	<1.5	<1.5	<1.5	<2.6
Station Intake	<1.5	8.0±0.2	<1.5	4.0±0.2	<1.5	<2.6
Point of Shoals	<1.5	3.0±0.1	<1.5	<1.5	<1.5	<2.6
Newport News	<1.5	4.0±0.1	<1.5	<1.5	<1.5	<2.6
			•	· .		
Collection Period:	September	c ·			· .	
				·		
Chickahominy	<1.5	9.0±2.0	<1.5	<1.5	<1.5	<2.6
Station Discharge	6.2±1.5	20.0±3.0	<1.5	14.0±3.0	<1.5	<2.6
Hog Island Point	<1.5	<1.5	<1.5	<1.5	<1.5	<2.6
Station Intake	<1.5	8.0±2.0	<1.5	<1.5	<1.5	<2.6
Point of Shoals	<1.5	10.0±2.0	<1.5	3.0±1.0	<1.5	<2.6
Newport News	<1.5	4.0±1.0	<1.5	<1.5	<1.5	<2.6

з,

5.0 Radioactivity in the Terrestrial Environment	Paga
5.1 Well Water Samples	rage
5.1.1 Gross Alpha, Gross Beta and Tritium Analysis	5-1
5.2 Surface Water Samples	
5.2.1 Gross Alpha, Gross Beta and Tritium Analyses	5-1
5.3 Soil Samples	
5.3.1 Gamma Isotopic Analyses	5-2
5.4 Fowl Samples	
5.3.1 Gamma Isotopic Analyses	5-2
5.3 Food Crops	

		(DCn	·	001100			
÷	lst Ha	lf Coll. pCi/l	04/11/78	•	2nd Hal	f Coll. 1 pCi/1	0/03/78
	Gross a	Gross β	Tritium*	-	Gross a	Gross ß	Tritium*
Surry Station Hog Island Res.	<1 <2**	<1 3±2	300±100 <300		<1 5±2	3±2 8±2	<300 <300

<300

530±110

RADIOACTIVITY IN WELL WATER SAMPLES (Semi-Annual Collections)

<2**

2±1

5±2

3±2

<300

<300

* Tritium Analyzed by enrichment method.

2±1

· <1

Bacon's Castle

Jamestown

.

** Dissolved solids too high for more sensitive analysis.

2±2

4±2

RADIOACTIVITY IN SURFACE WATER SAMPLES (Semi-Annual Collections)

	lst Half Coll. 04/11/78 pCi/l				2nd Half Coll. 10/03/78 pCi/1			
· · ·	Gross a	Gross β	Tritium*	-	Gross a	Gross β	Tritium*	
Chippokes Creek	<1	<2	600±300		3±1	4±2	<500	
Williamsburg Reserve	2±1	3±1	600±300		3±1	2±1	<500	
Newport News Reserve	<1	4±1	900±300		3±1	2±2	<500	
Smithfield	<1	4±1	700±300		2±1	9±2	<500	

* Tritium Analyzed by direct L. S. Counting.

GAMMA EMITTERS IN SOIL SAMPLES (Annual Collection)

	Samples C 08/11	ollected /78	Samples Collected 09/19/78		
	10 ² p	Ci/kg	10²p	Ci/kg	
Location	Cs-134	<u>Cs-137</u>	<u>Cs-134</u>	<u>Cs-137</u>	
Surry Station	<1.5	<1.5	<1.5	4±1	
Fort Eustis	<1.5	17±8.	<1.5	18±2	
Dow	<1.5	<1.5	<1.5	3±1	
Bacon's Castle	<1.5	23±6 -	<1.5	9±1	
Alliance	<1.5	<1.5	<1.5	3±1	
Colonial Parkway	<1.5	22±6	<1.5	7±1	
1		· ·			

GAMMA EMITTERS IN FOWL (Semi-Annual Collections)

•	Collection Mc		Month	Sample	e 10 ² pCi/kg		
	Are	<u>a</u>	Collected	Туре	Cs-134	<u>Cs-137</u>	
Hog	Island	Reserve	March	Canada Goose	<0.8	<0.8	
Hog	Island	Point	September	American Egret	<0.8	<0.8	

RADIOACTIVITY IN FOOD CROPS (Annual Collection)

State Split Samples

Date			1	.0 ² pCi/kg,	Wet Weight	E• • •
<u>Collected</u>	Farm	Type	Cs-134	<u>Cs-137</u>	<u>Sr-89</u>	<u>Sr-90</u>
10/10/78	Slade	Corn	<0.8	<0.8	<0.1	<0.1
10/10/78	Brock	Corn	<0. 8	<0.8	<0.1	<0.1
10/10/78	Slade	Peanuts	<0.8	<0.8	<0.1	<0.1
10/10/78	Brock	Peanuts	<0.8	<0.8	<0.1	<0.1
11/08/78	Brock	Soybeans	<0.8	<0.8	<0.1	<0.1
11/13/78	Slade	Soybeans	<0.8	<0.8	<0.3	0.15±0.03

6.0	Gamma Radiation Background as Measured With Thermoluminescent Dosimeters	Page
6.1	Environmental Badges	6-1
6.2	Area Badges	6-2

GAMMA RADIATION TOTAL mR/QTR. USING THERMOLUMINESCENT DOSIMETERS

VEPCO-ENVIRONMENTAL TLD'S 1978

		<u>lst Quarter</u>	2nd Quarter	3rd Quarter	4th Quarter
Date Install	ed;	01/10/78	04/11/78	07/11/78	10/04/78
Date Removed	•	04/11/78	07/11/78	10/04/78	01/03/79
Location		,	ΣmR	·····	
Control	-00	9± 2	14± 1	11± 1	11±3
Surry Station	-01	242±50	329±33	268 ±27	340±30
Guard Booth	-02	23± 3	27± 4	25± 3	25±3
Surry Fast	-03	19± 3	23± 2	21± 2	19±2
Surry North	-04	17± 3	20± 2	16± 1	19±3
Hog Teland Reserve	-05	13± 2	19± 2	16± 1	16±2
Surry West	-06	11± 1	17±3	13± 1	14±1
Station Discharge	-07	11± 2	13± 1	10± 1	9±2
Station Intake	-08	12± 1	13± 1	10± 1 .	12±1
Surry South	-09	16± 2	19± 1	16± 1	14±2
Bacons Castle	-10	12±2	16± 2	14± 1	14±1
Alliance	-11	18± 2	15± 2	12± 1	12±2
Scotland Wharf	-12	13± 1	17± 1	15± 1	14±2
Jamestorm	-13	15± 2	16± 2	14± 1	15±3
Colonial Parkway	-14	14± 3	16± 1	13± 1	14±1
Kings Mill	-15	11± 3	15± 1	13± 1	14±1
Rudwoicer	-16	18± 5	18± 1	16± 1	17±2
Dow	-17	24± 6	21± 3	16± 1	18±2
Log Hall	-18	25± 3	21± 1	20± 2	22±4
Fort Fuctio	_19	19± 2	17± 1	15± 1	18±2
Nouport Nous	-20	21± 5	19± 2	17±1.	17±2
Smithfield(Subet)	-20 	22± 4	21± 1	18± 1	20±2
Smitchittetu(Subst.)		19± 2	18± 1	15± 1	14±3
Rt 10 and 676	-23	16± 4	14± 1	13± 1	13±1

	GAM	A RADIATION	
TOTAL mR/QTR.	USING	THERMOLUMINESCENT	DOSIMETERS

Date Installed; Date Removed: $\frac{1 \text{st Quarter}}{01/10/78}$ $\frac{2 \text{nd Quarter}}{04/11/78}$ $\frac{3 \text{rd Quarter}}{07/11/78}$ $\frac{4 \text{th Quarter}}{10/04/20}$ Location-00 $04/11/78$ $07/11/78$ $07/11/78$ $10/04/78$ $01/03/78$ Control-00 10 ± 3 13 ± 2 11 ± 1 11 ± 1 11 ± 1 Iraining Center-01 12 ± 2 14 ± 1 12 ± 1 13 ± 1 India Bidg Entrance-02 24 ± 4 23 ± 1 22 ± 2 21 ± 2 Idmin Bidg Recep-03 30 ± 2 31 ± 2 34 ± 1 33 ± 3 Idmin Bidg (Ktchen-04 24 ± 3 22 ± 1 23 ± 1 21 ± 2 Idmin Bidg Conf-06 20 ± 2 21 ± 4 20 ± 2 20 ± 2 Cafeteria-07 28 ± 3 30 ± 4 31 ± 1 28 ± 3 Storeroom Rast End-09 21 ± 5 24 ± 1 33 ± 3 32 ± 3 Storeroom Rast End-10 28 ± 5 29 ± 3 34 ± 3 29 ± 3 Control Room East-11 11 ± 2 13 ± 1 13 ± 1 13 ± 1 Control Room Kast-12 10 ± 3 10 ± 1 10 ± 1 9 ± 13 Control Room Kast-13 870 ± 70 780 ± 40 550 ± 60 430 ± 40 Change Room-14 90 ± 10 96 ± 7 74 ± 7 54 ± 5 Security Bidg15New Station beginning 3rd Qtr. 90 ± 10 70 ± 9 Storeroom-16""" $40\pm0\pm2$ 20 ± 2 Change Room-16"" 10 ± 1 10 ± 1 C	,			VEPCO-AI	REA TLD'S 1978	}	• •		
Location ΣmR Control-0010±313±211±111±1Craining Center-0112±214±112±113±1Idmin Bldg Entrance-0224±423±122±221±2admin Bldg Recep-0330±231±234±133±3admin Bldg Kitchen-0424±322±123±121±2admin Bldg Conf-0620±221±420±220±2Cafeteria-0728±330±431±128±3Cafeteria-0728±330±431±128±3Storeroom East End-0921±524±133±332±3Storeroom West End-1028±529±334±329±3Control Room East-1111±213±113±113±1Control Room West-1210±310±110±19±1Control Room Fast-13870±70780±40550±60430±40Clean Change Room-1490±1096±774±754±5Security Bldg15New Station beginning 3rd Qtr.90±1070±9Cast Fence-16"""120±10160±20Worth Fence-17"""120±10160±20West Fence-18""120±1016±20West Fence-18""16±2120±10Bist Cortrol Room-18""16±2120±10Cortrol Room Fast Fence-18" </th <th>Date Installe Date Removed:</th> <th>d;</th> <th><u>1st Quarter</u> 01/10/78 04/11/78</th> <th>2</th> <th>2nd Quarter 04/11/78 07/11/78</th> <th><u>3</u></th> <th><u>rd Quarter</u> 07/11/78 10/04/78</th> <th></th> <th><u>4th Quarter</u> 10/04/78 01/03/79</th>	Date Installe Date Removed:	d;	<u>1st Quarter</u> 01/10/78 04/11/78	2	2nd Quarter 04/11/78 07/11/78	<u>3</u>	<u>rd Quarter</u> 07/11/78 10/04/78		<u>4th Quarter</u> 10/04/78 01/03/79
Dontrol -00 10±3 13±2 11±1 11±1 Graining Center -01 12±2 14±1 12±1 13±1 Mdmin Bldg Entrance-02 24±4 23±1 22±2 21±2 Mdmin Bldg Recep -03 30±2 31±2 34±1 33±3 Mdmin Bldg Kitchen -04 24±3 22±1 23±1 21±2 Admin Bldg (Men) -05 27±5 29±3 30±1 30±3 Admin Bldg Conf -06 20±2 21±4 20±2 20±2 Cheteria -07 28±3 30±4 31±1 28±3 Maintenance Shop -08 22±3 22±2 19±2 20±2 Storeroom East End -09 21±5 24±1 33±3 32±3 Storeroom West End -10 28±5 29±3 34±3 29±3 Control Room East -11 11±2 13±1 13±1 13±1 Intrument Shop -13 870±70 780±400 550±	Location	<u> </u>			• `	ΣmR		· <u></u>	
South Fence -19 15±2 15±2 120±10 Llectrical Shop -20 New Station beginning 4th Qtr. 120±10	Control Training Center Admin Bldg Entrance Admin Bldg Recep Admin Bldg Kitchen Admin Bldg (Men) Admin Bldg Conf Cafeteria Maintenance Shop Storeroom East End Storeroom West End Control Room East Control Room West Intrument Shop Clean Change Room Security Bldg. East Fence North Fence Nest Fence	$\begin{array}{c} -00\\ -01\\ -02\\ -03\\ -04\\ -05\\ -06\\ -07\\ -08\\ -09\\ -10\\ -11\\ -12\\ -13\\ -14\\ -15\\ -16\\ -17\\ -18 \end{array}$	10±3 12±2 24±4 30±2 24±3 27±5 20±2 28±3 22±3 21±5 28±5 11±2 10±3 870±70 90±10 New Station "	beginning	13±2 14±1 23±1 31±2 22±1 29±3 21±4 30±4 22±2 24±1 29±3 13±1 10±1 780±40 96±7 3rd Qtr. "		$ \begin{array}{c} 11\pm1\\12\pm1\\22\pm2\\34\pm1\\23\pm1\\30\pm1\\20\pm2\\31\pm1\\19\pm2\\33\pm3\\34\pm3\\13\pm1\\10\pm1\\550\pm60\\74\pm7\\90\pm10\\400\pm40\\120\pm10\\270\pm30\end{array} $		$ \begin{array}{c} 11\pm1\\ 13\pm1\\ 21\pm2\\ 33\pm3\\ 21\pm2\\ 30\pm3\\ 20\pm2\\ 28\pm3\\ 20\pm2\\ 32\pm3\\ 29\pm3\\ 13\pm1\\ 9\pm1\\ 430\pm40\\ 54\pm5\\ 70\pm9\\ 380\pm40\\ 160\pm20\\ 210\pm20\\ 16\pm2\end{array} $
	Electrical Shop	-20	New Station	beginning	4th Qtr.		1)12		120±10