

April 11, 2018 LIC-18-0015

U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555

> Fort Calhoun Station, Unit No. 1 Renewed Facility Operating License No. DPR-40 NRC Docket No. 50-285

Subject:

Fort Calhoun Station (FCS) Radiological Effluent Release Report and Radiological

**Environmental Operating Report** 

References:

FCS Technical Specifications (TS) 5.9.4a and 5.9.4b

Pursuant to Fort Calhoun Station (FCS), Unit No. 1, Technical Specifications (TS) 5.9.4a, and 5.9.4b, the Omaha Public Power District (OPPD) provides the Annual Radiological Effluent Release Report and the Annual Radiological Environmental Operating Report.

The Annual Radiological Effluent Release Report is submitted in accordance with TS 5.9.4a and encompasses the period of January 1, 2017 through December 31, 2017. The report is presented in the format outlined in Regulatory Guide 1.21, Revision 1. In addition, the report provides the results of quarterly dose calculations performed in accordance with the Offsite Dose Calculation Manual (ODCM). In accordance with TS 5.17d, Section VII of the Annual Radiological Effluent Release Report includes the revisions to the ODCM made during this period. Section VII of the Annual Radiological Effluent Release Report also includes Process Control Program (PCP) changes made during this period.

The Annual Radiological Environmental Operating Report is submitted in accordance with TS 5.9.4b and encompasses the period of January 1, 2017 through December 31, 2017.

No commitments to the NRC are contained in this letter.

IEAS NRR U. S. Nuclear Regulatory Commission LIC-18-0015 Page 2

Please contact Mr. Bradley H. Blome at (402) 533-6041 if you should have any questions.

Respectfully,

Bradley H. Blome

Director, Licensing and Regulatory Assurance

### BHB/epm

### **Enclosures:**

- 1. Annual Radiological Effluent Release Report
- 2. Annual Radiological Environmental Operating Report
- c: K. M. Kennedy, NRC Regional Administrator, Region IV
  - J. D. Parrott, NRC Senior Project Manager
  - R. S. Browder, NRC Senior Health Physicist, Region IV

# Omaha Public Power District Fort Calhoun Station Unit No. 1

Annual Report For Technical Specifications, Section 5.9.4.a

January 1, 2017 to December 31, 2017

### Annual Radiological Effluent Release Report

This report is submitted in accordance with Section 5.9.4.a of the Technical Specifications of Fort Calhoun Station Unit No. 1, Facility Operating License DPR-40 for the period January 1, 2017 through December 31, 2017. The Effluent Report is presented in the format outlined in Regulatory Guide 1.21, Revision 2.

In addition, this report provides the results of quarterly dose calculations performed in accordance with the Offsite Dose Calculation Manual. Results are presented by quarter for the period January 1, 2017 through December 31, 2017.

Descriptions of any changes made during the preceding twelve months to the Offsite Dose Calculation Manual and/or the Process Control Program for the Fort Calhoun Station are presented.

Plant Manager

### **TABLE OF CONTENTS**

| <u>Section</u> | <u>Sect</u> | ion Title                                                                                                                                                                                                                                                                                                |
|----------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.             | 1.0         | Introduction 1.1 Executive Summary                                                                                                                                                                                                                                                                       |
|                | 2.0         | <ul> <li>Supplemental Information</li> <li>2.1 Regulatory Limits</li> <li>2.2 Effluent Concentration Limits</li> <li>2.3 Measurements and Approximations of Total<br/>Radioactivity</li> <li>2.4 Estimation of Total Percent Error</li> <li>2.5 Batch Releases</li> <li>2.6 Abnormal Releases</li> </ul> |
| •              | 3.0         | Gaseous Effluents                                                                                                                                                                                                                                                                                        |
|                | 4.0         | Liquid Effluents                                                                                                                                                                                                                                                                                         |
|                | 5.0         | Solid Wastes                                                                                                                                                                                                                                                                                             |
|                | 6.0         | Related Information                                                                                                                                                                                                                                                                                      |
|                |             | 6.1 Operability of Liquid and Gaseous Monitoring Instrumentation                                                                                                                                                                                                                                         |
|                |             | 6.2 Changes to Off-site Dose Calculation Manual (ODCM), CH-ODCM-0001 or Process Control Program, RP-5101                                                                                                                                                                                                 |
|                |             | 6.3 New Locations or Modifications for Dose Calculations or Environmental Monitoring                                                                                                                                                                                                                     |
|                |             | 6.4 Noncompliance with Radiological Effluent Control Requirements                                                                                                                                                                                                                                        |
|                |             | 6.5 Modifications to Liquid and Gaseous Waste<br>Treatment and Ventilation Exhaust Systems                                                                                                                                                                                                               |
|                |             | 6.6 Meteorological Monitoring Program                                                                                                                                                                                                                                                                    |
|                |             | 6.7 Assessment of Doses                                                                                                                                                                                                                                                                                  |
|                |             | 6.8 Groundwater Monitoring Program and Observations                                                                                                                                                                                                                                                      |

II. Quarterly Doses from Effluents, Offsite Dose Calculation Manual

### TABLE OF CONTENTS

#### III. Radiological Effluent Releases, Technical Specification (5.9.4.a)

Table III.1; Batch Liquid and Gas Release Summary

Table III.2; Abnormal Batch Liquid and Gaseous Release Summary

Table III.3; Gaseous Effluents - Summation of All Releases

Table III.4; Gaseous Effluent Releases - Batch Mode

Table III.5: Gaseous Effluent Releases - Continuous Mode

Table III.6; Liquid Effluents - Summation of All Releases

Table III.7; Liquid Effluent Releases - Batch Mode

Table III.8; Liquid Effluent Releases - Continuous Mode

Table III.9; Groundwater Analysis Results

#### IV. **Dose From Gaseous Effluents - GASPAR II Output**

Tables IV-A-1 through IV-A-40 - Receptor Dose Projections Table IV-B-1 - Dose Contributions at Unrestricted Area Boundary Table IV-C-1 - ALARA Annual Integrated Dose Summary

#### V. **Dose From Liquid Effluents - LADTAP II Output**

Summary Dose Projections from Liquid Effluent Releases

#### VI. Radioactive Effluent Releases-Solid Radioactive Waste, Technical Specification (5.9.4.a)

#### VII. **ATTACHMENTS**

- 1. Off-Site Dose Calculation Manual (ODCM) and Process Control Program (PCP) Revisions (Technical Specifications 5.17.d and 5.18.d)
- 2. Joint Frequency Distribution Wind Direction vs. Wind Speed by Stability Class and Meteorological Data

### 1.0 INTRODUCTION

This Annual Radiological Effluent Release Report, for Fort Calhoun Station Unit No. 1, is submitted as required by Technical Specification 5.9.4.a for the period January 1, 2017 through December 31, 2017.

### 1.1 Executive Summary

The Radioactive Effluent Monitoring program for the year 2017 was conducted as described in the following report. Major efforts were made to maintain the release of radioactive effluents to the environment as low as reasonably achievable.

The total airborne activity released from noble gas was 1.88 E-4 curies. This was a decrease from the 2016 activity of 1.04 curies. This decrease was due to decrease in RCS source from plant shutdown.

The total airborne activity from I-131, I-133, and particulates with half-lives > 8 days in 2017 was 0.00 curies. This is a continuation from the 2016 activity of 0.00 curies. This remained constant from 2016.

The total airborne activity from Tritium was 0.393 curies. This was a decrease from the 2016 activity of 2.99 curies. This decrease was due to not performing containment purges for defueling activities.

The total airborne activity from C-14 was 0.00 curies. This was the decrease from 2016 levels of 1.97 curies. Airborne activity from C-14 is included in the 2017 annual report, per Regulatory Guide 1.21, Revision 2. This is a calculated value based on power generation and days of operation. Critical organ doses from C-14 were calculated using a ratio of 15% as CO<sub>2</sub>. This ratio was determined during an NRC in-plant source term study conducted at the Fort Calhoun Station between 1976 and 1977, NUREG/CR-0140. Since Fort Calhoun Station ceased power operations, C-14 is no longer being produced. Any C-14 released from gas tanks or decommissioning activities was previously accounted for in reports which had power history.

Dose contributions from airborne effluents at the unrestricted area boundary were; 1.13E-09 mRad gamma air dose, 1.28E-07 mRad beta air dose, 5.47E-04 mRem total body dose, and 5.47E-04 mRem critical organ dose. Gamma and beta dose showed a decrease from 2016 levels of 1.28 E-03 mRad gamma air dose and 5.70-04 mRad beta air dose, from not releasing iodines and a

reduction in gas source term due to plant shutdown. Whole body and critical organ doses decreased from 2016 levels of 8.68E-02 mRem total body dose and 4.20E-01 mRem critical organ dose. This decrease is attributed to the gas source term reduction previously mentioned.

Total water activity (excluding tritium, dissolved gases, and alpha) released in 2017 in liquid effluents was 2.23E-03 curies. This was a decrease from the 2016 activity of 4.34E-02 curies. This decrease was due to a substantial decrease in liquid waste generated and reduced source term from cessation of operations.

The total water tritium activity released in 2017 in liquid effluents was 2.2 curies. This was a decrease from the 2016 activity of 149 curies. This decrease was due to a substantial decrease in liquid waste generated and reduced source term from cessation of operations.

The calculated whole body dose due to liquid effluents at the site discharge from all sources in 2017 was 2.80E-01 mRem which was 9.33% of the annual dose limit. This was an increase from the 2016 dose of 2.11-01 mRem, which was 7.03% of the annual dose limit. Dose increased despite a significant decrease in volume and activity released. Since cessation of operations, dilution flow has decreased from a range 120,000-360,000 gpm to 7200 gpm. Station procedures limit release flow rates at these lower dilution levels. The combination of lower flow and decreased dilution represents an increase in concentrations being released offsite.

The calculated critical organ dose due to liquid effluents at the site discharge from all sources in 2017 was 4.39E-01 mRem. This was an increase from the 2016 dose of 3.26E-01 mRem. This increase was previously described.

The Fort Calhoun Station meteorological system had a cumulative recovery rate of 96.47% from the station meteorological tower with the remaining 3.53% provided by the National Weather Service, for the joint frequency parameters required by Regulatory Guide 1.23 for wind speed, wind direction, and delta temperature.

There were no abnormal releases during 2017.

During 2017 there were two changes to the Off-site Dose Calculations Manual (ODCM), CH-ODCM-0001 and one change to the Process Control Program, RP-5101.

For 2017, the total volume of solid radwaste released from the unit was 260.24 cubic meters. This was a increase from the 69.04 cubic meters of solid waste released from the unit in 2016. The increase was attributed to thirteen shipments made in 2017 and two shipments in 2016.

The total activity released from the unit for 2017 was 212.18 curies, 212.09 curies from spent resin, 7.93E-02 curies from dry compressables, and 8.11E-03 curies from other. This was an increase from the 2016 value of 2.16E-02 curies. Overall, the effluent monitoring program was conducted in a manner to ensure the activity released and dose to the public were maintained as low as reasonably achievable.

### 2.0 SUPPLEMENTAL INFORMATION

### 2.1 Regulatory Limits

The ODCM Radiological Effluent Control Specifications applicable to the release of radioactive material in liquid and gaseous effluents are described in the following sections.

### 2.1.1 Fission and Activation Gases (Noble Gases)

The release rate of radioactive material in airborne effluents shall be controlled such that the instantaneous concentrations of radionuclides do not exceed the values specified in 10 CFR 20 for airborne effluents at the unrestricted area boundary. To support plant operations, Supervisor - System Chemistry may increase this limit up to the limits specified in Technical Specification 5.16.1.g.

Technical Specification 5.16.1.g establishes the administrative control limit on the concentration resulting from radioactive material, other than noble gases, released in gaseous effluents to unrestricted areas conforming to ten times 10 CFR 20.1001-20.2401, Appendix B, Table 2, Column 1. For noble gases, the concentration shall be limited to five times 10 CFR 20.1001-20.2401, Appendix B, Table 2, Column 1.

The air dose due to noble gases released in gaseous effluents to areas at or beyond the unrestricted area boundary shall be limited to the following:

- a. During any calendar quarter: Less than or equal to 5 mRad for gamma radiation and less than or equal to 10 mRad for beta radiation, and
- b. During any calendar year: Less than or equal to 10 mRad for gamma radiation and less than or equal to 20 mRad for beta radiation.

# 2.1.2 <u>Doses from I-131, I-133, C-14, Tritium, and Radioactive</u> <u>Material in Particulate Form with Half Lives Greater than 8</u> Days (Other than Noble Gases).

- a. The dose to an individual or dose commitment to any organ of an individual in unrestricted areas due to the release of I-131, I-133, C-14, H-3, and radioactive material in particulate form with half-lives greater than eight days (other than noble gases) in airborne effluents shall not exceed 7.5 millirem from all exposure pathways during any calendar quarter.
- b. The dose to an individual or dose commitment to any organ of an individual in unrestricted areas due to the release of I-131, I-133, C-14, H-3, and radioactive materials in particulate form with half-lives greater than eight days (other than noble gases) in airborne effluents shall not exceed 15 millirem from all exposure pathways during any calendar year.

### 2.1.3 Liquid Effluents

The release rate of radioactive material in liquid effluents shall be controlled such that the instantaneous concentrations for radionuclides, other than dissolved or entrained noble gases, do not exceed the values specified in 10 CFR 20 for liquid effluents at site discharge. To support plant operations, the Supervisor - System Chemistry may increase this limit up to the limit specified in Technical Specifications 5.16.1.b.

Technical Specification 5.16.1.b establishes the administrative control limit on concentration of radioactive material, other than dissolved or entrained noble gases, released in liquid effluents to unrestricted areas conforming to ten times 10 CFR 20.1001-20.2401, Appendix B, Table 2, Column 2. For dissolved or entrained noble gases, the concentration shall be limited to 2.0E-04 μCi/mL total activity.

The dose or dose commitment to a MEMBER OF THE PUBLIC from radioactive materials in liquid effluents released to unrestricted areas shall be limited to:

- a. During any calendar quarter: Less than or equal to 1.5 mRem to the whole body and less than or equal to 5 mRem to any organ, and
- b. During any calendar year: Less than or equal to 3 mRem to the whole body and less than or equal to 10 mRem to any organ.

### 2.1.4 Total Dose-Uranium Fuel Cycle

The dose to any individual from uranium fuel cycle sources shall be limited to  $\leq 25$  mRem to the total body or any organ (except the thyroid, which shall be limited to  $\leq 75$  mRem) during each calendar year.

### 2.2 Effluent Concentration Limits (ECL)

### 2.2.1 Liquid Effluents

The values specified in 10 CFR Part 20, Appendix B, Column 2 are used as the ECL for liquid radioactive effluents released to unrestricted areas. A value of 2.0E-04 µCi/mL is used as the ECL for dissolved and entrained noble gases in liquid effluents.

### 2.2.2 Gaseous Effluents

The values specified in 10 CFR Part 20, Appendix B, Column 1 are used as the ECL for gaseous radioactive effluents released to unrestricted areas.

### 2.3 Measurements and Approximations of Total Radioactivity

Measurements of total radioactivity in liquid and gaseous radioactive effluents were accomplished in accordance with the sampling and analysis requirements of Tables 3.1 and 3.2 of Part I of the ODCM.

### 2.3.1 Liquid Radioactive Effluents

Each batch was sampled and analyzed for gamma emitting radionuclides using gamma spectroscopy, prior to release. Composite samples were analyzed monthly and quarterly for the Monitor Tanks. Composite samples were analyzed monthly in the onsite laboratory for tritium and gross alpha radioactivity, using liquid scintillation and proportional counting techniques respectively. Composite samples were analyzed quarterly for Sr-89, Sr-90, Fe-55, Ni-63, and Gross Alpha by a contract laboratory (Teledyne Brown Engineering, Inc.). A software program was used to project the total body and critical organ dose contribution at the unrestricted area boundary for each release and the percent contribution to the annual objective dose.

There were no releases from the Steam Generator blowdown during the reporting period.

### 2.3.2 Gaseous Radioactive Effluents

Each gaseous batch release was sampled and analyzed for radioactivity prior to release. For release of Waste Gas Decay Tanks, noble gas grab samples were analyzed for gamma emitting radionuclides using gamma spectroscopy. The results of the analysis and the total volume of effluent released were used to determine the total amount of radioactivity released in the batch mode. A software program was developed and installed that can project the total body and critical organ dose contribution at the unrestricted area boundary for each release and the percent contribution to the annual objective dose. This program also adds the projected dose to the current actual dose totals in a temporary file, until it is updated with actual release data at the completion of a purge.

Continuous release effluent pathways were continuously sampled using charcoal and particulate filters and analyzed weekly for gamma emitting radionuclides using gamma spectroscopy. Weekly particulate filters were analyzed for gross alpha radioactivity in the onsite laboratory using proportional counting techniques. Quarterly composites of particulate filters were analyzed for Sr-89, Sr-90, and Gross Alpha by a contract laboratory (Teledyne Brown Engineering, Inc.).

### 2.4 Estimation of Total Percent Error

The estimated total percent error is calculated as follows:

Total Percent Error =  $(E_1^2 + E_2^2 + E_3^2 + ... + E_n^2)^{0.5}$ Where  $E_n$  = percent error associated with each contributing parameter.

Sample counting error is estimated by the Canberra Genie System Software for samples analyzed by gamma spectroscopy. This calculation can include the error associated with peak area determination, gamma ray abundance, efficiency and half-life. Systematic error is estimated for gaseous and liquid effluent analyses and dilution and wastewater volume.

### 2.5 Batch Releases

A summary of information for liquid and gaseous batch releases is included in Table III.1.

### 2.6 Abnormal Releases

Abnormal Releases are defined as unplanned and unmonitored releases of radioactive material from the site.

A summary of information for liquid and gaseous abnormal releases is included in Table III.2.

### 3.0 GASEOUS EFFLUENTS

The quantities of radioactive material released in gaseous effluents are summarized in Tables III.3, III.4 and III.5. All radioactive materials released in gaseous form are considered to be ground level releases.

### 4.0 LIQUID EFFLUENTS

The quantities of radioactive material released in liquid effluents are summarized in Tables III.6, III.7 and III.8.

### 5.0 SOLID WASTES

The quantities of radioactive material released as solid effluents are summarized in Section VI.

### 6.0 RELATED INFORMATION

### 6.1 Operability of Liquid and Gaseous Monitoring Instrumentation

During the reporting period there was 1 instrument used to monitor radioactive effluent releases that failed to meet the minimum reportable instrument operability requirements listed in the ODCM during the reporting period.

RM-063, Post Accident Radiation Monitor, was inoperable for 100 days (9/22/2017-12/31/2017) due to a failure of a circuit board. Multiple attempts to obtain new and modified boards did not address the issue. The ability to perform grab sampling per CH-SMP-PA-0005 in the event of an emergency was the required compensatory action during the monitor's unavailability.

# 6.2 <u>Changes to the Offsite Dose Calculation Manual (ODCM) and/or Process Control Program (PCP)</u>

During 2017, two revisions were made to the ODCM and one change made to the PCP.

- The following changes were made to the ODCM:
  - Added annual reporting methodology for the total dose as required by 10 CFR 72.104.
  - Revised the vegetation sampling location as determined by the 2016 Land Use Survey.
  - Removed reference to Technical Specifications 5.18 to ODCM Implementing Step 6.2.1D, since Technical Specification was deleted.
  - Added twelve new TLD locations to allow for better tracking of dose to members of the general public to ensure compliance with 40 CFR 190.
- The following change was made to the PCP:
  - The document number was revised from RW-AA-100, Process Control Program for Radioactive Wastes, to RP-5101, Process Control Program for Radioactive Wastes.
  - o The format was revised, but the content remained unchanged.

### 6.3 New Locations or Modifications for Dose Calculations or Environmental Monitoring

- Sample Station #77, River N-1
- Sample Station #78, River S-1
- Sample Station #79, Lagoon S-1
- Sample Station #80, Parking S-1
- Sample Station #81. Training W-1
- Sample Station #82, Switchyard S-1
- Sample Station #83, Switchyard SE-1
- Sample Station #84, Switchyard NE-1
- Sample Station #85, Switchyard W-1
- Sample Station #86, Switchyard N-1
- Sample Station #87, Range S-1
- Sample Station #88, Mausoleum E-1

### 6.4 Noncompliance with Radiological Effluent Control Requirements

This section provides a list of any event that did not comply with the applicable requirements of the Radiological Effluent Controls given in the Offsite Dose Calculation Manual (ODCM). Detailed documentation concerning the evaluations and corrective actions is maintained onsite.

### 6.4.1 Abnormal Gaseous and Liquid Releases

No abnormal releases were made during the calendar year of 2017.

### 6.4.2 Failure to Meet Specified Sampling Requirements

During 2017, there were no instances in which specified sampling requirements were not met.

# 6.5 <u>Modifications to Liquid and Gaseous Waste Treatment and Ventilation Exhaust Systems</u>

During the reporting period no design modifications were approved nor implemented involving major changes to the Liquid and Gaseous Waste Treatment Systems.

### 6.6 <u>Meteorological Monitoring Program</u>

A summary of hourly meteorological data, collected during 2017, is retained onsite and is maintained as documentation as required by Regulatory Guide 1.21 Rev 2. This data is available for review by the Nuclear Regulatory Commission upon request. Joint Frequency tables are included in Section VII. Attachment 2

Real time hourly meteorological data is used to calculate the annual air effluent dose to individuals. For quarterly estimates during the year an annual average X/Q is used, which is an average of the highest X/Q's calculated for each of the previous two years.

### 6.7 Assessment of Doses

### 6.7.1 Doses Due to Liquid Effluents

Total body, skin, and organ dose for liquid releases were calculated in mRem for all significant liquid pathways using the annual configuration of the LADTAP II program. The site discharge location was chosen to present a most conservative estimate of dose for an average adult, teenager, child, and infant. A conservative approach is also presented by the assumption that Omaha and Council Bluffs receive all drinking water from the Missouri River.

The LADTAP II program in its annual configuration was also used to calculate the total body and organ doses for the population of 950,006 within a 50-mile radius of the plant (based on the 2010 census). The results of the calculations are listed in Section V.

The doses due to liquid effluents for total body and critical organ are also calculated quarterly using the methods in the ODCM. The results are listed in Section II.

### 6.7.2 <u>Doses Due to Gaseous Effluents</u>

Total body, skin and organ doses from ground releases were calculated in mRem to an average adult, teenager, child, and infant in each receptor using the annual configuration of the GASPAR II program. Also, the doses to the same groups, in units of mRad due to gamma and beta radiation carried by air, were computed using GASPAR II.

The GASPAR II program in its annual configuration was also used to calculate the ALARA integrated population dose

summary for the total body, skin and organ doses in personrem for all individuals within a 50-mile radius. The results of the calculations are shown in Section IV.

The doses due to gaseous effluents for total body gamma and beta noble gas air dose are calculated quarterly using the methods in the ODCM with an annual average X/Q. The results are listed in Section II.

## 6.7.3 <u>Doses Due to I-131, I-133, C-14, H-3, and Particulates with</u> Half Lives Greater than 8 days.

The doses due to I-131, I-133, C-14, H-3, and Particulates with half-lives greater than 8 days for total body and critical organ dose are calculated quarterly using the highest of infant or child dose factors and an annual average X/Q. The results are listed in Section II for inhalation, ground and food.

### 6.7.4 Direct Radiation Dose to Individuals and Populations

Direct radiation doses attributed to the gamma radiation emitted from the containment structure were not observed above local background at any TLD sample locations for this annual period.

### 6.7.5 40 CFR 190 Dose Evaluation

ODCM Radiological Effluent Controls require dose evaluations and a special report to demonstrate compliance with 40 CFR Part 190 only if calculated yearly doses exceed two times the annual design objectives for liquid and/or gaseous effluents. At no time during 2017 were any of these limits exceeded; therefore, no special report per Tech Specification 5.16 was required.

The external Total Body Dose is comprised of:

- 1) Total Body Dose due to noble gas radionuclides in gaseous effluents
- 2) Dose due to radioactive waste and the ISFSI
- Total Body Dose due to radioactivity deposited on the ground (this dose is accounted for in the determination of the non-noble gas dose and is not considered here)

The Total Body Dose, external is given by: Dext = Dtb + Dosf

Where Dext is the external dose
Dtb is the total body dose
Dosf is the dose from on-site storage

The Total Dose is then given by: Dtot = Dext + Dliq + Dnng

Where Dtot is the total dose

Dext is the external dose

Dliq is the dose from liquid effluents

Dnng is the dose from non-noble gases

### **Dose Limits**

Total Body, annual 25 mrem
Thyroid, annual 75 mrem
Other Organs, annual 25 mrem

Calculation using REMP TLD Comparison

Indicating TLD station {OTD-B-(I)}, closest to on site storage, in mrem/week minus REMP environmental control {OTD-L-(C)}, in mrem/week

Dext = (1.40 - 1.30) \* 52 weeks = 5.2 mrem

Maximum offsite doses from report

Dtbwb = 0.000547 mrem, Dtbco = 0.000547 mrem

D liqwb = 0.280 mrem Dliqco = 0.439 mrem

Dtot wholebody = 5.2 + 0.000547 + 0.280 = 5.48 mrem

Dtot critical organ = 5.2 + 0.000547 + 0.439 = 5.64 mrem

For cases when the general public accesses the site, see Table 18 of the ODCM, the calculated dose would be:

Dtot wholebody = 5.2 + 5.08 + 0.280 = 10.56 mrem

Dtot critical organ = 5.2 + 1.20 + 0.439 = 6.84 mrem

These reported doses are bounding cases demonstrating compliance. Actual REMP TLD readings do not show any deviation from historical averages for this location, both pre and post construction of the SG storage mausoleum and ISFSI. On-site TLD's used for dose monitoring at onsite rad storage facilities do not have identical counterparts at the site boundary or actual offsite receptors. Additionally the liquid dose pathway, since it is downstream of the indicator location and is not hydro-geologically connected, would produce very conservative results compared to calculating actual dose.

### 6.8 Groundwater Monitoring Program and Observations

- OPPD conducted groundwater sampling from 19 wells, 2 surface water sites, and 4 storm water headers within the site property per NEI 07-07. Additionally Nebraska requirements regarding avoidance of snow runoff were deleted, so storm water sampling is now performed quarterly, if available.
- No new monitoring wells were added to the sampling program during 2017. Additional radiological surveys were performed during decommissioning characterization, no plant related nuclides were discovered in soil. The sampling program consists of 2 affected sectors per rain event and an upwind background test. Three rain sampling events were conducted. No tritium activity in excess of the vendor's Minimum Detectable Activity (MDA) was reported. Fourth quarter had no rain or snow events significant enough to collect storm water or rain samples. No tritium activity in excess of the vendor's Minimum Detectable Activity (MDA) was reported in collected storm water or rain sampling.
- One monitoring well (MW-3A) had tritium in excess of the vendor's Minimum Detectable Activity (MDA < 295 pCi/L) was reported in Table III.9 at 326 pCi/L +/- 205 pCi/L. MW-3A detection was below any reporting thresholds. This well is sampled quarterly for the entire HTD suite of analyses. No other analyses had detected activity. No other detections were present in this well on follow up sampling. MW-6 had tritium identified with activity > 2 sigma but <MDA (291 pCi/L) at 195 pCi/L +/- 192. This result was included based on detections near MDA from station trends for this location. This well is hydrogeology connected to the Missouri River downstream of the plant discharge and is influenced by high river levels and station discharge. All listed Sr-90 results identified < MDA, but were retained during statistical data review based on historical station shallow well trends. Some hard to detect nuclides, were reduced to an annual sample frequency (Ni-63, Fe-55, Sr-90 in deep wells) based on 2 years of quarterly sampling with no detections above MDA.

 The Fort Calhoun REMP sampling did not detect tritium in samples within the Missouri River downstream at the site boundary or at the nearest municipal drinking water facility. No groundwater drinking pathway exists on site. Groundwater monitoring of neighboring drinking wells is performed to have data, if a plume were identified on site. No state or federal drinking water limits, and no site groundwater protection program administrative limits were exceeded.

# SECTION II QUARTERLY DOSES FROM EFFLUENTS

Offsite Dose Calculation Manual

January 1, 2017 - December 31, 2017

### **Quarterly Dose Calculation Results**

January 1, 2017 through December 31, 2017

With the implementation of the Fort Calhoun Station Radiological Effluent Technical Specifications (RETS) on October 1, 1985, radiation doses in the unrestricted area from liquid and gaseous effluents must be calculated on a quarterly basis in accordance with the Offsite Dose Calculation Manual (ODCM). These calculations are performed to ensure the annual dose limits delineated in Appendix I of 10 CFR 50 and implemented by RETS are not exceeded. If the results of the quarterly calculations exceed fifty percent (50%) of the annual limits of Appendix I, actions are taken to reduce effluents so that the resultant doses do not exceed the annual limits during the remainder of the year and a special report is submitted to the Nuclear Regulatory Commission. No special reports were required for 2017 calculated doses.

This section presents the results of the quarterly dose calculations performed during the period January 1, 2017 through December 31, 2017. Details are shown as to the types, sources and resultant doses from the effluents, the annual limits and a comparison to the annual limits.

### QUARTERLY CUMULATIVE DOSE CONTRIBUTION FROM RADIOACTIVE EFFLUENTS FORT CALHOUN FIRST QUARTER 2017 DOSE PROJECTIONS

| I. Liquid Effluents:                                                             | Total Body<br>Dose (mrem)      | Critical Organ<br>Dose (mrem)                |
|----------------------------------------------------------------------------------|--------------------------------|----------------------------------------------|
| Batch:<br>Continuous:                                                            | 2.41E-02<br>0.00E+00           | Critical Organ Dose (mrem) 3.48E-02 0.00E+00 |
| Totals:                                                                          | 2.41E-02                       | 3.48E-02                                     |
|                                                                                  | 1.50E+00                       | 5.00E+00                                     |
| Percent of Quarterly Obj:                                                        | 1.61 ¥                         | 0.70 %                                       |
| ODCM Annual Objective:                                                           | 3.00E+00                       | 1.00E+01                                     |
| YTD Percent of Annual Obj:                                                       |                                | 0.35 %                                       |
| II. Gaseous Effluents; To                                                        | otal Body Gamma<br>Dose (mrad) | Total Body Beta<br>Dose (mrad)               |
| A. Noble Gas Air Dose:                                                           | 8.73E-10                       | 9.90E-08                                     |
| ODCM Quarterly Objective:                                                        | S.00E+00                       | 1.00E+01                                     |
| Percent of Quarterly Obj:                                                        | 0.00 %                         | 0.00 %                                       |
| ODCM Annual Objective:                                                           | 1.00E+01                       | 2.00E+01                                     |
| YTD Percent of Annual Obj:                                                       | 0.00 %                         | 0.00 ¥                                       |
| B. I-131, F-133, Tritium, C-14, and Particulates with                            |                                |                                              |
| B. I-131, I-133, Tritium, C-14,<br>and Particulates with<br>Half-Lives > B Days: | Total Body<br>Dose (mrem)      | Critical Organ<br>Dose (mrem)                |
| Inhalation:<br>Ground and Food:                                                  | 2.43E-05<br>1.12E-04           | 2.43B-05<br>1.12E-04                         |
| Totals:                                                                          | 1.37E-04                       | 1.37E-04                                     |
| ODCM Quarterly Objective:                                                        | 7.50E+00                       | 7.508+00                                     |
| Percent of Quarterly Obj:                                                        | 0,00 %                         | 0.00 %                                       |
| ODCM Annual Objective:                                                           | 1.50E+01                       | 1.50E+01                                     |
| YTD Percent of Annual Obj:                                                       | 0.00 %                         | 0.00 %                                       |

Reviewed by:

### QUARTERLY CUMULATIVE DOSE CONTRIBUTION FROM RADIOACTIVE EFFLUENTS FORT CALHOUN SECOND QUARTER 2017 DOSE PROJECTIONS

| Liquid Effluents:                                                                                | Total Body<br>Dose (mrem)     | Critical Organ Dose (mrem)     |
|--------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------|
| Batch:<br>Continuous:                                                                            | 1.15E-01<br>0.00E+00          | 1.80E-01<br>0.00E+00           |
| Totals:                                                                                          | 1.15E-01                      | 1.80E-01                       |
| ODCM Quarterly Objective:                                                                        | 1.50E+00                      | 5.00E+00                       |
| Percent of Quarterly Obj:                                                                        | 7.67 %                        | 3.60 🕏                         |
| ODCM Annual Objective:                                                                           | 3.00E+00                      | 1.00E+01                       |
| YTD Percent of Annual Obj:                                                                       | 4.63 %                        | 2.14 %                         |
| . Gaseous Effluents: To                                                                          | tal Body Gamma<br>Dose (mrad) | Total Body Beta<br>Dose (mrad) |
|                                                                                                  | 5.89B-10                      |                                |
| ODCM Quarterly Objective:                                                                        | 5.00E+00                      | 1.00E+01                       |
| Percent of Quarterly Obj:                                                                        | p.00 %                        | 0.00 %                         |
| ODCM Annual Objective:                                                                           | 1,006+01                      | 2.00E+01                       |
| YTD Percent of Annual Obj:                                                                       | 0.00 %                        | 0.00 %                         |
| <pre>B. I-131, I-133, Tritium, C-14,<br/>and Particulates with<br/>Half-Lives &gt; 8 Days:</pre> | Total Rody                    | Critical Organ                 |
| init gaves a disper                                                                              | Dose (mrem)                   | Critical Organ<br>Dose (mrem)  |
| Inhalation:<br>Ground and Pood:                                                                  | 2.83E-05<br>1.31E-04          | 2.83E-05<br>1.31E-04           |
| Totals:                                                                                          | 1.59E-04                      | 1.59E-04                       |
| ODCM Quarterly Objective:                                                                        | 7.50E+08                      | 7.50E+00                       |
| Percent of Quarterly Obj:                                                                        | 0.00 %                        | 0.00 %                         |
| ODCM Annual Objective:                                                                           | 1.50E+01                      | 1.50E+01                       |
| YTD Percent of Annual Obj:                                                                       | ស្រុក ៖                       | D.00 %                         |

Reviewed by

## QUARTERLY CUMULATIVE DOSE CONTRIBUTION FROM RADIOACTIVE EFFLUENTS FORT CALHOUN THIRD QUARTER 2017 DOSE PROJECTIONS

| I. Liquid Effluents:                                                                             | Total Body<br>Dose (mrem)     | Critical Organ Dose (mrem)     |
|--------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------|
| Batch:<br>Continuous:                                                                            | 2.49E-01<br>0.00E+00          |                                |
| Totals:                                                                                          | 2.49E-01                      | 3.96E-01                       |
| ODCM Quarterly Objective:                                                                        | 1,50E+00                      | 5.00E+00                       |
| Percent of Quarterly Obj:                                                                        | 16.60 %                       | 7.92 %                         |
| ODCM Annual Objective:                                                                           | 00+300°E                      | 1.00E+01                       |
| YTD Percent of Annual Obj:                                                                       | 12.97 %                       | 6.10 %                         |
| I. Gaseous Effluents: To                                                                         | tal Body Gamma<br>Dose (mrad) | Total Body Beta<br>Dose (mrad) |
| A. Noble Gas Air Dose:                                                                           | 0.00E+00                      | 0.00B400                       |
| ODCM Quarterly Objective:                                                                        | 5.00E+00                      | 1.00E+01                       |
| Percent of Quarterly Obj:                                                                        | O.OO %                        | ø.ov %                         |
| ODCM Annual Objective:                                                                           | 1.00E+01                      | 2.00E+01                       |
| YTD Percent of Annual Obj:                                                                       | 0.00 %                        | 0.00 %                         |
| <pre>B. J-131, I-133, Tritium, C-14,<br/>and Particulates with<br/>Half-Lives &gt; 8 Days.</pre> |                               | Critical Organ Dose (mrem)     |
| Inhalation:<br>Ground and Food:                                                                  | 5.728-05<br>2.64E-04          | 5.72E-05<br>2.64E-04           |
| Totals:                                                                                          | 3.216-04                      | 3.21E-04                       |
| ODCM Quarterly Objective:                                                                        | 7.50E+00                      | 7.50E+00                       |
| Percent of Quarterly Obj:                                                                        | 0.00 %                        | 0.00 %                         |
| ODCM Annual Objective:                                                                           | 1.50E+01                      | 1.50E+01                       |
| YTD Percent of Annual Obj:                                                                       | 0.00 %                        | O., OO %                       |

Reviewed by:

QUARTERLY CUMULATIVE DOSE CONTRIBUTION FROM RADIOACTIVE EFFLUENTS FORT CALHOUN FOURTH QUARTER 2017 DOSE PROJECTIONS

| I. Liquid Effluents:                                  | Total Body<br>Dose (mrem)     | Critical Organ Dose (mrem)                            |
|-------------------------------------------------------|-------------------------------|-------------------------------------------------------|
| Batch:<br>Continuous:                                 | 3.91E-02<br>0.00E+00          | Critical Organ<br>Dose (mrem)<br>6.10E-02<br>0.00E400 |
| Totals:                                               | 3.91E-02                      | 6.10E-02                                              |
| ODCM Quarterly Objective:                             | 1.50E÷00                      | 5.00E+00                                              |
| Percent of Quarterly Obj:                             | 2.61 %                        | 1.22 %                                                |
| ODCM Annual Objective:                                | 3,00 <b>E+00</b>              | 1.00E+01                                              |
| YTD Percent of Annual Obj:                            | 14.27 %                       | 6.72 %                                                |
| I. Gaseous Effluents: To                              | tal Body Gamma<br>Dose (mrad) | Total Body Beta<br>Dose (mrad)                        |
| A. Noble Gas Air Dose:                                | 0.00E+00                      | 0.00E+00                                              |
| ODCM Quarterly Objective:                             | 5.00E÷00                      | 1.008+01                                              |
| Percent of Quarterly Obj:                             | a.a¢ %                        | 0.00 %                                                |
| ODCM Annual Objective:                                | 1.DDE-01                      | 2.00E+01                                              |
| YTD Percent of Annual Obj:                            | 0.00 %                        | 0.00 %                                                |
| B. I-131, I-133, Tritium, C-14, and Particulates with |                               |                                                       |
| Half-Lives > 8 Days:                                  | Total Body<br>Dose (mrem)     | Critical Organ Dose (mrem)                            |
| Inhalation:<br>Ground and Food:                       | 1.94E-05<br>8.96E-05          | 1.94E-05<br>8.96E-05                                  |
| Totals:                                               | 1.05E-04                      | 1.09E-04                                              |
| ODCM Quarterly Objective:                             | 7.50 <u>8</u> +00             | 7.505+00                                              |
| Percent of Quarterly Obj:                             | 0.00 ¥                        | o.co %                                                |
| QDCM Annual Objective:                                | 1.50E+01                      | 1.50E+01                                              |
| YTO Percent of Annual Obj:                            | 0.00 %                        | 0,00 %                                                |

Reviewed by:

# SECTION III RADIOLOGICAL EFFLUENT RELEASES

### Technical Specification (5.9.4.a)

| Table III.1 | Batch Liquid and Gas Release Summary              |
|-------------|---------------------------------------------------|
| Table III.2 | Abnormal Batch Liquid and Gaseous Release Summary |
| Table III.3 | Gaseous Effluents - Summation of all Releases     |
| Table III.4 | Gaseous Effluent Releases - Batch Mode            |
| Table III.5 | Gaseous Effluent Releases - Continuous Mode       |
| Table III.6 | Liquid Effluents - Summation of all Releases      |
| Table III.7 | Liquid Effluent Releases - Batch Mode             |
| Table III.8 | Liquid Effluent Releases - Continuous Mode        |
| Table III.9 | Groundwater Tritium Results                       |

January 1, 2017 - December 31, 2017

TABLE III..1

BATCH LIQUID AND GASEOUS RELEASE SUMMARY

JANUARY THROUGH DECEMBER 2017

| A. | Liquid Releases All Sources                                                              | 1st Qtr   | 2nd Qtr   | 3rd Qtr   | 4th Qtr   | Year      |
|----|------------------------------------------------------------------------------------------|-----------|-----------|-----------|-----------|-----------|
| 1. | Number of Batch Releases:                                                                | 13        | 7         | 6         | 5         | 31        |
| 2. | Total Time Period for Batch Releases (min):                                              | 5,104     | 3,101     | 2,950     | 2,560     | 13,715    |
| 3. | Maximum Time Period for Batch Releases (min):                                            | 633       | 526       | 545       | 553       | 633       |
| 4. | Average Time Period for Batch Releases (min):                                            | 393       | 443       | 492       | 512       | 442       |
| 5. | Minimum Time Period for Batch Releases (min):                                            | 7.0       | 235       | 462       | 480       | 70        |
| 6. | Average Dilution Stream Flow During Periods of Release into the Missouri River(mls/min): | 2.401E+07 | 2.730E+07 | 2.730E+07 | 2.730E+07 | 2.592E+07 |
| В. | Gaseous Releases All Sources                                                             | 1st Qtr   | 2nd Qtr   | 3rd Qtr   | 4th Qtr   | Year      |
| 1. | Number of Batch Releases:                                                                | 1         | 2         | 1         |           | 4         |
| 2. | Total Time Period for Batch Releases (min):                                              | 384       | 7.37      | 245       |           | 1,366     |
| 3, | Maximum Time Period for Batch Releases (min):                                            | 384       | 400       | 245       |           | 400       |
| 4. | Average Time Period for Batch Releases (min):                                            | 384       | 369       | 245       |           | 342       |
| 5. | Minimum Time Period for Batch Releases (min):                                            | 384       | 337       | 245       |           | 245       |

TABLE III.2

ABNORMAL BATCH LIQUID AND GASEOUS RELEASE SUMMARY

JANUARY THROUGH DECEMBER 2017

| A. Liquid Releases All Sources  | 1st Qtr  | 2nd Qtr  | 3rd Qtr  | 4th Qtr  | Year     |
|---------------------------------|----------|----------|----------|----------|----------|
| Number of Releases:             | 0        | 0        | 0        | 0        | 0        |
| Total Activity Releases(Ci):    | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |
| B. Gaseous Releases All Sources | 1st Qtr  | 2nd Qtr  | 3rd Qtr  | 4th Qtr  | Year     |
| Number of Releases:             | 0        | 0        | 0        | 0        | 0        |
| Total Activity Releases (Ci):   | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |

TABLE III.3

GASEOUS EFFLUENTS--SUMMATION OF ALL RELEASES

JANUARY THROUGH DECEMBER 2017

|    |                                                                                                                              | 1st Quarter          | 2nd Quarter                      | 3rd Quarter                      | 4th Quarter                      | Year                             |
|----|------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| A. | Fission & Activation Gases Total Release (Ci): Average Release Rate (uCi/sec): Total Error (%): _52.03                       | 1.12E-04<br>1.46E-05 | 7.56E-05<br>9.72E-06             | 0.00E+00<br>0.00E+00             | 0.00E+00<br>0.00E+00             | 1.88E-04<br>1.19E-05             |
| В. | <pre>Todines   Total Release (Ci):   Average Release Rate (uCi/sec):   Total Error (%): 21.2</pre>                           | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00             | 0.00E+00<br>0.00E+00             | 0.00E+00<br>0.00E+00             | 0.00E+00<br>0.00E+00             |
| C. | Particulates Total Release (Ci): Average Release Rate (uCi/sec): Total Error (%): 20.62  Gross Alpha: Total Error (%): 20.62 | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00<br>2.81E-06 | 0.00E+00<br>0.00E+00<br>2.56E-06 | 0.00E+00<br>0.00E+00<br>2.65E-06 | 0.00E+00<br>0.00E+00<br>9.69E-06 |
| D. | Tritium  Total Release (Ci): Average Release Rate (uCi/sec): Total Error (%): _25.08                                         | 7,39E-02<br>7.39E-04 | 8.61E-02<br>8.51E-04             | 1.74E-01<br>1.70E-03             | 5.90E-02<br>5.77E-04             | 3.93E-01<br>9.61E-04             |
| Ε. | Carbon-14 Total Release (Ci): Average Release Rate (uCi/sec): Total Error (%): 20.62                                         | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00             | 0.00E+00<br>0.00E+00             | 0.00E+00<br>0.00E+00             | 0.00E+00<br>0.00E+00             |

## TABLE III.4 GASEOUS EFFLUENTS--GROUND LEVEL RELEASES

## JANUARY THROUGH DECEMBER 2017 Batch Mode

| Nuclides (Ci)                       | 1st Quarter | 2nd Quarter | 3rd Quarter | 4th Quarter | YEAR     |
|-------------------------------------|-------------|-------------|-------------|-------------|----------|
| Fission & Activation Gases<br>KR-85 | 1.12E-04    | 7.56E-05    | 0.00E+00    | 0.00E+00    | 1.88E-04 |
| Totals for Period:                  | 1.12E-04    | 7.56E-05    | 0.00E+00    | 0.00E+00    | 1.88E-04 |
| Iodines<br>Totals for Period:       | 0.00E+00    | 0.00E+00    | 0.00E+00    | 0.00E+00    | 0.00E+00 |
| Particulates                        |             |             |             |             |          |
| Totals for Period:                  | 0.00E+00    | 0.00E+00    | 0.00E+00    | 0.00E+00    | 0.00E+00 |

Tritium and Gross Alpha

TABLE III.5
GASEOUS EFFLUENTS--GROUND LEVEL RELEASES

### JANUARY THROUGH DECEMBER 2017 Continuous Mode

| Nuclides (Ci)                                    | 1st Quarter          | 2nd Quarter          | 3rd Quarter          | 4th Quarter          | Year                 |
|--------------------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| Fission & Activation Gases<br>Totals for Period: | 0.00E+00             | 0.00E+00             | 0.00E+00             | 0.00E+00             | 0.00E+00             |
| Iodines<br>Totals for Period:                    | 0.00E+00             | 0.00E+00             | 0.00E+00             | 0.00E+00             | 0.00E+00             |
| Particulates<br>Totals for Period:               | 0.00E+00             | 0.00E+00             | 0.00E+00             | 0.00E+00             | 0.00E+00             |
| Tritium and Gross Alpha<br>ALPHA<br>H-3          | 1.68E-06<br>7.39E-02 | 2.81E-06<br>8.61E-02 | 2.56E-06<br>1.74E-01 | 2.65E-06<br>5.90E-02 | 9.69E-06<br>3.93E-01 |

TABLE III.6
LIQUID EFFLUENTS--SUMMATION OF ALL RELEASES
JANUARY THROUGH DECEMBER 2017

|    |                                                                 | 1st Quarter | 2nd Quarter | 3rd Quarter | 4th Quarter | <u>Year</u> |
|----|-----------------------------------------------------------------|-------------|-------------|-------------|-------------|-------------|
| A. | Fission & Activiation Products                                  |             |             |             |             |             |
|    | Total Release (No H-3, Gas, Alpha) (Ci):                        | 6.55E-0.5   | 1.11E-03    | 9.33E-04    | 1.22E-04    | 2.23E-03    |
|    | Average Diluted Concentration (uCi/mL):                         | 6.40E-09    | 9.18E-08    | 6.95E-08    | 8.74E-09    | 1.88E-07    |
|    | 10 CFR 20, App. B Limit 1.00E-06 (uCi/mL) Percent of Limit (%): | 6.40E-01    | 9.18E+00    | 6.95E+00    | 8.74E-01    | 1.88E+01    |
|    | Total Error (%): 22.31                                          |             |             |             |             |             |
| в. | Tritium                                                         |             |             |             |             |             |
|    | Total Release (Ci):                                             | 8.61E-01    | 8.90E-01    | 1.35E-01    | 3.14E-01    | 2.20E+00    |
|    | Average Diluted Concentration (uCi/mL):                         | 8.41E-05    | 7.36E-05    | 1.00E-05    | 2.25E-05    | 1.85E-04    |
|    | 10 CFR 20, App. B Limit 1.00E-03(uCi/mL)                        |             |             |             |             |             |
|    | Percent of Limit (%):  Total Error (%): 25.08                   | 8.41E+00    | 7.36E+00    | 1.00E+00    | 2.25E+00    | 1.85E+01    |
|    | Total Error (%): 25.08                                          |             |             |             |             |             |
| C. | Dissolved & Entrained Gases                                     |             |             |             |             |             |
|    | Total Release (Ci):                                             | 0.00E+00    | 0.00E+00    | 0.00E+00    | 0.00E+00    | 0.00E+00    |
|    | Average Diluted Concentration (uCi/mL):                         | 0.00E+00    | 0.00E+00    | 0.00E+00    | 0.00E+00    | 0.00E+00    |
|    | ODCM Limit 2.00E-04 (uCi/mL):                                   | 0.00E+00    | 0.00E+00    | 0.00E+00    | 0.00E+00    | 0.00E+00    |
|    | Percent of Limit (%):  Total Error (%): 18.14                   | 0.005+00    | 0.002       | 0.005+00    | U.UUE+UU    | 0.00#00     |
| D. | Gross Alpha Radioactivity                                       |             |             |             |             |             |
| υ. | Total Release (Ci):                                             | 0.00E+00    | 5.38E-05    | 6.44E-06    | 0.00E+00    | 6.03E-05    |
|    | Total Error (%): _25.08                                         | 0.000.00    | 3.302 93    | 0.110       | 0.000       | 0.055 05    |
| _  | Volume of Waste Released                                        |             |             |             |             |             |
| E. | Prior to Dilution (Liters):                                     | 2.37E+05    | 1.32E+05    | 1.26E+05    | 1.06E+05    | 6.01E+05    |
|    |                                                                 |             |             |             |             |             |
| F. | Volume of Dilution Water<br>During Releases (Liters):           | 1.25E+08    | 8.45E+07    | 8.04E+07    | 6.98E+07    | 3.60E+08    |

TABLE III.7 LIQUID EFFLUENTS

### JANUARY THROUGH DECEMBER 2017 Batch Mode

| Nuclides (Ci)               | 1st Quarter | 2nd Quarter | 3rd Quarter | 4th Quarter | Year     |
|-----------------------------|-------------|-------------|-------------|-------------|----------|
| Fission & Activation Gases  |             |             |             |             |          |
| FE-55                       | 0.00E+00    | 7.38E-04    | 0.00E+00    | 0.00E+00    | 7.38E-04 |
| MN-54                       | 0.00E+00    | 2.04E-06    | 0.00E+00    | 0.00E+00    | 2.04E-06 |
| SE-75                       | 0.00E+00    | 2.90E-06    | 5.37E-07    | 0.00E+00    | 3.44E-06 |
| CS-137                      | 5.79K-05    | 3.21E-04    | 7.22E-04    | 1.10E-04    | 1.21E-03 |
| CS-134                      | 0.00E+00    | 1.85E-06    | 2.888-06    | 0.00E+00    | 4.73E-06 |
| CO-58                       | 0-00E+00    | 7.08E-06    | 2.58E-06    | 0.00E+00    | 9.66E-06 |
| AG-110M                     | 0.00E+00    | 3.47E-07    | 0.00E+00    | 0-00E+00    | 3.47E-07 |
| SB-125                      | 0.00E+00    | 1.03E+05    | 0.00E+00    | 0.00E+00    | 1.03E-05 |
| SB-124                      | 0.00E+00    | 1.02E-05    | 0.00E+00    | 0.00E+00    | 1.02E-05 |
| NI-63                       | 0.00E+00    | 0.00E+00    | 1.76E-04    | 0.00E+00    | 1.76E-04 |
| CO-60                       | 7.61E-06    | 1.67E-05    | 2.85E-05    | 1.23E-05    | 6.51E-05 |
| CO-57                       | 0.00E+00    | 7.68E-08    | 0.00E+00    | 0.00E+00    | 7.68E-08 |
| Totals for Period:          | 6.55E-05    | 1.11E-03    | 9.33E-04    | 1.22E-04    | 2.23E-03 |
| Dissolved & Entrained Gases |             |             |             |             |          |
| Totals for Period:          | 0.00E+00    | 0.00E+00    | 0.00E+00    | 0.00E+00    | 0.00E+00 |
| Tritium and Gross Alpha     |             |             |             |             |          |
| ALPHA                       | 0.00E+00    | 5.38E-05    | 6.44E-06    | 0.00E+00    | 6.03E-05 |
| H-3                         | 8.61E-01    | 8.90E-01    | 1.35E-01    | 3.14E-01    | 2.20E+00 |

NOTE: Values reported as zero are determined to be below the Lower Limit of Detection (LLD) values.

Reported Alpha activity was attributed to natural short-lived radionuclides. This was confirmed by quarterly offside vendor analysis.

### TABLE III.8 LIQUID EFFLUENTS

## JANUARY THROUGH DECEMBER 2017 Continuous Mode

| Nuclides (Ci)                 | 1st Quarter | 2nd Quarter | 3rd Quarter | 4th Quarter | Year     |
|-------------------------------|-------------|-------------|-------------|-------------|----------|
| Fission & Activation Products |             |             |             |             |          |
| Totals for Period:            | 0.00E+00    | 0.00E+00    | 0.00E+00    | 0.00E+00    | 0.00E+00 |
|                               |             |             |             |             |          |
| Dissolved & Entrained Gases   |             |             |             |             |          |
| Totals for Period:            | 0.00E+00    | 0.00E+00    | 000E+00     | 0.00E+00    | 0.00E+00 |
|                               |             |             |             |             |          |
| Tritium and Gross Alpha       |             |             |             |             |          |
| ALPHA                         | 0.00E+00    | 0.00E+00    | 0.00E+00    | 0.00E+00    | 0.00E+00 |
| H-3                           | 0.00E+00    | 0.00E+00    | 0.00E+00    | 0.00E+00    | 0.00E+00 |

# TABLE III.9

# GROUNDWATER ANALYSIS RESULTS

# pCi/L

# JANUARY THROUGH DECEMBER 2017

|               |                                                   | 1st Quarter                                              | 2nd Quarter                                              | 3rd Quarter                                              | 4th Quarter                                              |
|---------------|---------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| <u>MW-17.</u> | Tritium<br>PE-55<br>NI-53<br>Sr-9C<br>Total Gamma | 0.00E+00                                                 | 0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00                                                 | 0.00E+0Q                                                 |
| <u>MW-1B</u>  | Tritium<br>FE-55<br>NI-63<br>Sr-90<br>Total Gamma | 0.00E+00                                                 | 0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00                                                 | 0.00E+00                                                 |
| <u>MW-2</u>   | Tritium<br>FE-55<br>NI-63<br>Sr-90<br>Total Gamma | 0.00E+00                                                 | 0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00             | 0.00E+00                                                 | 0.00E+00                                                 |
| <u>MW-2'A</u> | Tritium<br>FE-55<br>NI-63<br>Sr-90<br>Total Gamma | 0.00E+00                                                 | 0.00E+00<br>0.00E+00<br>0.00E+00<br>3.92E-01<br>0.00E+00 | 0.00E+00                                                 | 0.00E+00                                                 |
| <u>MW-2B</u>  | Tritium<br>FE-55<br>NI-63<br>Sr-90<br>Total Gamma | 0.00E+00                                                 | 0.00E+00<br>0.00E+00<br>0.00E+00<br>5.55E-01<br>0.00E+00 | 0.00E+00                                                 | 0.00E+00                                                 |
| <u>MW-3</u>   | Tritium<br>FE-55<br>NI-63<br>Sr-90<br>Total Gamma | 0.00E+00                                                 | 0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00                                                 | 0.00 <b>E+</b> 00                                        |
| <u> </u>      | Tritium FE-55 NI-63 Sr-90 Total Gamma             | 3.26E+02<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00<br>2.76E-01<br>0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00<br>5.76E-01<br>0.00E+00 |
| <u>MW-3B</u>  | Tritium<br>FE-55<br>NI-63<br>Sr-90<br>Total Gamma | 0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00 | C.00E+00<br>O.C0E+00<br>O.00E+00<br>O.00E+00<br>O.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00 |
| <u>MW-4A</u>  | Tritium<br>FE-55<br>NI-63<br>Sr-90<br>Total Gamma | 0.00E+00                                                 | 0.00E+00<br>0.00E+00<br>0.00E+00<br>2.50E-01<br>0.00E+00 | 0.00E+00                                                 | 0.00E+00                                                 |

# TABLE III.9 GROUNDWATER ANALYSIS RESULTS pci/L

# JANUARY THROUGH DECEMBER 2017

| NOT AT        |                                                   | 1st Quarter                                  | 2nd Quarter                                              | 3rd Quarter                                              | 4th Quarter                                              |
|---------------|---------------------------------------------------|----------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| <u>MW-4B</u>  | Tritium<br>FR-55<br>NI-63<br>Sr-90<br>Total Gamma | 0.00E+00                                     | 0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00                                                 | 0.00E+00                                                 |
| MW-SA         | Tritium<br>FE-55<br>NI-63<br>Sr-90<br>Total Gamma | Ö∙00E+00                                     | 0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00                                                 | 0.002+00                                                 |
| <u>MW-6</u>   | Tritium<br>FE-55<br>NI-63<br>Sr-90<br>Total Gamma | 0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00<br>5.50E-01<br>0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00<br>3.71E-01<br>0.00E+00 | 1.95E+02<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00 |
| <u>MW-53</u>  | Tritium<br>FE-55<br>NI-63<br>Sr-90<br>Total Gamma | 0.00E+00·                                    | 0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00 | 0,00E+00                                                 | 0.00E+00                                                 |
| <u>MW-7</u>   | Tritium<br>FE-55<br>NI-63<br>Sr-90<br>Total Gamma | 0.00E+00                                     | 0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00                                                 | 0.00E+00                                                 |
| <u>MW-9</u>   | Tritium<br>FE-55<br>NI-63<br>Sr-90<br>Total Gamma | 0.00E+00                                     | 0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00 | 0.005+00                                                 | 0,00E÷00                                                 |
| <u>M₩-10</u>  | Tritium<br>FE-55<br>NI-63<br>Sr-90<br>Total Gamma | 0.00E+00                                     | 0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00                                                 | 0.00E+00                                                 |
| <u>MW-11</u>  | Tritium<br>FE-55<br>NI-63<br>Sr-90<br>Total Gamma | 0.00E+00                                     | 0.00E+00<br>C.00E+00<br>C.00E+00<br>O.00E+00<br>O.00E+00 | 0.00E+00                                                 | 0.00E+00                                                 |
| <u>MW-12A</u> | Tritium<br>FE-55<br>NI-63<br>Sr-90<br>Total Gamma | 0.00E+00                                     | 0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00                                                 | 0.00E+00                                                 |

#### TABLE III.9

# GROUNDWATER ANALYSIS RESULTS

pCi/L

# JANUARY THROUGH DECEMBER 2017

|          |              | 1st Quarter | 2nd Quarter | 3rd Quarter | 4th Quarter |
|----------|--------------|-------------|-------------|-------------|-------------|
| MW-12B   |              |             |             |             |             |
|          | Tritium      | 0.00E+00    | 0.00E+00    | 0.00E+00    | 0.COE+00    |
|          | FE-55        |             | 0.00E+00    |             |             |
|          | NI~63        |             | 0.00E+00    |             |             |
|          | Sr-90        |             | 0.00E+00    |             |             |
|          | Total Gamma  |             | 0.00E+00    |             |             |
| EAST LAG | OON          |             |             |             |             |
|          | Tritium      | G.00E+00    | 0.00E+00    | 0.00E+00    | 0.00E+00    |
|          | FE-55        |             |             |             |             |
|          | NI-63        |             |             |             |             |
|          | 8r-90        |             |             |             |             |
|          | Total Gamma  | 0.00E+00    | 0.00E+00    | 0.00E+00    | 0:00E+00    |
| WEST LAG | OON          |             |             |             |             |
|          | Tritium      | 0.00E+00    | 0.00E+00    | 0.00E+00    | 0.00E+00    |
|          | FE-55        |             |             |             |             |
|          | NI-63        |             |             |             |             |
|          | Sr-90        |             |             |             |             |
|          | Total Gamma  | 0.0CE+00    | C.00E+00    | 0.00E+00    | 0.00E+00    |
| NORTH ST | ORMWATER HDR |             |             |             |             |
|          | Tritium      | 0.0CE+00    | 0.00E+00    | 0.00E+00    |             |
|          | FE-55        |             |             |             |             |
|          | NI-63        |             |             | •           |             |
|          | Sr-90        |             |             |             |             |
|          | Total Gamma  |             |             | 0.00E+00    |             |
| SOUTH ST | ORMWATER HDR |             |             |             |             |
| •        | Tritium      |             | 0.00E+00    | 0.00E+00    |             |
|          | FE-55        |             |             |             |             |
|          | NI-63        |             |             |             |             |
|          | Sr-90        |             |             |             |             |
|          | Total Gamma  |             |             | 0.00E+00    |             |
| SW-8 NOR | RTH PA       |             |             |             |             |
|          | Tritium      | 0.00E+00    | 0.00E+00    | 0.00E+00    |             |
|          | FE-55        |             |             |             |             |
|          | NI-63        |             |             |             |             |
|          | Sr-90        |             |             |             |             |
|          | Total Gamma  |             |             | 0.00E+00    |             |
| SW-6 ISE | <u>rsi</u>   |             |             |             |             |
|          | Tritium      | 0.0CE+00    |             | 0.00E+00    |             |
|          | FE-55        |             |             |             |             |
|          | NI-63        |             |             |             |             |
|          | Sr-90        |             |             |             |             |
|          | Total Gamma  |             |             | 0.00E+00    |             |

NOTE: Values reported as zero are determined to be below the Lower Limit of Detection (LLD).
Only Tritium and Gamma are required for each sampling event.
Hard to detect (HTD) nuclide sampling frequency is per station procedures.
Missed sampling events are covered in the executive summary.

# SECTION IV DOSE FROM GASEOUS EFFLUENTS

Technical Specification 5.9.4 a

GASPAR II OUTPUT

January 1, 2017 - December 31, 2017

Radioactive Effluent Releases - First, Second, Third and Fourth Quarters 2017

#### **GASEOUS EFFLUENTS**

Radioactive gaseous releases for the reporting period totaled 1.88E-04 curies of inert gas. The gross gaseous activity release rates were 1.46E-05 µCi/sec for the first quarter, 9.72E-06 µCi/sec for the second quarter, 0.00E+00 µCi/sec for the third quarter, and 0.00E+00 µCi/sec for the fourth quarter.

No radioactive halogens releases were released during the reporting period from gaseous effluent discharges.

No radioactive particulates with half-lives greater that eight days were released during the reporting period from gaseous effluent discharges.

Radioactive tritium released during the reporting period totaled 3.93E-01 curies.

Carbon-14 released for the reporting period totaled 0.00 curies, this is a calculated value based on reactor power and days of operation. The Fort Calhoun estimate of 0.00 curies Carbon-14 with a normalized C-14 production rate and 15% carbon dioxide fraction.

Off-site vendor analysis of weekly composite samples indicated that no gross alpha radioactivity was released during the reporting period.

# POTENTIAL DOSES TO INDIVIDUALS AND POPULATIONS

# A. Potential Annual Doses to Individuals from Gaseous Releases

Total body, skin, and organ doses from ground releases were calculated in mRem to an average adult, teenager, child, and infant using the annual configuration of the GASPAR II program. Results to each receptor are shown in Tables IV-A-1 through IV-A-40. Also, the doses to the same groups, Table IV-B-1, in units of mRad, due to gamma and beta radiation carried by air, was computed using GASPAR II. In its annual configuration, GASPAR II assumes that all release rates are entered in curies per year (Ci/yr).

The inputs to GASPAR II for the annual period from January 1, 2017 through December 31, 2017 were as follows:

- (1) All gaseous effluents
- (2) Entrained gases (Ar-41, Xe-131M, Xe-133M, Xe-133M, Xe-135M, Xe-135M, Kr-85M, Kr-87, and Kr-88) from liquid effluents.
- (3) Annual X/Q at the actual receptor locations, which are corrected for open terrain and plume depletion, are calculated according to Regulatory Guide 1.111. Also included are annual deposition rates corrected for the open terrain factor.
- (4) The production, intake and grazing fractions were as follows: 1.0 for leafy vegetables grown in garden of interest, 0.76 for produce grown in garden of interest, 0.5 for the pasture grazing season of the milk animal, 1.0 for pasture grazing season of the meat animal, and 8 g/m³ for the air water (humidity) concentrations.
- (5) All dose factors, transport times from receptor to individual, and usage factors are defined by Regulatory Guide 1.109 and NUREG-0172.
- (6) Site specific information, within a five-mile radius of the plant, on types of receptors located in each sector was used. That is, if a cow was not present in a sector, then the milk pathway for that sector was not considered. If it was present, then the actual sector distance was used.

(7) Using approved methodologies the C-14 doses to the site specific pathways (e.g. inhalation, milk, meat, and vegetation pathways) age group and organs are based upon airborne composition rather than ground deposition. For this reason, X/Q is utilized to calculate doses from Carbon-14 effluent releases

These inputs introduce a most conservative approach for the following reasons:

- (1) The open terrain and deposition corrections increase annual X/Q by a factor ranging between 1.0 and 4.0
- (2) The production, intake, and grazing fractions, as defined in the input definition statement, represent the environment in an extremely conservative manner.
- B. Potential Semiannual Doses to Population from Gaseous Releases

The GASPAR II program in its annual configuration was also used to calculate the ALARA integrated population dose summary for the total body, skin, and organ doses in man-rem for all individuals within a 50-mile radius. The population-integrated dose is the summation of the dose received by all individuals and has units of man-thyroid-rem when applied to the summation of thyroid doses. The same inputs were used as in the individual case with the addition of the following:

- (1) A total population of 950,006 (based on the 2010 census) was used to define the sector segments within a 50-mile radius of the plant.
- (2) Production of milk, meat, and vegetation is based on 1973 annual data for Nebraska as recommended by the Nuclear Regulatory Commission for use in GASPAR II.

# FORT CALHOUN ANNUAL 2017, DOSE PROJECTIONS

SPECIAL LOCATION NO. 1 RES AT 4.36 MILES N

ANNUAL\_BETA\_AIR\_DOSE = 1.39E-09 MILLRADS ANNUAL\_GAMMA\_AIR\_DOSE = 1.23E-11 MILLRADS

| PATHWAY     | <del>-</del> | GI-TRACT |               | LIVER      | KIDNEY     | THYROID         | LUNG            | SKIN           |
|-------------|--------------|----------|---------------|------------|------------|-----------------|-----------------|----------------|
| PLUME       | 8.04E-12     | •        | 8.04E-12      | 8.04E-12   | •          | 8.04E-12        | 2,14E-11        | : 9.66E-10 :   |
| GROUND      | 0.00E+00     | •        | 0.00E+00      | 0.00E+00   | . 0.00E+00 | . 0.00E+00 :    | 0.00E+00        | : 0.00E+00 :   |
| INHAL ADULT | ·<br>•       | ·<br>•   | :<br>0.00E+00 | : 1.07E-06 | :          | :<br>: 1.07E-06 | :<br>: 1.07E-06 | : : 1.07E-06 : |
| TEEN        | 1.08E-06     |          | 0.00E+00      | 1.08E-06   | •          | 1.08E-06        |                 | : 1.08E-06 :   |
|             |              |          | 0.00E+00      | 9.57E-07   | 9.57E-07   | 9.57E-07        |                 | : 9.57E-07 :   |
|             |              |          |               |            |            |                 |                 | : 5.50E-07 :   |

# FORT CALHOUN ANNUAL 2017, DOSE PROJECTIONS

SPECIAL LOCATION NO. 2 RES AT 1.93 MILES NNE

ANNUAL\_BETA\_AIR\_DOSE = 6.73E-09 MILLRADS ANNUAL\_GAMMA\_AIR\_DOSE = 5.93E-11 MILLRADS

|                |                 |                 |              |                 |                 | THYROID           |                 | SKIN         |
|----------------|-----------------|-----------------|--------------|-----------------|-----------------|-------------------|-----------------|--------------|
| PLUME          | 3.89E-11        | : 3.89E-11      | : 3.89E-11 : | 3.89E-11        | : 3.89E-11      | 3.89E-11          | 1.03E-10        | : 4.67E-09 : |
| GROUND         | 0.00E+00        | : 0.00E+00      | 0.00E+00 :   | 0.00E+00        | : 0.00E+00      | : 0.00E+00 :      | 0.00E+00        | : 0.00E+00 : |
| INHAL<br>ADULT | :<br>: 5.19E-06 | :<br>: 5.19E-06 | : 0.00E+00   | :<br>: 5.19E-06 | :<br>: 5.19E-06 | :<br>: 5.19E-06 : | :<br>: 5.19E-06 | : 5.19E-06 : |
| TEEN :         | 5.24E-06        | 5.24E-06        | 0.00E+00 :   | 5.24E-06        | 5.24E-06        | •                 | 5.24E-06        | 5.24E-06:    |
| CHILD          | 4.63E-06        | 4.63E-06        | 0.00E+00 :   | 4.63E-06        | : 4.63E-06      | : 4.63E-06 :      | 4.63E-06        | : 4.63E-06 : |
| INFANT         | 2.66E-06        | 2.66E-06        | 0.00E+00 :   | 2.66E-06        | 2.66E-06        |                   | 2.66E-06        | 2.66E-06:    |

# FORT CALHOUN ANNUAL 2017, DOSE PROJECTIONS

SPECIAL LOCATION NO. 3 RES AT 1.52 MILES NE

ANNUAL\_BETA\_ATR\_DOSE = 1.09E-08 MILLRADS ANNUAL\_GAMMA\_AIR\_DOSE = 9.61E-11 MILLRADS

| PATHWAY | T.BODY    | GI-TRACT | BONE     | LIVER      | KIDNEY   | THYROID  | LUNG     | SKIN         |
|---------|-----------|----------|----------|------------|----------|----------|----------|--------------|
| PLUME   | 6.30E-11  | 6.30E-11 | 6.30E-11 | 6.30E-11   | 6.30E-11 | 6.30E-11 | 1.68E-10 | 7.57E-09:    |
| GROUND  | 0.00E+00  | 0.00E+00 | 0.00E+00 | : 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00:    |
|         | 8.41E-06: |          |          | ,          |          |          |          | 8.41E-06     |
|         |           |          |          |            |          |          |          | 8.49E-06:    |
|         | 7.50E-06  |          |          | •          |          | ,        |          | 7.50E-06:    |
|         | •         | '        | •        | •          | •        | •        |          | : 4.31E-06 : |

# FORT CALHOUN ANNUAL 2017, DOSE PROJECTIONS

SPECIAL LOCATION NO. 4 RES AT 4.79 MILES ENE

ANNUAL\_BETA\_AIR\_DOSE = 7.89E-10 MILLRADS ANNUAL\_GAMMA\_AIR\_DOSE = 6.96E-12 MILLRADS

|                   | T.BODY          |                 | BONE            |                 |                 |                 |                 | SKIN                       | Ι.     |
|-------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------------------------|--------|
| PLUME             | 4.56E-12        | : 4.56E-12      | : 4.56E-12      | 4.56E-12        | : 4.56E-12      | : 4.56E-12      | 1.21E-11        | : 5.47E-10                 | -      |
| GROUND            | : 0.00E+00      | : 0.00E+00 :    | . 0.00E+00      | 0.00E+00        | . 0.00E+00      | 0.00E+00        | 0.00E+00        | : 0.00E+00                 | :      |
| INHAL<br>ADULT    | :<br>: 6.09E-07 | :<br>: 6.09E-07 | : 0.00E+00      | :<br>: 6.09E-07 | :<br>: 6.09E-07 | :<br>: 6.09E-07 | :<br>: 6.09E-07 | :<br>6.09E-07              | :      |
| TEEN :            | 6.14E-07 :      | 6.14E-07 :      | 0.00E+00 :      | 6.14E-07 :                 | τ<br>_ |
| CHILD             | 5.42E-07        | 5.42E-07        | : 0.00E+00      | 5.42E-07        | : 5.42E-07      | : 5.42E-07      | 5.42E-07        | 5.42E-07                   | :      |
|                   | : 3.12E-07      | •               | •               | •               | •               |                 | •               |                            | г<br>: |
| ADULT TEEN: CHILD | 6.14E-07 :<br>+ | 6.14E-07 :<br>+ | 0.00E+00 :<br>+ | 6.14E-07 :<br>+ | 6.14E-07 :<br>+ | 6.14E-07 :<br>+ | 6.14E-07 :<br>+ | 6.14E-07<br>+<br>: 5.42E-0 | :<br>7 |

# FORT CALHOUN ANNUAL 2017, DOSE PROJECTIONS

SPECIAL LOCATION NO. 5 RES AT 4.67 MILES E

ANNUAL\_BETA\_AIR\_DOSE = 1.14E-09 MILLRADS ANNUAL\_GAMMA\_AIR\_DOSE = 1.00E-11 MILLRADS

|            |                               |                                                                                                                                          |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SKIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| : 6.57E-12 | 6.57E-12                      | 6.57E-12                                                                                                                                 | 6,57E-12                                                                                                                                                                                        | 6.57E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.57E-12 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.75E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | : 7.89E-10 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| : 0.00E+00 | : 0.00E+00                    | 0.00E+00                                                                                                                                 | 0.00E+00                                                                                                                                                                                        | : 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | : 0.00E+00 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| : 8.77E-07 | :<br>: 8.77E-07 :             | : 0.00E+00                                                                                                                               | :<br>: 8.77E-07                                                                                                                                                                                 | :<br>: 8.77E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.77E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.77E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | : 8.77E-07 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| : 8.85E-07 | 8.85E-07                      | 0.00E+00                                                                                                                                 | 8.85E-07                                                                                                                                                                                        | 8.85E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.85E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.85E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | : 8.85E-07 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •          | : 7.81E-07 :                  | 0.00E+00:                                                                                                                                | 7.81E-07                                                                                                                                                                                        | 7.81E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | : 7.81E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.81E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | : 7.81E-07 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| : 4.50E-07 |                               |                                                                                                                                          | н                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | : 6.57E-12<br>: 0.00E+00<br>+ | : 6.57E-12 : 6.57E-12 :<br>: 0.00E+00 : 0.00E+00 :<br>: 8.77E-07 : 8.77E-07 :<br>: 8.85E-07 : 8.85E-07 :<br>: 7.81E-07 : 7.81E-07 :<br>+ | : 6.57E-12 : 6.57E-12 : 6.57E-12 :<br>: 0.00E+00 : 0.00E+00 : 0.00E+00 :<br>: 8.77E-07 : 8.77E-07 : 0.00E+00 :<br>: 8.85E-07 : 8.85E-07 : 0.00E+00 :<br>: 7.81E-07 : 7.81E-07 : 0.00E+00 :<br>+ | : 6.57E-12 | : 6.57E-12 | : 6.57E-12 | T.BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG  : 6.57E-12 : 6.57E-12 : 6.57E-12 : 6.57E-12 : 6.57E-12 : 1.75E-11  : 0.00E+00  : 8.77E-07 : 8.77E-07 : 0.00E+00 : 8.77E-07 : 8.77E-07 : 8.77E-07  : 8.85E-07 : 8.85E-07 : 0.00E+00 : 8.85E-07 : 8.85E-07 : 8.85E-07  : 7.81E-07 : 7.81E-07 : 0.00E+00 : 7.81E-07 : 7.81E-07 : 7.81E-07  : 4.50E-07 : 4.50E-07 : 0.00E+00 : 4.50E-07 : 4.50E-07 : 4.50E-07 |

# FORT CALHOUN ANNUAL 2017, DOSE PROJECTIONS

SPECIAL LOCATION NO. 6 RES AT 4.22 MILES ESE

ANNUAL\_BETA\_AIR\_DOSE = 1.28E-09 MILLRADS ANNUAL\_GAMMA\_AIR\_DOSE = 1.13E-11 MILLRADS

|                | T.BODY            |              | _ <del>-</del> |            |            | THYROID         |            | SKIN         |
|----------------|-------------------|--------------|----------------|------------|------------|-----------------|------------|--------------|
| PLUME          | : 7.37E-12        | 7.37E-12     | : 7.37E-12     | 7.37E-12   | : 7.37E-12 | 7.37E-12        | : 1.96E-11 | : 8.85E-10 : |
| GROUND         | : 0.00E+00        | 0.00E+00     | 0.00E+00 :     | 0.00E+00   | : 0.00E+00 | : 0.00E+00      | 0.00E+00   | : 0.00E+00 : |
| INHAL<br>ADULT | :<br>: 9.84E-07   | 9.84E-07     | : 0.00E+00 :   | 9.84E-07   | 9.84E-07   | :<br>: 9.84E-07 | 9.84E-07   | 9.84E-07     |
| TEEN           | +<br>: 9.93E-07 : | 9.93E-07     | 0.00E+00       | 9.93E-07   | 9.93E-07   | 9.93E-07        | 9.93E-07   | 9.93E-07:    |
| CHILD          | 8.77E-07          | 8.77E-07     | 0.00E+00 :     | 8.77E-07   | 8.77E-07   | 8.77E-07        | 8.77E-07   | : 8.77E-07 : |
| INFANT         | : 5.05E-07        | : 5.05E-07 : | 0.00E+00 :     | : 5.05E-07 | 5.05E-07   | : 5.05E-07      | 5.05E-07   | : 5.05E-07 : |
|                | +                 | +- <b></b>   | +              |            |            | <b></b>         |            | ·            |

# FORT CALHOUN ANNUAL 2017, DOSE PROJECTIONS

SPECIAL LOCATION NO. 7 RES AT 1.67 MILES SE

ANNUAL\_BETA\_AIR\_DOSE = 9.63E-09 MILERADS ANNUAL\_GAMMA\_AIR\_DOSE = 8.49E-11 MILLRADS

|                |            | GI-TRACT   |              |               |            |          |               | SKIN         |
|----------------|------------|------------|--------------|---------------|------------|----------|---------------|--------------|
| PLUME          | : 5.56E-11 | 5.56E-11   | 5.56E-11     | 5.56E-11      | : 5.56E-11 | 5.56E-11 | 1.48E-10      | : 6.68E-09 : |
| GROUND         | : 0.00E+00 | 0.00E+00   | 0.00E+00     | 0.00E+00      | : 0.00E+00 | 0.00E+00 | 0.00E+00      | : 0.00E+00 : |
| INHAL<br>ADULT | : 7.43E-06 | : 7.43E-06 | . 0.00E+00   | :<br>7.43E-06 | : 7.43E-06 | 7.43E-06 | :<br>7.43E-06 | : 7.43E-06 : |
| TEEN           | : 7.49E-06 | 7.49E-06   | : 0.00E+00 : | 7.49E-06      | . 7.49E-06 | 7.49E-06 | 7.49E-06      | : 7.49E-06 : |
| CHILD          | : 6.62E-06 | 6.62E-06   | 0.00E+00     | 6.62E-06      | 6.62E-06   | 6.62E-06 | 6.62E-06      | : 6.62E-06 : |
|                | •          | •          |              | 3.81E-06      | •          | 3.81E-06 | 3.81E-06      | : 3.81E-06 : |
|                |            |            |              |               |            |          |               | ,            |

# FORT CALHOUN ANNUAL 2017, DOSE PROJECTIONS

SPECIAL LOCATION NO. 8 RES AT 0.65 MILES SSE

ANNUAL\_BETA\_AIR\_DOSE = 8.00E-08 MILLRADS ANNUAL\_GAMMA\_AIR\_DOSE = 7.06E-10 MILLRADS

|          |            |          |            |                   |                 | THYROID  |          | SKIN         |
|----------|------------|----------|------------|-------------------|-----------------|----------|----------|--------------|
| PLUME :  | 4.62E-10   | 4.62E-10 | 4.62E-10   | 4.62E-10          | 4.62E-10        | 4.62E-10 | 1.23E-09 | : 5.55E-08 : |
| GROUND : | 0.00E+00 : | 0.00E+00 | 0.00E+00   | 0.00E+00 :        | 0.00E+00        | 0.00E+00 | 0.00E+00 | : 0.00E+00 : |
| INHAL :  | 6.18E-05   | 6.18E-05 | 0.00E+00   | :<br>: 6.18E-05 : | :<br>: 6.18E-05 | 6.18E-05 | 6.18E-05 | : 6.18E-05 : |
| TEEN :   | 6.23E-05   | 6.23E-05 | 0.00E+00   | 6.23E-05          | 6.23E-05        |          | 6.23E-05 | : 6.23E-05 : |
| CHILD :  | 5.50E-05   | 5.50E-05 | 0.00E+00   | 5.50E-05          | 5.50E-05        | 5.50E-05 | 5.50E-05 | : 5.50E-05 : |
| INFANT : | 3.17E-05   | 3.17E-05 | 0.00E+00 : | 3.17E-05          | 3.17E-05        | 3.17E-05 | 3.17E-05 | : 3.17E-05 : |

# FORT CALHOUN ANNUAL 2017, DOSE PROJECTIONS

SPECIAL LOCATION NO. 9 RES AT 0.73 MILES S

ANNUAL\_BETA\_AIR\_DOSE = 4.52E-08 MILLRADS ANNUAL\_GAMMA\_AIR\_DOSE = 3.99E-10 MILLRADS

| PATHWAY        | T.BODY          | GI-TRACT   | BONE       | LIVER    | KIDNEY   | THYROID | LUNG     | SKIN         |
|----------------|-----------------|------------|------------|----------|----------|---------|----------|--------------|
|                | ·               | •          | 2.61E-10 : | 2.61E-10 | 2.61E-10 | •       | 6.95E-10 | 3.14E-08:    |
| GROUND         | : 0.00E+00      | 0.00E+00   |            |          |          |         |          | : 0.00E+00 : |
| INHAL<br>ADULT | :<br>: 3.49E-05 | : 3.49E-05 | .0.00E+00  |          | ,        | *       |          | : 3.49E-05 : |
| TEEN           | : 3.52E-05      | 3.52E-05   | 0.00E+00   |          |          |         |          | : 3.52E-05 : |
|                | •               | •          |            |          |          |         |          | : 3.11E-05 : |
|                | •               |            | •          |          |          |         |          | : 1.79E-05 : |

# FORT CALHOUN ANNUAL 2017, DOSE PROJECTIONS

SPECIAL LOCATION NO. 10 RES AT 0.65 MILES SSW

ANNUAL\_BETA\_AIR\_DOSE = 4.75E-08 MILLRADS ANNUAL\_GAMMA\_AIR\_DOSE = 4.19E-10 MILLRADS

| PATHWAY                | * '        | GI-TRACT        |                 |                 |                 |                 |                 | SKIN         |
|------------------------|------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--------------|
| PLUME                  | : 2.75E-10 | : 2.75E-10      | 2.75E-10 :      | 2.75E-10        | 2.75E-10        | 2.75E-10        | 7.31E-10        | : 3.30E-08 : |
| GROUND                 | : 0.00E+00 | : 0.00E+00      | 0.00E+00        | 0.00E+00        | 0.00E+00        | : 0.00E+00      | 0.00E+00        | : 0.00E+00 : |
| INHAL<br>ADUL <b>T</b> | : 3.67E-05 | :<br>: 3.67E-05 | :<br>0.00E+00 : | :<br>: 3.67E-05 | :<br>: 3.67E-05 | :<br>: 3.67E-05 | :<br>: 3.67E-05 | : 3.67E-05 : |
| TEEN                   | : 3.70E-05 | : 3.70E-05      | 0.00E+00        | 3.70E-05        | 3.70E-05        | : 3.70E-05      | 3.70E-05        | : 3.70E-05 : |
| CHILD                  | : 3.27E-05 | : 3.27E-05      | 0.00E+00        | 3.27E-05        | 3.27E-05        | 3.27E-05        | 3.27E-05        | : 3.27E-05 : |
| INFANT                 | : 1.88E-05 | : 1.88E-05      | 0.00E+00:       | 1.88E-05        | 1.88E-05        | : 1.88E-05      | 1.88E-05        | : 1.88E-05 : |

# FORT CALHOUN ANNUAL 2017, DOSE PROJECTIONS

SPECIAL LOCATION NO. 11 RES AT 0.73 MILES SW

ANNUAL\_BETA\_AIR\_DOSE = 3.48E-08 MILLRADS ANNUAL\_GAMMA\_AIR\_DOSE = 3.07E-10 MILLRADS

|          |                                                          | BONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LIVER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | KIDNEY                                                                                                                    | THYROID                                                                                                                                         | LUNG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SKIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.01E-10 | 2.01E-10                                                 | 2.01E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.01E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.01E-10                                                                                                                  | 2.01E-10                                                                                                                                        | 5.35E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.00E+00 | 0.00E+00 :                                               | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | : 0.00E+00                                                                                                                | 0.00E+00                                                                                                                                        | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00E+00:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| :        | ;                                                        | : 0.00E+00 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | : 2.68E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | : 2.68E-05                                                                                                                | : 2.68E-05 :                                                                                                                                    | 2.68E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2.71E-05 | 2.71E-05                                                 | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.71E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.71E-05                                                                                                                  | 2.71E-05                                                                                                                                        | 2.71E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.71E-05 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2.39E-05 | 2.39E-05                                                 | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.39E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | : 2.39E-05                                                                                                                | 2.39E-05                                                                                                                                        | 2.39E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.39E-05:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.38E-05 | 1.38E-05                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                                                                                         | •                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | 2.01E-10<br>0.00E+00<br>2.68E-05<br>2.71E-05<br>2.39E-05 | 2.01E-10 : 2.01E-10 : 0.00E+00 : 0.00E+00 : 2.68E-05 : 2.68E-05 : 2.71E-05 : 2.39E-05 : | 2.01E-10 : 2.01E-10 : 2.01E-10 : 0.00E+00 : 0.00E+00 : 0.00E+00 : 2.68E-05 : 2.68E-05 : 0.00E+00 : 2.71E-05 : 2.71E-05 : 2.39E-05 : 2.39E-05 : 0.00E+00 : 2.39E-05 : 0.00E+00 : 2.39E-05 : 2.39E-05 : 0.00E+00 : 2.30E-05 : 0.00E-05 : | 2.01E-10 : 2.01E-10 : 2.01E-10 : 2.01E-10  0.00E+00 : 0.00E+00 : 0.00E+00 : 0.00E+00  : : : : : : : : : : : : : : : : : : | 2.01E-10 : 2.01E-10 : 2.01E-10 : 2.01E-10 : 2.01E-10  0.00E+00 : 0.00E+00 : 0.00E+00 : 0.00E+00 : 0.00E+00  : : : : : : : : : : : : : : : : : : | 2.01E-10 : 2.01E-10 : 2.01E-10 : 2.01E-10 : 2.01E-10 : 2.01E-10 : 0.00E+00 : | T.BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG  2.01E-10: 2.01E-10: 2.01E-10: 2.01E-10: 2.01E-10: 2.01E-10: 5.35E-10:  0.00E+00: 0.00E+00: 0.00E+00: 0.00E+00: 0.00E+00: 0.00E+00: 0.00E+00:  2.68E-05: 2.68E-05: 0.00E+00: 2.68E-05: 2.68E-05: 2.68E-05: 2.68E-05: 2.68E-05: 2.71E-05: 2.71E-05: 2.71E-05: 2.71E-05: 2.71E-05: 2.39E-05: 2.39E-05: 2.39E-05: 2.39E-05: 2.39E-05: 2.39E-05: 1.38E-05: 1.38E- |

# FORT CALHOUN ANNUAL 2017, DOSE PROJECTIONS

SPECIAL LOCATION NO. 12 RES AT 1.06 MILES WSW

ANNUAL BETA AIR DOSE = 1.97E-08 MILLRADS ANNUAL GAMMA AIR DOSE = 1.74E-10 MILLRADS

| PATHWAY | T.BODY     |          | •          |                 |                   | THYROID    |          | SKIN         |
|---------|------------|----------|------------|-----------------|-------------------|------------|----------|--------------|
| PLUME   |            | 1.14E-10 | : 1.14E-10 | 1.14E-10        | 1.14E-10          | 1.14E-10 : | 3.03E-10 | : 1.37E-08 : |
| GROUND  | •          | 0.00E+00 | 0.00E+00   | : 0.00E+00      | 0.00E+00          | 0.00E+00 : | 0.00E+00 | 0.00E+00 :   |
| INHAL   | :          | :        | :          | :<br>: 1.52E-05 | :<br>: 1.52E-05 : | :          | 1.52E-05 | : 1.52E-05 : |
|         | : 1.54E-05 |          |            | : 1.54E-05      | 1.54E-05          | 1.54E-05   | 1.54E-05 | 1.54E-05:    |
| CHILD   | : 1.36E-05 | 1.36E-05 | : 0.00E+00 | 1.36E-05        | 1.36E-05          | 1.36E-05   | 1.36E-05 | 1.36E-05:    |
|         |            |          |            |                 |                   | -          |          | 7.80E-06:    |

# FORT CALHOUN ANNUAL 2017, DOSE PROJECTIONS

SPECIAL LOCATION NO. 13 RES AT 1.20 MILES W

ANNUAL\_BETA\_AIR\_DOSE = 1.62E-08 MILLRADS ANNUAL\_GAMMA\_AIR\_DOSE = 1.43E-10 MILLRADS

| PATHWAY |            | GI-TRACT   |              |                 | KIDNEY          |          |               | SKIN         |
|---------|------------|------------|--------------|-----------------|-----------------|----------|---------------|--------------|
| PLUME   | : 9.38E-11 |            | 9.38E-11     | 9.38E-11        | 9.38E-11        | 9.38E-11 | 2.50E-10      | 1.13E-08:    |
| GROUND  | : 0.00E+00 | •          | : 0.00E+00   | 0.00E+00        | : 0.00E+00      | 0.00E+00 | 0.00E+00      | 0.00E+00:    |
| INHAL   | :          | :          | : 0.00E+00 : | :<br>: 1.25E-05 | :<br>: 1.25E-05 | ;        | :<br>1.25E-05 | : 1.25E-05 : |
|         | ,          | : 1.26E-05 | : 0.00E+00 : | 1.26E-05        | 1.26E-05        | 1.26E-05 | 1.26E-05      | 1.26E-05:    |
|         | •          | •          |              | 1.12E-05        | : 1.12E-05      |          | 1.12E-05      | 1.12E-05:    |
| INFANT  | : 6.42E-06 | 6.42E-06   | : 0.00E+00 : |                 | •               | •        |               | : 6.42E-06 : |

# FORT CALHOUN ANNUAL 2017, DOSE PROJECTIONS

SPECIAL LOCATION NO. 14 RES AT 2.60 MILES WNW

ANNUAL\_BETA\_AIR\_DOSE = 5.22E-09 MILLRADS ANNUAL\_GAMMA\_AIR\_DOSE = 4.60E-11 MILLRADS

|          |          |                                       |            |          |            | THYROID      |          | SKIN        |
|----------|----------|---------------------------------------|------------|----------|------------|--------------|----------|-------------|
| PLUME    | 3.02E-11 | : 3.02E-11 :                          | 3.02E-11 : | 3.02E-11 | : 3.02E-11 | : 3.02E-11 : | 8.02E-11 | : 3.62E-09: |
| GROUND : | 0.00E+00 | : 0.00E+00 :                          | 0.00E+00 : | 0.00E+00 | : 0.00E+00 | : 0.00E+00 : | 0.00E+00 | 0.00E+00:   |
| INHAL    |          | · · · · · · · · · · · · · · · · · · · |            |          |            | :            |          | :           |
|          |          |                                       |            |          |            |              |          | 4.03E-06:   |
| TEEN :   | 4.06E-06 | 4.06E-06:                             | 0.00E+00 : | 4.06E-06 | 4.06E-06   | : 4.06E-06 : | 4.06E-06 | 4.06E-06:   |
| CHILD :  | 3.59E-06 | 3.59E-06                              | 0.00E+00:  | 3.59E-06 | 3.59E-06   | : 3.59E-06 : | 3.59E-06 | 3.59E-06:   |
| INFANT : | 2.06E-06 | 2.06E-06                              | 0.00E+00 : | 2.06E-06 | 2.06E-06   | 2.06E-06     | 2.06E-06 | 2.06E-06:   |

# FORT CALHOUN ANNUAL 2017, DOSE PROJECTIONS

SPECIAL LOCATION NO. 15 RES AT 2.40 MILES NW

ANNUAL\_BETA\_AIR\_DOSE = 5.22E-09 MILLRADS ANNUAL\_GAMMA\_AIR\_DOSE = 4.60E-11 MILLRADS

| PATHWAY |            |          | BONE       |          |               | THYROID    |          | SKIN         |
|---------|------------|----------|------------|----------|---------------|------------|----------|--------------|
|         | 3.02E-11 : | 3.02E-11 | : 3.02E-11 | 3.02E-11 | 3.02E-11      | 3.02E-11 : | 8.02E-11 | : 3.62E-09 : |
|         | : 0.00E+00 | 0.00E+00 | •          | 0.00E+00 | 0.00E+00      | 0.00E+00   | 0.00E+00 | : 0.00E+00 : |
| = :     | 4.03E-06   | 4.03E-06 | . 0.00E+00 | 4.03E-06 | :<br>4.03E-06 | 4.03E-06   | 4.03E-06 | : 4.03E-06:  |
|         | •          | •        | •          |          | 4.06E-06      |            | 4.06E-06 | : 4.06E-06:  |
| CHILD   | 3.59E-06   | 3.59E-06 | 0.00E+00   |          | 3.59E-06      | 3.59E-06   | 3.59E-06 | : 3.59E-06 : |
| INFANT  | 2.06E-06   | 2.06E-06 | : 0.00E+00 | "        | •             | •          |          | : 2.06E-06 : |

# FORT CALHOUN ANNUAL 2017, DOSE PROJECTIONS

SPECIAL LOCATION NO. 16 RES. AT 2.08 MILES NNW

ANNUAL\_BETA\_AIR\_DOSE = 7.89E-09 MILLRADS ANNUAL\_GAMMA\_AIR\_DOSE = 6.96E-11 MILLRADS

| PATHWAY        |   |          | GI-TRACT          |            | LIVER         | KIDNEY   | THYROID       | LÜNG     | SKIN         |
|----------------|---|----------|-------------------|------------|---------------|----------|---------------|----------|--------------|
| PLUME          | • |          | •                 | 4.56E-11   | 4.56E-11      | 4.56E-11 |               | 1.21E-10 | 5.47E-09:    |
| GROUND         | - |          |                   | 0.00E+00   | 0.00E+00      | 0.00E+00 | ,             | 0.00E+00 | 0.00E+00 :   |
| INHAL<br>ADULT | : | 6.09E-06 | :<br>: 6.09E-06 : | 0.00E+00 : | :<br>6.09E-06 | 6.09E-06 | :<br>6.09E-06 | 6.09E-06 | : 6.09E-06 : |
| TEEN           | • |          |                   | 0.00E+00   | 6.14E-06      | 6.14E-06 | 6.14E-06 :    | 6.14E-06 | 6.14E-06:    |
| CHILD          | : | 5.42E-06 | 5.42E-06          | 0.00E+00   | 5.42E-06      | 5.42E-06 |               | 5.42E-06 | 5.42E-06:    |
| INFANT         | : | 3.12E-06 | 3.12E-06          |            | '             | •        |               |          | : 3.12E-06 : |

# FORT CALHOUN ANNUAL 2017, DOSE PROJECTIONS

SPECIAL LOCATION NO. 17 VEG AT 2.23 MILES NNE

ANNUAL BETA AIR DOSE = 4.41E-09 MILLRADS ANNUAL GAMMA AIR DOSE = 3.89E-11 MILLRADS

| PATHWAY        | <del></del>     | GI-TRACT   | BONE       | LIVER    | KIDNEY        | THYROID         | LUNG       | SKIN         |
|----------------|-----------------|------------|------------|----------|---------------|-----------------|------------|--------------|
| PLUME          | 2.55E-11        | •          | 2.55E-11   | 2.55E-11 | 2.55E-11      | : 2.55E-11 :    | 6.77E-11   | 3.06E-09:    |
| GROUND         | : 0.00E+00      | 0.00E+00 : | . 0.00E+00 | 0.00E+00 | 0.00E+00      | 0.00E+00        | 0.00E+00   | : 0.00E+00 : |
| VÉGET<br>ADULT | :<br>: 6.16E-06 | 6.16E-06   | . 0.00E+00 | 6.16E-06 | :<br>6.16E-06 | :<br>: 6.16E-06 | 6.16E-06   | : 6.16E-06 : |
| TEEN           | : 7.05E-06      |            | 0.00E+00   | 7.05E-06 | 7.05E-06      | : 7.05E-06      | 7.05E-06   | : 7.05E-06 : |
| CHILD          | : 1.09E-05      | •          | 0.00E+00   | 1.09E-05 | : 1.09E-05    | : 1.09E-05      | : 1.09E-05 | : 1.09E-05 : |

# FORT CALHOUN ANNUAL 2017, DOSE PROJECTIONS

SPECIAL LOCATION NO. 18 VEG AT 1.52 MILES NE

ANNUAL\_BETA\_AIR\_DOSE = 1.09E-08 MILLRADS ANNUAL\_GAMMA\_AIR\_DOSE = 9.61E-11 MILLRADS

| PATHWAY        |                 | GI-TRACT      | BONE            | LIVER           | KIDNEY     | THYROID         | LUNG            | SKIN          |
|----------------|-----------------|---------------|-----------------|-----------------|------------|-----------------|-----------------|---------------|
| PLUME          | : 6.30E-11      | : 6.30E-11    | 6.30E-11        | 6.30E-11        | 6.30E-11   | 6.30E-11        | 1.68E-10        | : 7.57E-09    |
| GROUND         | : 0.00E+00      | 0.00E+00      | 0.00E+00        | 0.00E+00        | : 0.00E+00 | 0.00E+00        | 0.00E+00        | : 0.00E+00    |
| VEGET<br>ADULT | :<br>: 1.52E-05 | :<br>1.52E-05 | :<br>: 0.00E+00 | :<br>: 1.52E-05 | :          | :<br>: 1.52E-05 | :<br>: 1.52E-05 | :<br>1.52E-05 |
| TEEN           | 1.74E-05        | 1.74E-05      | : 0.00E+00      | 1.74E-05        | : 1.74E-05 | 1.74E-05        | 1.74E-05        | : 1.74E-05    |
| CHILD          | : 2.71E-05      | : 2.71E-05    | 0.00E+00        | 2.71E-05        | : 2.71E-05 | 2.71E-05        | 2.71E-05        | : 2.71E-05    |
|                | T               | 1             |                 |                 |            |                 |                 |               |

# FORT CALHOUN ANNUAL 2017, DOSE PROJECTIONS

SPECIAL LOCATION NO. 19 VEG AT 4.79 MILES ENE

ANNUAL\_BETA\_ATR\_DOSE = 7.89E-10 MILLRADS ANNUAL\_GAMMA\_ATR\_DOSE = 6.96E-12 MILLRADS

|         | T.BODY   | GI-TRACT   | BONE       |            |               |               |               | SKIN         |
|---------|----------|------------|------------|------------|---------------|---------------|---------------|--------------|
| PLUME : | 4.56E-12 | 4.56E-12   | 4.56E-12   | 4.56E-12   | 4.56E-12      | 4.56E-12      | 1.21E-11      | : 5.47E-10 : |
| GROUND  | 0.00E+00 |            | : 0.00E+00 | 0.00E+00   | : 0.00E+00    | : 0.00E+00    | 0.00E+00      | : 0.00E+00 : |
| VEGET : | 1.10E-06 | : 1.10E-06 | . 0.00E+00 | : 1.10E-06 | :<br>1.10E-06 | :<br>1.10E-06 | :<br>1.10E-06 | : 1.10E-06 : |
| TEEN    | 1.26E-06 | : 1.26E-06 | 0.00E+00   | 1.26E-06   | : 1.26E-06    | 1.26E-06      | 1.26E-06      | : 1.26E-06 : |
| CHILD : | 1.96E-06 | 1.96E-06   | 0.00E+00   | 1.96E-06   | : 1.96E-06    | 1.96E-06      | 1.96E-06      | : 1.96E-06 : |

# FORT CALHOUN ANNUAL 2017, DOSE PROJECTIONS

SPECIAL LOCATION NO. 20 VEG AT 4.67 MILES E

ANNUAL\_BETA\_AIR\_DOSE = 1.14E-09 MILLRADS ANNUAL\_GAMMA\_AIR\_DOSE = 1.00E-11 MILLRADS

| PATHWAY        |     |          | GI-TRACT          |            | LIVER           | KIDNEY        | THYROID       | LÙNG            | SKIN         |
|----------------|-----|----------|-------------------|------------|-----------------|---------------|---------------|-----------------|--------------|
| PLUME          | :   | 6.57E-12 | : 6.57E-12        | 6.57E-12   | 6.57E-12        | : 6.57E-12    | : 6.57E-12    | : 1.75E-11      | : 7.89E-10   |
| GROUND         | :   | 0.00E+00 | : 0.00E+00        | : 0.00E+00 | 0.00E+00        | : 0.00E+00    | : 0.00E+00    | : 0.00E+00      | : 0.00E+00 : |
| VEGET<br>ADULT | :   | 1.59E-06 | :<br>: 1.59E-06 : | : 0.00E+00 | :<br>: 1.59E-06 | :<br>1.59E-06 | :<br>1.59E-06 | :<br>: 1.59E-06 | : 1.59E-06 : |
| TEEN           | :   | 1.82E-06 | : 1.82E-06 :      | 0.00E+00   | : 1.82E-06      | 1.82E-06      | 1.82E-06      | 1.82E-06        | : 1.82E-06 : |
| CHILD          | :   | 2.82E-06 | : 2.82E-06        | 0.00E+00 : | : 2.82E-06      | 2.82E-06      | : 2.82E-06    | 2.82E-06        | 2.82E-06     |
| CHILD          | ·+· | 2.82E-06 | : 2.82E-06        | <b></b>    | 2.82E-06        | : 2.82E-06    | 2.82E-06      | : 2.82E-06      | 2.82E-0      |

# FORT CALHOUN ANNUAL 2017, DOSE PROJECTIONS

SPECIAL LOCATION NO. 21 VEG AT 4.22 MILES ESE

ANNUAL\_BETA\_AIR\_DOSE = 1.28E-09 MILLRADS ANNUAL\_GAMMA\_AIR\_DOSE = 1.13E-11 MILLRADS

| PATHWAY        | T.BODY | GI-TRACT        |               | LIVER           | KIDNEY        | THYROID       |            | SKIN           |
|----------------|--------|-----------------|---------------|-----------------|---------------|---------------|------------|----------------|
| PLUME          | •      | : 7.37E-12      | : 7.37E-12    | : 7.37E-12      | : 7.37E-12    | 7.37E-12      | : 1.96E-11 | : 8.85E-10 :   |
| GROUND         |        | : 0.00E+00      | 0.00E+00      | 0.00E+00        | 0.00E+00      | 0.00E+00      | 0.00E+00   | 0.00E+00:      |
| VEGET<br>ADUĻT | •      | :<br>: 1.78E-06 | :<br>0.00E+00 | :<br>: 1.78E-06 | :<br>1.78E-06 | :<br>1.78E-06 | 1.78E-06   | : : 1.78E-06 : |
| TEEN           | •      | : 2.04E-06      | 0.00E+00      | 2.04E-06        | 2.04E-06      | 2.04E-06      | 2.04E-06   | 2.04E-06:      |
| CHILD          | •      | : 3.1°7E-06     | : 0.00E+00    | : 3.17E-06      | 3.17E-06      | 3.17E-06      | 3.17E-06   | : 3.17E-06 :   |
|                |        | T               | 1             |                 | 1             | 1             |            | 1 1            |

# FORT CALHOUN ANNUAL 2017, DOSE PROJECTIONS

SPECIAL LOCATION NO. 22 VEG AT 1.74 MILES SE

ANNUAL\_BETA\_AIR\_DOSE = 9.05E-09 MILLRADS ANNUAL\_GAMMA\_AIR\_DOSE = 7.98E-11 MILLRADS

| PATHWAY        |            | GI-TRACT        |              | LIVER           |                 | THYROID       |               | SKIN         |
|----------------|------------|-----------------|--------------|-----------------|-----------------|---------------|---------------|--------------|
| PLUME          | •          | 5.23E-11        | : 5.23E-11 : | 5.23E-11        | 5.23E-11        | 5.23E-11 :    | 1.39E-10      | 6.28E-09:    |
| GROUND         |            | 0.00E+00        | 0.00E+00 :   | 0.00E+00        | 0.00E+00        | : 0.00E+00 :  | 0.00E+00      | 0.00E+00 :   |
| VEGET<br>ADULT | : 1.26E-05 | :<br>: 1.26E-05 | : 0.00E+00 : | :<br>: 1.26E-05 | :<br>: 1.26E-05 | :<br>1.26E-05 | :<br>1.26E-05 | : 1.26E-05 : |
| TEEN           | ·-         | 1.45E-05        | 0.00E+00 :   | : 1.45E-05      | 1.45E-05        | 1.45E-05      | 1.45E-05      | : 1.45E-05 : |
| CHILD          | · ·        | 2.25E-05        | 0.00E+00     | 2.25E-05        | 2.25E-05        | 2.25E-05      | 2.25E-05      | 2.25E-05:    |
|                | 7          |                 | r            |                 |                 | 1             |               |              |

# FORT CALHOUN ANNUAL 2017, DOSE PROJECTIONS

SPECIAL LOCATION NO. 23 VEG AT 0.65 MILES SSE

ANNUAL\_BETA\_AIR\_DOSE = 8.00E-08 MILLRADS ANNUAL\_GAMMA\_AIR\_DOSE = 7.06E-10 MILLRADS

| PATHWAY        |   |          | GI-TRACT |            |          | KIDNEY          |              |          | SKIN         |
|----------------|---|----------|----------|------------|----------|-----------------|--------------|----------|--------------|
| PLUME          | : | 4.62E-10 |          | 4.62E-10 : | 4.62E-10 | 4.62E-10        | 4.62E-10     | 1.23E-09 | : 5.55E-08 : |
| GROUND         | : | 0.00E+00 |          | 0.00E+00   | 0.00E+00 | 0.00E+00        | 0.00E+00 :   | 0.00E+00 | : 0.00E+00 : |
| VEGET<br>ADULT | : | 1.12E-04 | 1.12E-04 | 0.00E+00   | 1.12E-04 | :<br>: 1.12E-04 | 1.12E-04     | 1.12E-04 | : 1.12E-04 : |
| TEEN           | : | 1.28E-04 |          | 0.00E+00 : | 1.28E-04 | : 1.28E-04      | 1.28E-04     | 1.28E-04 | 1.28E-04:    |
| CHILD          |   | 1,99E-04 | •        | 0.00E+00 : | 1.99E-04 | 1.99E-04        | : 1.99E-04 : | 1.99E-04 | 1.99E-04:    |

# FORT CALHOUN ANNUAL 2017, DOSE PROJECTIONS

SPECIAL LOCATION NO. 24 VEG AT 0.73 MILES S

ANNUAL\_BETA\_AIR\_DOSE = 4.52E-08 MILLRADS ANNUAL\_GAMMA\_AIR\_DOSE = 3.99E-10 MILLRADS

|                | T.BODY     |                   |            |            |          |            |          | SKIN         |
|----------------|------------|-------------------|------------|------------|----------|------------|----------|--------------|
| PLUME          |            | 2.61E-10 :        | 2.61E-10   | 2.61E-10   | 2.61E-10 | 2.61E-10   | 6.95E-10 | : 3.14E-08 : |
| GROUND         | : 0.00E+00 | : 0.00E+00 :      | 0.00E+00 : | 0.00E+00:  | 0.00E+00 | 0.00E+00 : | Q.00E+00 | : 0.00E+00 : |
| VEGET<br>ADULT |            | :<br>: 6.32E-05 : | 0.00E+00   | 6.32E-05   | 6.32E-05 | 6.32E-05   | 6.32E-05 | 6.32E-05:    |
| TEEN           | : 7.23E-05 | 7.23E-05          | 0.00E+00 : | 7.23E-05   | 7.23E-05 | 7.23E-05   | 7.23E-05 | : 7.23E-05 : |
| CHILD          | : 1.12E-04 | : 1.12E-04 :      | 0.00E+00:  | 1.12E-04 : | 1.12E-04 | 1.12E-04:  | 1.12E-04 | : 1.12E-04 : |

# FORT CALHOUN ANNUAL 2017, DOSE PROJECTIONS

SPECIAL LOCATION NO. 25 VEG AT 2.00 MILES SSW

ANNUAL\_BETA\_AIR\_DOSE = 3.36E-09 MILLRADS ANNUAL\_GAMMA\_AIR\_DOSE = 2.97E-11 MILLRADS

|                 | SKIN                                                                  |
|-----------------|-----------------------------------------------------------------------|
| 5.17E-11 : 2.   | 33E-09 :                                                              |
| 0.00E+00 : 0.   | 00E+00 :                                                              |
| : 4.70E-06 : 4. | 70E-06:                                                               |
| 5.38E-06 : 5.   | 38E-06 :                                                              |
| 8.35E-06 : 8.   | 35E-06 :                                                              |
|                 | 5.17E-11 : 2.<br>0.00E+00 : 0.<br>:<br>4.70E-06 : 4.<br>5.38E-06 : 5. |

# FORT CALHOUN ANNUAL 2017, DOSE PROJECTIONS

SPECIAL LOCATION NO. 26 VEG AT 1.43 MILES SW

ANNUAL\_BETA\_AIR\_DOSE = 6.61E-09 MILLRADS ANNUAL\_GAMMA\_AIR\_DOSE = 5.83E-11 MILLRADS

|            | GI-TRACT                                     | BONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LIVER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | KIDNEY                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SKIN                                                                                                                                                                                                                            |
|------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.82E-11   | 3.82E-11 :                                   | 3.82E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.82E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | : 3.82E-11                                                                                                                | 3.82E-11 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.02E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | : 4.59E-09 :                                                                                                                                                                                                                    |
| 0.00E+00 : | 0.00E+00 :                                   | 0.00E+00 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00E+00 :                                                                                                                | 0.00E+00:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | : 0.00E+00 :                                                                                                                                                                                                                    |
| 9.24E-06   | :<br>9.24E-06 :                              | 0.00E+00 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.24E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | :<br>9.24E-06                                                                                                             | :<br>9.24E-06 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.24E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | : : 9.24E-06 :                                                                                                                                                                                                                  |
| 1.06E-05   | 1.06E-05                                     | 0.00E+00 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.06E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.06E-05                                                                                                                  | 1.06E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.06E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.06E-05:                                                                                                                                                                                                                       |
| 1.64E-05 : | 1.64E-05                                     | 0.00E+00 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.64E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | : 1.64E-05 ;                                                                                                              | : 1.64E-05 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.64E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | : 1.64E-05 :                                                                                                                                                                                                                    |
|            | 3.82E-11<br>0.00E+00<br>9.24E-06<br>1.06E-05 | 3.82E-11 : 3.82E-11 : 0.00E+00 : 0.00E+00 : 9.24E-06 : 9.24E-06 : 1.06E-05 : 1.64E-05 : | 3.82E-11 : 3.82E-11 : 3.82E-11 : 0.00E+00 : | 3.82E-11 : 3.82E-11 : 3.82E-11 : 3.82E-11  0.00E+00 : 0.00E+00 : 0.00E+00 : 0.00E+00  : : : : : : : : : : : : : : : : : : | 3.82E-11 : 3.82E-11 : 3.82E-11 : 3.82E-11 : 3.82E-11<br>0.00E+00 : 0.00E+00 : | 3.82E-11 : | T.BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG  3.82E-11: 3.82E-11: 3.82E-11: 3.82E-11: 3.82E-11: 3.82E-11: 1.02E-10  0.00E+00: 0.00E+00: 0.00E+00: 0.00E+00: 0.00E+00: 0.00E+00: 0.00E+00  : : : : : : : : : : : : : : : : : : |

# FORT CALHOUN ANNUAL 2017, DOSE PROJECTIONS

SPECIAL LOCATION NO. 27 VEG AT 1.13 MILES WSW

ANNUAL\_BETA\_AIR\_DOSE = 1.74E-08 MILLRADS ANNUAL\_GAMMA\_AIR\_DOSE = 1.53E-10 MILLRADS

| PATHWAY        |                 | GI-TRACT   | BONE       | LIVER      | KIDNEY     | THYROID  | LUNG          | SKIN       |
|----------------|-----------------|------------|------------|------------|------------|----------|---------------|------------|
| PLUME          | : 1.01E-10      | : 1.01E-10 | : 1.01E-10 | : 1.01E-10 | : 1.01E-10 | 1.01E-10 | 2.67E-10      | : 1.21E-08 |
| GROUND         | : 0.00E+00      | : 0.00E+00 | 0.00E+00   | 0.00E+00   | : 0.00E+00 | 0.00E+00 | 0.00E+00      | : 0.00E+00 |
| VEGET<br>ADULT | :<br>: 2.43E-05 | : 2.43E-05 | : 0.00E+00 | : 2.43E-05 | : 2.43E-05 | 2.43E-05 | :<br>2.43E-05 | : 2.43E-05 |
| TEEN           | : 2.78E-05      | •          | 0.00E+00   | : 2.78E-05 | : 2.78E-05 | 2.78E-05 | 2.78E-05      | : 2.78E-05 |
| CHILD          | : 4.32E-05      | •          | 0.00E+00   | 4.32E-05   | : 4.32E-05 | 4.32E-05 | : 4.32E-05    | : 4.32E-05 |
|                | T               | r          |            | ,          |            |          |               | ,          |

# FORT CALHOUN ANNUAL 2017, DOSE PROJECTIONS

SPECIAL LOCATION NO. 28 VEG AT 1.30 MILES W

ANNUAL\_BETA\_AIR\_DOSE = 1.28E-08 MILLRADS ANNUAL\_GAMMA\_AIR\_DOSE = 1.13E-10 MILLRADS

| PATHWAY  |          | GI-TRACT          |              |               |                 | THYROID           |            | SKIN         |
|----------|----------|-------------------|--------------|---------------|-----------------|-------------------|------------|--------------|
| PLUME :  | 7.37E-11 | : 7.37E-11 :      | 7.37E-11     | : 7.37E-11    | 7.37E-11        | : 7.37E-11        | : 1.96E-10 | : 8.85E-09 : |
| GROUND : | 0.00E+00 | 0.00E+00 :        | 0.00E+00     | 0.00E+00      | 0.00E+00        | 0.00E+00          | : 0.00E+00 | : 0.00E+00 : |
| VEGET :  | 1.78E-05 | :<br>: 1.78E-05 : | 0.00E+00     | :<br>1.78E-05 | :<br>: 1.78E-05 | :<br>: 1.78E-05 : | : 1.78E-05 | : 1.78E-05 : |
| TEEN :   | 2.04E-05 | 2.04E-05          | : 0.00E+00 : | 2.04E-05      | 2.04E-05        | 2.04E-05          | 2.04E-05   | : 2.04E-05 : |
| CHILD :  | 3.17E-05 | : 3.17E-05        | 0.00E+00     | 3.17E-05      | 3.17E-05        | 3.17E-05          | 3.17E-05   | : 3.17E-05 : |

# FORT CALHOUN ANNUAL 2017, DOSE PROJECTIONS

SPECIAL LOCATION NO. 29 VEG-AT 2.65 MILES WNW

ANNUAL\_BETA\_AIR\_DOSE = 4.87E-09 MILLRADS ANNUAL\_GAMMA\_AIR\_DOSE = 4.30E-11 MILLRADS

| PATHWAY        |   |            | GI-TRACT        | BONE         | LIVER     | KIDNEY          | THYROID    | LUNG          | SKIN         |
|----------------|---|------------|-----------------|--------------|-----------|-----------------|------------|---------------|--------------|
| PLUME          | : | 2.81E-11 : | 2.81E-11        | : 2.81E-11 : | 2.81E-11  | 2.81E-11        | 2.81E-11   | 7.49E-11      | : 3.38E-09 : |
| GROUND         | • | 0.00E+00   | 0.00E+00        | 0.00E+00     | 0.00E+00  | 0.00E+00        | 0.00E+00   | 0.00E+00      | : 0.00E+00 : |
| VEGET<br>ADULT | • | 6.81E-06   | :<br>: 6.81E-06 | : 0.00E+00 : | 6.81E-06  | :<br>: 6.81E-06 | : 6.81E-06 | :<br>6.81E-06 | : 6.81E-06 : |
| TEEN           | : | 7.79E-06 : | 7.79E-06:       | 0.00E+00 :   | 7.79E-06: | 7.79E-06:       | 7.79E-06:  | 7.79E-06:     | •            |
| CHILD          | : | 1.21E-05   | 1.21E-05        | 0.00E+00     | 1.21E-05  | 1.21E-05        | 1.21E-05   | 1.21E-05      | : 1.21E-05 : |

#### FORT CALHOUN ANNUAL 2017, DOSE PROJECTIONS

SPECIAL LOCATION NO. 30 VEG AT 2.40 MILES NW

ANNUAL\_BETA\_AIR\_DOSE = 5.22E-09 MILLRADS ANNUAL\_GAMMA\_AIR\_DOSE = 4.60E-11 MILLRADS

|             |                                                   |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SKIN                                                                                                                                                                                          |
|-------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.02E-11 :  | 3.02E-11 :                                        | : 3.02E-11 :                                                                                                      | 3.02E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.02E-11                                                                                                                          | 3.02E-11 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.02E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.62E-09:                                                                                                                                                                                     |
| 0.00E+00:   | 0.00E+00 :                                        | : 0.00E+00 :                                                                                                      | : 0.00E+00 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00E+00 :                                                                                                                        | : 0.00E+00 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | : 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00E+00:                                                                                                                                                                                     |
| 7.30E-06    | :<br>7.30E-06 :                                   | : 0.00E+00 :                                                                                                      | :<br>7.30E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.30E-06                                                                                                                          | :<br>7.30E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | : 7.30E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | : 7.30E-06:                                                                                                                                                                                   |
| 8.34E-0.6 : | 8.34E-06:                                         | 0.00E+00 :                                                                                                        | 8.34E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.34E-06                                                                                                                          | 8.34E-06:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.34E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.34E-06:                                                                                                                                                                                     |
| 1.30E-05    | 1.30E-05                                          | 0.00E+00 :                                                                                                        | 1.30E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.30E-05                                                                                                                          | 1.30E-05 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.30E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | : 1.30E-05 :                                                                                                                                                                                  |
| -           | 3.02E-11: 0.00E+00: 7.30E-06: 8.34E-06: 1.30E-05: | 3.02E-11 : 3.02E-11 :  0.00E+00 : 0.00E+00 :  7.30E-06 : 7.30E-06 :  8.34E-06 : 8.34E-06 :  1.30E-05 : 1.30E-05 : | 3.02E-11 : 3.02E-11 : 3.02E-11 : 0.00E+00 : | 3.02E-11 : 3.02E-11 : 3.02E-11 : 3.02E-11 :<br>0.00E+00 : 0.00E+00 : 0.00E+00 : 0.00E+00 :<br>: : : : : : : : : : : : : : : : : : | 3.02E-11 : 3.02E-11 : 3.02E-11 : 3.02E-11 : 3.02E-11 : 0.00E+00 : 7.30E-06 : | 3.02E-11 : 3.02E-11 : 3.02E-11 : 3.02E-11 : 3.02E-11 : 3.02E-11 : 0.00E+00 : | T.BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG  3.02E-11: 3.02E-11: 3.02E-11: 3.02E-11: 3.02E-11: 3.02E-11: 8.02E-11  0.00E+00: 0.00E+00: 0.00E+00: 0.00E+00: 0.00E+00: 0.00E+00: 0.00E+00  : |

#### FORT CALHOUN ANNUAL 2017, DOSE PROJECTIONS

SPECIAL LOCATION NO. 31 VEG AT 3.73 MILES NNW

ANNUAL\_BETA\_AIR\_DOSE = 2.20E-09 MILLRADS ANNUAL\_GAMMA\_AIR\_DOSE = 1.94E-11 MILLRADS

|           |                                                        | BONE                                                                                                              | LIVER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | KIDNEY                                                                                                                                                                                                           |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SKIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.27E-11  | 1.27E-11:                                              | 1.27E-11                                                                                                          | 1.27E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | : 1.27E-11                                                                                                                                                                                                       | : 1.27E-11 :                                                                                                                                                                                                                         | 3.39E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.53E-09 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.00E+00  | 0.00E+00:                                              | 0.00E+00                                                                                                          | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00E+00                                                                                                                                                                                                         | 0.00E+00                                                                                                                                                                                                                             | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3.08E-06  | 3.08E-06                                               | :<br>: 0.00E+00 :                                                                                                 | :<br>: 3.08E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | :<br>: 3.08E-06                                                                                                                                                                                                  | :<br>: 3.08E-06 :                                                                                                                                                                                                                    | :<br>: 3.08E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | :<br>: 3.08E-06 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3.52E-06: | 3.52E-06                                               | 0.00E+00                                                                                                          | 3.52E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.52E-06                                                                                                                                                                                                         | 3.52E-06                                                                                                                                                                                                                             | 3.52E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.52E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5.47E-06  | 5.47E-06                                               | 0.00E+00                                                                                                          | 5.47E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.47E-06                                                                                                                                                                                                         | 5.47E-06                                                                                                                                                                                                                             | 5.47E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.47E-06:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|           | 1.27E-11 : 0.00E+00 : 3.08E-06 : 3.52E-06 : 5.47E-06 : | 1.27E-11 : 1.27E-11 :  0.00E+00 : 0.00E+00 :  3.08E-06 : 3.08E-06 :  3.52E-06 : 3.52E-06 :  5.47E-06 : 5.47E-06 : | 1.27E-11 : 1.27E-11 : 1.27E-11 : 0.00E+00 : 0.00E+00 : 0.00E+00 : 3.08E-06 : 0.00E+00 : 3.52E-06 : 3.52E-06 : 0.00E+00 : 5.47E-06 : 5.47E-06 : 0.00E+00 : 5.47E-06 : 0.00E+00 : 5.47E-06 : 5.47E-06 : 5.47E-06 : 0.00E+00 : 5.47E-06 : 0.00E+00 : 5.47E-06 : | 1.27E-11 : 1.27E-11 : 1.27E-11 : 1.27E-11 : 0.00E+00 : 0.00E+00 : 0.00E+00 : 0.00E+00 : 3.08E-06 : 3.08E-06 : 0.00E+00 : 3.08E-06 : 3.52E-06 : 0.00E+00 : 3.52E-06 : 5.47E-06 : 5.47E-06 : 5.47E-06 : 5.47E-06 : | 1.27E-11 : 1.27E-11 : 1.27E-11 : 1.27E-11 : 1.27E-11 : 0.00E+00 : 0.00E+00 : 0.00E+00 : 0.00E+00 : 0.00E+00 : 3.08E-06 : 3.08E-06 : 3.08E-06 : 3.52E-06 : 3.52E-06 : 3.52E-06 : 5.47E-06 : 5.47E-06 : 5.47E-06 : 5.47E-06 : 5.47E-06 | 1.27E-11 : 1.27E-11 : 1.27E-11 : 1.27E-11 : 1.27E-11 : 1.27E-11 : 0.00E+00 : 3.08E-06 : 3.08E-06 : 3.08E-06 : 3.08E-06 : 3.52E-06 : 3.52E-06 : 3.52E-06 : 3.52E-06 : 5.47E-06 : | T.BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG  1.27E-11: 1.27E-11: 1.27E-11: 1.27E-11: 1.27E-11: 1.27E-11: 3.39E-11:  0.00E+00: 0.00E+0 |

#### FORT CALHOUN ANNUAL 2017, DOSE PROJECTIONS

SPECIAL LOCATION NO. 32 BEEF AT 4.91 MILES E

ANNUAL\_BETA\_AIR\_DOSE = 1.07E-09 MILLRADS ANNUAL\_GAMMA\_AIR\_DOSE = 9.41E-12 MILLRADS

| PATHWAY       |    |            | GI-TRACT          | BONE         | LIVEŘ             | KIDNEY            | THYROID       | LÚNG          | SKIN           |
|---------------|----|------------|-------------------|--------------|-------------------|-------------------|---------------|---------------|----------------|
| PLUME         | :  | 6.17E-12   | 6.17E-12          | 6.17E-12     | 6.17E-12          | 6.17E-12          | 6.17E-12      |               | 7.40E-10:      |
| GROUND        | :  | 0.00E+00 : | 0.00E+00 :        | : 0.00E+00 : | 0.00E+00 :        | 0.00E+00          | : 0.00E+00 :  | : 0.00E+00    | : 0.00E+00 :   |
| MEAT<br>ADULT | :  | 2.14E-07   | :<br>: 2.14E-07 : | : 0.00E+00 : | :<br>: 2.14E-07 : | :<br>: 2.14E-07 : | :<br>2.14E-07 | ·<br><b>:</b> | : : 2.14E-07 : |
| TEEN          | :  | 1.28E-07   | 1.28E-07          | 0.00E+00     | : 1.28E-07        | : 1.28E-07 :      | 1.28E-07      | 1.28E-07      | : 1.28E-07:    |
| CHILD         | :  | 1.55E-07   | : 1.55E-07 :      | : 0.00E+00 : | 1.55E-07          | 1.55E-07          | : 1.55E-07 :  | : 1.55E-07    | : 1.55E-07 :   |
|               | -+ |            | <u></u>           | <b></b>      |                   |                   | <del> </del>  | <u> </u>      | ++;            |

#### FORT CALHOUN ANNUAL 2017, DOSE PROJECTIONS

SPECIAL LOCATION NO. 33 BEEF AT 1.82 MILES SSE

ANNUAL\_BETA\_AIR\_DOSE = 7.42E-09 MILLRADS ANNUAL\_GAMMA\_AIR\_DOSE = 6.55E-11 MILLRADS

| ÷ = = = = = = = = = = = = = = = = = = = |                                                                    | BONE                                                                                                                                | LIVER                                                                                                                                                                              |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SKIN                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| : 4.29E-11                              | : 4.29E-11                                                         | 4.29E-11                                                                                                                            | 4.29E-11                                                                                                                                                                           | 4.29E-11                                                                                                                                                                                                                                | : 4.29E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.14E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | : 5.15E-09 :                                                                                                                                                                                                                                                                                                                                                                               |
| : 0.00E+00                              | : 0.00E+00                                                         | 0.00E+00                                                                                                                            | 0.00E+00                                                                                                                                                                           | : 0.00E+00                                                                                                                                                                                                                              | : 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | : 0.00E+00 :                                                                                                                                                                                                                                                                                                                                                                               |
| : 1.49E-06                              | :<br>1.49E-06                                                      | 0.00E+00                                                                                                                            | :<br>: 1.49E-06                                                                                                                                                                    | :<br>: 1.49E-06                                                                                                                                                                                                                         | :<br>: 1.49E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | :<br>1.49E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | : : 1.49E-06 :                                                                                                                                                                                                                                                                                                                                                                             |
| : 8.89E-07                              | : 8.89E-07                                                         | 0.00E+00                                                                                                                            | 8.89E-07                                                                                                                                                                           | : 8.89E-07                                                                                                                                                                                                                              | : 8.89E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.89E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | : 8.89E-07 :                                                                                                                                                                                                                                                                                                                                                                               |
| : 1.08E-06                              | : 1.08E-06                                                         | 0.00E+00                                                                                                                            | 1.08E-06                                                                                                                                                                           | : 1.08E-06                                                                                                                                                                                                                              | : 1.08E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.08E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | : 1.08E-06 :                                                                                                                                                                                                                                                                                                                                                                               |
|                                         | : 4.29E-11<br>: 0.00E+00<br>: 1.49E-06<br>: 8.89E-07<br>: 1.08E-06 | : 4.29E-11 : 4.29E-11 :<br>: 0.00E+00 : 0.00E+00 :<br>: 1.49E-06 : 1.49E-06 :<br>: 8.89E-07 : 8.89E-07 :<br>: 1.08E-06 : 1.08E-06 : | : 4.29E-11 : 4.29E-11 : 4.29E-11<br>: 0.00E+00 : 0.00E+00 : 0.00E+00<br>: : 1.49E-06 : 1.49E-06 : 0.00E+00<br>: 8.89E-07 : 8.89E-07 : 0.00E+00<br>: 1.08E-06 : 1.08E-06 : 0.00E+00 | : 4.29E-11 : 4.29E-11 : 4.29E-11 : 4.29E-11<br>: 0.00E+00 : 0.00E+00 : 0.00E+00 : 0.00E+00<br>: 1.49E-06 : 1.49E-06 : 0.00E+00 : 1.49E-06<br>: 8.89E-07 : 8.89E-07 : 0.00E+00 : 8.89E-07<br>: 1.08E-06 : 1.08E-06 : 0.00E+00 : 1.08E-06 | : 4.29E-11 | : 4.29E-11 | T.BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG  4.29E-11: 4.29E-11: 4.29E-11: 4.29E-11: 4.29E-11: 1.14E-10  0.00E+00: 0.00E+00: 0.00E+00: 0.00E+00: 0.00E+00: 0.00E+00  1.49E-06: 1.49E-06: 0.00E+00: 1.49E-06: 1.49E-06: 1.49E-06: 1.49E-06  2.8.89E-07: 8.89E-07: 0.00E+00: 8.89E-07: 8.89E-07: 8.89E-07: 8.89E-07  1.08E-06: 1.08E-06: 0.00E+00: 1.08E-06: 1.08E-06: 1.08E-06: 1.08E-06 |

#### FORT CALHOUN ANNUAL 2017, DOSE PROJECTIONS

SPECIAL LOCATION NO. 34 BEEF AT 2.48 MILES S

ANNUAL\_BETA\_AIR\_DOSE = 2.20E-09 MILLRADS ANNUAL\_GAMMA\_AIR\_DOSE = 1.94E-11 MILLRADS

|          |                                                                    |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                     |                                                                                                                                                                                                                                                   | LUNG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SKIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.27E-11 | 1.27E-11                                                           | : 1.27E-11                                                                                                             | 1.27E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | : 1.27E-11                                                                                                                          | : 1.27E-11 :                                                                                                                                                                                                                                      | : 3.39E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.53E-09:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.00E+00 | 0.00E+00                                                           | 0.00E+00                                                                                                               | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00E+00                                                                                                                            | : 0.00E+00 :                                                                                                                                                                                                                                      | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00E+00 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4.43E-07 | :<br>4.43E-07                                                      | : 0.00E+00 :                                                                                                           | 4.43E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | : 4.43E-07                                                                                                                          | 4.43E-07                                                                                                                                                                                                                                          | 4.43E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | : 4.43E-07 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2.64E-07 | 2.64E-07                                                           | : 0.00E+00 :                                                                                                           | 2.64E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.64E-07                                                                                                                            | 2.64E-07 :                                                                                                                                                                                                                                        | 2.64E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | : 2.64E-07 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3.20E-07 | 3.20E-07                                                           | 0.00E+00                                                                                                               | 3.20E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | : 3.20E-07                                                                                                                          | 3.20E-07                                                                                                                                                                                                                                          | 3.20E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.20E-07:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | : 1.27E-11<br>: 0.00E+00<br>: 4.43E-07<br>: 2.64E-07<br>: 3.20E-07 | : 1.27E-11 : 1.27E-11 : 0.00E+00 : 0.00E+00 : : : : : : : : : 4.43E-07 : 4.43E-07 : 2.64E-07 : : 3.20E-07 : 3.20E-07 : | : 1.27E-11 : 1.27E-11 : 1.27E-11 : 0.00E+00 : 0.00E+00 : 0.00E+00 : 0.00E+00 : 2.64E-07 : 0.00E+00 : 3.20E-07 : 0.00E+00 : 3.20E-00 | : 1.27E-11 : 1.27E-11 : 1.27E-11 : 1.27E-11<br>: 0.00E+00 : 0.00E+00 : 0.00E+00 : 0.00E+00<br>: : : : : : : : : : : : : : : : : : : | : 1.27E-11 : 1.27E-11 : 1.27E-11 : 1.27E-11 : 1.27E-11 : 0.00E+00 : 0.00E+00 : 0.00E+00 : 0.00E+00 : 0.00E+00 : 0.00E+00 : 4.43E-07 : 4.43E-07 : 4.43E-07 : 4.43E-07 : 2.64E-07 : 2.64E-07 : 2.64E-07 : 3.20E-07 : 3.20E-07 : 3.20E-07 : 3.20E-07 | : 1.27E-11 | T.BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG  1.27E-11: 1.27E-11: 1.27E-11: 1.27E-11: 1.27E-11: 1.27E-11: 3.39E-11  0.00E+00: 0.00E+00: 0.00E+00: 0.00E+00: 0.00E+00: 0.00E+00: 0.00E+00  1.27E-11: 1.27E-11: 1.27E-11: 1.27E-11: 1.27E-11: 3.39E-11  1.27E-11: 1.27E-11: 1.27E-11: 1.27E-11: 1.27E-11: 1.27E-11: 3.39E-11  1.27E-11: 1.27E-11: 1.27E-11: 1.27E-11: 1.27E-11: 1.27E-11: 3.39E-11  1.27E-11: 1.27E-11: 1.27E-11: 1.27E-11: 1.27E-11: 3.39E-11  1.27E-11: 1.27E-11: 1.27E-11: 1.27E-11: 1.27E-11: 3.39E-11  1.27E-11: 1.27E-11: 1.27E-11: 1.27E-11: 1.27E-11: 1.27E-11: 3.39E-11  1.27E-11: 1.27E-11: 1.27E-11: 1.27E-11: 1.27E-11: 1.27E-11: 3.39E-11  1.27E-11: 1.27E-11: 1.27E-11: 1.27E-11: 1.27E-11: 1.27E-11: 1.27E-11: 1.27E-11: 1.27E-11: 3.39E-11  1.27E-11: 1.27E-11 |

#### FORT CALHOUN ANNUAL 2017, DOSE PROJECTIONS

SPECIAL LOCATION NO. 35 BEEF AT 0.65 MILES SSW

ANNUAL\_BETA\_AIR\_DOSE = 4.75E-08 MILLRADS ANNUAL\_GAMMA\_AIR\_DOSE = 4.19E-10 MILLRADS

| PATHWAY       |               | GI-TRACT          | BONE         | LIVER      | KIDNEY        |                 |          | SKIN     |
|---------------|---------------|-------------------|--------------|------------|---------------|-----------------|----------|----------|
| PLUME         | 2.75E-10      |                   | 2.75E-10     | 2.75E-10   | : 2.75E-10    | 2.75E-10        | 7.31E-10 | 3.30E-08 |
| GROUND        | 0.00E+00      | 0.00E+00          | 0.00E+00     | 0.00E+00   | : 0.00E+00    | : 0.00E+00 :    | 0.00E+00 | 0.00E+00 |
| MEAT<br>ADULT | :<br>9.56E-06 | :<br>: 9.56E-06 : | : 0.00E+00 : | : 9.56E-06 | :<br>9.56E-06 | :<br>: 9.56E-06 | 9.56E-06 | 9.56E-06 |
| TEEN          | : 5.69E-06    | : 5.69E-06        | : 0.00E+00   | 5.69E-06   | : 5.69E-06    | 5.69E-06        | 5.69E-06 | 5.69E-06 |
| CHILD         | 6.90E-06      |                   | 0.00E+00     | 6.90E-06   | : 6.90E-06    | : 6.90E-06      | 6.90E-06 | 6.90E-06 |
|               | r             | r                 |              |            | T             | r               |          |          |

#### FORT CALHOUN ANNUAL 2017, DOSE PROJECTIONS

SPECIAL LOCATION NO. 36 BEEF AT 0.76 MILES SW

ANNUAL\_BETA\_AIR\_DOSE = 3.13E-08 MILLRADS ANNUAL\_GAMMA\_AIR\_DOSE = 2.76E-10 MILLRADS

| PATHWAY    |            | GI-TRACT     |              | I,IVER   | KIDNEY          | THYROID         |            | SKIN         |
|------------|------------|--------------|--------------|----------|-----------------|-----------------|------------|--------------|
| PLUME :    | : 1.81E-10 | : 1.81E-10 : | : 1.81E-10 : | 1.81E-10 | 1.81E-10        | : 1.81E-10 :    | 4.81E-10   | 2.17E-08:    |
| GROUND :   | 0.00E+00   | 0.00E+00     | 0.00E+00 :   | 0.00E+00 | 0.00E+00        | : 0.00E+00 :    | 0.00E+00 : | : 0.00E+00 : |
| MEAT ADULT | 6.29E-06   | 6.29E-06     | 0.00E+00 :   | 6.29E-06 | :<br>: 6.29E-06 | :<br>: 6.29E-06 | 6.29E-06   | : 6.29E-06 : |
| TEEN :     | 3.75E-06   | : 3.75E-06 : | 0.00E+00 :   | 3.75E-06 | 3.75E-06        | : 3.75E-06 :    | 3.75E-06   | 3.75E-06:    |
| CHILD :    | 4.54E-06   | 4.54E-06     | 0.00E+00     | 4.54E-06 | 4.54E-06        | 4.54E-06        | 4.54E-06   | 4.54E-06:    |

#### FORT CALHOUN ANNUAL 2017, DOSE PROJECTIONS

SPECIAL LOCATION NO. 37 BEEF AT 2.18 MILES WSW

ANNUAL\_BETA\_AIR\_DOSE = 3.59E-09 MILLRADS ANNUAL\_GAMMA\_AIR\_DOSE = 3.17E-11 MILLRADS

|               | T.BODY          | GI-TRACT        |            | LIVER    | KIDNEY     | THYROID       | LUNG            | SKIN       |
|---------------|-----------------|-----------------|------------|----------|------------|---------------|-----------------|------------|
| PLUME         |                 | : 2.08E-11      | : 2.08E-11 | 2.08E-11 | : 2.08E-11 | 2.08E-11      | 5.53E-11        | 2.49E-09   |
| GROUND        | : 0.00E+00      | 0.00E+00        | 0.00E+00   | 0.00E+00 | : 0.00E+00 | 0.00E+00      | 0.00E+00        | : 0.00E+00 |
| MEAT<br>ADULT | :<br>: 7.22E-07 | :<br>: 7.22E-07 | : 0.00E+00 | 7.22E-07 | : 7.22E-07 | :<br>7.22E-07 | :<br>: 7.22E-07 | 7.22E-07   |
| TEEN          | : 4.30E-07      | : 4.30E-07      | 0.00E+00   | 4.30E-07 | : 4.30E-07 | : 4.30E-07    | 4.30E-07        | 4.30E-07   |
| CHILD         |                 | : 5.21E-07      | 0.00E+00   | 5.21E-07 | : 5.21E-07 | 5.21E-07      | 5.21E-07        | 5.21E-07 : |
|               |                 | ,               | ,          |          | ===        |               |                 |            |

#### FORT CALHOUN ANNUAL 2017, DOSE PROJECTIONS

SPECIAL LOCATION NO. 38 BEEF AT 2.28 MILES W

ANNUAL\_BETA\_AIR\_DOSE = 3.71E-09 MILLRADS ANNUAL\_GAMMA\_AIR\_DOSE = 3.27E-11 MILLRADS

|               |            | GI-TRACT        |              |                 |                 | THYROID       |                       | SKIN         |
|---------------|------------|-----------------|--------------|-----------------|-----------------|---------------|-----------------------|--------------|
| PLUME         | : 2.14E-11 | 2.14E-11        | 2.14E-11     | 2.14E-11        | : 2.14E-11      | 2.14E-11      | 5.70E-11              | : 2.58E-09 : |
| GROUND        | : 0.00E+00 | 0.00E+00        | 0.00E+00 :   | 0.00E+00        | : 0.00E+00      |               | 0.00E+00              | : 0.00E+00 : |
| MEAT<br>ADULT | : 7.46E-07 | :<br>: 7.46E-07 | : 0.00E+00 : | :<br>: 7.46E-07 | :<br>: 7.46E-07 | :<br>7.46E-07 | :<br>: 7.46E-07       | : 7.46E-07:  |
| TEEN          | . 4.44E-07 | 4.44E-07        | 0.00E+00 :   | 4.44E-07        | : 4.44E-07      |               | 4.44E-07              | : 4.44E-07 : |
| CHILD         | : 5.38E-07 | 5.38E-07        | . 0.00E+00 : | 5.38E-07        | : 5.38E-07      |               | : 5.38E-07            | : 5.38E-07 : |
|               |            | T               | r <b>-</b>   |                 | T               | F             | r — — — — — — — — · · | r            |

#### FORT CALHOUN ANNUAL 2017, DOSE PROJECTIONS

SPECIAL LOCATION NO. 39 BEEF AT 4.59 MILES WNW

ANNUAL\_BETA\_AIR\_DOSE = 1.97E-09 MILLRADS ANNUAL\_GAMMA\_AIR\_DOSE = 1.74E-11 MILLRADS

| PATHWAY       | T.BODY     | GI-TRACT        | BONE         | LIVER           | KIDNEY        | THYROID       | LUNG            | SKIN         |
|---------------|------------|-----------------|--------------|-----------------|---------------|---------------|-----------------|--------------|
| PLUME         | •          | : 1.14E-11      | 1.14E-11     | : 1.14E-11      | 1.14E-11      | : 1.14E-11 :  | 3.03E-11        | : 1.37E-09 : |
| GROUND        | •          | 0.00E+00        | : 0.00E+00   | . 0.00E+00      | 0.00E+00      | 0.00E+00      | 0.00E+00        | 0.00E+00 :   |
| MEAT<br>ADULT | : 3.96E-07 | :<br>: 3.96E-07 | : 0.00E+00 : | :<br>: 3.96E-07 | :<br>3.96E-07 | :<br>3.96E-07 | :<br>: 3.96E-07 | : 3.96E-07 : |
| TEEN          | •          | : 2.36E-07      | 0.00E+00     | 2.36E-07        | 2.36E-07      | 2.36E-07      | 2.36E-07        | 2.36E-07:    |
| CHILD         | -          | 2.86E-07        | 0.00E+00     | 2.86E-07        | 2.86E-07      | 2.86E-07      | 2.86E-07        | : 2.86E-07 : |

#### FORT CALHOUN ANNUAL 2017, DOSE PROJECTIONS

SPECIAL LOCATION NO. 40 GOAT AT 3.44 MILES S

ANNUAL\_BETA\_AIR\_DOSE = 1.10E-09 MILLRADS ANNUAL\_GAMMA\_AIR\_DOSE = 9.72E-12 MILLRADS

|            |                                                        | BONE                                                                                                          | LIVER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | KIDNEY                                                                                                                                                                                                                    | THYROID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LUNG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SKIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6.37E-12 : | 6.37E-12                                               | 6.37E-12                                                                                                      | 6.37E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.37E-12                                                                                                                                                                                                                  | 6.37E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.69E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.65E-10 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.00E+00 : | 0.00E+00                                               | 0.00E+00                                                                                                      | 0.00E±0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00E+00 :                                                                                                                                                                                                                | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00E+00:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| :          | 1.06E-06                                               | 0.00E+00                                                                                                      | :<br>: 1.06E-06 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | :<br>1.06E-06                                                                                                                                                                                                             | 1.06E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.06E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | : 1.06E-06 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            | 1.38E-06:                                              | 0.00E+00                                                                                                      | 1.38E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.38E-06                                                                                                                                                                                                                  | 1.38E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.38E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | : 1.38E-06 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.19E-06:  | 2.19E-06                                               | 0.00E+00 :                                                                                                    | 2.19E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.19E-06                                                                                                                                                                                                                  | 2.19E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.19E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.19E-06:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            |                                                        |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | 6.37E-12 : 0.00E+00 : 1.06E-06 : 1.38E-06 : 2.19E-06 : | 6.37E-12 : 6.37E-12 : 0.00E+00 : 0.00E+00 : 1.06E-06 : 1.06E-06 : 1.38E-06 : 1.38E-06 : 2.19E-06 : 2.19E-06 : | 6.37E-12 : 6.37E-12 : 6.37E-12 : 0.00E+00 : | 6.37E-12 : 6.37E-12 : 6.37E-12 : 6.37E-12 : 0.00E+00 : 0.00E+00 : 0.00E+00 : 0.00E+00 : 0.00E+00 : 1.06E-06 : 1.38E-06 : 1.38E-06 : 0.00E+00 : 1.38E-06 : 2.19E-06 : 2.19E-06 : 0.00E+00 : 2.19E-06 : 0.00E+00 : 2.19E-06 | 6.37E-12 : | 6.37E-12 : | T.BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG  6.37E-12: 6.37E-12: 6.37E-12: 6.37E-12: 6.37E-12: 1.69E-11  0.00E+00: 0.00E+00: 0.00E+00: 0.00E+00: 0.00E+00: 0.00E+00: 0.00E+00  1.06E-06: 1.06E-06: 0.00E+00: 1.06E-06: 1.06E-06: 1.06E-06: 1.06E-06  1.38E-06: 1.38E-06: 0.00E+00: 1.38E-06: 1.38E-06: 1.38E-06: 1.38E-06: 2.19E-06: 2.19E-06: 2.19E-06: 3.32E-06: 3.2E-06: 3.2E-06: |

#### IV-B-1

FORT CALHOUN 1 DOSE CONTRIBUTIONS FROM GASEOUS EFFLUENTS
UNRESTRICTED AREA BOUNDARY
REQUIRED BY TECHNICAL SPECIFICATION 5.9.4.a.
JANUARY 1, 2017 TO DECEMBER 31, 2017

MAXIMUM SITE BOUNDARY GAMMA AIR DOSE - 1.13E-09 MILLRADS

MAXIMUM SITE BOUNDARY BETA AIR DOSE - 1.28E-07 MILLRADS

### FORT CALHOUN ANNUAL 2017, DOSE PROJECTIONS ALARA ANNUAL INTEGRATED POPULATION DOSE SUMMARY (PERSON-REM)

| PATHWAY  |   |                    |        |                     |        | BONE              |   |                       |   |                        |           |                      | LUNG |                        |        | SKIN                  |   |
|----------|---|--------------------|--------|---------------------|--------|-------------------|---|-----------------------|---|------------------------|-----------|----------------------|------|------------------------|--------|-----------------------|---|
| PLUME    | : | 6.16E-10<br>0.00%  | :      | 6.16E-10<br>0.00%   | :      | 6.16E-10 :        | : | 6.16E-10 :            | : | 6.16E-10 :             | : 6.      | .16E-10<br>0.00%     | :    | 2.05E-09 :<br>0.00%    | :<br>: | 1.03E-07:<br>0.04%    | : |
| INHAL    | : | 1.13E-04<br>40.65% | :<br>: | 1.13E-04<br>40.65%  | :<br>: | 0.00E+00 :        | : | 1.13E-04 : 40.65% :   | : | 1.13E-04 :<br>40.65% : | : 1.<br>: | 13E-04 :<br>40.65% : | :    | 1.13E-04 :<br>40.65% : | :      | 1.13E-04:<br>40.63%:  |   |
| VEGET    | : | 1.16E~04           | :      | 1.16E-04 :          | :<br>: | 0.00E+00 :        | : | 1.16E-04 :            | : | 1.16E-04 :<br>41.66% : | : 1.      | 16E-04 :<br>41.66% : | :    | 1.16E-04 :<br>41.66% : | :      | 1.16E-04 : 41.65% :   |   |
| COM WILK | : | 2.31E-05           | :      | 2.31E-05 8<br>8.30% | :      | 0.00E+00 :        | : | 2.31E-05 :<br>8.30% : | : | 2.31E-05 : 8.30% :     | 2.        | 31E-05<br>8.30%      | :    | 2.31E-05 :<br>8.30% :  | :      | 2.31E-05 : 8.30% :    |   |
| MEAT     | : | 2.61E-05<br>9.39%  | :      | 2.61E-05<br>9.39%   | :      | 0.00E+00<br>0.00% | : | 2.61E-05 s<br>9.39% s | : | 2.61E-05 : 9.39%       | 2.        | 61E-05<br>9.39%      | :    | 2.61E-05<br>9.39%      | :      | 2.61E-05 :<br>9.39% : |   |
|          | - |                    |        |                     | •      |                   | • |                       |   |                        |           | _                    |      |                        | -      | 2.78E-04:             |   |

#### SECTION V

# DOSE FROM LIQUID EFFLUENTS LADTAP II OUTPUT Technical Specification 5.9.4.a

January 1, 2017 - December 31, 2017

#### Radioactive Effluent Releases - First, Second, Third, and Fourth Quarters 2017

#### LIQUID EFFLUENTS

During the reporting period, a total of 2.23E-03 curies of radioactive liquid materials less tritium, dissolved noble gases, and alpha were released to the Missouri River at an average concentration of 1.88E-07  $\mu$ Ci/mL. This represents 1.88E+01 percent of the limits specified in Appendix B to 10 CFR 20 (1.0E-06  $\mu$ Ci/mL for unrestricted areas), 2.2 curies of tritium were discharged at an average diluted concentration of 1.85E-04  $\mu$ Ci/mL or 1.85E+01 percent of ECL (1.0E-03  $\mu$ Ci/mL).

No gross alpha radioactivity was identified by Off-site vendor analysis of quarterly liquid composites for the reporting period. Ni-63 was identified in the third quarterly composite, and Fe-55 was identified in the second quarterly composite. These Hard to detect nuclides represented 4.1% of the total activity released.

Dilution water during the period amounted to 3.60E+08 liters, while liquid waste discharges consisted of 6.01E+05 liters of radioactive liquid waste.

#### A. Potential Annual Doses to Individuals from Liquid Releases

Total body, skin, and organ mRem for liquid releases were calculated for all significant liquid pathways using the annual configuration of the LADTAP II program.

The inputs to LADTAP II for the annual period from January 1, 2017 through December 31, 2017 were as follows:

- (1) All liquid effluents were as described in Section IV except for entrained noble gases (Ar-41, Xe-131M, Xe-133M, Xe-135M, Xe-135M, Xe-135, Kr-85M, Kr-87, and Kr-88).
- (2) An average dilution stream flow during periods of release was 16.04 cubic feet per second (CFS) was utilized for 2017. The average discharge rate during releases was 16.08 cubic feet per second (CFS).
- (3) Dilution factors (inverse of the mixing ratios) were computed based on Regulatory Guide 1.113 (equation 7 in Section 2.a.1 of Appendix A) for a one dimensional transport model.
- (4) Drinking water transport times of 6.6 hours to the Omaha intake and 7.0 hours to the Council Bluffs intake were used for dose calculations.
- (5) A shorewidth factor of 0.2 was used.
- (6) All dose factors, transport times from receptor to individual, and usage factors are defined by Regulatory Guide 1.109 and NUREG-0172.

The discharge site was chosen to present the most conservative estimate of mRem dose for an average adult, teenager, child, and infant. A conservative approach is also presented by the assumption that Omaha and Council Bluffs receive all drinking water from the Missouri River.

#### B. Potential Annual Doses to Population from Liquid Releases

The LADTAP II program in its annual configuration was also used to calculate to total body and organ doses for the population of 950,006 within a 50-mile radius of the plant (based on the 2010 census). The same input was used as in the individual cases with the addition of the following:

- (1) Dilution factors and transport times for the pathways of sport fish, commercial fish, recreation and biota were calculated based on a distance of two miles downstream as approximately the distance to the nearest recreation facility DeSoto National Wildlife Preserve.
- (2) The total fish harvest for both sport and commercial purposes was calculated using an average commercial fish catch for Nebraska.

L AAA DDDD TTTTT AAA PPPP IIIII IIIII
L A A D D T A A P P I I
L AAAAA D D T AAAAA PPPP I I
L AAAAA D D T AAAAA PPPP I I
L A A D D T A A P I I
LLLLL A A DDDD T A A P I IIIII

EVALUATION OF RADIATION DOSES FROM RELEASES OF RADIACTIVITY

IN NUCLEAR POWER PLANTS LIQUID EFFLUENTS

REVISION DATE: PNL VAX - OCTOBER 1985

FORT CALHOUN ANNUAL 2017, DOSE PROJECTIONS

RADIOLOGICAL ASSESSMENT BRANCH

DIVISION OF SYSTEMS INTEGRATION

U. S. NUCLEAR REGULATORY COMMISSION

WASHINGTON, D. C.

DATE OF RUN: 201802051

#### LOCATION IS FRESHWATER INTAKE

|                                                               | ADULT                                                    | DOSES                                                                         |                                                                                    |                                                                                    |                                                                                 |                                                                                |                                                          |                                                          |
|---------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
|                                                               |                                                          |                                                                               |                                                                                    | DOSE (MREM F                                                                       | ER YEAR INTAKE)                                                                 | )                                                                              |                                                          |                                                          |
| PATHWAY                                                       | SKIN                                                     | BONE                                                                          | LIVER                                                                              | TOTAL BODY                                                                         | THYROID                                                                         | KIDNEY                                                                         | LUNG                                                     | GI-LLI                                                   |
| FISH                                                          |                                                          | 4.13E-02                                                                      | 5.59E-02                                                                           | 3.67E-02                                                                           | 2.49E-05                                                                        | 1.90E-02                                                                       | 6.34E-03                                                 | 1.16E-03                                                 |
| DRINKING                                                      |                                                          | 2.11E-04                                                                      | 4.64E-04                                                                           | 3.82E-04                                                                           | 2.28E-04                                                                        | 3.07E-04                                                                       | 2.56E-04                                                 | 2.41E-04                                                 |
| SHORELINE                                                     | 6.37E-05                                                 | 5.46E-05                                                                      | 5.46E-05                                                                           | 5.46E-05                                                                           | 5.46E-05                                                                        | 5.46E-05                                                                       | 5.46E-05                                                 | 5.46E-05                                                 |
| SWIMMING                                                      |                                                          | 1.91E-07                                                                      | 1.91E-07                                                                           | 1.91E-07                                                                           | 1.91E-07                                                                        | 1.91E-07                                                                       | 1.91E-07                                                 | 1.91E-07                                                 |
| BOATING                                                       |                                                          | 9.56E-08                                                                      | 9.56E-08                                                                           | 9.56E-08                                                                           | 9.56E-08                                                                        | 9.56E-08                                                                       | 9.56E-08                                                 | 9.56E-08                                                 |
| TOTAL                                                         | 6.37E-05                                                 | 4.15E-02                                                                      | 5.64E-02                                                                           | 3.71E-02                                                                           | 3.08E-04                                                                        | 1.93E-02                                                                       | 6.65E-03                                                 | 1.46E-03                                                 |
|                                                               | USAGE (KG/YR,HR/YR                                       | ) DILUTION                                                                    | N TIME(HR)                                                                         | SHO                                                                                | REWIDTH FACTOR                                                                  | =0 2                                                                           |                                                          |                                                          |
| FISH                                                          | 21.0                                                     | 7.3                                                                           | 24.00                                                                              | 5110                                                                               | ALLWIDIN INGION                                                                 | V.2                                                                            |                                                          |                                                          |
| DRINKING                                                      | 730.0                                                    | 30.8                                                                          | 18.60                                                                              |                                                                                    |                                                                                 |                                                                                |                                                          |                                                          |
| SHORELINE                                                     | 12.0                                                     | 7.3                                                                           | 0.00                                                                               |                                                                                    |                                                                                 |                                                                                |                                                          |                                                          |
| SWIMMING                                                      | 12.0                                                     | 7.3                                                                           | 0.00                                                                               |                                                                                    |                                                                                 |                                                                                |                                                          | •                                                        |
| BOATING                                                       | 12.0                                                     | 7.3                                                                           | 0.00                                                                               |                                                                                    |                                                                                 |                                                                                |                                                          |                                                          |
|                                                               |                                                          |                                                                               |                                                                                    |                                                                                    |                                                                                 |                                                                                |                                                          |                                                          |
|                                                               | TEENA                                                    | GER DOSES                                                                     |                                                                                    | DOSE (MREM P                                                                       | ER YEAR INTAKE)                                                                 |                                                                                |                                                          |                                                          |
| PATHWAY                                                       | T E E N A                                                | G E R D O S E S                                                               |                                                                                    | DOSE(MREM P                                                                        | ER YEAR INTAKE)<br>THYROID                                                      | KIDNEY                                                                         | LUNG                                                     | GI-LLI                                                   |
| PATHWAY<br>FISH                                               |                                                          |                                                                               |                                                                                    |                                                                                    |                                                                                 |                                                                                | LUNG<br>7.72E-03                                         | GI-LLI<br>8.87E-04                                       |
|                                                               |                                                          | BONE                                                                          | LIVER                                                                              | TOTAL BODY                                                                         | THYROID                                                                         | KIDNEY                                                                         |                                                          |                                                          |
| FISH                                                          |                                                          | BONE<br>4.42E-02                                                              | LIVER<br>5.82E-02                                                                  | TOTAL BODY<br>2.03E-02                                                             | THYROID 1.92E-05                                                                | KIDNEY<br>1.98E-02                                                             | 7.72E-03                                                 | 8.87E-04                                                 |
| FISH<br>DRINKING                                              | SKIN                                                     | BONE<br>4.42E-02<br>2.06E-04                                                  | LIVER<br>5.82E-02<br>3.86E-04                                                      | TOTAL BODY<br>2.03E-02<br>2.40E-04                                                 | THYROID<br>1.92E-05<br>1.61E-04                                                 | KIDNEY<br>1.98E-02<br>2.36E-04                                                 | 7.72E-03<br>1.92E-04                                     | 8.87E-04<br>1.70E-04                                     |
| FISH<br>DRINKING<br>SHORELINE                                 | SKIN                                                     | BONE<br>4.42E-02<br>2.06E-04<br>3.05E-04                                      | LIVER<br>5.82E-02<br>3.86E-04<br>3.05E-04                                          | TOTAL BODY<br>2.03E-02<br>2.40E-04<br>3.05E-04                                     | THYROID<br>1.92E-05<br>1.61E-04<br>3.05E-04                                     | KIDNEY<br>1.98E-02<br>2.36E-04<br>3.05E-04                                     | 7.72E-03<br>1.92E-04<br>3.05E-04                         | 8.87E-04<br>1.70E-04<br>3.05E-04                         |
| FISH<br>DRINKING<br>SHORELINE<br>SWIMMING                     | SKIN                                                     | BONE 4.42E-02 2.06E-04 3.05E-04 1.07E-06                                      | LIVER 5.82E-02 3.86E-04 3.05E-04 1.07E-06                                          | TOTAL BODY<br>2.03E-02<br>2.40E-04<br>3.05E-04<br>1.07E-06                         | THYROID<br>1.92E-05<br>1.61E-04<br>3.05E-04<br>1.07E-06                         | KIDNEY<br>1.98E-02<br>2.36E-04<br>3.05E-04<br>1.07E-06                         | 7.72E-03<br>1.92E-04<br>3.05E-04<br>1.07E-06             | 8.87E-04<br>1.70E-04<br>3.05E-04<br>1.07E-06             |
| FISH DRINKING SHORELINE SWIMMING BOATING                      | SKIN<br>3.56E-04<br>3.56E-04                             | BONE 4.42E-02 2.06E-04 3.05E-04 1.07E-06 5.34E-07 4.47E-02                    | LIVER 5.82E-02 3.86E-04 3.05E-04 1.07E-06 5.34E-07 5.89E-02                        | TOTAL BODY<br>2.03E-02<br>2.40E-04<br>3.05E-04<br>1.07E-06<br>5.34E-07<br>2.09E-02 | THYROID<br>1.92E-05<br>1.61E-04<br>3.05E-04<br>1.07E-06<br>5.34E-07<br>4.86E-04 | KIDNEY<br>1.98E-02<br>2.36E-04<br>3.05E-04<br>1.07E-06<br>5.34E-07<br>2.03E-02 | 7.72E-03<br>1.92E-04<br>3.05E-04<br>1.07E-06<br>5.34E-07 | 8.87E-04<br>1.70E-04<br>3.05E-04<br>1.07E-06<br>5.34E-07 |
| FISH DRINKING SHORELINE SWIMMING BOATING TOTAL                | SKIN  3.56E-04  3.56E-04  USAGE (KG/YR, HR/YR            | BONE 4.42E-02 2.06E-04 3.05E-04 1.07E-06 5.34E-07 4.47E-02                    | LIVER 5.82E-02 3.86E-04 3.05E-04 1.07E-06 5.34E-07 5.89E-02                        | TOTAL BODY<br>2.03E-02<br>2.40E-04<br>3.05E-04<br>1.07E-06<br>5.34E-07<br>2.09E-02 | THYROID<br>1.92E-05<br>1.61E-04<br>3.05E-04<br>1.07E-06<br>5.34E-07             | KIDNEY<br>1.98E-02<br>2.36E-04<br>3.05E-04<br>1.07E-06<br>5.34E-07<br>2.03E-02 | 7.72E-03<br>1.92E-04<br>3.05E-04<br>1.07E-06<br>5.34E-07 | 8.87E-04<br>1.70E-04<br>3.05E-04<br>1.07E-06<br>5.34E-07 |
| FISH DRINKING SHORELINE SWIMMING BOATING TOTAL                | SKIN  3.56E-04  3.56E-04  USAGE (KG/YR, HR/YR) 16.0      | BONE 4.42E-02 2.06E-04 3.05E-04 1.07E-06 5.34E-07 4.47E-02  DILUTION 7.3      | LIVER 5.82E-02 3.86E-04 3.05E-04 1.07E-06 5.34E-07 5.89E-02  TIME (HR) 24.00       | TOTAL BODY<br>2.03E-02<br>2.40E-04<br>3.05E-04<br>1.07E-06<br>5.34E-07<br>2.09E-02 | THYROID<br>1.92E-05<br>1.61E-04<br>3.05E-04<br>1.07E-06<br>5.34E-07<br>4.86E-04 | KIDNEY<br>1.98E-02<br>2.36E-04<br>3.05E-04<br>1.07E-06<br>5.34E-07<br>2.03E-02 | 7.72E-03<br>1.92E-04<br>3.05E-04<br>1.07E-06<br>5.34E-07 | 8.87E-04<br>1.70E-04<br>3.05E-04<br>1.07E-06<br>5.34E-07 |
| FISH DRINKING SHORELINE SWIMMING BOATING TOTAL  FISH DRINKING | SKIN  3.56E-04  3.56E-04  USAGE (KG/YR, HR/YR 16.0 510.0 | BONE 4.42E-02 2.06E-04 3.05E-04 1.07E-06 5.34E-07 4.47E-02                    | LIVER 5.82E-02 3.86E-04 3.05E-04 1.07E-06 5.34E-07 5.89E-02                        | TOTAL BODY<br>2.03E-02<br>2.40E-04<br>3.05E-04<br>1.07E-06<br>5.34E-07<br>2.09E-02 | THYROID<br>1.92E-05<br>1.61E-04<br>3.05E-04<br>1.07E-06<br>5.34E-07<br>4.86E-04 | KIDNEY<br>1.98E-02<br>2.36E-04<br>3.05E-04<br>1.07E-06<br>5.34E-07<br>2.03E-02 | 7.72E-03<br>1.92E-04<br>3.05E-04<br>1.07E-06<br>5.34E-07 | 8.87E-04<br>1.70E-04<br>3.05E-04<br>1.07E-06<br>5.34E-07 |
| FISH DRINKING SHORELINE SWIMMING BOATING TOTAL                | SKIN  3.56E-04  3.56E-04  USAGE (KG/YR, HR/YR) 16.0      | BONE 4.42E-02 2.06E-04 3.05E-04 1.07E-06 5.34E-07 4.47E-02  DILUTION 7.3 30.8 | LIVER 5.82E-02 3.86E-04 3.05E-04 1.07E-06 5.34E-07 5.89E-02  TIME (HR) 24.00 18.60 | TOTAL BODY<br>2.03E-02<br>2.40E-04<br>3.05E-04<br>1.07E-06<br>5.34E-07<br>2.09E-02 | THYROID<br>1.92E-05<br>1.61E-04<br>3.05E-04<br>1.07E-06<br>5.34E-07<br>4.86E-04 | KIDNEY<br>1.98E-02<br>2.36E-04<br>3.05E-04<br>1.07E-06<br>5.34E-07<br>2.03E-02 | 7.72E-03<br>1.92E-04<br>3.05E-04<br>1.07E-06<br>5.34E-07 | 8.87E-04<br>1.70E-04<br>3.05E-04<br>1.07E-06<br>5.34E-07 |

| С | TT | T | т | - | D | $\sim$ |   | 177 | •   |
|---|----|---|---|---|---|--------|---|-----|-----|
|   | п. |   | 1 | U | υ | u      | - | L   | - 5 |

|           |                    |          |             | DOSE (MREM P | ER YEAR INTAKE) |             |          |          |
|-----------|--------------------|----------|-------------|--------------|-----------------|-------------|----------|----------|
| PATHWAY   | SKIN               | BONE     | LIVER       | TOTAL BODY   | THYROID         | KIDNEY      | LUNG     | GI-LLI   |
| FISH      |                    | 5.56E-02 | 5.27E-02    | 7.84E-03     | 1.59E-05        | 1.72E-02    | 6.21E-03 | 3.61E-04 |
| DRINKING  |                    | 6.06E-04 | 7.82E-04    | 3.84E-04     | 3.09E-04        | 4.59E-04    | 3.66E-04 | 3.17E-04 |
| SHORELINE | 7.43E-05           | 6.37E-05 | 6.37E-05    | 6.37E-05     | 6.37E-05        | 6.37E-05    | 6.37E-05 | 6.37E-05 |
| SWIMMING  |                    | 2.23E-07 | 2.23E-07    | 2.23E-07     | 2.23E-07        | 2.23E-07    | 2.23E-07 | 2.23E-07 |
| BOATING   |                    | 1.12E-07 | 1.12E-07    | 1.12E-07     | 1.12E-07        | 1.12E-07    | 1.12E-07 | 1.12E-07 |
| TOTAL     | 7.43E-05           | 5-63E-02 | 5.36E-02    | 8.29E-03     | 3.89E-04        | 1.77E-02    | 6.64E-03 | 7.42E-04 |
| us        | AGE (KG/YR, HR/YR) | DILUTIO  | ON TIME (HR | ) SHO        | REWIDTH FACTOR= | <b>=0.2</b> |          |          |
| FISH      | 6.9                | 7.3      | 24.00       | ,            |                 |             |          |          |
| DRINKING  | 510.0              | 30.8     | 18.60       |              |                 |             |          |          |
| SHORELINE | 14.0               | 7.3      | 0.00        |              |                 |             |          |          |
| SWIMMING  | 14.0               | 7.3      | 0.00        |              |                 |             |          |          |
| BOATING   | 14.0               | 7.3      | 0.00        |              |                 |             |          |          |
|           |                    |          |             |              |                 |             |          |          |
|           | INFANT             | DOSES    |             |              |                 |             |          |          |
|           |                    |          |             |              | ER YEAR INTAKE) |             |          |          |
| PATHWAY   | SKIN               | BONE     | LIVER       | TOTAL BODY   | THYROID         | KIDNEY      | LUNG     | GI-LLI   |
| FISH      | •                  | 0.00E+00 | 0.00E+00    | 0.00E+00     | 0.00E+00        | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| DRINKING  |                    | 5.92E-04 | 8.97E-04    | 3.51E-04     | 3.03E-04        | 4.60E-04    | 3.69E-04 | 3.08E-04 |
| SHORELINE | 0.00E+00           | 0.00E+00 | 0.00E+00    | 0.00E+00     | 0.00E+00        | 0.00E+00    | 0.00E+00 | 0.00E+00 |
| TOTAL     | 0.00E+00           | 5.92E-04 | 8.97E-04    | 3.51E-04     | 3.03E-04        | 4.60E-04    | 3.69E-04 | 3.08E-04 |
| US        | AGE (KG/YR, HR/YR) | DILUTI   | ON TIME (HR | ) SHO        | REWIDTH FACTOR= | =0.2        |          |          |
| FISH      | 0.0                | 7.3      | 24.00       |              |                 |             |          |          |
| DRINKING  | 330.0              | 30.8     | 18.60       |              |                 |             |          |          |

#### LOCATION IS SITE DISCHG.

|                                                               | ADULT                                                      | DOSES                                                                        |                                                                                                   | DOCE (MDEM D                                                           | ER YEAR INTAKE)                                                                 |                                                                    |                                                          |                                                          |
|---------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| PATHWAY                                                       | SKIN                                                       | BONE                                                                         | LIVER                                                                                             | DOSE(MREM P                                                            | THYROID                                                                         | KIDNEY                                                             | LUNG                                                     | GI-LLI                                                   |
| FISH                                                          | GNII                                                       | 3.01E-01                                                                     | 4.08E-01                                                                                          | 2.68E-01                                                               | 1.82E-04                                                                        | 1.39E-01                                                           | 4.63E-02                                                 | 8.47E-03                                                 |
| DRINKING                                                      |                                                            | 6.50E-03                                                                     | 1.43E-02                                                                                          | 1.18E-02                                                               | 7.04E-03                                                                        | 9.44E-03                                                           | 7.88E-03                                                 | 7.44E-03                                                 |
| SHORELINE                                                     | 4.65E-04                                                   | 3.98E-04                                                                     | 3.98E-04                                                                                          | 3.98E-04                                                               | 3.98E-04                                                                        | 3.98E-04                                                           | 3.98E-04                                                 | 3.98E-04                                                 |
| SWIMMING                                                      | 77.552 5.5                                                 | 1.40E-06                                                                     | 1.40E-06                                                                                          | 1.40E-06                                                               | 1.40E-06                                                                        | 1.40E-06                                                           | 1.40E-06                                                 | 1.40E-06                                                 |
| BOATING                                                       |                                                            | 6.98E-07                                                                     | 6.98E-07                                                                                          | 6.98E-07                                                               | 6.98E-07                                                                        | 6.98E-07                                                           | 6.98E-07                                                 | 6,98E-07                                                 |
| TOTAL                                                         | 4.65E-04                                                   | 3.08E-01                                                                     | 4.23E-01                                                                                          | 2.80E-01                                                               | 7.62E-03                                                                        | 1.48E-01                                                           | 5.46E-02                                                 | 1.63E-02                                                 |
|                                                               |                                                            |                                                                              |                                                                                                   |                                                                        |                                                                                 |                                                                    |                                                          |                                                          |
|                                                               | USAGE (KG/YR, HR/YR)                                       | DILUTION                                                                     | N TIME (HR                                                                                        | .) SHO                                                                 | REWIDTH FACTOR=                                                                 | =0.2                                                               |                                                          |                                                          |
| FISH                                                          | 21.0                                                       | 1.0                                                                          | 24.00                                                                                             |                                                                        |                                                                                 |                                                                    |                                                          |                                                          |
| DRINKING                                                      | 730.0                                                      | 1.0                                                                          | 12.00                                                                                             |                                                                        |                                                                                 |                                                                    |                                                          |                                                          |
| SHORELINE                                                     | 12.0                                                       | 1.0                                                                          | 0.00                                                                                              |                                                                        |                                                                                 |                                                                    |                                                          |                                                          |
| SWIMMING                                                      | 12.0                                                       | 1.0                                                                          | 0.00                                                                                              |                                                                        |                                                                                 |                                                                    |                                                          | •                                                        |
| BOATING                                                       | 12.0                                                       | 1.0                                                                          | 0.00                                                                                              |                                                                        |                                                                                 |                                                                    |                                                          |                                                          |
|                                                               |                                                            |                                                                              |                                                                                                   |                                                                        |                                                                                 |                                                                    |                                                          |                                                          |
|                                                               | TEENAG                                                     | ER DOSES                                                                     |                                                                                                   | _Dose(mrem p                                                           | ER YEAR INTAKE)                                                                 |                                                                    |                                                          |                                                          |
| РАТНЖАУ                                                       | TEENAG                                                     | ER DOSES                                                                     | LIVER                                                                                             | DOSE (MREM P                                                           | EŘ YEAR INTAKE)<br>THYROID                                                      | KIDNEY                                                             | LUNG                                                     | GI-LLI                                                   |
| PATHWAY<br>FISH                                               |                                                            |                                                                              | LIVER<br>4.25E-01                                                                                 | TOTAL BODY<br>1.48E-01                                                 | THYROID 1.40E-04                                                                | KIDNEY<br>1.45E-01                                                 | 5.64E-02                                                 | 6.48E~03                                                 |
|                                                               |                                                            | BONE<br>3.22E-01<br>6.34E-03                                                 | 4.25E-01<br>1.19E-02                                                                              | TOTAL BODY<br>1.48E-01<br>7.39E-03                                     | THYROID<br>1.40E-04<br>4.96E-03                                                 | KIDNEY<br>1.45E-01<br>7.26E-03                                     | 5.64E-02<br>5.90E-03                                     | 6.48E~03<br>5.23E-03                                     |
| FISH                                                          |                                                            | BONE<br>3.22E-01<br>6.34E-03<br>2.22E-03                                     | 4.25E-01<br>1.19E-02<br>2.22E-03                                                                  | TOTAL BODY<br>1.48E-01<br>7.39E-03<br>2.22E-03                         | THYROID<br>1.40E-04<br>4.96E-03<br>2.22E-03                                     | KIDNEY<br>1.45E-01<br>7.26E-03<br>2.22E-03                         | 5.64E-02<br>5.90E-03<br>2.22E-03                         | 6.48E~03<br>5.23E-03<br>2.22E-03                         |
| FISH<br>DRINKING                                              | SKIN                                                       | BONE<br>3.22E-01<br>6.34E-03<br>2.22E-03<br>7.80E-06                         | 4.25E-01<br>1.19E-02<br>2.22E-03<br>7.80E-06                                                      | TOTAL BODY<br>1.48E-01<br>7.39E-03<br>2.22E-03<br>7.80E-06             | THYROID<br>1.40E-04<br>4.96E-03<br>2.22E-03<br>7.80E-06                         | KIDNEY<br>1.45E-01<br>7.26E-03<br>2.22E-03<br>7.80E-06             | 5.64E-02<br>5.90E-03<br>2.22E-03<br>7.80E-06             | 6.48E-03<br>5.23E-03<br>2.22E-03<br>7.80E-06             |
| FISH<br>DRINKING<br>SHORELINE                                 | SKIN                                                       | BONE 3.22E-01 6.34E-03 2.22E-03 7.80E-06 3.90E-06                            | 4.25E-01<br>1.19E-02<br>2.22E-03<br>7.80E-06<br>3.90E-06                                          | TOTAL BODY<br>1.48E-01<br>7.39E-03<br>2.22E-03<br>7.80E-06<br>3.90E-06 | THYROID<br>1.40E-04<br>4.96E-03<br>2.22E-03<br>7.80E-06<br>3.90E-06             | KIDNEY<br>1.45E-01<br>7.26E-03<br>2.22E-03<br>7.80E-06<br>3.90E-06 | 5.64E-02<br>5.90E-03<br>2.22E-03<br>7.80E-06<br>3.90E-06 | 6.48E~03<br>5.23E-03<br>2.22E-03<br>7.80E-06<br>3.90E-06 |
| FISH<br>DRINKING<br>SHORELINE<br>SWIMMING                     | SKIN                                                       | BONE<br>3.22E-01<br>6.34E-03<br>2.22E-03<br>7.80E-06                         | 4.25E-01<br>1.19E-02<br>2.22E-03<br>7.80E-06                                                      | TOTAL BODY<br>1.48E-01<br>7.39E-03<br>2.22E-03<br>7.80E-06             | THYROID<br>1.40E-04<br>4.96E-03<br>2.22E-03<br>7.80E-06                         | KIDNEY<br>1.45E-01<br>7.26E-03<br>2.22E-03<br>7.80E-06             | 5.64E-02<br>5.90E-03<br>2.22E-03<br>7.80E-06             | 6.48E-03<br>5.23E-03<br>2.22E-03<br>7.80E-06             |
| FISH DRINKING SHORELINE SWIMMING BOATING                      | SKIN<br>2.60E-03                                           | BONE 3.22E-01 6.34E-03 2.22E-03 7.80E-06 3.90E-06                            | 4.25E-01<br>1.19E-02<br>2.22E-03<br>7.80E-06<br>3.90E-06<br>4.39E-01                              | TOTAL BODY 1.48E-01 7.39E-03 2.22E-03 7.80E-06 3.90E-06 1.58E-01       | THYROID<br>1.40E-04<br>4.96E-03<br>2.22E-03<br>7.80E-06<br>3.90E-06             | KIDNEY 1.45E-01 7.26E-03 2.22E-03 7.80E-06 3.90E-06 1.54E-01       | 5.64E-02<br>5.90E-03<br>2.22E-03<br>7.80E-06<br>3.90E-06 | 6.48E~03<br>5.23E-03<br>2.22E-03<br>7.80E-06<br>3.90E-06 |
| FISH DRINKING SHORELINE SWIMMING BOATING                      | SKIN 2.60E-03 2.60E-03                                     | BONE 3.22E-01 6.34E-03 2.22E-03 7.80E-06 3.90E-06 3.31E-01                   | 4.25E-01<br>1.19E-02<br>2.22E-03<br>7.80E-06<br>3.90E-06<br>4.39E-01                              | TOTAL BODY 1.48E-01 7.39E-03 2.22E-03 7.80E-06 3.90E-06 1.58E-01       | THYROID<br>1.40E-04<br>4.96E-03<br>2.22E-03<br>7.80E-06<br>3.90E-06<br>7.33E-03 | KIDNEY 1.45E-01 7.26E-03 2.22E-03 7.80E-06 3.90E-06 1.54E-01       | 5.64E-02<br>5.90E-03<br>2.22E-03<br>7.80E-06<br>3.90E-06 | 6.48E~03<br>5.23E-03<br>2.22E-03<br>7.80E-06<br>3.90E-06 |
| FISH<br>DRINKING<br>SHORELINE<br>SWIMMING<br>BOATING<br>TOTAL | SKIN  2.60E-03  2.60E-03  USAGE (KG/YR, HR/YR)             | BONE 3.22E-01 6.34E-03 2.22E-03 7.80E-06 3.90E-06 3.31E-01                   | 4.25E-01<br>1.19E-02<br>2.22E-03<br>7.80E-06<br>3.90E-06<br>4.39E-01                              | TOTAL BODY 1.48E-01 7.39E-03 2.22E-03 7.80E-06 3.90E-06 1.58E-01       | THYROID<br>1.40E-04<br>4.96E-03<br>2.22E-03<br>7.80E-06<br>3.90E-06<br>7.33E-03 | KIDNEY 1.45E-01 7.26E-03 2.22E-03 7.80E-06 3.90E-06 1.54E-01       | 5.64E-02<br>5.90E-03<br>2.22E-03<br>7.80E-06<br>3.90E-06 | 6.48E~03<br>5.23E-03<br>2.22E-03<br>7.80E-06<br>3.90E-06 |
| FISH<br>DRINKING<br>SHORELINE<br>SWIMMING<br>BOATING<br>TOTAL | SKIN  2.60E-03  2.60E-03  USAGE (KG/YR,HR/YR) 16.0         | BONE 3.22E-01 6.34E-03 2.22E-03 7.80E-06 3.90E-06 3.31E-01  DILUTION 1.0     | 4.25E-01<br>1.19E-02<br>2.22E-03<br>7.80E-06<br>3.90E-06<br>4.39E-01                              | TOTAL BODY 1.48E-01 7.39E-03 2.22E-03 7.80E-06 3.90E-06 1.58E-01       | THYROID<br>1.40E-04<br>4.96E-03<br>2.22E-03<br>7.80E-06<br>3.90E-06<br>7.33E-03 | KIDNEY 1.45E-01 7.26E-03 2.22E-03 7.80E-06 3.90E-06 1.54E-01       | 5.64E-02<br>5.90E-03<br>2.22E-03<br>7.80E-06<br>3.90E-06 | 6.48E~03<br>5.23E-03<br>2.22E-03<br>7.80E-06<br>3.90E-06 |
| FISH DRINKING SHORELINE SWIMMING BOATING TOTAL  FISH DRINKING | SKIN  2.60E-03  2.60E-03  USAGE (KG/YR,HR/YR)  16.0  510.0 | BONE 3.22E-01 6.34E-03 2.22E-03 7.80E-06 3.90E-06 3.31E-01  DILUTION 1.0 1.0 | 4.25E-01<br>1.19E-02<br>2.22E-03<br>7.80E-06<br>3.90E-06<br>4.39E-01<br>TIME(HR<br>24.00<br>12.00 | TOTAL BODY 1.48E-01 7.39E-03 2.22E-03 7.80E-06 3.90E-06 1.58E-01       | THYROID<br>1.40E-04<br>4.96E-03<br>2.22E-03<br>7.80E-06<br>3.90E-06<br>7.33E-03 | KIDNEY 1.45E-01 7.26E-03 2.22E-03 7.80E-06 3.90E-06 1.54E-01       | 5.64E-02<br>5.90E-03<br>2.22E-03<br>7.80E-06<br>3.90E-06 | 6.48E~03<br>5.23E-03<br>2.22E-03<br>7.80E-06<br>3.90E-06 |

| ~ | TT | T  | + | • | _ | $\sim$ | ~ | 173 | • |
|---|----|----|---|---|---|--------|---|-----|---|
| Ç | л  | Τ. | ш | υ | D | v      | 0 | Ľ   | 0 |

|           | Cuip               | 00363    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                 |              |          |          |
|-----------|--------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------|--------------|----------|----------|
|           |                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DOSE (MREM F | PER YEAR INTAKE | _            |          |          |
| PATHWAY   | SKIN               | BONE     | LIVER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TOTAL BODY   | THYROID         | KIDNEY       | LUNG     | GI-LLI   |
| FISH      |                    | 4.06E-01 | 3.85E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.72E-02     | 1.16E-04        | 1.25E-01     | 4.53E-02 | 2.64E-03 |
| DRINKING  |                    | 1.87E-02 | 2.41E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.18E-02     | 9.52E-03        | 1.41E-02     | 1.13E-02 | 9.76E-03 |
| SHORELINE | 5.42E-04           | 4.65E-04 | 4.65E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.65E-04     | 4.65E-04        | 4.65E-04     | 4.65E-04 | 4.65E-04 |
| SWIMMING  |                    | 1.63E-06 | 1.63E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.63E-06     | 1.63E-06        | 1.63E-06     | 1.63E-06 | 1.63E-06 |
| BOATING   |                    | 8.15E-07 | 8.15E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.15E-07     | 8.15E-07        | 8.15E-07     | 8.15E-07 | 8.15E-07 |
| TOTAL     | 5.42E-04           | 4.25E-01 | 4.10E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.95E-02     | 1.01E-02        | 1.40E-01     | 5.71E-02 | 1.29E-02 |
|           | USAGE (KG/YR,HR/YE | e) Dilut | ION TIME (HI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | o), dhu      | DREWIDTH FACTOR | -n 2         |          |          |
| FISH      | 6.9                | 1.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N) BIIC      | MENTOLD ENCION- | -0.2         |          |          |
| DRINKING  | 510.0              | 1.1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                 |              |          |          |
| SHORELINE | 14.0               | 1.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                 |              |          |          |
| SWIMMING  | 14.0               | 1.4      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                 |              |          |          |
| BOATING   | 14.0               | 1.0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                 |              |          |          |
| BOATING   | 14.0               | 1.       | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                 |              |          |          |
|           | INFAN              | T DOSES  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                 |              |          |          |
|           |                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DOSE (MREM E | ER YEAR INTAKE  | )            |          |          |
| PATHWAY   | SKIN               | BONE     | LIVER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TOTAL BODY   | THYROID         | KIDNEY       | LUNG     | GI-LLI   |
| FISH      |                    | 0.00E+00 | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00     | 0.00E+00        | 0.00E+00     | 0.00E+00 | 0.00E+00 |
| DRINKING  |                    | 1.82E-02 | 2.76E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.08E-02     | 9.34E-03        | 1.42E-02     | 1.14E-02 | 9.49E-03 |
| SHORELINE | 0.00E+00           | 0.00E+00 | 0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00E+00     | 0.00E+00        | 0.00E+00     | 0.00E+00 | 0.00E+00 |
| TOTAL     | 0.00E+00           | 1.82E-02 | 2.76E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.08E-02     | 9.34E-03        | 1.42E-02     | 1.14E-02 | 9.49E-03 |
|           |                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                 |              |          |          |
|           | USAGE (KG/YR, HR/Y | R) DILUT | ION TIME (H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R) SHO       | REWIDTH FACTOR  | <b>=</b> 0.2 |          |          |
| FISH      | 0.0                | 1.1      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                 |              |          |          |
| DRINKING  | 330.0              | 1.       | and the second s |              |                 |              |          |          |
|           |                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                 |              |          |          |

#### \* \* \* FISH CONSUMPTION POPULATION DOSES \* \* \* \*

|            |                    |                         |          | P.         | ERSON-REM    |            |            |            |                     |
|------------|--------------------|-------------------------|----------|------------|--------------|------------|------------|------------|---------------------|
|            | _SPORT HARVEST_    |                         |          |            |              |            |            |            |                     |
|            |                    | -                       |          |            | DOS          | E (PERSON  | -REM)      |            |                     |
| PATHWAY    | AGE GROUP          | USAGE                   | BONE     | LIVER      | TOTAL BODY   | THYROID    | KIDNEY     | LUNG       | GI-LLI              |
| FISH       | ADULT              |                         |          |            | 1.06E-01     |            |            |            |                     |
|            | TEENAGER           | 7.12E+03                | 1.96E-02 | 2.59E-02   | 9.04E-03     | 8.52E-06   | 8.80E-03   | 3.43E-03   | 3.94E-04            |
| FISH       | CHILD<br>TOTAL     | 4.93É+03                | 3.97E-02 | 3.76E-02   | 5.60E-03     | 1.13E-05   | 1.23E-02   | 4.43E-03   | 2.58E-04            |
| FISH       | TOTAL.             | 7.30E+04                | 1.79E-01 | 2.26E-01   | 1.21E-01     | 9.22E-05   | 7.61E-02   | 2.63E-02   | 4.02E-03            |
| LOCATI     |                    | UTION CAT<br>0E+00 7.30 |          |            | UDES FOOD F  | ROCESSING  | TIME OF 1. | .68E+02 HR | POPULATION=1.24E+04 |
| AVERAGE IN | NDIVIDUAL CONSU    | MPTION (KG/             | YR) ADU  | LT=6.90E+  | 00 TEEN      | =5.20E+00  | CHILD=     | =2.20E+00  |                     |
|            |                    |                         |          |            |              |            |            |            |                     |
|            |                    |                         | * * * F  | TISH CONSU | MPTION POPU  | LATION DOS | SES * *    | ×          |                     |
|            |                    |                         |          |            | ERSON-REM    |            |            |            |                     |
|            | _COMMERCIAL HAR    | VEST                    |          |            |              |            |            |            |                     |
|            |                    | -                       |          | ·          | DOS          | E (PERSON- | -REM)      |            |                     |
|            | AGE GROUP          | USAGE                   | BONE     | LIVER      | TOTAL BODY   | THYROID    | KIDNEY     | LUNG       | GI-LLI              |
| FISH       | ADULT              | 4.18E+06                | 1.36E-02 | 1.85E-02   | 1.21E-02     | 8.23E-06   | 6.26E-03   | 2.09E-03   | 3.83E-04            |
| FISH       | TEENAGER           | 4.88E+05                | 2.23E-03 | 2.95E-03   | 1.03E-03     | 9.69E-07   | 1.00E-03   | 3.91E-04   | 4.49E-05            |
| FISH       | CHILD<br>TOTAL     | 3.38E+05                | 4.52E-03 | 4.28E-03   | 6.37E-04     | 1.29E-06   | 1.39E-03   | 5.04E-04   | 2.93E-05            |
| FISH       | TOTAL              | 5.01E+06                | 2.04E-02 | 2.57E-02   | 1.38E-02     | 1.05E-05   | 8.66E-03   | 2.99E-03   | 4.57E-04            |
| LOCATI     |                    | UTION CAT<br>0E+00 7.30 |          |            | udes food f  | ROCESSING  | TIME OF 2. | .40E+02 HR | POPULATION=8.53E+05 |
| AVERAGE IN | NDIVIDUAL CONSU    | MPTION (KG/             | YR) ADU  | JLT=6.90E+ | 00 TEEN      | =5.20E+00  | CHILD=     | =2.20E+00  |                     |
|            | NEPA DOSES         |                         |          |            |              |            |            |            |                     |
|            | AL NEPA DOSE IN    |                         | T CATCH  |            |              |            |            |            |                     |
|            |                    |                         |          |            | <b>-</b> DOS |            |            |            |                     |
| PATHWAY    | AGE GROUP<br>ADULT | USAGE                   | BONE     | LIVER      | TOTAL BODY   | THYROID    | KIDNEY     | LUNG       | GI-LLI              |
| FISH       | ADULT              | 1.22E+05                | 2.39E-01 | 3.24E-01   | 2.13E-01     | 1.45E-04   | 1.10E-01   | 3.68E-02   | 6.73E-03            |
| FISH       | TEENAGER           | 1.42E+04                | 3.93E-02 | 5.18E-02   | 1.81E-02     | 1.70E-05   | 1.76E-02   | 6.87E-03   | 7.89E-04            |
| FISH       | CHILD              | 9.85E+03                | 7.94E-02 | 7.53E-02   | 1.12E-02     | 2.26E-05   | 2.45E-02   | 8.86E-03   | 5.15E-04            |
|            |                    |                         |          |            |              |            |            | - 0 00     |                     |

1.46E+05 3.58E-01 4.52E-01 2.42E-01 1.84E-04 1.52E-01 5.25E-02 8.04E-03

TOTAL

FISH

#### \* \* \* POPULATION WATER CONSUMPTION DOSES \* \* \*

SUPPLIER-OMAHA

|          |           | -        |          |          | DOSI       | E (PERSON- | REM)     |          |          |
|----------|-----------|----------|----------|----------|------------|------------|----------|----------|----------|
| PATHWAY  | AGE GROUP | USAGE    | BONE     | LIVER    | TOTAL BODY | THYROID    | KIDNEY   | LUNG     | GI-LLI   |
| DRINKING | ADULT     | 1.39E+08 | 4.02E-02 | 8.83E-02 | 7.27E-02   | 4.35E-02   | 5.83E-02 | 4.87E-02 | 4.60E-02 |
| DRINKING | TEENAGER  | 1.51E+07 | 6.11E-03 | 1.14E-02 | 7.12E-03   | 4.77E-03   | 6.99E-03 | 5.68E-03 | 5.04E-03 |
| DRINKING | CHILD     | 2.48E+07 | 2.94E-02 | 3.80E-02 | 1.87E-02   | 1.50E-02   | 2.23E-02 | 1.78E-02 | 1.54E-02 |
| DRINKING | TOTAL     | 1.79E+08 | 7.57E-02 | 1.38E-01 | 9.84E-02   | 6.33E-02   | 8.76E-02 | 7.21E-02 | 6.64E-02 |

POPULATION=5.29E+05 DILUTION=3.08E+01 TRANSIT TIME=3.06E+01 HR (INCLUDING 24 HR FOR TREATMENT FACILITY)

AVERAGE INDIVIDUAL CONSUMPTION (L/YR) ADULT=3.70E+02 TEEN=2.60E+02 CHILD=2.60E+02

SUPPLIER-COUNCIL BLUFFS

|          |           | -        |          |          | DOSE       | E (PERSON- | REM)     |          |          |
|----------|-----------|----------|----------|----------|------------|------------|----------|----------|----------|
| PATHWAY  | AGE GROUP | USAGE    | BONE     | LIVER    | TOTAL BODY | THYROID    | KIDNEY   | LUNG     | GI-LLI   |
| DRINKING | ADULT     | 2.29E+07 | 6.50E-03 | 1.43E-02 | 1.18E-02   | 7.04E-03   | 9.44E-03 | 7.88E-03 | 7.44E-03 |
| DRINKING | TEENAGER  | 2.49E+06 | 9.88E-04 | 1.85E-03 | 1.15E-03   | 7.72E-04   | 1.13E-03 | 9.19E-04 | 8.15E-04 |
| DRINKING | CHILD     | 4.07E+06 | 4.76E-03 | 6.15E-03 | 3.02E-03   | 2.43E-03   | 3.61E-03 | 2.88E-03 | 2.49E-03 |
| DRINKING | TOTAL     | 2.94E+07 | 1.22E-02 | 2.23E-02 | 1.59E-02   | 1.02E-02   | 1.42E-02 | 1 17E-02 | 1.07E-02 |

POPULATION=8.70E+04 DILUTION=3.13E+01 TRANSIT TIME=3.10E+01 HR (INCLUDING 24 HR FOR TREATMENT FACILITY)

AVERAGE INDIVIDUAL CONSUMPTION (L/YR) ADULT=3.70E+02 TEEN=2.60E+02 CHILD=2.60E+02

----CUMULATIVE TOTAL----

PATHWAY AGE GROUP USAGE BONE LIVER TOTAL BODY THYROID KIDNEY LUNG GI-LLI DRINKING CUMUL TOTAL 2.08E+08 8.79E-02 1.60E-01 1.14E-01 7.35E-02 1.02E-01 8.38E-02 7.71E-02

HYDROSPHERE TRITIUM DOSE

AVERAGE INDIVIDUAL WATER CONSUMPTION = 3.0 L/DAY

PATHWAY AGE GROUP USAGE BONE LIVER TOTAL BODY THYROID KIDNEY LUNG GI-LLI WATER TOTAL 2.86E+11 0.00E+00 1.68E-05 1.68E-05 1.68E-05 1.68E-05 1.68E-05 1.68E-05

#### \* \* \* RECREATION POPULATION DOSES \* \* \*

LOCATION- DOWN STREAM SWIMMING

DILUTION= 7.30E+00 TRANSIT TIME= 6.70E-01 HR

SWF=0.2

DOSE (PERSON-REM)

PATHWAY AGE GROUP SHORELINE TOTAL POPUL USAGE 4.10E+07 SKIN TOTAL BODY 2.18E-01 1.86E-01

THYROID 1.86E-01

LOCATION- DOWN STREAM SWIMMING

DILUTION= 7.30E+00

TRANSIT TIME= 6.70E-01 HR

DOSE (PERSON-REM)

PATHWAY

AGE GROUP

USAGE

SKIN TOTAL BODY

THYROID

SWIMMING

TOTAL POPUL

4.10E+07

6.54E-04

6.54E-04

LOCATION- DOWN STREAM BOATING

DILUTION= 7.30E+00

TRANSIT TIME= 6.70E-01 HR

PATHWAY

AGE GROUP

USAGE

SKIN TOTAL BODY

DOSE (PERSON-REM)

BOATING TOTAL POPUL

4.10E+07

3.27E-04

THYROID
3.27E-04

\* \* \* DOSE TO BIOTA \* \* \*

MRADS PER YEAR

BIOTA

DILUTION= 1.00E+00

TRANSIT TIME= 0.00E+00 HR

INTERNAL EXTERNAL TOTAL 8.96E-01 1.45E+00 2.35E+00 FISH 2.91E+00 3.40E+00 INVERTEBRATE 4.89E-01 1.02E-03 2.52E-01 ALGAE 2.51E-01 MUSKRAT 9.70E-01 5.90E+00 4.92E+00 7.27E-01 2.57E+00 1.85E+00 RACCOON HERON 2.83E+01 9.70E-01 2.93E+01 DUCK 4.50E+00 1.45E+00 5.96E+00

#### **SECTION VI**

RADIOACTIVE EFFLUENT RELEASES - SOLID RADIOACTIVE WASTE Technical Specifications 5.9.4.a

January 1, 2017 - December 31, 2017

## VI. RADIOACTIVE EFFLUENT RELEASE – SOLID RADIOACTIVE WASTE EFFLUENT AND WASTE DISPOSAL REPORT

January 1, 2017 through December 31, 2017

#### SOLID WASTE AND IRRADIATED FUEL SHIPMENTS

#### A. SOLID WASTE SHIPPED OFFSITE FOR BURIAL OR DISPOSAL (NOT IRRADIATED)

|                                               |                         | Month     | Number of | Volume    | Curie    | Est. Total |
|-----------------------------------------------|-------------------------|-----------|-----------|-----------|----------|------------|
| <u>1.                                    </u> | Type of Waste           | Shipped   | Shipments | Cu. Meter | Content  | % Error    |
| a.                                            | Spent resins, filter    | January   | 0         | 0         | 0        | N/A        |
|                                               | sludges, evaporator     | February  | 0         | Ò         | 0        | N/A        |
|                                               | bottoms, etc.           | March     | 0         | 0         | 0        | N/A        |
|                                               |                         | April     | 0         | 0         | 0        | N/A        |
|                                               |                         | May       | 0         | 0         | 0        | N/A        |
|                                               |                         | June      | 0         | 0         | 0        | N/A        |
|                                               |                         | July      | 0         | 0         | 0        | N/A        |
|                                               |                         | August    | 0         | 0         | 0        | N/A        |
|                                               |                         | September | 0         | 0         | 0        | N/A        |
|                                               |                         | October   | 4         | 11.32     | 94.09    | 20         |
|                                               |                         | November  | 1         | 2.83      | 118      | 20         |
|                                               |                         | December  | 0         | 0         | 0        | N/A        |
| Tota                                          | ai                      | (Type a)  | 5         | 14.15     | 212.09   | 20         |
| b.                                            | Dry compressible,       | January   | 0         | 0         | 0        | N/A        |
|                                               | contaminated equipment, |           | 1         | 19.74     | 2.79E-03 | 20         |
|                                               | etc.                    | March     | 1         | 54.99     | 1.46E-02 | 20         |
|                                               |                         | April     | 1         | 31.80     | 3.23E-02 | 20         |
|                                               |                         | May       | 0         | 0         | 0        | N/A        |
|                                               |                         | June      | 0         | 0         | 0        | N/A        |
|                                               |                         | July      | 1         | 5.26      | 2.95E-03 | 20         |
|                                               |                         | August    | 2         | 91.37     | 1.54E-02 | 20         |
|                                               |                         | September | 0         | 0         | 0        | N/A        |
|                                               |                         | October   | 0         | 0         | 0        | N/A        |
|                                               |                         | November  | 0         | 0         | 0        | N/A        |
|                                               |                         | December  | 1         | 36.25     | 1.13E-02 | 20         |
| Tota                                          | le                      | (Type b)  | 7         | 239.41    | 7.93E-02 | 20         |

## VI. RADIOACTIVE EFFLUENT RELEASE – SOLID RADIOACTIVE WASTE EFFLUENT AND WASTE DISPOSAL REPORT

#### (Continued)

| <u>1.</u> | Type of Waste         | Month<br>Shipped | Number of<br>Shipments | Volume<br>Cu. Meter | Curie<br>Content | Est. Total<br>% Error |
|-----------|-----------------------|------------------|------------------------|---------------------|------------------|-----------------------|
| c.        | Irradiated components | January          | 0                      | 0                   | 0                | N/A                   |
|           | and other categories. | February         | 0                      | 0                   | 0                | N/A                   |
|           | •                     | March            | 0                      | 0                   | 0                | N/A                   |
|           |                       | <b>A</b> pril    | 0                      | 0                   | 0                | N/A                   |
|           |                       | May              | 0                      | 0                   | 0                | N/A                   |
|           |                       | June             | 0                      | 0                   | 0                | N/A                   |
|           |                       | July             | 0                      | 0                   | 0                | N/A                   |
|           |                       | August           | 0                      | 0                   | 0                | N/A                   |
|           |                       | September        | 0                      | 0                   | Ö                | N/A                   |
|           |                       | October          | 0                      | 0                   | 0                | N/A                   |
|           |                       | November         | 0                      | 0                   | 0                | N/A                   |
|           |                       | December         | 0                      | 0                   | 0                | N/A                   |
| Tota      | al                    | (Type c)         | 0                      | 0                   | 0                | Ň/A                   |
| d.        | Other                 | January          | 0                      | 0                   | 0                | N/A                   |
|           |                       | February         | 0                      | 0                   | 0                | N/A                   |
|           |                       | March            | 0                      | 0                   | 0                | N/A                   |
|           |                       | April            | 0                      | 0                   | .0               | N/A                   |
|           |                       | May              | 0                      | 0                   | Ŏ                | N/A                   |
|           |                       | June             | 0                      | Ö                   | Ö                | N/A                   |
|           |                       | July             | 1                      | 6.68                | 8.11E-03         | 20                    |
|           |                       | August           | 0                      | 0                   | 0                | N/A                   |
|           |                       | September        | Ö                      | Ö                   | Ö                | N/A                   |
|           |                       | October          | 0                      | 0                   | Ŏ                | N/A                   |
|           |                       | November         | ŏ                      | Ŏ                   | 0                | N/A                   |
|           |                       | December         | 0                      | Ö                   | 0                | N/A                   |
| Tota      | al                    | (Type d)         | 1                      | 6.68                | 8.11E-03         | 20                    |

#### RADIOACTIVE EFFLUENT RELEASES-SOLID RADIOACTIVE

(Continued)

#### B. ESTIMATE OF MAJOR NUCLIDE COMPOSITION (By Type of Waste)

#### 1. Percentage of Curies from Represented Isotopes

Ш.

|    | Isotope      | Percent           | Curies                     |   |
|----|--------------|-------------------|----------------------------|---|
| a. | Cs-137       | 29                | 6.05E+01                   |   |
|    | Ni-63        | 26                | 5.61E+01                   |   |
|    | Co-58        | 26                | 5.42E+01                   |   |
|    | Co-60        | 12                | 2.43E+01                   |   |
|    | Fe-55        | 5                 | 1.08E+01                   |   |
|    | All Other Nu | clides Constitute | Less than 1% Each for Type | а |
|    |              |                   |                            |   |

b. Cs-137 92 7.29E+01 Co-60 5 4.23E+00 Cs-134 1 6.58E-01 Fe-55 1 6.27E-01

All Other Nuclides Constitute Less than 1% Each for Type b

| C. | N/A             | N/A     | N/A                  |
|----|-----------------|---------|----------------------|
| d. | Cs-137<br>Co-60 | 92<br>5 | 7.45E+00<br>4.32E-01 |
|    | Cs-134          | 1       | 6.72E-02             |
|    | Fe-55           | 1       | 6.40E-02             |
|    |                 |         |                      |

All Other Nuclides Constitute Less than 1% Each for Type d

#### C. SOLID WASTE (DISPOSITION)

| Number of Shipments | Transportation Mode | Destination                      |
|---------------------|---------------------|----------------------------------|
| 10                  | Sole Use Vehicle    | Energy Solutions, Bear Creek, TN |
| 2                   | Sole Use Vehicle    | Erwin Resin Solutions, Erwin, TN |

#### D. IRRADIATED FUEL SHIPMENTS (DISPOSITION)

| Number of Shipments | Transportation Mode | Destination |
|---------------------|---------------------|-------------|
| N/A                 | N/A                 | N/A         |

#### **SECTION VII**

#### **ATTACHMENT 1**

ODCM and PCP revisions for the period January 1, 2017 through December 31, 2017 in accordance with Technical Specification 5.17.d and 5.18.d, the radioactive effluent release report shall include any revisions to the Offsite Dose Calculation Manual (ODCM) and the Process Control Program (PCP).

| <br>2  | revisions were made to the Offsite Dose Calculation Manual (ODCM) |
|--------|-------------------------------------------------------------------|
| <br>_1 | revision was made to the Process Control Program (PCP).           |

January 1, 2017 - December 31, 2017

# RP-5101 Revision 0 PROCESS CONTROL PROGRAM FOR RADIOACTIVE WASTES

#### 1.0 PURPOSE AND SCOPE

- 1.1 The purpose of the Process Control Program (PCP) is to:
  - 1.1.1 Establish the process and boundary conditions for the preparation of specific procedures for processing, sampling, analysis, packaging, storage, and shipment of solid radwaste in accordance with local, state, and federal requirements.
  - 1.1.2 Establish parameters which will provide reasonable assurance that all Low Level Radioactive Wastes (LLRW), processed by the in-plant waste process systems on-site OR by on-site vendor supplied waste processing systems, meet the acceptance criteria to a Licensed Burial Facility, as required by 10CFR Part 20, 10CFR Part 61, 10CFR Part 71, 49CFR Parts 171-172, "Technical Position on Waste Form (Revision 1)" [1/91], "Low-Level Waste Licensing Branch Technical Position on Radioactive Waste Classification" [5/83], and the Station Technical Specifications, as applicable.
  - 1.1.3 Provide reasonable assurance that waste placed in "on-site storage" meets the requirements as addressed within the Safety Analysis Reports for the low level radwaste storage facilities for dry and/or processed wet waste.

#### 2.0 **DEFINITIONS**

- 2.1 <u>Blending</u>: The mixing of LLRW with different concentrations of radionuclides, typically in an effort to create a relatively homogeneous mixture for disposal.
- 2.2 <u>Classification Controlling Nuclides</u>: One or more nuclides, listed in Table 1 or Table 2 of 10CFR61.55, whose concentration is the specific basis for the classification of the waste container. This could be a single nuclide or multiple nuclides that make up >50% of the sum of the fractions.
- 2.3 <u>Compaction:</u> When dry wastes such as paper, wood, plastic, cardboard, incinerator ash, and etc. are volume reduced through the use of a compactor.
- 2.4 <u>Concentration Averaging</u>: The averaging of the radionuclide concentrations for specific wastes or mixture of waste over the volume or weight of the waste.
- 2.5 <u>Dewatering:</u> The process of removing fluids from liquid waste streams to produce a waste form that meets the requirements of 10CFR Part 61 and applicable burial site criteria, ≤0.5% by volume when the waste is packaged to an "unstable" state, or ≤1% by volume when the waste is packaged to a "stable" form.
- 2.6 <u>Encapsulation</u>: Encapsulation is the surrounding of a radioactive source or component with a nonradioactive material. Encapsulation involves a radioactive core surrounded by a non-radioactive matrix.

- 2.7 <u>High Integrity Container (HIC):</u> A disposable container that is approved to the Requirements of 10CFR61. The use of HIC's is an alternative to solidification or encapsulation in a steel container to meet burial stability. HIC's are used to package dewatered liquid wastes, (e.g. filter cartridges, filter media, resin, sludges, etc), or dry active waste.
- 2.8 <u>Homogeneous Waste:</u> Waste in which concentrations of radionuclides of concern are likely to approach uniformity in the context of reasonable foreseeable intruder scenarios (This is because hot spots are a concern with respect to protection of an individual who may inadvertently intrude into the burial site).
- 2.9 <u>Incineration, RVR, and/or Glass Vitrification of Liquid or Solid:</u> Dry or wet waste processed via incineration and/or thermal processing where the volume is reduced by thermal means meets 10CFR61 requirements.
- 2.10 <u>Liquid Waste Processing Systems</u>: In-plant or vendor supplied processing systems consisting of equipment utilized for evaporation, filtration, demineralization, dewatering, compression dewatering, solidification, or reverse osmosis (RO) for the treatment of liquid wastes (such as Floor Drains, Chemical Drains and Equipment Drain inputs).
- 2.11 <u>Mixable Waste</u>: Waste that is amenable to physical mixing to create relatively uniform radionuclide concentrations.
- 2.12 <u>Nuclides of Concern</u>: A nuclide in the waste in concentrations greater than 1% of the concentration of that nuclide listed in Table 1 of 10CFR61.55 or 1% of the applicable class-dependent concentration of that nuclide in Table 2 of 10CFR61.55, Column 2 or 3.
- 2.13 Process Control Program (PCP): The program which contains the current formulas, sampling, analysis, tests, and determinations to be made to ensure that processing and packaging of solid radioactive waste based on demonstrated processing of actual or simulated wet solid wastes will be accomplished in such a way as to assure the waste meets the <u>stabilization criteria</u> specified in 10CFR Parts 20, 61 and 71, state regulations, and burial site requirements.
- 2.14 <u>Solidification:</u> Liquid waste processed to either an unstable or stable form per 10CFR61 requirements. Waste solidified does not have to meet the 300-year free standing monolith criteria. Approved formulas, samples and tests do not have to meet NRC approval for wastes solidified in a container meeting stability criteria (e.g. High Integrity Container).

- 2.15 <u>Solidification Media:</u> An approved media (e.g. Barnwell vinyl ester styrene, cement, bitumen) when waste containing nuclides with greater than 5-year half-lives is solidified in a container with activity greater than 1 micro curie/cc. Waste solidified in a HIC is approved by the commission meeting the 10CFR61 stabilization criteria, including 1% free standing liquids by volume when the waste is packaged to a "stable" form and ≤ 0.5% when waste is packaged to an "unstable" form. The formulas, sampling, analysis, and test do not require NRC approval, because the HIC meets the stability criteria.
  - 2.15.1 Solidification to an unstable or stable state is performed by vendors, when applicable. Liquid waste solidified to meet stabilization criteria (10CFR61 and 01-91 Branch Technical Requirements) shall have documentation available that demonstrates that the process is approved by the NRC or disposal facility.
- 2.16 <u>Stabilization:</u> Liquid waste processed to a "stable state" per 10CFR61 Requirements. Established formulas, samples, and tests shall be approved by the NRC in order to meet solidification "stabilization" criteria. This processing method is currently not available, because the NRC recognizes that waste packed in a High Integrity Container meets the 300-year stabilization criteria. In the event that this processing method becomes an acceptable method, then the NRC shall approve the stabilization formulas, samples, tests, etc.
- 2.17 Waste Streams: Consist of but are not limited to
  - 2.17.1 Filter media (powdered, bead resin and fiber),
  - 2.17.2 Filter cartridges.
  - 2.17.3 Contaminated charcoal.
  - 2.17.4 Fuel pool activated hardware.
  - 2.17.5 Oil Dry absorbent material added to a container to absorb liquids
  - 2.17.6 Sump and tank sludges,
  - 2.17.7 High activity filter cartridges,
  - 2.17.8 Concentrated liquids,
  - 2.17.9 Contaminated waste oil,
  - 2.17.10 Dried sewage or wastewater plant waste,
  - 2.17.11 Dry Active Waste (DAW): Waste such as filters, air filters, low activity cartridge filters, paper, wood, glass, plastic, cardboard, hoses, cloth, and metals, etc, which have become contaminated as a consequence of normal operating, housekeeping and maintenance activities.
  - 2.17.12 Other radioactive waste generated from cleanup of inadvertent contamination.

#### 3.0 **RESPONSIBILITIES**

3.1 Implementation of this Process Control Program (PCP) is described in procedures and is the responsibility of the Radiation Protection and Chemistry Departments to implement.

- 4.0 TOOLS AND EQUIPMENT NONE
- 5.0 PRECAUTIONS, PREREQUISITES AND INITIAL CONDITIONS NONE
- 6.0 **PROCEDURE**
- 6.1 <u>Process Control Program Requirements</u>
  - 6.1.1 A change to this PCP (Radioactive Waste Treatment Systems) may be made provided that the change is reported as part of the annual radioactive effluent release report, Regulatory Guide 1.21, and is approved by the Plant Operations Review Committee (PORC).
  - 6.1.2 Changes become effective upon acceptance per station requirements.
  - 6.1.3 A solidification media, approved by the burial site, may be **REQUIRED when** liquid radwaste is solidified to a stable/unstable state.
  - 6.1.4 When processing liquid radwaste to meet solidification stability using a vendor supplied solidification system:
    - A. If the vendor has its own Quality Assurance (QA) Program, then the vendor shall ADHERE to its own QA Program and shall have SUBMITTED its process system topical report to the NRC or agreement state.
    - B. If the vendor does <u>not</u> HAVE its own Quality Assurance Program, then the vendor shall **ADHERE** to an approved Quality Assurance Topical Report standard belonging to the Station or to another approved vendor.
  - 6.1.5 The vendor processing system(s) is/are controlled per the following:
    - A. A commercial vendor supplied processing system(s) may be **USED** for the processing of LLRW streams.
    - B. Vendors that process liquid LLRW at the sites shall **MEET** applicable Quality Assurance Topical Report and Augmented Quality Requirements.
  - 6.1.6 Vendor processing system(s) operated at the site shall be **OPERATED** and **CONTROLLED** in accordance with vendor approved procedures or station procedures based upon vendor approved documents.
  - 6.1.7 All waste streams processed for burial or long term on-site storage shall **MEET** the waste classification and characteristics specified in 10CFR Part 61.55, Part 61.56, the 5-83 Branch Technical Position for waste classification, and the applicable burial site acceptance criteria (for any burial site operating at the time the waste was processed).

#### 6.2 General Waste Processing Requirements

# On-site resin processing involves tank mixing and settling, transferring to the station or vendor processing system via resin water slurry or vacuuming into approved waste containers, and, when applicable, dewatering for burial.

- 6.2.1 Vendor resin beds may be **USED** for decontamination of plant systems, such as, SFP (Spent Fuel Pool), and SDC (Shut Down Cooling). These resins are **then PROCESSED** via the station or vendor processing system.
- 6.2.2 Various drains and sump discharges will be **COLLECTED** in tanks or suitable containers for processing treatment. Water from these tanks may be **SENT** through a filter, demineralizer, concentrator or vendor supplied processing systems.
- 6.2.3 Process waste (e.g. filter media, sludges, resin, etc) will be periodically DISCHARGED to the station or vendor processing system for onsite waste treatment or PACKAGED in containers for shipment to offsite vendor for volume reduction processing.
- 6.2.4 Process water (e.g. chemical, floor drain, equipment drain, etc.) may be **SENT** to either the site waste processing systems or vendor waste processing systems for further filtration, demineralization for plant re-use, or discharge.
- 6.2.5 All dewatering and solidification/stabilization will be **PERFORMED** by either utility site personnel or by on-site vendors **or** will be **PACKAGED** and **SHIPPED** to an off-site vendor low-level radwaste processing facility.
- 6.2.6 Dry Active Waste (DAW) will be **HANDLED and PROCESSED** per the following:
  - A. DAW will be **COLLECTED** and **SURVEYED** and may be **SORTED** for compactable and non-compactable wastes.
  - B. DAW may be packaged in containers to facilitate on-site pre-compaction and/or off-site vendor contract requirements.
  - C. DAW items may be **SURVEYED** for release onsite or offsite when applicable.
  - D. Contaminated filter cartridges will be PLACED into a HIC or will be ENCAPSULATED in an in-situ liner for disposal or SHIPPED to an offsite waste processor in drums, boxes or steel liners per the vendor site criteria for processing and disposal.

- 6.2.7 Filtering devices using pre-coat media may be **USED** for the removal of suspended solids from liquid waste streams. The pre-coat material or cartridges from these devices may be routinely **REMOVED** from the filter vessel and discharged to a Filter Sludge Tank or Liner/HIC. Periodically, the filter sludge may be **DISCHARGED** to the vendor processing system for waste treatment onsite **or PACKAGED** in containers for shipment to offsite vendor for volume reduction processing.
- 6.2.8 Activated hardware stored in the Spent Fuel Pools will be **PROCESSED** periodically using remote handling equipment **and** may then be **PUT** into a container for shipment or storage in the pool or loading the processed activated hardware into the Dry Cask storage system.
- 6.2.9 High Integrity Containers (HIC):
  - A. For disposal at Barnwell, vendors supplying HIC's to the station shall **PROVIDE** a copy of the HIC Certificate of Compliance, which details specific limitations on use of the HIC.
  - B. For disposal at Clive or WCS, vendors supplying HIC's to the station shall **PROVIDE** a copy of the HIC Certificate of Conformance, which details specific limitations on use of the HIC.
  - C. Vendors supplying HIC's to the station shall PROVIDE a handling procedure which establishes guidelines for the utilization of the HIC. These guidelines serve to protect the integrity of the HIC and ensure the HIC is handled in accordance with the requirements of the Certificate of Compliance or Certificate of Conformance.
- 6.2.10 Lubricants and oils contaminated as a consequence of normal operating and maintenance activities may be **PROCESSED** on-site (by incineration, for oils meeting 10CFR20.2004 and applicable state requirements, or by an approved vendor process) or **SHIPPED** offsite (for incineration or other acceptable processing method).
- 6.2.11 Certain waste, including flowable solids from holding pond or oily waste separator, may be disposed of onsite under the provisions of a 10CFR20.2002 permit. Specific requirements associated with the disposal shall be incorporated into station implementing procedures.

- 6.2.12 Concentration averaging may be **PERFORMED** to combine LLRW having different concentrations of radionuclides to form a homogeneous mixture in accordance with the guidance in the NRC's Branch Technical Position on Concentration Averaging and Encapsulation-1995, NRC-2011-0022:
  - A. For homogeneous waste types such as resins and filter media, the concentration of the mixture for classification purposes may be based on either the highest radionuclide concentration in any of the individual waste types contributing to the mixture or the volumetric or weight-averaged nuclide concentrations in the mixture provided that the concentrations of the individual waste type contributors to the mixture are within a factor of 10 of the average concentration of the resulting mixture. (A designed collection of homogeneous waste types (from different sources within a facility) is not considered 'mixing' and the concentration for classification purposes may be the average concentration of the combination).
  - B. For non-homogeneous waste types such as activated metals, cartridge filters or components incorporating radioactivity in their design, the concentration should be determined from the total weight or displaced volume (excluding major void spaces) of the component. Mixtures of components in a disposal container is permissible. Concentration averaging of a mixture of components of similar types can be performed in accordance with the NRC's Branch Technical Position on Concentration Averaging and Encapsulation and any State or Disposal Site specific requirements.
- 6.2.13 Blending may be **PERFORMED** for routine LLRW such as resins and filter media in accordance with the guidance in the NRC's Branch Technical Position on Concentration Averaging and Encapsulation as further clarified in SECY 2010-0043. The concentration of the mixture may be determined based on the total activity of all components in the mixture divided by the total volume or mass of the mixture. Reasonable effort should be made to mix blended LLRW so that activity is evenly distributed.
- 6.2.14 Encapsulation may be **PERFORMED** for routine wastes such as filters, filter cartridges, or sealed sources centered in an encapsulated mass, in accordance with the guidance in the NRC's Branch Technical Position on Concentration Averaging and Encapsulation. Classification may be based on the overall volume of the final solidified mass provided that;
  - A. The minimum solidified volume or mass should be reasonably difficult to move by hand.
  - B. The maximum solidified volume or mass used for determining concentration for any single discrete source should be no more than 0.2 m<sup>3</sup> or 500Kg (typically 55-gallon drum).
  - C. The maximum amount of gamma-emitting radioactivity or radioactive material is <0.02 mrem/hr on the surface of the encapsulation over a 500-year decay period.

- D. The maximum amount of any radionuclide in a single encapsulation, when averaged over the waste and encapsulating media, does not exceed the maximum concentration limits for Class C waste.
- E. Written procedures should be established to ensure that the radiation source(s) is reasonably centered (or distributed) within the encapsulating media.
- F. All other disposal facility requirements for encapsulated material are met.

## 6.3 Burial Site Requirements

6.3.1 Waste sent directly to burial shall **COMPLY** with the applicable parts of 49CFR171-172, 10CFR61, 10CFR71, and the acceptance criteria for the applicable burial site.

## 6.4 Shipping and Inspection Requirements

- 6.4.1 All shipping/storage containers shall be **INSPECTED**, as required by station procedures, for compliance with applicable requirements (Department of Transportation (DOT), Nuclear Regulatory Commission (NRC), station, on-site storage, and/or burial site requirements) prior to use.
- 6.4.2 Containers of solidified liquid waste shall be **INSPECTED** for solidification quality and/or dewatering requirements per the burial site, offsite vendor acceptance, or station acceptance criteria, as applicable.
- 6.4.3 Shipments sent to an off-site processor shall be **INSPECTED** to ensure that the applicable processor's waste acceptance criteria are being met.
- 6.4.4 Shipments sent for off-site storage shall **MEET** the storage site's waste acceptance criteria.

## 6.5 Inspection and Corrective Action

- 6.5.1 Inspection results that indicate non-compliance with applicable NRC, State, vendor, or site requirements shall be **IDENTIFIED** and **TRACKED** through the Corrective Action Program.
- 6.5.2 Administrative controls for preventing unsatisfactory waste forms from being released for shipment are described in applicable station procedures. If the provisions of the Process Control Program are not satisfied, then SUSPEND shipments of defectively packaged radioactive waste from the site.
- 6.5.3 If freestanding water or solidification <u>not</u> meeting program requirements is observed, **then** samples of the particular series of batches shall be **TAKEN** to determine the cause. Additional samples shall be **TAKEN**, as warranted, to ensure that <u>no</u> freestanding water is present and solidification requirements are maintained.

## 6.6 Procedure and Process Reviews

- 6.6.1 The FCS Process Control Program and subsequent changes (other than editorial/minor changes) shall be **REVIEWED and APPROVED** in accordance with the station procedures and manuals (as applicable), the Technical Specifications (Tech Spec), and LS-FC-106. Changes to Controlled Documents, DSAR, Tech Spec and applicable procedures and manuals are controlled by the provisions of 10CFR 50.59.
- Any changes to the PCP shall be reviewed to determine if reportability is required in the Annual Radiological Effluent Release Report (ARERR). RP Supervision and Chemistry Supervision shall ensure correct information is **SUBMITTED** to the ODCM program owner prior to submittal of the ARERR.
- 6.6.3 Procedures shall be IMPLEMENTED as follows:
  - A. Station processes or other vendor waste processing/operating procedures shall be technically reviewed and approved per CC-FC-204, Control of Vendor Equipment Manuals and CC-FC-204-1001, Control of Vendor Equipment Manuals Guideline.
  - B. Procedures related to waste manifests, shipment inspections, and container activity determinations are **CONTROLLED** by Radiation Protection Standard Procedures (RP-6000 Series).
  - C. Site waste processing program **IS CONTROLLED** by Radiation Protection and Chemistry procedures.
  - D. Liquid processed by vendor equipment shall be **PERFORMED** in accordance with vendor procedures.
  - E. The dewatering procedures implemented by Vendor for the purpose of compliance to the Process Control Program SHALL BE REVIEWED and APPROVED in accordance with LS-FC-106, Plant Operations Review Committee (PORC).

## 6.7 <u>Waste Types, Point of Generation, and Processing Method</u>

6.7.1 Methods of processing and individual vendors may **CHANGE** due to changing financial and regulatory options. The table below is a representative sample. It is <u>not</u> intended be all encompassing.

| WASTE<br>STREAM        | POINTS OF GENERATION                                                                                                                                  | AVAILABLE WASTE PROCESSING METHODS                                                                                                             |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Bead Resin             | Systems - Fuel Pool, Equipment Drain, Chemical and Volume Control Systems, Floor Drain, Vendor Supplied Processing Systems, and Portable Demin System | Dewatering, solidification to an unstable/stable state Free Release to a Land Fill                                                             |
| Powdered<br>Resin      | Systems - (Condensate System,<br>Floor Drain/Equipment Drain<br>filtration, Fuel Pool)                                                                | Dewatering, solidification to an unstable/stable state                                                                                         |
| Concentrated<br>Waste  | Waste generated from Site Evaporators resulting typically from the Floor Drain and Equipment Drain Systems                                            | Solidification to an unstable/stable state                                                                                                     |
| Sludge                 | Sedimentation resulting from various sumps, condensers and tanks                                                                                      | Dewatering, solidification to an unstable/stable state On-site disposal per 10CFR20.2002 permit                                                |
| Filter<br>cartridges   | Systems - Floor/Equipment Drains,<br>Fuel Pool; cartridge filters are<br>typically generated from clean up<br>activities within the fuel pool         | Dewatering, solidification to an unstable/stable state Processed by a vendor for volume reduction                                              |
| Dry Active<br>Waste    | Paper, wood, plastic, rubber, glass, metal, and etc. resulting from daily plant activities                                                            | Decon Compaction/Super-compaction Thermal Processing by Incineration or glass vitrification Sorting for Free Release Metal melting to an ingot |
| Contaminated<br>Oil    | Oil contaminated with radioactive materials from any in-plant system.                                                                                 | Solidification unstable state Thermal Processing by Incineration Free Release for recycling                                                    |
| Drying Bed<br>Sludge   | Sewage Treatment and Waste Water Treatment Facilities                                                                                                 | Free release to a landfill or burial                                                                                                           |
| Metals                 | See DAW                                                                                                                                               | See DAW                                                                                                                                        |
| Irradiated<br>Hardware | Fuel Pool, Reactor Components                                                                                                                         | Volume Reduction for packaging efficiencies                                                                                                    |

## 7.0 RETENTION AND RECORDS

- 7.1 Records of reviews performed shall be retained in accordance with the Station Records Retention Schedule (SRRS). This documentation shall contain:
  - 7.1.1 Sufficient information to support the change together with the appropriate analyses or evaluations justifying the change, and
  - 7.1.2 A determination which documents that the change will maintain the overall conformance of waste products to Federal (10CFR61 and the Branch Technical Position), State, or other applicable requirements, including applicable burial site criteria.

## 8.0 REFERENCES

- 8.1 Technical Specifications
- 8.2 DSAR-11.3, Radiological Effluent Requirements
- 8.3 Code of Federal Regulations: 10 CFR Part 20, Part 61, Part 71, 49 CFR Parts171-172
- 8.4 I.E. Circular 80.18, 10CFR 50.59 Safety Evaluation for Changes to Radioactive Waste Treatment Systems
- 8.5 Low Level Waste Licensing Branch Technical Position on Radioactive Waste Classification, May 1983
- 8.6 NRC Branch Technical Position on Blending of Low-Level Radioactive Waste, SECY-10-0043
- 8.7 NRC Concentration Averaging and Encapsulation Branch Technical Position, NRC-2011-0022
- 8.8 Regulatory Guide 1.21, Measuring Evaluating, and Reporting Radioactivity in Solid Wastes and Releases of Radioactive materials in Liquid and Gaseous Effluents from Light-Water-Cooled Nuclear Power Plants
- 8.9 Technical Position on Waste Form (Revision 1), January 1991
- 8.10 LS-FC-106, Plant Operations Review Committee
- 8.11 NO-FC-10, Quality Assurance Topical Report (QATR)
- 8.12 RM-FC-101, Records Management Program
- 8.13 CC-FC-204. Control of Vendor Equipment Manuals
- 8.14 CC-FC-204-1001, Control of Vendor Equipment Manuals Guideline
- 9.0 ATTACHMENTS NONE

## **SECTION VII**

## **ATTACHMENT 2**

# JOINT FREQUENCY DISTRIBUTION WIND DIRECTION VS. WIND SPEED BY STABILITY CLASS AND METEOROLOGICAL DATA

(Regulatory Guide 1.21)

January 1, 2017 - December 31, 2017

# JOINT FREQUENCY DISTRIBUTION WIND DIRECTION VS. WIND SPEED BY STABILITY CLASS AND METEOROLOGICAL DATA

## A. Meteorological Data Recovery

Data availability from the on-site weather tower for the period January 1, 2017 through December 31, 2017 had a cumulative recovery rate of 96.47% from the meteorological tower with the remaining 3.53% provided by Eppley Airfield Weather Station, a branch of the National Weather Service. The data provided by Eppley Airfield Weather Station. The following table is a summary of the parameters and their respective recovery rates for the period.

The tabulations of the Weather Tower Data for the period January 1, 2017 through December 31, 2017 look appropriate for the season indicated. The Pasquill Classes observed for the twelve-month period are detailed below.

| Pasquill |      |      |      |       |       |      |      |       |
|----------|------|------|------|-------|-------|------|------|-------|
| Class    | Α    | В    | C    | D,    | Ε     | F    | G    | Total |
| % Obs.   | 5.11 | 2.88 | 4.77 | 46,59 | 25.60 | 8.40 | 6.65 | 100   |

On the basis of the data and its cross-checks, the weather data as amended is completely valid for use in tabulating atmospheric releases.

## JOINT FREQUENCY DISTRIBUTION BY EVENTS

# EXTREMELY UNSTABLE (delta T/ delta z <= -1.9) PERIOD OF RECORD: JAN 2017 - DEC 2017

# PASQUILL A WIND SPEED (m/s) AT 10-m LEVEL

| Wind<br>Direct | <<br>0.5 | 0.5-<br>1.0 | 1.1~<br>1.5 | 1.6-<br>2.0 | 2.1-<br>3.0 | 3.1-<br>4.0 | 4.1-<br>5.0 | 5.1-<br>6.0 | 6.1-<br>8.0  | 8.1-<br>10.0 | ><br>10.0 | Total       |
|----------------|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|--------------|-----------|-------------|
| n              | 0        | 0           | <br>1       | 1           | 22          | 26          | 15          |             | <del>-</del> | 0            | 0         | <del></del> |
| NNE            | 0        | 0           | 2           | 0           | 9           | 6           | 0           | 0           | 0            | 0            | 0         | 17          |
| NE             | 0        | 0           | 1           | 1           | 4           | 5           | 2           | 0           | 0            | 0            | 0         | 13          |
| ENE            | 0        | Ŏ           | 0           | 1           | 5           | 9           | 0           | 0           | 0            | 0.           | 0         | 15          |
| E              | 0        | 0           | 1           | 2           | 3           | 2           | 0           | 0           | 0            | 0            | 0         | 8           |
| ESE            | 0        | 0           | Q           | 0           | 4           | 1           | 0           | 1           | 0            | 0            | 0         | 6           |
| SE             | 0        | 0           | ĺ           | Q           | 1           | 0           | 4 .         | 3           | 0            | 0            | 0         | 9           |
| SSE            | Ö        | Ò           | 0           | 0           | 3           | 1           | 3           | 3           | 15           | 2            | 0         | 27          |
| S              | 0        | 0           | Ó           | 0           | 1           | 1           | 0           | 4           | 8            | 5            | 0         | 19          |
| SSW            | 0        | 0           | 0           | 0           | 2           | 2           | 5           | 5           | 9            | 1            | 0         | 24          |
| SW             | 0        | 0           | 1           | 0           | 1           | 1           | 5           | 1           | 0            | 0            | 0         | 9           |
| WSW            | 0        | 0           | 0           | 0           | 1           | 0           | 0           | 0           | 0            | 0            | 0         | 1           |
| W              | 0        | 0           | 0           | 0           | 1           | 1           | 2           | Ö           | 0            | 0            | 0         | 4           |
| WNW            | 0        | 1           | 2           | 4           | 8           | 11          | 6           | 1           | 1            | 0            | 0         | 34          |
| NW             | 0        | 0           | 1           | 2           | 15          | 26          | 31          | 10          | 10           | 1            | 0         | 96          |
| NNW            | 0        | 0           | 0           | 3           | 19          | 32          | 21          | 12          | 8            | 2            | 0         | 97          |
| Total          | 0        | 1           | 10          | 14          | 99          | 124         | 94          | 42          | 51           | 11           | 0         | 446         |

Number of Calms 0

Number of Invalid Hours 0

Number of Valid Hours 446

## JOINT FREQUENCY DISTRIBUTION BY EVENTS

## MODERATELY UNSTABLE (-1.9 < delta T/ delta z <= -1.7)

PERIOD OF RECORD: JAN 2017 - DEC 2017

PASQUILL B

WIND SPEED (m/s) AT 10-m LEVEL

| Wind<br>Direct | <<br>0.5 | 0.5-<br>1.0  | 1.1-<br>1.5 | 1.6-<br>2.0 | 2.1-<br>3.0 | 3.1-<br>4.0 | 4.1-<br>5.0 | 5.1-<br>6.0 | 6.1-<br>8.0 | 8.1-<br>10.0 | ><br>10.0 | Total |
|----------------|----------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|-----------|-------|
| N              | 0:       | .—————·<br>O | 0.          | 2           | 13          | 7           | 4           | 0           | 0           | 0            | 0         | 2.6   |
| NNE            | 0        | 0.           | 2           | 2           | 5           | 2           | 0           | 0           | 0           | Ö            | 0         | 11    |
| NE             | 0        | 1            | 2           | 2           | 3           | 4           | 1           | 2           | 0           | 0            | 0         | 15    |
| ENE            | 0        | 0            | 1           | 2           | 4           | 2           | 1           | 1           | 0           | 0            | ,0        | 11,   |
| E              | 0        | 0            | 0           | 0           | 3           | 5           | 1           | 0           | 0           | 0            | 0         | 9     |
| ESE            | 0        | 0            | .0          | 1           | 1           | 0.          | 1           | 1           | 0           | 0            | 0         | 4     |
| SE             | 0        | 1            | 1           | 2           | 0           | 5           | 6           | 8           | 6           | 0            | 0         | 29    |
| SSE            | 0        | 0            | 0           | 1           | 0           | 0           | 1           | 3           | 2           | 0            | 0         | 7     |
| S              | 0        | 0            | 0           | 0           | 0           | 0           | 0           | 1           | 1           | 0            | 0         | 2     |
| SSW            | Ó        | 0            | 0           | 0           | 2           | Ü           | 1           | 3           | 2           | 0            | 0         | 8     |
| SW             | 0        | 0            | 0           | ,0          | 2           | 0           | 0           | 0           | 0           | 0            | 0         | 2     |
| WSW            | 0        | 0            | 0           | 0           | 0           | 2           | 1           | 0           | Ò           | 0            | 0         | 3     |
| W              | 0        | 0            | 0           | 0           | 0           | 1           | 2           | 1           | 1           | Ö            | 0         | 5     |
| WNW            | 0        | 0.           | 2           | 2           | 1           | 1           | Ó           | 0           | 4           | 0            | 0         | 10    |
| NW             | .0       | 0            | 1           | 2           | 7           | 7           | 9           | 4           | 6           | 1            | 0         | 3.7   |
| NNW            | 0        | 0            | 0           | 6           | 20          | 12          | 11          | 16          | 7           | 1            | 0         | 73    |
| Total          | 0        | 2            | 9           | 22          | 61          | 48          | <br>39      | 40          | 2·9         | 2            | 0         | 252   |

Number of Calms 0

## JOINT FREQUENCY DISTRIBUTION BY EVENTS

## SLIGHTLY UNSTABLE (-1.7 < delta T/ delta z <= -1.5)

## PERIOD OF RECORD: JAN 2017 - DEC 2017

## PASQUILL C

WIND SPEED (m/s) AT 10-m LEVEL

| Wind<br>Direct | <<br>0.5 | 0.5-<br>1.0 | 1.1-<br>1.5 | 1.6-<br>2.0 | 2.1-<br>3.0 | 3.1-<br>4.0    | 4.1-<br>5.0 | 5.1-<br>6.0 | 6.1-<br>8.0      | 8.1-<br>10.0 | ><br>10.0 | Total |
|----------------|----------|-------------|-------------|-------------|-------------|----------------|-------------|-------------|------------------|--------------|-----------|-------|
|                | <b>-</b> | <b>-</b>    |             |             | 1 =         |                |             |             | - <b></b>        |              |           |       |
| N              | 0        | 1           | 4           | 5           | 1.5         | 15             | 7           | 3           | .L               | 0            | 0         | 53    |
| NNE            | U        | 0           | 0           | 3           | 7           | 2              | 0           | _<br>T      | 0                | 0            | 0         | 13    |
| NE             | 0        | 0           | 0           | 2           | 6           | 6              | Ö           | 0           | 0                | 0            | 0         | 14    |
| ENE            | 0        | 0           | 3           | 4           | 11          | 7              | 3           | 0           | 0                | 0            | 0         | 28    |
| E              | 0        | 1           | 2           | 3           | 4           | 3              | 1           | 0           | 0 .              | 0            | 0         | 14    |
| ESE            | 0        | O.          | 1           | 1           | 5           | 1              | 2           | 1           | 2                | 0            | 0         | 13    |
| SE             | 0        | 2.          | 0           | 0           | 2           | 1              | 5           | 2           | 5                | 0            | 0         | 17    |
| SSE            | 0        | 0           | 0           | 3           | 0           | 1              | 3           | 4           | 7                | 1            | 0         | 19    |
| S              | 0        | 0           | 3           | 2           | 3           | 1              | 0           | 3           | 1                | 1            | 0         | 15    |
| SSW            | 0        | 1           | 1           | 2           | 1           | 0              | 1           | 2           | 2                | 0            | 0         | 10    |
| SW             | 0        | 0           | 2           | 1           | 0           | 3              | 1           | 3           | 1                | 0            | 0         | 11    |
| WSW            | 0        | 0           | 0           | 2           | 1           | 1              | 1           | 1           | 1                | 0            | Ō         | . 7   |
| W              | 0        | 0           | 4           | 2           | 4           | 4              | 2           | 2           | 0                | 1            | 0         | 19    |
| WNW            | 0        | 1           | 3           | 3           | 7           | 2              | 2           | 0           | 1                | .0           | Ó         | 19    |
| NW             | 0        | 0           | 4           | 4           | 5           | 1 <del>5</del> | 7           | 8           | 17               | 1            | Ô         | 61    |
| NNW            | ō        | 1           | 1           | 14          | 22          | 20             | 18          | 9           | 12               | 4            | 3         | 104   |
| Total          | 0        | 7.          | 28          | 51          | 93          | 82             | 53          | 3.9         | - <b>-</b><br>50 | .8           | 3         | 414   |

Number of Calms 3

# Omaha Public Power District Fort Calhoun Nuclear Station JOINT FREQUENCY DISTRIBUTION BY EVENTS NEUTRAL (-1.5 < delta T/ delta z <= -0.5)

## PERIOD OF RECORD: JAN 2017 - DEC 2017 PASQUILL D

## WIND SPEED (m/s) AT 10-m LEVEL

| Wind<br>Direct | <<br>0.5 | 0.5-<br>1.0 | 1.1-<br>1.5 | 1.6-<br>2.0 | 2.1-<br>3.0 | 3.1-<br>4.0 | 4.1-<br>5.0 | 5.1-<br>6.0 | 6,1-<br>8.0 | 8.1-<br>10.0 | ><br>10.0 | Total |
|----------------|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|-----------|-------|
|                | 0        | 16          | 47          | 63          | 136         | 80          | 31          | 11          | 6           | 0            | 0         | 3.90  |
| NÑE            | 0        | 18          | 27          | 36          | 4.9         | 31          | 12          | 1           | 2           | 0            | 0         | 176   |
| NE             | 0        | 18          | 18          | 22          | 31          | 16          | 25          | 9           | 2           | 0            | 0         | 141   |
| ENE            | Ó        | 11,         | 26          | 26          | 28          | 27          | 9           | 2           | 4           | 0            | 0         | 133   |
| E              | 0        | 12          | 22          | 21          | 45          | 1.8         | 7           | 3           | 0           | 0            | 0         | 128   |
| ESE            | 0        | 11          | 18          | 28          | 46          | 29          | 12          | 3           | 1           | 0            | 0         | 148   |
| SE             | 0        | 6           | 10          | 1.0         | 68          | 79          | 43          | 36          | 26          | 0            | 3         | 281   |
| SSE            | 0        | 1           | 10          | 11          | 56          | 85          | 106         | 95          | 103         | 11           | .0        | 478   |
| s              | 0        | 1           | 5           | 1,5         | 36          | 69          | 91          | 7.0         | 104         | 20           | 5         | 416   |
| SSW            | 0        | 1           | 5           | 8 1         | 3.7         | 43          | 37          | 43          | 33          | 5            | 3         | 215   |
| SW             | 0        | 1           | 8           | 9           | 43          | 43          | 24          | 13          | 14          | 1            | 0         | 156   |
| WSW            | 0        | 3           | 7           | 8           | 2.5         | 21          | 14          | 8           | 3           | 0            | 0         | 89    |
| W              | 0        | 3           | 11          | 18          | 25          | 20          | 14          | 4           | 3           | 2            | 0         | 100   |
| WNW            | 0        | 6           | 14          | 16          | 44          | 27          | 16          | 6           | 8           | 1            | 0         | 138   |
| NW             | 0        | 7           | 20          | 21          | 64          | 91          | 7.9         | 60          | 59          | 1.2          | 3         | 416   |
| NNM            | 0        | 6           | 28          | 54          | 203         | 173         | 105         | 54          | 36          | 6            | 0         | 665   |
| Total          | 0        | 121         | 276         | 366         | 936         | 852         | 625         | 418         | 404         | 58           | 14        | 4070  |

Number of Calms 0

#### JOINT FREQUENCY DISTRIBUTION BY EVENTS

## SLIGHTLY STABLE (-0.5 < delta T/ delta z <= 1.5)

## PERIOD OF RECORD: JAN 2017 - DEC 2017 PASQUILL E

WIND SPEED (m/s) AT 10-m LEVEL

| Wind<br>Direct | <<br>0.5 | 0.5-<br>1.0 | 1.1-<br>1.5 | 1.6-<br>2.0 | 2.1-<br>3.0 | 3.1-<br>4.0 | 4.1-<br>5.0 | 5.1-<br>6.0 | 6.1-<br>8.0 | 8.1-<br>10.0 | ><br>10.0 | Total |
|----------------|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|-----------|-------|
| N              | 3        | 17          | 22          | 10          | 17          | 5           | 2           | 0           | 0           | 0            | 0         | 76    |
| NNE            | 1        | 20          | 13          | 8           | 8           | 2           | 3           | 0           | 0           | 0            | 0         | 55    |
| NE             | 3        | 13          | 18          | 7           | 2           | 0           | 0           | 0           | 0           | 0            | 0         | 43    |
| ENE            | 0        | 19          | 14          | 9           | 5           | 2           | 0           | 0           | 0           | 0 .          | 0         | 49    |
| E              | 2        | 21          | 11          | 11          | 14          | 1           | 0           | 0           | Q           | 0            | 0         | 60    |
| ESE            | 0        | 1.0         | 29          | 32          | 27          | 3           | 0           | 0           | 0:          | 0            | 0         | 101   |
| SE             | 2        | 18          | 28          | 38          | 90          | 61          | 17(         | 2           | 3           | 1            | 0         | 260   |
| SSE            | 1        | 9           | 9           | 21          | 90          | 82          | 58          | 19          | 12          | 0            | 0         | 301   |
| S              | 0        | 10          | 11          | 12          | 43          | 51          | 37          | 20          | 11          | 2            | 0         | 197   |
| SSW            | 1        | 12          | 9           | 7           | 21          | 14          | 25          | 26          | 37          | 14           | 0         | 166   |
| SW             | 3        | 8           | 10          | 8           | 9           | 14          | 12          | 13          | 22          | 8            | 1         | 108   |
| WSW            | 1        | 15          | 7           | 9           | 15          | 13          | 12          | 5           | 5           | 0            | 0         | 82    |
| W              | 4        | 20          | 14          | 23          | 22          | 17          | 6           | 6           | 4           | 0            | 0         | 116   |
| WNW            | 1        | 49          | 36          | 22          | 55          | 26          | 13          | 6           | 2           | 0            | 0         | 210   |
| NW             | 1        | 35          | 51          | 36          | 47          | 28          | 11          | 3           | 2           | 0            | 1         | 215   |
| NNW            | 1        | 20          | 29          | 52          | 64          | 25          | 4           | 2           | 0           | 0            | 0         | 197   |
| Total          | 24       | 296         | 311         | 305         | 529         | 344         | 200         | 102         | 98          | 25           | 2         | 2236  |

Number of Calms 0

## JOINT FREQUENCY DISTRIBUTION BY EVENTS

## MODERATELY STABLE (1.5 < delta T/ delta z <= 4.0)

## PERIOD OF RECORD: JAN 2017 - DEC 2017

## PASQUILL F

WIND SPEED (m/s) AT 10-m LEVEL

| Wind<br>Direct | <<br>0.5 | 0.5-<br>1.0 | 1.1-<br>1.5 | 1.6-<br>2.0 | 2.1-<br>3.0 | 3.1÷<br>4.0 | 4.1-<br>5.0    | 5.1-<br>6.0 | 6.1-<br>8.0 | 8.1-<br>10.0 | ><br>10.0 | Total |
|----------------|----------|-------------|-------------|-------------|-------------|-------------|----------------|-------------|-------------|--------------|-----------|-------|
| N              | 2        | <br>2       | .3          | 2           | 5           | 0           | 0              | 0           | 0           | 0            | 0         | 15    |
| NNE            | 1        | 7           | 5           | 0           | 0           | 0           | 0              | 0           | 0           | 0            | 0         | 13    |
| NE             | Ö        | 9           | 0           | 0           | 0           | 0           | 0              | 0           | 0           | 0            | 0         | 9     |
| ENE            | 1        | 15          | 7           | 3           | 2           | 0           | 0              | 0           | 0.          | 0.           | 0         | 28    |
| E              | 1        | 17          | 14          | 5           | 4           | 0           | 0              | 0           | 0           | 0            | 0.        | 41    |
| ESE            | 3        | 12          | 16          | 12          | 9           | 2           | 0              | 0.          | 0           | 0            | 0         | 54    |
| SE             | . 6      | 17          | 21          | 19          | 45          | 1,1         | 0              | 0           | 0           | 0            | 0         | 119   |
| SSE            | 1        | 23          | 12          | 8           | 22          | 3           | 1              | 0           | 0           | 0            | 0         | 70    |
| S              | .6       | 23          | 6           | 6           | 15          | 5           | 6              | 1           | Ö.          | 0            | 0         | 68    |
| SSW            | 10       | 12          | 2           | 2           | 7           | 7           | 8              | 0           | 0           | 0.           | 0         | 48    |
| SW             | 11       | 23          | 2           | 4           | 2           | 0           | 3 <sup>⊱</sup> | 3           | 0           | 0            | 0         | 48    |
| WSW            | 9        | 15          | 7           | 1           | 2           | 6           | 5              | 0           | 1           | 0            | 0         | 46    |
| W              | 7        | 33          | 7           | 5           | 0           | 0           | 0              | 0           | 0           | 0            | Ó         | 52    |
| WNW            | 7        | 49          | 14          | 3           | 7           | 0           | 0              | 0           | 0           | 0            | 0         | 80    |
| NW.            | .8       | 11          | 7           | 2           | 2           | 0           | 0              | 0           | 0           | 0            | 0         | 30    |
| NÑW            | 3        | -4          | 2           | 4           | 0           | 0           | 0              | 0           | 0           | 0            | 0         | 13    |
| Total          | 76       | 272         | 125         | 76          | 122         | 34          | 23             | 4           | 1           | 0            | 0         | 733.  |

Number of Calms 1

# Omaha Public Power District Fort Calhoun Nuclear Station JOINT FREQUENCY DISTRIBUTION BY EVENTS EXTREMELY STABLE (delta T/ delta z > 4.0) PERIOD OF RECORD: JAN 2017 - DEC 2017

## PASQUILL G WIND SPEED (m/s) AT 10-m LEVEL

| Wind   | <    | 0.5- | 1.1- | 1.6- | 2.1- | 3.1-   | 4.1- | 5.1- | 6.1- | 8.1- | >    |       |
|--------|------|------|------|------|------|--------|------|------|------|------|------|-------|
| Direct | 0.5  | 1.0  | 1.5  | 2.0  | 3.0  | 4.0    | 5.0  | 6.0  | 8.0  | 10.0 | 10.0 | Total |
| N      | 3    | 2    | 1    | 0    | 0    | 0      | 0    | 0    | 0    | 0.   | 0    | 6     |
| NNE    | 5    | 4    | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0    | 0    | 9     |
| NE     | 4    | 11   | 1    | 0    | 0    | 0      | 0    | 0    | 0    | 0    | 0    | 16    |
| ENE    | 4    | 2.2  | 6    | 2    | 1.   | 0      | 0    | 0    | 0    | 0    | 0    | 35    |
| E      | 8    | 16   | 11   | 2    | 0    | 0      | 0    | 0    | 0    | 0    | 0    | 37    |
| ESE    | 9    | 37   | 121  | 8    | 0    | 0      | 0    | 0    | 0    | 0    | 0    | 175   |
| SE     | 3    | 32   | 16   | 5    | 5    | 1      | 0    | 0    | 0    | 0    | 0    | 62    |
| SSE    | 14   | 30   | 8    | 3    | 2    | 1      | 0.   | 0    | 0    | 0    | 0    | 58    |
| S      | 8    | 22   | 5    | 0    | 4    | 2      | 0,   | 0    | 0    | 0    | 0    | 41    |
| SSW    | 10   | 23   | 1    | 0    | 1    | 1      | 0    | 0    | 0    | 0    | 0    | 36    |
| SW     | 6    | 28   | 1    | 0    | 1    | 0      | 0    | 0    | 0    | 0    | 0    | 3.6   |
| WSW    | 6    | 13   | 1    | .0   | 0    | 0      | 0    | 0    | 0    | 0    | 0    | 20    |
| W      | 10 - | 16   | 0    | 1    | 1    | 0      | 0    | 0    | 0    | 0    | 0    | 28    |
| WNW    | 1    | 6    | 3    | 0    | 0    | 0      | 0    | 0    | 0    | 0    | 0    | 10    |
| NW     | 3    | 4    | 2    | 0    | 0    | 0      | 0    | 0    | 0    | 0    | 0    | 9     |
| NNW    | 1    | 2    | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0    | 0    | 3     |
| Total  | 95   | 268  | 177  | 21   | 15   | 5<br>5 | 0    | 0    | 0    | 0    | 0    | 581   |

Number of Calms 0

Number of Invalid Hours 0 Number of Valid Hours 581

Hours Accounted For: 8736

# Omaha Public Power District Fort Calhoun Nuclear Station JOINT FREQUENCY DISTRIBUTION BY PERCENT EXTREMELY UNSTABLE (delta T/ delta z <= -1.9) PERIOD OF RECORD: JAN 2017 - DEC 2017

## PASQUILL A

## WIND SPEED (m/s) AT 10-m LEVEL

| Wind<br>Direct | <<br>0.5 | 0.5-<br>1.0 | 1.1-<br>1.5 | 1.6-<br>2.0 | 2.1-<br>3.0 | 3.1-<br>4.0 | 4.1-<br>5.0 | 5,1-<br>6.0 | 6.1-<br>8.0 | 8.1-<br>10.0 | ><br>10.0 | Total |
|----------------|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|-----------|-------|
| N              | 0.00     | 0.00        | 0.01        | 0.01        | 0.25        | 0.30        | 0.17        | 0.02        | 0.00        | 0.00         | 0.00      | 0.77  |
| NNE            | 0.00     | 0.00        | 0.02        | 0.00        | 0.10        | 0.07        | 0.00        | 0.00        | 0.00        | 0.00         | 0.00      | 0,19  |
| NE             | 0.00     | 0.00        | 0.01        | 0.01        | 0.05        | 0.06        | 0.02        | 0.00        | 0.00        | 0.00         | 0.00      | 0.15  |
| ENE            | 0.00     | 0.00        | 0.00        | 0.01        | 0.06        | 0.10        | 0.000       | 0.00        | 0.00        | 0.00         | 0.00      | 0.17  |
| E              | 0.00     | 0.00        | 0.01        | 0.02        | 0.03        | 0.02        | 0.00        | 0.00        | 0.00        | 0.00         | 0.00      | 0.09  |
| ESE            | 0.00     | 0.00        | 0.00        | 0.00        | 0.05        | 0.01        | 0.00        | 0.01        | 0.00        | 0.00         | 0.00      | 0.07  |
| SE             | 0.00     | 0.00        | 0.01        | 0.00        | 0.01        | 0.00        | 0.05        | 0.03        | 0.00        | 0.00         | 0.00      | 0.10  |
| SSE            | 0.00     | 0.00        | 0.00        | 0.00        | 0.03        | 0.01        | 0.03        | 0.03        | 0.17        | 0.02         | 0.00      | 0.31  |
| S              | 0.00     | 0.00        | 0.00        | 0.00        | 0.01        | 0.01        | 0.00        | 0.05        | 0.09        | 0.06         | 0.00      | 0.22  |
| SSW            | 0.00     | 0.00        | 0.00        | 0.00        | 0.02        | 0.02        | 0.06        | 0.06        | 0.10        | 0.01         | 0.00      | 0.27  |
| SW             | 0.00     | 0.00        | 0.01        | 0.00        | 0.01        | 0.01        | 0.06        | 0.01        | 0.00        | 0.00         | 0.00      | 0,10  |
| WSW            | 0.00     | 0.00        | 0.00        | 000         | 0.01        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00         | 0.00      | 0.01  |
| W              | 0.00     | 0.00        | 0.00        | 0.00        | 0.01        | 0.01        | 0.02        | 0.00        | 0.00        | 0.00         | 0.00      | 0.05  |
| WNW            | 0.00     | 0.01        | 0.02        | 0.05        | 0.09        | 0.13        | 0.07        | 0.01        | 0.01        | 0.00         | 0.00      | 0.39  |
| NW             | 0.00     | 0.00        | 0.01        | 0.02        | 0.17        | 0.30        | 0.35        | 0.11        | 0.11        | 0.01         | 0.00      | 1.10  |
| NNW            | 0.00     | 0.00        | 0.00        | 0.03        | 0.22        | 0.37        | 0.24        | 0.14        | 0.09        | 0.02         | 000       | 1.11  |
| Total          | 0.00     | 0.01        | 0.11        | 0.16        | 1.13        | 1.42        | 1.08        | 0.48        | 0.58        | 0.13         | 0.00      | 5.11  |

Percent of Calms 0.00

Percent of Invalid Hours 0.00

## JOINT FREQUENCY DISTRIBUTION BY PERCENT

## MODERATELY UNSTABLE (-1.9 < delta T/ delta z <= -1.7)

## PERIOD OF RECORD: JAN 2017 - DEC 2017

# PASQUILL B WIND SPEED (m/s) AT 10-m LEVEL

| Wind<br>Direct | <<br>0.5 | 0.5- | 1.1- | 1.6-<br>2.0 | 2.1-<br>3.0 | 3.1-<br>4.0 | 4.1-<br>5.0 | 5.1-<br>6.0 | 6.1-<br>8.0 | 8.1-<br>10.0 | > 10.0 | Total |
|----------------|----------|------|------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|--------|-------|
| N              | 0.00     | 0.00 | 0.00 | 0.02        | 0.15        | 0.08        | 0.05        | 0.00        | 0.00        | 0.00         | 0.00   | 0.30  |
| NNE            | 0.00     | 0.00 | 0.02 | 0.02        | 0.06        | 0.02        | 0.00        | 0.00        | 0.00        | 0.00         | 0.00   | 0.13  |
| NE             | 0.00     | 0.01 | 0.02 | 0.02        | 0.03        | 0.05        | 0.01        | 0.02        | 0.00        | 0.00         | 0.00   | 0.17  |
| ENE            | 0.00     | 0.00 | 0.01 | 0.02        | 0.05        | 0.02        | 0.01        | 0.01        | 0.00        | 0.00         | 0.00   | 0.13  |
| E              | 0.00     | 0.00 | 0.00 | 0.00        | 0.03        | 0.06        | 0.01        | 0.00        | 0.00        | 0.00         | 0.00   | 0.10  |
| ESE            | 0.00     | 0.00 | 0.00 | 0.01        | 0.01        | 0.00        | 0.01        | 0.01        | 0.00        | 0.00         | 0.00   | 0.05  |
| SE             | € 0.00   | 0.01 | 0.01 | 0.02        | 0.00        | 0.06        | 0.07        | 0.09        | 0.07        | 0.00         | 0.00   | 0.33  |
| SSE            | 0.00     | 0.00 | 0.00 | 0.01        | 0.00        | 0.00        | 0.01        | 0.03        | 0.02        | 0.00         | 0.00   | 0.08  |
| S              | 0.00     | 0.00 | 0.00 | 0.00        | 0.00        | 0.00        | 0.00        | 0.01        | 0.01        | 0.00         | 0.00   | 0.02  |
| SSW            | 0.00     | 0.00 | 0.00 | 0.00        | 0.02        | 0.00        | 0.01        | 0.03        | 0.02        | 0.00         | 0.00   | 0.09  |
| SW             | 0.00     | 0.00 | 0.00 | 0.00        | 0.02        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00         | 0.00   | 0.02  |
| wsw            | 0.00     | 0.00 | 0.00 | 0.00        | 0.00        | 0.02        | 0.01        | 0.00        | 0.00        | 0.00         | 0.00   | 0,03  |
| M              | 0.00     | 0.00 | 0.00 | 0.00        | 0.00        | 0.01        | 0.02        | 0.01        | 0.01        | 0.00         | 0.00   | 0.06  |
| MNM            | 0.00     | 0.00 | 0.02 | 0.02        | 0.01        | 0.01        | 0.00        | 0.00        | 0.05        | 0.00         | 0.00   | 0.11  |
| NW             | 0.00     | 0.00 | 0.01 | 0.02        | 0.08        | 0.08        | 0.10        | 0,05        | 0.07        | 0.01         | 0.00   | 0.42  |
| NNW            | 0.00     | 0.00 | 0.00 | 0.07        | 0.23        | 0.14        | 0.13        | 0.18        | 0.08        | 0.01         | 0.00   | 0.84  |
| Total          | 0.00     | 0.02 | 0.10 | 0.25        | 0.70        | 0.55        | 0.45        | 0.46        | 0.33        | 0.02         | 0.00   | 2.88  |

Percent of Calms 0.00

Percent of Invalid Hours 0.00

Percent of Valid Hours 2.88

#### JOINT FREQUENCY DISTRIBUTION BY PERCENT

## SLIGHTLY UNSTABLE (-1.7 < delta T/ delta z <= -1.5)

## PERIOD OF RECORD: JAN 2017 - DEC 2017 PASQUILL C

## WIND SPEED (m/s) AT 10-m LEVEL

| Wind<br>Direct | <<br>0.5 | 0.5-<br>1.0 | 1.1-<br>1.5 | 1.6-<br>2.0 | 2.1-<br>3.0 | 3.1-<br>4.0 | 4.1-<br>5.0 | 5.1-<br>6.0 | 6.1-<br>8.0 | 8.1-<br>10.0 | ><br>10.0 | Total |
|----------------|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|-----------|-------|
| N              | 0.00     | 0.01        | 0.05        | 0.06        | 0.17        | 0.17        | 0.08        | 0.03        | 0.01        | 0.00         | 0.00      | 0.61  |
| NNE            | 0.00     | 0.00        | 0.00        | 0.03        | 0.08        | 0.02        | 0.00        | 0.01        | 0.00        | 0.00         | 0.00      | 0.15  |
| NE             | 0.00     | 0.00        | 0.00        | 0.02        | 0.07        | 0.07        | 0.00        | 0.00        | 0.00        | 0.00         | 0.00      | 0.16  |
| ENE            | 0.00     | 0.00        | 0.03        | 0.05        | 0.13        | 0.08        | 0.03        | 0.00        | 0.00        | 0.00         | 0.00      | 0.32  |
| E              | 0.00     | 0.01        | 0.02        | 0.03        | 0.05        | 0.03        | 0.01        | 0.00        | 0.00        | 0.00         | 0.00      | 0.16  |
| ESE            | 0.00     | 0.00        | 0.01        | 0.01        | 0.06        | 0.01        | 0.02        | 0.01        | 0.02        | 0.00         | 0.00      | 0.15  |
| SE             | 0.00     | 0.02        | 0.00        | 0.00        | 0.02        | 0.01        | 0.06        | 0.02        | 0.06        | 0.00         | 0.00      | 0.19  |
| SSE            | 0.00     | 0.00        | 0.00        | 0.03        | 0.00        | 0.01        | 0.03        | 0.05        | 0.08        | 0.01         | 0.00      | 0.22  |
| S              | 0.00     | 0.00        | 0.03        | 0.02        | 0.03        | 0.01        | 0.00        | 0.03        | 0.01        | 0.01         | 0.00      | 0.17  |
| SSW            | 0.00     | 0.01        | 0.01        | 0.02        | 0.01        | 0.00        | 0.01        | 0.02        | 0.02        | 0.00         | 0.00      | 0.11  |
| SW             | 0.00     | 0.00        | 0.02        | 0.01        | 0.00        | 0.03        | 0.01        | 0.03        | 0.01        | 0.00         | 0.00      | 0.13  |
| WSW            | 0.00     | 0.00        | 0.00        | 0.02        | 0.01        | 0.01        | 0.01        | 0.01        | 0.01        | 0.00         | 0.00      | 0.08  |
| W              | 0.00     | 0.00        | 0.05        | 0.02        | 0.05        | 0.05        | 0.02        | 0.02        | 0.00        | 0.01         | 0.00      | 0.22  |
| WNW            | 0.00     | 0.01        | 0.03        | 0.03        | 0.08        | 0.02        | 0.02        | 0.00        | 0.01        | 0.00         | 0.00      | 0.22  |
| NW             | 0.00     | 0.00        | 0.05        | 0.05        | 0.06        | 0.17        | 0.08        | 0.09        | 0.19        | 0.01         | 0.00      | 0.70  |
| NNW            | 0.00     | 0.01        | 0.01        | 0.16        | 0.25        | 0.23        | 0.21        | 0.10        | 0.14        | 0.05         | 0.03      | 1.19  |
| Total          | 0.00     | 0.08        | 0.32        | 0.58        | 1.06        | 0.94        | 0.61        | 0.45        | 0.57        | 0.09         | 0.03      | 4.74  |

Percent of Calms 0.03

Percent of Invalid Hours 0.00

Percent of Valid Hours 4.77

# Omaha Public Power District Fort Calhoun Nuclear Station JOINT FREQUENCY DISTRIBUTION BY PERCENT NEUTRAL (-1.5 < delta T/ delta z <= -0.5)

#### PERIOD OF RECORD: JAN 2017 - DEC 2017 PASQUILL D

#### WIND SPEED (m/s) AT 10-m LEVEL

Wind < 0.5-1.1-1.6-2.1-3.1-4.1-5.1-6.1-8.1-10.0 Direct 0.5 1.0 1.5 2.0 3.0 4.0 5.0 6.0 8.0 10.0 Total \_\_\_\_\_ 0.18 0.54 0.72 1.56 0.13 N 0.00 0.92 0.35 0.07 0.00 0.00 4.46 NNE 0.00 0.21 0.31 0.41 0.56 0.35 0.02 0.00 2.01 0.14 0.01 0.00 NE 0.00 0.21 0.21 0.25 0.35 0.18 0.29 0.10 0.02 0.00 0.00 1.61 0.00 0.13 0.30 0.30 ENE 0.32 0.31 0.10 0.02 0.05 0.00 0.00 1.52 E 0.00 0.14 0.25 0.24 0.52 0.21 0.08 0.03 0.00 0.00 0.00 1.47 ESE 0.00 0.13 0.21 0.32 0.53 0.33 0.14 0.03 0.01 0.00 0.00 1.69 SE 0.00 0.07 0.11 0.11 0.78 0.90 0.49 0.41 0.30 0.00 0.03 3.22 SSE 0.00 0.01 0.11 0.13 0.64 0.97 1.21 1.09 1.18 0.13 0.00 5.47 S 0.00 0.01 0.06 0.17 0.41 0.79 1.04 0.80 1.19 0.23 0.06 4.76 SSW 0.00 0.01 0.06 0.09 0.42 0.49 0.42 0.49 0.38 0.06 0.03 2.46 SW 0.00 0.01 0.09 0.10 0.49 0.49 0.27 0.15 0.16 0.01 0.00 1.79 WSW 0.00 0.03 0.08 0.09 0.29 0.24 0.16 0.09 0.03 0.00 1.02 0.00 0.13 0.21 0.29 0.23 0.16 0.05 0.03 0.02 0.00 W 0.00 0.03 1.14 WNW 0.00 0.07 0.16 0.18 0.50 0.31 0.18 0.07 0.09 0.01 0.00 1.58 0.00 0.08 0.23 0.24 0.73 1.04 0.90 0.69 0.68 0.14 0.03 4.76 NW NNW 0.00 0.07 0.32 0.62 2.32 1.98 1.20 0.62 0.41 0.07 0.00 7.61

Percent of Calms 0.00

0.00

Total

Percent of Invalid Hours 0.00

1.39

3.16

4.19

Percent of Valid Hours 46.59

10.71 9.75

7.15

4.62

0.66

0.16

46.59

4.78

## JOINT FREQUENCY DISTRIBUTION BY PERCENT

## SLIGHTLY STABLE (-0.5 < delta T/ delta z <= 1.5)

## PERIOD OF RECORD: JAN 2017 - DEC 2017 PASQUILL E

## WIND SPEED (m/s) AT 10-m LEVEL

| Wind<br>Direct | <<br>0 • 5 | 0.5-<br>1.0 | 1.1-<br>1.5 | 1.6-<br>2.0 | 2.1-<br>3.0 | 3.1-<br>4.0 | 4.1-<br>5.0 | 5.1-<br>6.0 | 6.1-<br>8.0 | 8.1-<br>10.0 | ><br>10.0 | Total |
|----------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|-----------|-------|
| N              | 0.03       | 0.19        | 0.25        | 0.11        | 0.19        | 0.06        | 0.02        | 0.00        | 0.00        | 0.00         | 0.00      | 0.87  |
| NNE            | 0.01       | 0.23        | 0.15        | 0.09        | 0.09        | 0.02        | 0.03        | 0.00        | 0.00        | 0.00         | 0.00      | 0.63  |
| NE             | 0.03       | 0.15        | 0.21        | 0.08        | 0.02        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00         | 0.00      | 0.49  |
| ENE            | 0.00       | 0.22        | 0.16        | 0.10        | 0.06        | 0.02        | 0.00        | 0.00        | 0.00        | 0.00         | 0.00      | 0.56  |
| E              | 0.02       | 0.24        | 0.13        | 0.13        | 0.16        | 0.01        | 0.00        | 0.00        | 0.00        | 0.00         | 0.00      | 0.69  |
| ESE            | 0.00       | 0.11        | 0.33        | 0.37        | 0.31        | 0.03        | 0.00        | 0.00        | 0.00        | 0.00         | 0.00      | 1.16  |
| SE             | 0.02       | 0.21        | 0.32        | 0.43        | 1.03        | 0.70        | 0.19        | 0.02        | 0.03        | 0.01         | 0.00      | 2.98  |
| SSE            | 0.01       | 0.10        | 0.10        | 0.24        | 1.03        | 0.94        | 0.66        | 0.22        | 0.14        | 0.00         | 0.00      | 3.45  |
| S              | 0.00       | 0.11        | 0.13        | 0.14        | 0.49        | 0.58        | 0.42        | 0.23        | 0.13        | 0.02         | 0.00      | 2.26  |
| SSW            | 0.01       | 0.14        | 0.10        | 0.08        | 0.24        | 0.16        | 0.29        | 0.30        | 0.42        | 0.16         | 0.00      | 1.90  |
| SW             | 0.03       | 0.09        | 0.11        | 0.09        | 0.10        | 0.16        | 0.14        | 0.15        | 0.25        | 0.09         | 0.01      | 1.24  |
| WSW            | 0.01       | 0.17        | 0.08        | 0.10        | 0.17        | 0.15        | 0.14        | 0.06        | 0.06        | 0.00         | 0.00      | 0.94  |
| W              | 0.05       | 0.23        | 0.16        | 0.26        | 0.25        | 0.19        | 0.07        | 0.07        | 0.05        | 0.00         | 0.00      | 1.33  |
| WNW            | 0.01       | 0.56        | 0.41        | 0.25        | 0.63        | 0.30        | 0.15        | 0.07        | 0.02        | 0.00         | 0.00      | 2.40  |
| NW             | 0.01       | 0.40        | 0.58        | 0.41        | 0.54        | 0.32        | 0.13        | 0.03        | 0.02        | 0.00         | 0.01      | 2.46  |
| NNW            | 0.01       | 0.23        | 0.33        | 0.60        | 0.73        | 0.29        | 0.05        | 0.02        | 0.00        | 0.00         | 0.00      | 2.26  |
| Total          | 0.27       | 3.39        | 3.56        | 3.49        | 6.06        | 3.94        | 2.29        | 1.17        | 1.12        | 0.29         | 0.02      | 25.60 |

Percent of Calms 0.00

Percent of Invalid Hours 0.00

Percent of Valid Hours 25.60

## JOINT FREQUENCY DISTRIBUTION BY PERCENT

#### MODERATELY STABLE (1.5 < delta T/ delta z <= 4.0)

PERIOD OF RECORD: JAN 2017 - DEC 2017

PASQUILL F

WIND SPEED (m/s) AT 10-m LEVEL

| Wind   | <    | 0.5- | 1.1- | 1.6- | 2.1- | 3.1- | 4.1- | <br>5.1- | 6.1- | 8.1- | >    |       |
|--------|------|------|------|------|------|------|------|----------|------|------|------|-------|
| Direct | 0.5  | 1.0  | 1.5  | 2.0  | 3.0  | 4.0  | 5.0  | 6.0      | 8.0  | 10.0 | 10.0 | Total |
| N      | 0.02 | 0.02 | 0.03 | 0.02 | 0.06 | 0.00 | 0.00 | 0.00     | 0.00 | 0.00 | 0.00 | 0.17  |
| NNE    | 0.01 | 0.08 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00     | 0.00 | 0.00 | 0.00 | 0.15  |
| NE     | 0.00 | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00     | 0.00 | 0.00 | 0.00 | 0.10  |
| ENE    | 0.01 | 0.17 | 0.08 | 0.03 | 0.02 | 0.00 | 0.00 | 0.00     | 0.00 | 0.00 | 0.00 | 0.32  |
| E      | 0.01 | 0.19 | 0.16 | 0.06 | 0.05 | 0.00 | 0.00 | 0.00     | 0.00 | 0.00 | 0.00 | 0.47  |
| ESE    | 0.03 | 0.14 | 0.18 | 0.14 | 0.10 | 0.02 | 0.00 | 0.00     | 0.00 | 0.00 | 0.00 | 0.62  |
| SE     | 0.07 | 0.19 | 0.24 | 0.22 | 0.52 | 0.13 | 0.00 | 0.00     | 0.00 | 0.00 | 0.00 | 1.36  |
| SSE    | 0.01 | 0.26 | 0.14 | 0.09 | 0.25 | 0.03 | 0.01 | 0.00     | 0.00 | 0.00 | 0.00 | 0.80  |
| S      | 0.07 | 0.26 | 0.07 | 0.07 | 0.17 | 0.06 | 0.07 | 0.01     | 0.00 | 0.00 | 0.00 | 0.78  |
| SSW    | 0.11 | 0.14 | 0.02 | 0.02 | 0.08 | 0.08 | 0.09 | 0.00     | 0.00 | 0.00 | 0.00 | 0.55  |
| SW     | 0.13 | 0.26 | 0.02 | 0.05 | 0.02 | 0.00 | 0.03 | 0.03     | 0.00 | 0.00 | 0.00 | 0.55  |
| WSW    | 0.10 | 0.17 | 0.08 | 0.01 | 0.02 | 0.07 | 0.06 | 0.00     | 0.01 | 0.00 | 0.00 | 0.53  |
| W      | 0.08 | 0.38 | 0.08 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00     | 0.00 | 0.00 | 0.00 | 0.60  |
| MNM    | 0.08 | 0.56 | 0.16 | 0.03 | 0.08 | 0.00 | 0.00 | 0.00     | 0.00 | 000  | 0.00 | 0.92  |
| NW     | 0.09 | 0.13 | 0.08 | 0.02 | 0.02 | 0.00 | 0.00 | 0.00     | 0.00 | 0.00 | 0.00 | 0.34  |
| NNW    | 0.03 | 0.05 | 0.02 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00     | 0.00 | 0.00 | 0.00 | 0.15  |
| Total  | 0.87 | 3.11 | 1.43 | 0.87 | 1.40 | 0.39 | 0.26 | 0.05     | 0.01 | 0.00 | 0.00 | 8.39  |

Percent of Calms 0.01

Percent of Invalid Hours

0.00

Percent of Valid Hours

8.40

# Omaha Public Power District Fort Calhoun Nuclear Station JOINT FREQUENCY DISTRIBUTION BY PERCENT EXTREMELY STABLE (delta T/ delta z > 4.0) PERIOD OF RECORD: JAN 2017 - DEC 2017 PASQUILL G

WIND SPEED (m/s) AT 10-m LEVEL

|                |          |             |             |             |             |             |             |             |             |              | ~         |       |
|----------------|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|-----------|-------|
| Wind<br>Direct | <<br>0.5 | 0.5-<br>1.0 | 1.1-<br>1.5 | 1.6-<br>2.0 | 2.1-<br>3.0 | 3.1-<br>4.0 | 4.1-<br>5.0 | 5.1-<br>6.0 | 6.1-<br>8.0 | 8.1-<br>10.0 | ><br>10.0 | Total |
| N              | 0.03     | 0.02        | 0.01        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00         | 0.00      | 0.07  |
| NNE            | 0.06     | 0.05        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00         | 0.00      | 0.10  |
| NE             | 0.05     | 0.13        | 0.01        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00         | 0.00      | 0.18  |
| ENE            | 0.05     | 0.25        | 0.07        | 0.02        | 0.01        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00         | 0.00      | 0.40  |
| E              | 0.09     | 0.18        | 0.13        | 0.02        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00         | 0.00      | 0.42  |
| ESE            | 0.10     | 0.42        | 1.39        | 0.09        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00         | 0.00      | 2.00  |
| SE             | 0.03     | 0.37        | 0.18        | 0.06        | 0.06        | 0.01        | 0.00        | 0.00        | 0.00        | 0.00         | 0.00      | 0.71  |
| SSE            | 0.16     | 0.34        | 0.09        | 0.03        | 0.02        | 0.01        | 0.00        | 0.00        | 0.00        | 0.00         | 0.00      | 0.66  |
| S              | 0.09     | 0.25        | 0.06        | 0.00        | 0.05        | 0.02        | 0.00        | 0.00        | 0.00        | 0.00         | 0.00      | 0.47  |
| SSW            | 0.11     | 0.26        | 0.01        | 0.00        | 0.01        | 0.01        | 0.00        | 0.00        | 0.00        | 0.00         | 0.00      | 0.41  |
| SW             | 0.07     | 0.32        | 0.01        | 0.00        | 0.01        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00         | 0.00      | 0.41  |
| WSW            | 0.07     | 0.15        | 0.01        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00         | 0.00      | 0.23  |
| W              | 0.11     | 0.18        | 0.00        | 0.01        | 0.01        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00         | 0.00      | 0.32  |
| WNW            | 0.01     | 0.07        | 0.03        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00         | 0.00      | 0.11  |
| NW             | 0.03     | 0.05        | 0.02        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00         | 0.00      | 0.10  |
| NNW            | 0.01     | 0.02        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00        | 0.00         | 0.00      | 0.03  |
| Total          | 1.09     | 3.07        | 2.03        | 0.24        | 0.17        | 0.06        | 0.00        | 0.00        | 0.00        | 0.00         | 0.00      | 6.65  |

Percent of Calms 0.00

Percent of Invalid Hours 0.00

Percent of Valid Hours 6.65

Percent of Hours Accounted For: 100.00



## OMAHA PUBLIC POWER DISTRICT

## FORT CALHOUN STATION

## RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT

TECHNICAL SPECIFICATION 5.9.4.b.

January 01, 2017 - December 31, 2017

## Annual Radiological Environmental Operating Report

This report is submitted in accordance with Section 5.9.4.b of the Technical Specifications of Fort Calhoun Station Unit No. 1, Facility Operating License DPR-40 for the period January 01, 2017 through December 31, 2017.

In addition, this report provides any observations and anomalies that occurred during the monitoring period.

Reviewed by:

RP/Chem Supervisor

Approved by:

Manager-Chemistry

FCS Plant Manager

Senior Director of Nuclear Decommissioning

## **Annual Radiological Environmental Operating Report**

In accordance with Technical Specification 5.9.4.b, herein is the Fort Calhoun Station (FCS) Annual Radiological Environmental Operating Report for year 2017. The data provided is consistent with the objectives as specified in Section 5.2.2 of the Offsite Dose Calculation Manual (ODCM), "Annual Radiological Environmental Operating Report." The report is presented as follows:

- 1) An introductory discussion of the implementation of the Radiological Environmental Monitoring Program (REMP), including program observations and environmental impact relevant to the operation of FCS.
- 2) The sample class, sample collection frequency, number of sample locations, and the number of samples collected this reporting period for each parameter is delineated in Table 1.0.
- A statistical evaluation of REMP data is summarized in Table 2.0, in accordance with Regulatory Guide 4.8, Table 1. For each type of sample media and analysis, Table 2.0 presents data separately for all **indicator** locations, all **control** (background) locations, and the location having the highest annual mean result. For each of these classes, Table 2.0 specifies the following:
  - a. The total number of analyses,
  - b. The fraction of analyses yielding detectable results (i.e., results above the highest Lower Limit of Detection (LLD) for this period),
  - c. The maximum, minimum, and average results,
  - d. Locations with the highest annual mean are specified by code, name, and by distance and direction from the center of plant reactor containment building.
- 4) Table 3.0 is a listing of missed samples and explanations
- 5) Table 4.0 is the 2016 Land Use Survey
- 6) Review of Environmental Inc. Quality Assurance Program
- 7) Appendix A describes the Interlaboratory Comparison Program
- 8) Appendix B describes the vendor Data Reporting Conventions utilized
- 9) Appendix C reports the information required when primary coolant specific activity has exceeded the limits of Technical Specification 2.1.3
- 10) Appendix D is the Sample Location Maps

#### INTRODUCTION

## Radiological Environmental Monitoring Program (REMP) - 2017

This report gives the results of the Radiological Environmental Monitoring Program (REMP) for the year 2017. The REMP is a requirement of the Fort Calhoun Station (FCS) operating license. It was initiated prior to plant operation in 1973.

The main purpose of the REMP is to ensure public safety by monitoring plant discharges and assessing the effect, if any, of plant operations on the environment. Samples are collected that would account for various exposure pathways such as ingestion, inhalation, adsorption and direct exposure. Samples collected on a regular basis include: air, surface water, ground water, milk, vegetation, fish, sediment, and food crops. Direct radiation is measured by thermoluminescent dosimeters (TLDs). These samples and TLDs are sent to an independent vendor laboratory for analysis. The vendor uses analytical methods that are sensitive enough to detect a level of activity far below that which would be considered harmful. Locations for sample collection are based on radiological and meteorological data from the Annual Effluent Release Report and information obtained from the Environmental Land Use Survey.

Most samples, particularly indicator samples, are collected in a circular area within a five-mile radius of plant containment. (However, control locations are usually outside of five miles.) This circle is divided into sixteen equal sectors, each assigned an identification letter "A" through "R" (note: letters "I" and "O" are not used, as they may be mistaken for the numbers "1" and "0"). Sector "A" is centered on North or zero degrees. Sectors are also given directional labels such as "West-Southwest" ("WSW"). Sample locations are listed by number along with their respective distances and direction from plant containment, in the Offsite Dose Calculation Manual (ODCM).

When assessing sample results, data from indicator locations (those most likely to be affected by plant operations) are compared to those from control locations (those least or not likely to be affected). Results from an indicator location which were significantly higher than those from a control location could indicate a plant-attributable effect and could require additional investigation.

The results of the sample analyses, as required by the FCS Offsite Dose Calculation Manual (ODCM), are presented in the attached statistical tables in accordance with Table 1 of Regulatory Guide 4.8, "Environmental Technical Specifications for Nuclear Power Plants." Sample collection was conducted by plant chemistry/environmental staff. A contract vendor (Environmental Inc., Northbrook, Illinois) performed sample analyses, preparation of monthly reports and the statistical evaluation of sample results. All vendor analysis techniques met the sensitivity requirements as stated in the ODCM.

Results for 2017 were within expected ranges and compared closely with historical results. The result details and exceptions are listed in the following sections.

## 1) Ambient Gamma Radiation

Ambient gamma radiation is measured by thermoluminescent dosimeters (TLDs) provided by the vendor laboratory. These dosimeters contain calcium sulfate phosphors and are processed quarterly.

One incident condition report was documented in the Corrective Action Program in 2017 related to TLD sampling. Multiple TLD locations could not be accessed safely due to structural concerns with the site met tower. Repairs to the tower could not be made due to the presence of an active raptor nest on the tower. Once the nesting season had ended, the TLD's in question were obtained and counted. The reading period was extended and quality data was returned for the two quarters the TLD's were in the field. The samples were added to Table 3.0 to help reviewers of this report since the vendor attachments show that not all TLD's were collected/read.

TLD OTD-1C was not recovered due to a local county road worker replacing the road sign/pole. (Condition Report 2017-01839). This sample was added to Table 3.0

All sample results are within the range of historical data and displayed less than 17% difference when compared to historical averages. All results were less than 3 sigma standard deviations from historical means. No discrepancy between released effluents and resultant radiation dose measured was observed. No changes in plant operation/procedures are required based upon observed impacts to the environment to date.

Twelve TLD's were added to the station's ODCM. These TLD's were placed within the owner controlled area to assist with determination of 40 CFR 190 doses. These locations are not included in Table 1.0, but are being described to assist reviewers of vendor analysis records.

10-Year Trend Comparison of TLD Locations

| Location    | Avg. Dose (mr/week) | 2017 Avg. Dose (mr/week) |  |  |  |  |  |
|-------------|---------------------|--------------------------|--|--|--|--|--|
| Α           | 1.33                | 1.50                     |  |  |  |  |  |
| В           | 1.41                | 1.40                     |  |  |  |  |  |
| C           | 1.37                | 1.38                     |  |  |  |  |  |
| D           | 1.22                | 1.18                     |  |  |  |  |  |
| F           | 1.35                | 1.40                     |  |  |  |  |  |
| G           | 1.33                | 1.40                     |  |  |  |  |  |
| Н           | 1.38                | 1.35                     |  |  |  |  |  |
| Ï           | 1.47                | 1.45                     |  |  |  |  |  |
| J           | 1.53                | 1.63                     |  |  |  |  |  |
| K           | 1.45                | 1.58                     |  |  |  |  |  |
| N           | 1.44                | 1.60                     |  |  |  |  |  |
| 0           | 1.43                | 1.55                     |  |  |  |  |  |
| Р           | 1.48                | 1.53                     |  |  |  |  |  |
| S           | 1.51                | 1.58                     |  |  |  |  |  |
| L (Control) | 1.26                | 1.30                     |  |  |  |  |  |

## 2) Milk/Pasture

Milk samples or pasture grasses, if milk is temporarily unavailable, are collected every two weeks during the pasture season from the beginning of May through September, and monthly the rest of the calendar year. Indicator samples are collected from a herd of milk goats at a family farm located approximately 3.4 miles from the plant in Sector J (South). The control samples are collected from a commercial dairy cow herd located approximately 9.9 miles from the plant in Sector J (South). The indicator station and control location are unchanged from last year. No indicator milk samples were available until spring (May) due to the dairy owners suspending operations. Late fall samples were not performed due to the does drying up before birthing. Pasture grass in lieu of milk was collected at the indicator location due to unavailability.

All sample results for Cesium-134, Cesium-137 and other gammas were at the LLD for both indicator and control locations. No plant-related effects were observed.

## 3) Fish

Fish are collected on an annual basis. Control samples are collected at a location approximately twenty miles upstream of the plant (river miles 665 - 667). Indicator samples are collected in the immediate vicinity of the power plant (river miles 644 - 646). Several species of fish, important to commercial and recreational interest, representing all levels of the aquatic food chain are collected at both locations.

All sample results are within the range of historical data. Results from both control and indicator locations were less than LLD for all gamma emitters, indicating no plant-related effects.

#### 4) Food Crop

Based on the results of the biennial Land Use Survey, the nearest high deposition pathway for food crops is the Alvin Pechnik Farm in Sector H (0.94 miles, 163°). Accordingly, vegetable samples were collected at Alvin Pechnik Farm for the purposes of the 2017 REMP.

Samples were comparable with historical results and within the range of results reported from the control location garden at Mohr Dairy. Additional special interest samples were obtained from on-site farm fields per plant Technical Specifications.

All results were at the LLD for all non-naturally occurring radionuclides. No plant-related effects were observed.

#### 5) <u>Sediment</u>

River sediment samples are collected twice a year at an upstream control location and a downstream indicator location. All results were at the LLD for all non-naturally occurring radionuclides. No plant-related effects were observed.

### 6) Air Monitoring

Air sample results for 2017 were well within historical limits for all locations. Additionally, all indicator locations showed results very similar to the control locations.

One incident was documented in the Corrective Action Program in 2017 related to air sampling. CR 2017-01904 Air Iodine (AI) sample did not meet the LLD due to less than adequate air sample volume after a sample pump failure. Since identified activity was identified on the pre-filter the Gross Beta sample was not impacted. This sample is documented in Table 3.0.

All sample results are within the range of historical data. All indicator locations displayed less than 15% difference when compared to historical average. All 2017 results when compared to historical averages are within the stated vendor error acceptance tolerance.

Results from both control and indicator locations were less than LLD for gamma emitters and iodine. No changes in plant operation/procedures are required based upon observed impacts to the environment to date.

| Location           | Avg. Beta (pCi/m³) | 2017 Avg. Beta (pCi/m³) |  |  |  |  |
|--------------------|--------------------|-------------------------|--|--|--|--|
| Sector B           | 0.028              | 0.024                   |  |  |  |  |
| Sector D           | 0.028              | 0.025                   |  |  |  |  |
| Sector I           | 0.025              | 0.025                   |  |  |  |  |
| Sector J           | 0.026              | 0.023                   |  |  |  |  |
| Sector K           | 0.027              | 0.024                   |  |  |  |  |
| Sector F (Control) | 0.029              | 0.026                   |  |  |  |  |

10-Year Trend Comparison of Air Sampling Locations

## 7) Surface Water

Water samples are collected upstream of the plant (control location) as well as half-mile downstream and at a municipal water treatment plant on the north edge of Omaha.

Results for Cs-134, Cs-137, and other gammas were all less than LLD. All tritium results were less than LLD. No plant-related effects were detected.

## 8) Ground Water

Quarterly residential well water samples are collected at the following four locations: Station No. 15: Smith Farm, Station No. 20: Mohr Dairy, Station No. 74: D. Miller Farm and Station No. 75: Lomp Acreage. All sample results to date have been at the LLD except gross beta due to naturally occurring radionuclides. Gross beta results have ranged from a low of 2.2 pCi/liter to a high of 7.4 pCi/liter, with an average gross beta for the year of 4.2 pCi/liter for indicator locations. Strontium-90 analysis is being conducted on wells as part of the station's groundwater protection program. No plant-related effects were detected.

Table 1.0
Sample Collection Program

| Sample Class                | Collection<br>Frequency   | Number of<br>Sample<br>Locations | Samples<br>Collected this<br>Period |
|-----------------------------|---------------------------|----------------------------------|-------------------------------------|
| Background Radiation (TLDs) | Quarterly                 | 474                              | 185 <sup>5</sup>                    |
| Air Particulates            | Weekly                    | 6                                | 312                                 |
| Airborne lodine             | Weekly                    | 6                                | 311 <sup>5</sup>                    |
| Milk                        | Biweekly<br>May thru Sept | 2                                | 36¹                                 |
| Surface Water               | Monthly                   | 3                                | 36                                  |
| Ground Water                | Quarterly                 | 4                                | 16                                  |
| Fish                        | Annually                  | 2                                | 5 <sup>2</sup>                      |
| Sediment                    | Semi-annually             | 2                                | 4                                   |
| Food Crops                  | Annually                  | 3                                | 93                                  |
|                             |                           | TOTAL                            | 914                                 |

Note 1: Milk sample collection total includes 9 vegetation samples performed for milk unavailability. Milk samples are collected every two weeks May-Sept. and monthly the rest of the year. Three milk samples were performed in August.

Note 2: Includes one background sample.

Note 3: Variety of samples collected during period

Note 4: Twelve sample locations were added for assessing 40 CFR 190 doses. The results are not included in REMP program totals.

Note 5: See table of missed samples for explanations.

Reporting Period

January-Determiter, 2017

Name of Facility Lictation of Facility Fort Calhouri Nuclear Power Station - Unit 1

Docket No.

50-285

Washington, Newsasia (County, State)

| 32тр <del>'е</del>                             | Type and                                                |                | indexer<br>Locations             | Location with<br>Annual A       | lear.                          | Control<br>Lonzillons                       | Number<br>Non-      |
|------------------------------------------------|---------------------------------------------------------|----------------|----------------------------------|---------------------------------|--------------------------------|---------------------------------------------|---------------------|
| Type<br>(Units)                                | Humber of<br>Analyses*                                  | LLE            | Near (F)<br>Fange                | Location <sup>®</sup>           | Mean (F)*<br>Fange*            | Mezn (F) <sup>1</sup><br>Range <sup>1</sup> | Routine<br>Results* |
| Sersiground<br>Raidetton<br>(TLD)<br>(mR/week) | Gamma 185                                               | 0.5            | 1.5 (165/155)<br>(1.5-2.1)       | 075≻15-(1)<br>0.61 ml @205°     | 1.7 (4/4)<br>1.4-1.9           | 1.3 (4/4)<br>(1.2-1.4)                      | Ü                   |
| Altborns<br>Patifoldates<br>(eCUTA)            | GB 312<br>GS 2:                                         |                | 0.025 (255.255)<br>(D.007-5.056) | 0.8FH-(1)<br>1.57 제: 5E         | 0.005 (52/52)<br>(0.009-0.052) | 0.026 (52/52)<br>(0.085-0.053)              | 0                   |
|                                                | Os-184<br>Os-137<br>Other Gammas                        | 0.004<br>0.004 | etta<br>etta<br>etta             |                                 | - 1                            | еПО<br>«ПО<br>«ПО                           | 0<br>0              |
| Alttome<br>Ipane (pCUmb)                       | <b>⊬</b> 131 311                                        | 0.07           | e LLI»                           |                                 | -                              | < ITD                                       | Ġ                   |
| Mar<br>Mar                                     | F131 27                                                 | 0.5            | e 119                            | -                               | •                              | • ПО                                        | Ö                   |
|                                                | GS 27<br>K-40                                           | 150            | 1735 (9/9))<br>(1531-2050)       | Sangi Fann<br>3.4 ml. (b. 169 ° | 1739 (9/9)<br>(1531-2553)      | 1343 (18/18)<br>(1246-1457)                 | ũ                   |
|                                                | CS-134<br>CS-137<br>Other Generalis                     | 15<br>15<br>15 | e LLD<br>« LLD<br>« LLD          | ÷                               | -<br>-                         | ≈TTO<br>≈TTO<br>≈TTO                        | 0<br>0              |
| Ground Water<br>(pChL)                         | GB 16                                                   |                | 3.7 (12/12)<br>(2.2-7.4)         | Lomp Asreage<br>0.65 mL@163"    | 5.6 (4/4)<br>(2.9-7.4)         | 4.0 (&4)<br>(2.1-5.1)                       | a                   |
|                                                | H-3 16<br>Sr-93 16<br>GS 16                             | 300<br>0.7     | e ILD<br>= ILD                   | -                               | -                              | < ITD<br>< ITD                              | <b>0</b><br>8       |
| (p.cul.)                                       | CS-134<br>CS-137<br>Other Gammas                        | 15<br>16<br>15 | * TTD<br>* TTD<br>* TTD          |                                 |                                | 6 ITO<br>6 ITO<br>6 ITO                     | g<br>0              |
| Surface Water<br>(pCUL)                        | GS 36<br>Ctr-134<br>Ctr-137<br>Other Gentries<br>H-3 12 | 15<br>18<br>15 | - ILB<br>- ILB<br>- ILB<br>- ILB | -                               | •                              | e 110<br>e 110<br>e 110<br>e 110            | 0<br>0<br>0         |

Reporting Pestod

January-December, 2017

Name of Facility

For Calisses Reclear Power Station - Unit 1

Docket No.

5D-265

Location of Facility Washington, Nebrasia

(County, State)

| <del></del>            | T               |                | indecator           | Lecation with | Highest            | Control      | Number  |
|------------------------|-----------------|----------------|---------------------|---------------|--------------------|--------------|---------|
| Sample                 | Type and        |                | Locations           | Annual M      |                    | Leceidocs    | 8400-   |
| Type                   | NUMBER OF       | LLI*           | Meso (F)            |               | Mean (F)*          | Meen (F)     | Acuma   |
| (មកវិន)                | Analyses*       |                | Flange <sup>2</sup> | Location      | Pange <sup>r</sup> | Range        | Resuts* |
|                        |                 |                |                     |               |                    |              |         |
| Fith                   | ଜଣ ୫            |                |                     |               |                    |              |         |
| (p-Ct/g well)          | Meta            | 0.823          | < LLI)              | •             | -                  | < ILC        | ð       |
|                        | Co-58           | D.EUSD         | e LLD               | •             | -                  | c11D         | ្ន      |
|                        | C6-60           | 0.021          | =LLD                | -             | •                  | < U.D        | 0       |
|                        | P4-59           | D.ENSE         | < LLD               | -             | •                  | e ITD        | ٥       |
|                        | Zr=35           | 0.054          | « LLD               | •             | -                  | < 11D        | ð       |
| ļ                      | Ru-103          | D.Ca3          | €LLD                | •             | -                  | e TTD        | 0       |
|                        | 0:-1:4          | ROST           | er LLD              | •             | •                  | ≠ LLD        | a       |
|                        | Ca-137          | 0.020          | e LLD               | •             | •                  | = <u>U</u> D | 0       |
| At an all tops as an A | 00              |                |                     |               |                    |              |         |
| Section                | GS 4            | السيما         | , ,                 |               |                    | ,            |         |
| bcald gal              | 147-54<br>00-55 | 0.02%<br>0.024 | e LLD               | ٠             | -                  | ≈ ITD        | 0       |
|                        | Co-58           |                | ⊕ LLI:              | -             | •                  | e 1TD        | 0       |
|                        | Co-60           | 0.015          | e <u>LLD</u> \      | •             | -                  | < 11D        | Œ       |
|                        | Fe-59           | 0.003          | c LLI?              | •             | -                  | =110         | 0       |
|                        | 257-88.         | চ্চেত্র        | ं सिंह              | •             | •                  | <11D         | g       |
|                        | 09-134          | 0.016          | ⊲ LLD               | •             | -                  | e 118)       | 0       |
|                        | Ct-137          | 0.013          | « LLD               | •             | -                  | <1TD         | ٥       |
|                        |                 |                |                     |               |                    | ·            |         |
| Food Crops             | GS 9            |                |                     |               |                    |              |         |
| (piCl/g Viet)          | Nov-544         | D.Des          | ellE                | -             | -                  | e LLD        | 0       |
|                        | 00-58           | Dies           | = LLID              | -             | -                  | ~ 1LD        | 0       |
|                        | Co-60           | emin           | = LLD               | -             | •                  | ≈ LTD        | Ø       |
|                        | F6-59           | 0.073          | eLLI)               | -             | -                  | cHD          | 0       |
|                        | Zn-65           | 0.057          | e LLI)              | •             | ٠                  | < LLD        | 0       |
|                        | Z5-3-05-95      | Demi           | c LLD               |               | -                  | e LLD        | ٥       |
|                        | C9-172          | dise           | e LLI)              | ÷             | -                  | ∈ IID        | 0       |
|                        | Ca-137          | 0.038          | ः 🕮                 | -             |                    | c LLD        | 0       |
|                        | Ba-La-140       | 0.051          | e LLI:              |               | -                  | e ITO        | 0       |
| Vegetation             | GS 9            |                |                     |               |                    |              |         |
| (pOl/g v/ei)           | 170-54          | D.Clean        | ∉!LI>               | -             | -                  | 011ء         | 0       |
| • '                    | Co-58           | 0.043          | e: LLT5             |               |                    | ≈H0          | ā       |
| Pasture grave          | Co-60           | 0.042          | e LLD               | _             | -                  | < ILD        | ٥       |
| In lieu of Wak         | Fe-59           | 0.073          | e LLD               | -             | •                  | e LLO        | 0       |
|                        | ZF-65           | 0.087          | < LLD               | -             | -                  | ≈110         | Ō       |
|                        | 25-1-05-95      | A. Lan         | c LLI)              | -             | -                  | e ILD        | 0       |
|                        | C15-1724        | 0.035          | e LLI)              |               | ~                  | < 110        | Ü       |
|                        | C%-137          | 0.038          | ≪ LLTb              |               |                    | < 11D        | ā       |
|                        | Ba-La-140       | 0.050          | c LLI)              |               | _                  | ≈ IID        | 0       |
|                        |                 |                |                     | <u></u>       |                    |              |         |

<sup>&</sup>quot; G5 - grass beta, G5 - gamma skem.

<sup>\*</sup> LLD = nominal lower limit of detection based on a 95% confidence level.

Mean and range are based on detectable measurements only (i.e., >LLD) Fraction of detectable measurements at apecated locational is indicated in parasitheses (F).

Table 3.0 Listing of Missed Samples (samples scheduled but not collected)

| Sample<br>Type | Date     | Location           | Reason                                                                                                                                             |
|----------------|----------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| TLD            | 06-30-17 | OTD-A              | Sample was not recovered due to potentially unsafe condition around the weather tower. (Condition Report 2017-01839)                               |
| TLD            | 06-30-17 | OTD-A<br>Duplicate | Sample was not recovered due to potentially unsafe condition around the weather tower. (Condition Report 2017-01839)                               |
| TLD            | 06-30-17 | OTD-1P             | Sample was not recovered due to potentially unsafe condition around the weather tower. (Condition Report 2017-01839)                               |
| TLD            | 06-30-17 | OTD-1C             | Sample was not recovered due to a local county road worker replacing the road sign/pole. (Condition Report 2017-01839)                             |
| Al             | 07-12-17 | OAP-K              | Air Iodine (AI) sample did not meet the LLD due to less than adequate air sample volume after a sample pump failure. (Condition Report 2017-01904) |

FC-801 REV 1 Page 1 of 3

## 2016 Environmental Land Use Survey Report

| Sector | Dir   | Land Hea               | Land Use Owner Miles Meters Deg Survey Age Group |          | _           | XOQ      | DOQ         | Demostra       |                     |                      |          |                |          |              |
|--------|-------|------------------------|--------------------------------------------------|----------|-------------|----------|-------------|----------------|---------------------|----------------------|----------|----------------|----------|--------------|
| Sector | ווט   | Land Use               | Owner                                            | wiles    | Meters      | Deg      | Technique   | ¥              | =                   | 9                    | 벋        | XOQ            | POG      | Remarks      |
|        | ļ     |                        |                                                  |          |             | 1        | recinique   | 夏              | Teen                | ธิ                   | nfa      |                |          |              |
| A      | N     | RESIDENCE              | WRIGHT                                           | 4.36     | 7016.74     | 351      | INTERVIEW   | X              |                     | X                    | =        | 1 10F-07       | 4.50E-10 |              |
|        | l     | MILK ANIMAL            |                                                  | 1.00     |             |          |             | <del> ``</del> | +                   | -                    |          |                | - 2001   |              |
|        |       | MEAT ANIMAL            |                                                  | $\vdash$ |             | <u> </u> |             | ╁              | Н                   | Н                    |          | <del> </del> - |          |              |
|        |       | VEGETATION             |                                                  |          |             |          |             | ⊢              | $\vdash$            | $\vdash$             | _        |                |          | <del></del>  |
|        |       | GROUNDWATER            | WRIGHT                                           | 436      | 7016.74     | 351      | INTERVIEW   | X              |                     | X                    |          |                |          |              |
| В      | NNE   | RESIDENCE              | RAND.J                                           | 1        | 3106.03     | 1        |             | X              |                     | Ĥ                    | _        | 5 60E 07       | 2.20E-09 |              |
|        | 14145 | MILK ANIMAL            | 11/11/0,0                                        | 1.55     | 0100.00     | 12       | MALOUNTE    | 1^             | $\vdash$            | -1                   | _        | 3.00E-07       | 2.200-05 | ·····        |
|        |       | MEAT ANIMAL            |                                                  |          | <del></del> |          |             | ⊢              | ╁╌                  | Н                    |          | <b></b>        |          |              |
|        |       | VEGETATION             | SHEPARD                                          | 2 23     | 3588.84     | 16       | INTERVIEW   | x              | ╀┦                  | X                    | _        | 3 705 07       | 1.49E-09 |              |
|        |       | GROUNDWATER            | RAND,J                                           |          | 3106.03     |          |             | Ŕ              | $\vdash$            | $\stackrel{\sim}{-}$ | 4        | 3.705-07       | 1.436-03 | <del></del>  |
| С      | NE    | RESIDENCE              | HANSEN.M                                         |          | 2446.20     |          |             | Î              | ╀╌┨                 | X                    | _        | 1.005-08       | 2.90E-09 |              |
|        |       | MILK ANIMAL            | TIANOLINA                                        | 1.02     | 2440,20     | 72       | WALCONVET   | ^              | $\vdash$            |                      | -4       | 1.301-00       | Z.30L-03 |              |
|        |       | MEAT ANIMAL            |                                                  |          |             |          |             | ┼              | Н                   | $\dashv$             | -        |                |          |              |
|        |       | VEGETATION             | HANSEN,M                                         | 152      | 2446.20     | 12       | MAIL SURVEY | X              | -                   | Х                    | -        | 1.005-06       | 2.90E-09 |              |
|        |       | GROUNDWATER            | HANSEN,M                                         |          | 2446.20     |          |             | x              |                     | $\hat{\mathbf{x}}$   | _        | 1.0012-00      | 2.30103  |              |
| D      | ENE   | RESIDENCE              | MEADE.G                                          | 5        | 7708.76     | 1        | MAIL SURVEY | X              | $\vdash$            | $\hat{}$             | 4        | 8 705-08       | 1.30E-10 |              |
|        | FIAF  | MILK ANIMAL            | WICHUL, O                                        | 7.75     | 7700.70     | -00      | WAIL OUTTE  | 1^             | $\vdash$            | $\dashv$             | -        | 0.70L-00       | 1.00110  |              |
|        |       | MEAT ANIMAL            |                                                  | $\vdash$ |             |          |             | <del> </del>   | $\left  - \right $  | $\dashv$             |          |                |          | <del></del>  |
|        |       | VEGETATION             | MEADE,G                                          | 470      | 7708.76     | 63       | MAIL SURVEY | x              | $\square$           | $\dashv$             |          | 9 70 E 09      | 1.30E-10 |              |
|        |       | GROUNDWATER            | MEADE,G                                          |          | 7708.76     |          | MAIL SURVEY | X              | $\vdash$            |                      |          | 0.702-00       | 1.30=10  |              |
| E      | E     | RESIDENCE              | LOVE                                             |          | 7515.64     |          | MAIL SURVEY | x              | V                   | -                    | -+       | 0.80=.08       | 1.80E-10 | <del></del>  |
|        |       | MILK ANIMAL            | LOVE                                             | 4.07     | 7515.04     | 09       | WAILGURVET  | ^              | $ \gamma $          | $\dashv$             | $\dashv$ | 3.00E-D0       | 1.000=10 |              |
|        |       | MEAT ANIMAL            | BROTHERS,D                                       | 4 01     | 7901.88     | on.      | INTERVIEW   | x              | <del>├</del>        | $\dashv$             | -        | 0 30E 08       | 1.60E-10 | <del>-</del> |
|        |       | VEGETATION             | LOVE                                             |          | 7515.64     |          | MAIL SURVEY | Ŷ              | ₩                   | $\dashv$             | $\dashv$ |                | 1.80E-10 | <del></del>  |
|        |       | GROUNDWATER            | LOVE                                             |          | 7515.64     |          |             | ÷              | $_{\perp}$          |                      | 4        | 9.00⊑-06       | 1.00=10  |              |
| F      | ESE   | RESIDENCE              | WILSON ISLAND                                    |          | 6791.43     |          | MAIL SURVEY | Ŷ              |                     | $\frac{1}{x}$        | $\dashv$ | 1.30E-07       | 2 00E 40 |              |
|        |       | MILK ANIMAL            | WILOUN IOLAND                                    | 4.22     | 0/91.43     | 121      | WAILSURVET  | 1              | $\vdash$            | 4                    | {        | 1.302-07       | Z.80E-10 |              |
|        |       |                        |                                                  |          |             |          |             | <b> </b>       | $\vdash \dashv$     |                      |          |                |          |              |
|        |       | MEAT ANIMAL VEGETATION | WILSON ISLAND                                    | 4 22     | 6791.43     | 121      | MAIL SURVEY | V              | $\vdash \downarrow$ | V.                   | 4        | 4 300 07       | 2.90E-10 |              |
|        |       |                        |                                                  | 1        |             | _        |             |                |                     | X                    |          | 1.301:-07      | Z.90E-10 |              |
|        |       | GROUNDWATER            | WILSON ISLAND                                    | 4.22     | 6791.43     | 121      | MAIL SURVEY | X              | Ш                   | X                    |          |                |          |              |

FC-801 REV 1 Page 2 of 3

## 2016 Environmental Land Use Survey Report

| Sector | Dir    | Land Use    | Owner        | Miles    | Meters  | Deal   | Survey      | Adult Toon Toon Infant Infant |          | 0       | XOQ    | DOQ        | Remarks  |                                  |
|--------|--------|-------------|--------------|----------|---------|--------|-------------|-------------------------------|----------|---------|--------|------------|----------|----------------------------------|
| SECTOR | Dii    | Lanu Ose    | Owner        | MILES    | Metetz  | Deg    | Technique   | ¥.                            | <u> </u> | 9 1     | 盲      | <b>XUU</b> | DOQ      | Remarks                          |
| - 1    |        |             |              |          |         |        | Toomingao   | ¥                             | 2        | Ē       | ള      |            |          | į                                |
| G      | SE     | RESIDENCE   | CARTER,T     | 1 67     | 2687.60 | 145    | INTERVIEW   | X                             | 一        | 1       | 7      | 6.20E-07   | 3 60F-09 |                                  |
|        |        | MILK ANIMAL |              |          |         | -      |             | -                             | $\dashv$ |         | 4      | 0.202 07   |          |                                  |
|        |        | MEAT ANIMAL | <del></del>  | <u> </u> |         | -      |             | -                             | -        | ╅       | -+     |            |          |                                  |
|        |        | VEGETATION  | KALIN,W      | 1.74     | 2800.26 | 145    | MAIL SURVEY | x                             | +        | +       | -      | 5.80E-07   | 3 30F-09 |                                  |
|        |        | GROUNDWATER | KALIN.W      |          | 2800.26 |        |             |                               | -        | +       | -      |            |          | OGW-A-(I) SMITH FARM RETAINED TO |
|        |        |             |              |          |         | اشتا   |             |                               |          |         |        |            |          | MAINTAIN HISTORICAL DATA FROM    |
|        |        |             |              |          |         |        |             |                               |          |         | _      |            |          | PRE-OP TO PRESENT                |
| Н      | SSE    | RESIDENCE   | LOMP         | .65      | 1046.07 | 163    | MAIL SURVEY | Х                             |          |         | $\bot$ | 6,60E-06   | 6.10E-08 |                                  |
|        |        | MILK ANIMAL |              |          | <u></u> | $\Box$ |             |                               |          | $\perp$ |        |            |          |                                  |
|        | (      | MEAT ANIMAL | HINELINE,R   | , ,      | 2929.01 |        | INTERVIEW   | X                             | $\perp$  |         |        | 6.20E-07   |          | _                                |
|        | 1      | VEGETATION  | LOMP         |          | 1046.07 |        |             | X                             |          |         |        | 6.60E-06   | 6.10E-08 |                                  |
|        | _ 1    | GROUNDWATER | LOMP         |          | 1046.07 |        |             | X                             |          | Ì       | $\Box$ |            |          |                                  |
| J_     | S      | RESIDENCE   | DOWLER       |          | 1174.82 |        |             | X                             |          | $\perp$ |        | 2.90E-06   | -        | i e                              |
|        |        | MILK ANIMAL | STANGL       | 1        | 5536.14 |        | INTERVIEW   |                               | X.       |         | _]     | 7.10E-08   |          |                                  |
|        | [      | MEAT ANIMAL | PRATT        |          | 3991.17 |        | INTERVIEW   | X                             |          | ΧŢ      |        | 1.41E-07   |          |                                  |
|        | Ì      | VEGETATION  | DOWLER       |          | 1174.82 |        | MAIL SURVEY | X                             |          |         | _]     | 2.90E-06   | 1.90E-08 |                                  |
|        | !      | GROUNDWATER | DOWLER       |          | 1174.82 |        |             | X                             |          |         | _7     |            |          |                                  |
| K      | SSW    | RESIDENCE   | D.MILLER     | .65      | 1046.07 | 203    | INTERVIEW   | X                             |          | $\neg$  | ╗      | 2.70E-06   | 1.10E-08 |                                  |
|        |        | MILK ANIMAL |              |          |         |        |             |                               |          |         | 7      |            |          |                                  |
|        |        | MEAT ANIMAL | D.MILLER     |          | 1046.07 |        | INTERVIEW   | X                             | $\neg$   | 寸       | ٦      | 270E-06    | 1.10E-08 |                                  |
|        | - 1    | VEGETATION  | T. DEIN      | 2.00     | 3218.69 | 193    | INTERVIEW   | X                             |          | X       | $\neg$ | 1.90E-07   | 7.30E-10 |                                  |
|        |        | GROUNDWATER | D.MILLER     | .65      | 1046.07 | 203    | INTERVIEW   | X                             | $\sqcap$ | П       |        |            |          |                                  |
|        | SW     | RESIDENCE   | ROBERTSON, D | .73      | 1174.82 | 224    | MAIL SURVEY | X                             |          | $\neg$  | 7      | 2.60E-06   | 8.40E-09 |                                  |
|        |        | MILK ANIMAL |              |          |         |        |             |                               |          | T       | 7      |            |          |                                  |
|        |        | MEAT ANIMAL | RYDER        | .76      | 1223.10 | 227    | MAIL SURVEY | X                             |          | $\neg$  | _      | 2.40E-06   | 7.70E-09 |                                  |
|        |        | VEGETATION  | BURGIN       | 1.43     | 2301.36 | 223    | MAIL SURVEY | Х                             |          | T       |        | 5.00E-07   | 1.50E-09 |                                  |
|        | ĺ      | GROUNDWATER | ROBERTSON, D | .73      | 1174.82 | 224    | MAIL SURVEY | X                             | $\top$   | T       | 7      |            |          |                                  |
| M      | NSW    | RESIDENCE   | BENSEN,M     | 1.06     | 1705.90 | 257    | INTERVIEW   | X                             |          | 7       | 7      | 1.40E-06   | 4.20E-09 |                                  |
|        | $\neg$ | MILK ANIMAL |              |          |         |        |             | Ī                             | $\neg$   | $\top$  | 7      |            |          |                                  |
|        |        | MEAT ANIMAL | FREDERICK    |          | 3508.37 |        |             | X                             |          | 7       | 7      | 2.40E-07   |          |                                  |
|        | 1      | VEGETATION  | THOMAS       |          | 1818.56 |        | INTERVIEW   | X                             |          | T       | 7      | 1.10E-06   | 3.40E-09 |                                  |
|        |        | GROUNDWATER | BENSEN, M    | 1.06     | 1705.90 | 257    | INTERVIEW   | X                             |          | 寸       | 7      |            |          |                                  |

FORT CALHOUN STATION CHEMISTRY FORM

FC-801 REV 1 Page 3 of 3

## 2016 Environmental Land Use Survey Report

|        |     |             |            |       |         |          |               |   |        |        |        |          | -        |         |
|--------|-----|-------------|------------|-------|---------|----------|---------------|---|--------|--------|--------|----------|----------|---------|
| Sector | Dir | Land Use    | Owner      | Miles | Meters  | Deg      | Survey        | A | 10 G   | LON    | P      | XOQ      | DOG      | Remarks |
|        | ľ   | ļ           |            |       |         |          | Technique     | 풀 | Teen   |        | 喜      |          |          |         |
|        |     |             |            |       |         | <u> </u> | <u> </u>      | ₹ | Ĕ      | ច_     | 르      |          |          |         |
| N      | W   | RESIDENCE   | NIELSEN    | 1.20  | 1931.21 | 263      | INTERVIEW     | X | П      | П      |        | 1.30E-06 | 4:20E-09 |         |
|        |     | MILK ANIMAL |            |       |         |          |               |   | -7     |        | T      |          |          |         |
|        |     | MEAT ANIMAL | BREITHAUPT | 2:28  | 3669.30 | 261      | INTERVIEW     | X |        | 丁      | $\Box$ | 2.80E-07 | 8.10E-10 |         |
|        |     | VEGETATION  | ASMUSSEN,G | 1.30  | 2092.15 | 270      | MAIL SURVEY   | X |        | ╛      | ヿ      | 1.00E-06 | 3.30E-09 |         |
|        | - 1 | GROUNDWATER | ASMUSSEN,G | 1.30  | 2092.15 | 270      | MAIL SURVEY   | X |        | ╗      | T      |          |          |         |
| P      | WNW | RESIDENCE   | STONE      | 2.60  | 4184.29 | 283      | INTERVIEW     | X |        | 1      | $\neg$ | 2.50E-07 | 8.50E-10 |         |
|        |     | MILK ANIMAL |            |       |         |          |               |   | $\neg$ | 7      |        |          |          |         |
|        |     | MEAT ANIMAL | BROWN      |       | 7386.89 |          | MAIL SURVEY   | X |        | $\neg$ | 丁      | 9.60E-08 | 2.60E-10 |         |
|        | - 1 | VEGETATION  | TABOR      | 2.65  | 4264,76 | 285      | MAIL SURVEY   | X | X.     | ΧŢ     | $\neg$ | 2.40E-07 | 8.00E-10 |         |
|        |     | GROUNDWATER | STONE      | 2.60  | 4184.29 | 283      | INTERVIEW     | X | П      | $\neg$ | $\neg$ |          |          |         |
| Q      | NM  | RESIDENCE   | HANSEN,R   | 2.40  | 3862.43 | 318      | INTERVIEW     | X |        |        | $\Box$ | 5.00E-07 | 1.90E-09 |         |
|        |     | MILK ANIMAL |            |       |         |          |               | П |        | $\neg$ | 7      |          |          |         |
|        |     | MEAT ANIMAL |            |       |         |          |               | П |        |        |        |          |          |         |
|        |     | VEGETATION  | HANSEN,R   |       | 3862.43 | -        | INTERVIEW     | X |        |        |        | 5.00E-07 | 1.90E-09 |         |
|        |     | GROUNDWATER | HANSEN,R   |       | 3862.43 |          | INTERVIEW     | X |        |        |        |          |          |         |
| R      | MNM | RESIDENCE   | BATTIATO   | 2.08  | 3347.44 | 330      | CITY REGISTER | X |        | _ [    |        | 6.40E-07 | 3.50E-09 |         |
|        |     | MILK ANIMAL |            |       |         |          |               |   | T      | T      |        |          |          |         |
|        | [   | MEAT ANIMAL |            |       |         |          |               |   |        |        |        |          |          |         |
|        | ĺ   | VEGETATION  | SONDERUP   | 3.73  | 6002.85 | 328      | INTERVIEW     | X |        | T      |        | 1.70E-07 | 7.90E-10 |         |
|        |     | GROUNDWATER | SONDERUP   | 3.73  | 6002.85 | 328      | INTERVIEW     | X |        |        |        |          |          |         |

| Performed by Reviewed by |              |             |
|--------------------------|--------------|-------------|
|                          | Performed by | Reviewed by |

### Review of Environmental Inc., Quality Assurance Program

Fort Calhoun Station contracts with Environmental Inc., Midwest Laboratory (vendor lab) to perform radioanalysis of environmental samples. Environmental Inc. participates in inter-laboratory comparison (crosscheck) programs as part of its quality control program. These programs are operated by such agencies as the Department of Energy, which supply blind-spike samples such as milk or water containing concentrations of radionuclides unknown to the testing laboratory. This type of program provides an independent check of the analytical laboratory's procedures and processes, and provides indication of possible weaknesses. In addition, Environmental Inc. has its own in-house QA program of blind-spike and duplicate analyses.

Vendor in-house spike sampling was performed without a failure and in-house blank analyses were performed within acceptable ranges. Routine FCS REMP duplicates samples were performed by the vendor to verify reproducibility of results. All duplicates were within acceptance criteria.

Three DOE MAPEP cross check samples failed in 2017. DOE water sample MAW-847 dated 2/1/2017, failed for Co-57. The laboratory report had a decimal point misplaced during unit conversion. The result was within control limits when the proper unit conversion was performed. Third quarter MAW testing for Co-57 was performed within acceptable limits. DOE air particulate sample, MAAP 907 failed high on its Am-241 results due to plating issues. Sample was reanalyzed in duplicate with acceptable results. The MAAP sample failed low during 3<sup>rd</sup> quarter Am-241 testing, however the DOE is no longer offering Am-241 testing for air particulates, so this failure was not addressed. Testing on ERA air particulate for Am-241 ERAP-1112 was successfully completed by the vendor. Am-241 is currently not performed in the REMP program but performed in house as part of the REMP program. No Am-241 was detected in effluent releases, and FCS personnel passed its Analytics cross checks for Am-241.

Environmental Resource Associates cross checks had four failures during 2017. ERA air particulate sample, ERAP-1112, failed high for Fe-55 on 3/20/2017. Insufficient sample existed to re-perform the analysis, so the sample was re-counted for an extended count and successful results were obtained. ERAP-1114 failed Gross Beta analysis high outside limits. The ERA samples appear to have been deposited in a pattern closer to the center of the filter changing the efficiency calculation (low) causing the report activity to be high. In house spiked samples had a test ratio 0.94 for sample prepared by Environmental Inc. Soil sample ERSO-1116 (low) on the following isotopes Pu-29, Pu-240, U-233 and U-234. These analytes passed after re-analysis. Poor electroplating was listed as a potential cause. Water sample, ERW-11120, failed high for Fe-55. Sample was recounted and acceptable resulted were generated. Insufficient sample was left after water testing to reperform the entire analysis. The FCS REMP program does not perform Fe-55 or Transuranic analyses on its samples. Gross Beta results obtained were within historical means and did not show a high bias.

No test results failed both the ERA and DOE methodologies for a given sample type. Reanalysis produced acceptable results. The ordering of additional tests and successful testing after corrections were applied, visibly demonstrates the vendor's commitment to reporting and resolving deficiencies.

These results indicate the vendor's ability to self-identify and correct any deviations from acceptable or expected results. The test results had no impact on Fort Calhoun samples and were documented as such by the vendor. No changes are deemed necessary to the FCS REMP program due to vendor performance.



### APPENDIX A

INTERLABORATORY COMPARISON PROGRAM RESULTS AND INTRALABORATORY COMPARISON PROGRAM RESULTS

NOTE:

Appendix A is updated four times a year. The complete appendix is included in March, June, September and December monthly progress reports only.

January, 2017 through December, 2017

#### Appendix A

### Interlaboratory/ Intralaboratory Comparison Program Results

Environmental, Inc., Midwest Laboratory has participated in interlaboratory comparison (crosscheck) programs since the formulation of it's quality control program in December 1971. These programs are operated by agencies which supply environmental type samples containing concentrations of radionuclides known to the issuing agency but not to participant laboratories. The purpose of such a program is to provide an independent check on a laboratory's analytical procedures and to alert it of any possible problems.

Participant laboratories measure the concentration of specified radionuclides and report them to the issuing agency. Several months later, the agency reports the known values to the participant laboratories and specifies control limits. Results consistently higher or lower than the known values or outside the control limits indicate a need to check the instruments or procedures used.

Results in Table A-1 were obtained through participation in the RAD PT Study Proficiency Testing Program administered by Environmental Resources Associates, serving as a replacement for studies conducted previously by the U.S. EPA Environmental Monitoring Systems Laboratory, Las Vegas, Nevada.

Table A-2 lists results for thermoluminescent dosimeters (TLDs), via irradiation and evaluation by the University of Wisconsin-Madison Radiation Calibration Laboratory at the University of Wisconsin Medical Radiation Research Center.

Table A-3 lists results of the analyses on in-house "spiked" samples for the past twelve months. All samples are prepared using NIST traceable sources. Data for previous years available upon request.

Table A-4 lists results of the analyses on in-house "blank" samples for the past twelve months. Data for previous years available upon request.

Table A-5 lists analytical results from the in-house "duplicate" program for the past twelve months. Acceptance is based on the difference of the results being less than the sum of the errors. Complete analytical data for duplicate analyses is available upon request.

The results in Table A-6 were obtained through participation in the Mixed Analyte Performance Evaluation Program.

Results in Table A-7 were obtained through participation in the MRAD PT Study Proficiency Testing Program administered by Environmental Resources Associates, serving as a replacement for studies conducted previously by the Environmental Measurement Laboratory Quality Assessment Program (EML).

Attachment A lists the laboratory precision at the 1 sigma level for various analyses. The acceptance criteria in Table A-3 is set at ± 2 sigma.

Out-of-limit results are explained directly below the result.

### Attachment A

### ACCEPTANCE CRITERIA FOR "SPIKED" SAMPLES

### LABORATORY PRECISION: ONE STANDARD DEVIATION VALUES FOR VARIOUS ANALYSES®

| Analysis                                                             | Level                                             | One standard deviation for single determination |
|----------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------|
| Gamma Emitters                                                       | 5 to 100 pCi/liter or kg<br>> 100 pCi/liter or kg | 5.0 pCi/liter<br>10% of known value             |
| Strontlum-89 <sup>6</sup>                                            | 5 to 50 pCi/liter or kg<br>> 50 pCi/liter or kg   | 5.0 pCi/liter<br>10% of known value             |
| Strontium-90 <sup>6</sup>                                            | 2 to 30 pCi/liter or kg<br>> 30 pCi/liter or kg   | 5.0 pCi/liter<br>10% of known value             |
| Potassium-40                                                         | ≥ 0.1 g/liter or kg                               | 10% of known value                              |
| Gross alpha                                                          | ≤ 20 pCi/liter<br>> 20 pCi/liter                  | 5.0 pCl/liter<br>25% of known value             |
| Gross beta                                                           | ≤ 100 pCi/liter<br>> 100 pCi/liter                | 5.0 pCi/liter<br>10% of known value             |
| Tritium                                                              | ≤ 4,000 pCi/liter                                 | ±1σ =<br>169.85 x (known) <sup>0.9933</sup>     |
|                                                                      | > 4,000 pCi/liter                                 | 10% of known value                              |
| Radium-226,-228                                                      | ≥ 0.1 pCi/liter                                   | 15% of known value                              |
| Plutonium                                                            | ≥ 0.1 pCi/liter, gram, or sample                  | 10% of known value                              |
| lodine-131,<br>lodine-129 <sup>b</sup>                               | ≤ 55 pCi/liter<br>> 55 pCi/liter                  | 6 pCi/liter<br>10% of known value               |
| Uranium-238,<br>Nickel-63 <sup>b</sup><br>Technetium-99 <sup>b</sup> | ≤ 35 pCl/liter<br>> 35 pCl/liter                  | 6 pCi/liter<br>15% of known value               |
| Iron-55 <sup>b</sup>                                                 | 50 to 100 pCi/liter<br>> 100 pCi/liter            | 10 pCi/liter<br>10% of known value              |
| Other Analyses <sup>b</sup>                                          | _                                                 | 20% of known value                              |

Prom EPA publication, "Environmental Radioactivity Laboratory Intercomparison Studies Program", Fiscal Year, 1981-1982, EPA-600/4-81-004.

b Laboratory limit.

TABLE A-1. Interlaboratory Comparison Crosscheck program, Environmental Resource Associates (ERA)\*.

RAD study

|          |           |           | Concer         | tration (pCi/L) |                 | ***        |
|----------|-----------|-----------|----------------|-----------------|-----------------|------------|
| Lab Code | Date      | Analysis  | Laboratory     | ERA             | Control         |            |
|          |           | -         | Result         | Result          | Limits          | Acceptance |
| ERW-95   | 1/9/2017  | Sr-89     | 51.9 ± 4.6     | 55.5            | 44.3 - 63.2     | Pass       |
| ERW-95   | 1/9/2017  | Sr-90     | 43.6 ± 2.4     | 43.1            | 31.8 - 49.5     | Pass       |
| ERW-97   | 1/9/2017  | Ba-133    | 78.2 ± 4.1     | 85.6            | 72.0 - 94.2     | Pass       |
| ERW-97   | 1/9/2017  | Cs-134    | 53.9 ± 3.8     | 52.6            | 42.4 - 57.9     | Pass       |
| ERW-97   | 1/9/2017  | Cs-137    | 122 ± 6        | 112             | 101 - 126       | Pass       |
| ERW-97   | 1/9/2017  | Co-60     | 117 ± 4        | 113             | 102 - 126       | Pass       |
| ERW-97   | 1/9/2017  | Zn-65     | 208 ± 13       | 189             | 170 - 222       | Pass       |
| ERW-99   | 1/9/2017  | Gr. Alpha | 48.9 ± 2.4     | 52:3            | 27.3 - 65.5     | Pass       |
| ERW-99   | 1/9/2017  | Gr. Beta  | 37.1 ± 1.3     | 41.6            | 27.7 - 49.0     | Pass       |
| ERW-101  | 1/9/2017  | l-131     | 22.3 ± 0.6     | 24.3            | 20.2 - 28.8     | Pass       |
| ERW-103  | 1/9/2017  | Ra-226    | 11.3 ± 0.4     | 12.7            | 9.5 - 14.7      | Pass       |
| ERW-103  | 1/9/2017  | Ra-228    | 6.10 ± 0.90    | 6.20            | 3.8 - 8.1       | Pass       |
| ERW-103  | 1/9/2017  | Uranium   | $11.8 \pm 0.8$ | 12.6            | 9.9 - 14.4      | Pass       |
| ERW-106  | 1/9/2017  | H-3       | 12,600 ± 300   | 12,500          | 10,900 - 13,800 | Pass       |
| ERW-3344 | 7/10/2017 | Sr-89     | 29.0 ± 10.0    | 26.4            | 18.4 - 32.9     | Pass       |
| ERW-3344 | 7/10/2017 | Sr-90     | 33.8 ± 3.3     | 36.0            | 26.4 - 41.5     | Pass       |
| ERW-3346 | 7/10/2017 | Ba-133    | 66.4 ± 4.1     | 66.3            | 55.2 - 72.9     | Pass       |
| ERW-3346 | 7/10/2017 | Cs-134    | 27.0 ± 4.3     | 24.4            | 18.7 - 27.2     | Pass       |
| ERW-3346 | 7/10/2017 | Cs-137    | 57.4 ± 4.5     | 51.6            | 46.4 - 59.6     | Pass       |
| ERW-3346 | 7/10/2017 | Co-60     | 92.6 ± 4.4     | 88.6            | 79.7 - 99.8     | Pass       |
| ERW-3346 | 7/10/2017 | Zn-65     | 32.4 ± 6.0     | 32.7            | 27.3 - 41.6     | Pass       |
| ERW-3348 | 7/10/2017 | Gr. Alpha | 23.7 ± 1.9     | 25.7            | 13.0 - 34.1     | Pass       |
| ERW-3348 | 7/10/2017 | Gr. Beta  | 54.6 ± 1.6     | 63.0            | 43.5 - 69.6     | Pass       |
| ERW-3350 | 7/10/2017 | I-131     | 25.4 ± 1.3     | 25.5            | 21,2 - 30,1     | Pass       |
| ERW-3352 | 7/10/2017 | Ra-226    | 1.38 ± 0.15    | 1.29            | 1.07 - 1.95     | Pass       |
| ERW-3352 | 7/10/2017 | Ra-228    | 6.70 ± 0.93    | 5.66            | 3.45 - 7.47     | Pass       |
| ERW-3352 | 7/10/2017 | Uranium   | 58.4 ± 0.9     | 66.7            | 54.3 - 73.9     | Pass       |
| ERW-3354 | 7/10/2017 | H-3       | 5,254 ± 224    | 5,060           | 4.340 - 5.570   | Pass       |

<sup>&</sup>lt;sup>a</sup> Results obtained by Environmental, Inc., Midwest Laboratory as a participant in the crosscheck program for proficiency testing in drinking water conducted by Environmental Resources Associates (ERA).

TABLE A-2. Thermoluminescent Dosimetry, (TLD, CaSO<sub>4</sub>: Dy Cards). Ab

|              |                   |             |           | mrem        |                          |
|--------------|-------------------|-------------|-----------|-------------|--------------------------|
| ab Code      | Irradiation       |             | Delivered | Reported    | Performance <sup>c</sup> |
|              | Date              | Description | eaoG      | Dose        | Quotient (P)             |
| nvironment   | al, Inc.          | Group 1     |           |             |                          |
| 017-1        | 10/16/2017        | Spike 1     | 59.0      | 46.9        | -0.21                    |
| 017-1        | 10/16/2017        | Spike 2     | 59.0      | 50.6        | -0.14                    |
| 17-1         | 10/16/2017        | Spike 3     | 59.0      | 50.2        | -0.15                    |
| 17-1         | 10/16/2017        | Spike 4     | 59.0      | 50.8        | -0.14                    |
| 17-1         | 10/16/2017        | Spike 5     | 59.0      | 49.2        | -0.17                    |
| 17-1         | 10/16/2017        | Spike 6     | 59.0      | 51.4        | -0.13                    |
| 17-1         | 10/16/2017        | Spike 7     | 59.0      | 49.4        | -0.16                    |
| 17-1         | 10/16/2017        | Spike 8     | 59.0      | 50.1        | -0.15                    |
| 17-1         | 10/16/2017        | Spike 9     | 59.0      | 51.9        | -0.12                    |
| 17-1         | 10/16/2017        | Spike 10    | 59.0      | 48.0        | -0.19                    |
| 17-1         | 10/16/2017        | Spike 11    | 59.0      | 51.3        | -0.13                    |
| 17-1         | 10/16/2017        | Spike 12    | 59.0      | 53.0        | -0.10                    |
| 17-1         | 10/16/2017        | Spike 13    | 59.0      | 47.8        | -0.19                    |
| 17-1         | 10/16/2017        | Spike 14    | 59.0      | 49.8        | -0.16                    |
| 17-1         | 10/16/2017        | Spike 15    | 59.0      | 51.7        | -0.12                    |
| 17-1         | 10/16/2017        | Spike 16    | 59.0      | 50.6        | -0.14                    |
| 17-1         | 10/16/2017        | Spike 17    | 59.0      | 47.6        | -0.19                    |
| <u>17</u> -1 | 10/16/2017        | Spike 18    | 59.0      | 49.7        | -0.16                    |
| 7-1          | 10/16/2017        | Spike 19    | 59.0      | 47.9        | -0.19                    |
| 17-1         | 10/16/2017        | Spike 20    | 59.0      | 48.2        | -0.18                    |
| 17-1         | 10/16/2017        | Spike 21    | 59.0      | 50.5        | -0.14                    |
| 17-1         | 10/16/2017        | Spike 22    | 59.0      | 49,0        | -0.17                    |
| 17-1         | 10/16/2017        | Spike 23    | 59.0      | 51.7        | <b>-</b> 0.12            |
| 17-1         | 10/16/2017        | Spike 24    | 59.0      | 50.7        | -0.14                    |
| 17-1         | 10/16/2017        | Spike 25    | 59.0      | <b>51,1</b> | -0.13                    |
| 17-1         | 10/16/2017        | Spike 26    | 59.0      | 49.1        | -0.17                    |
| 17-1         | 10/16/2017        | Spike 27    | 59.0      | 49.0        | -0.17                    |
| 17-1         | 10/16/2017        | Spike 28    | 59.0      | 49.1        | -0.17                    |
| 17-1         | 10/16/2017        | Spike 29    | 59.0      | 47.5        | -0.19                    |
| 17-1,        | 10/16/2017        | Spike 30    | 59.0      | 52.6        | -0:11                    |
| an (Spike    | 1-30)             |             |           | 49.9        | -0.15                    |
| andard De    | viation (Spike 1- | 30)         |           | 1.6         | 0.03                     |

<sup>\*</sup> Table A-2 assumes 1 roentgen = 1 rem (NRC -Health Physics Questions and Answers 10 CFR Part 20 - Question 96 - Page Last Reviewed/Updated Thursday, October 01, 2015).

<sup>&</sup>lt;sup>b</sup> TLD's were irradiated by the University of Wisconsin-Madison Radiation Calibration Laboratory following ANSI N13.37 protocol from a known air kerma rate. TLD's were read and the results were submitted by Environmental Inc. to the University of Wisconsin-Madison Radiation Calibration Laboratory for comparison to the delivered dose.

<sup>&</sup>lt;sup>c</sup> Performance Quotient (P) is calculated as ((reported dose - conventially true value) + conventially true value) where the conventially true value is the delivered dose.

d Acceptance is achieved when neither the absolute value of mean of the P values, nor the standard deviation of the P values exceed 0.15.

TABLE A-2 Thermoluminescent Dosimetry, (TLD, CaSO<sub>4</sub>: Dy Cards). <sup>8 b</sup>

|             |                   |              | mrem      |          |               |
|-------------|-------------------|--------------|-----------|----------|---------------|
| Lab Code    | Irradiation       |              | Delivered | Reported | Performance c |
|             | Date              | Description. | Döse      | Dose     | Quotient (P)  |
| nvironment  | al, Inc.          | Group 2      |           |          |               |
| 2017-2      | 10/16/2017        | Spike 31     | 186.0     | 156.7    | -0.16         |
| 2017-2      | 10/16/2017        | Spike 32     | 186.0     | 163.6    | -0.12         |
| 2017-2      | 10/16/2017        | Spike 33     | 186:0     | 159.2    | -0.14         |
| 2017-2      | 10/16/2017        | Spike 34     | 186.0     | 152.8    | -0.18         |
| 2017-2      | 10/16/2017        | Spike 35     | 186.0     | 163.3    | -0.12         |
| 2017-2      | 10/16/2017        | Spike 36     | 186.0     | 168.4    | -0.09         |
| 2017-2      | 10/16/2017        | Spike 37     | 186.0     | 168.1    | -0.10         |
| 2017-2      | 10/16/2017        | Spike 38     | 186.0     | 157.4    | -0.15         |
| 2017-2      | 10/16/2017        | Spike 39     | 186.0     | 166.1    | -0.11         |
| 2017-2      | 10/16/2017        | Spike 40     | 186.0     | 164.3    | -0.12         |
| 2017-2      | 10/16/2017        | Spike 41     | 186.0     | 159,6    | -0.14         |
| 2017-2      | 10/16/2017        | Spike 42     | 186.0     | 153.2    | -0.18         |
| 017-2       | 10/16/2017        | Spike 43     | 186.0     | 158.2    | -0.15         |
| 017-2       | 10/16/2017        | Spike 44     | 186.0     | 164.0    | -0.12         |
| 2017-2      | 10/16/2017        | Spike 45     | 186.0     | 164.5    | <b>-</b> 0.12 |
| 017-2       | 10/16/2017        | Spike 46     | 186.0     | 161.2    | -0.13         |
| 017-2       | 10/16/2017        | Spike 47     | 186.0     | 160.8    | -0.14         |
| 017-2       | 10/16/2017        | Spike 48     | 186.0     | 158.8    | -0.15         |
| 017-2       | 10/16/2017        | Spike 49     | 186.0     | 157.9    | -0.15         |
| 2017-2      | 10/16/2017        | Spike 50     | 186.0     | 158.6    | <b>-</b> 0.15 |
| 017-2       | 10/16/2017        | Spike 51     | 186.0     | 153.3    | -0.18         |
| 017-2       | 10/16/2017        | Spike 52     | 186.0     | 165.0    | -0.11         |
| 017-2       | 10/16/2017        | Spike 53     | 186.0     | 164.7    | -0.11         |
| 017-2       | 10/16/2017        | Spike 54     | 186.0     | 152.2    | -0.18         |
| 017-2       | 10/16/2017        | Splke 55     | 186.0     | 158.0    | -0.15         |
| 017-2       | 10/16/2017        | Spike 56     | 186.0     | 156.5    | -0.16         |
| 017-2       | 10/16/2017        | Spike 57     | 186.0     | 155.9    | -0.16         |
| 017-2       | 10/16/2017        | Spike 58     | 186.0     | 152.1    | -0.18         |
| 017-2       | 10/16/2017        | Spike 59     | 186.0     | 157.6    | -0.15         |
| 017-2       | 10/16/2017        | Spike 60     | 186.0     | 157.0    | -0.16         |
| lean (Spike | 31-60)            |              |           | 159.6    | -0.14         |
| Standard De | viation (Spike 31 | -60)         |           | 4.7      | 0.03          |

<sup>&</sup>lt;sup>a</sup> Table A-2 assumes 1 roentgen = 1 rem (NRC -Health Physics Questions and Answers 10 CFR Part 20 - Question 96 - Page Last Reviewed/Updated Thursday, October 01, 2015).

<sup>&</sup>lt;sup>b</sup> TLD's were irradiated by the University of Wisconsin-Madison Radiation Calibration Laboratory following ANSI N13.37 protocol from a known air kerma rate. TLD's were read and the results were submitted by Environmental Inc. to the University of Wisconsin-Madison Radiation Calibration Laboratory for comparison to the delivered dose.

<sup>&</sup>lt;sup>c</sup> Performance Quotient (P) is calculated as ((reported dose - conventially true value) + conventially true value where the conventially true value is the delivered dose.

<sup>&</sup>lt;sup>d</sup> Acceptance is achieved when neither the absolute value of mean of the P values, nor the standard deviation of the P values exceed 0.15.

TABLE A-3. In-House "Spiked" Samples

|             |           | Concentration <sup>6</sup> |                                 |                   |                                |            |  |
|-------------|-----------|----------------------------|---------------------------------|-------------------|--------------------------------|------------|--|
| Lab Code. b | Date      | Analysis                   | Laboratory results<br>2s, n=1 ° | Known<br>Activity | Control<br>Limits <sup>d</sup> | Acceptance |  |
|             |           |                            |                                 | *                 |                                |            |  |
| W-010417    | 4/29/2016 | Cs-134                     | 38.2 ± 8.1                      | 36,2              | 29.0 - 43.4                    | Pass       |  |
| W-010417    | 4/29/2016 | Cs-137                     | 78.0 ± 8.8                      | 71.9              | 57.5 - 86.3                    | Pass       |  |
| SPW-306     | 1/4/2017  | Ra-226                     | $18.1 \pm 0.4$                  | 16.7              | 13,4 - 20,1                    | Pass       |  |
| SPW-32      | 1/6/2017  | H-3                        | 17,849 ± 393                    | 17,243            | 10,346 - 24,140                | Pass       |  |
| SPW-46      | 1/9/2017  | Gr. Alpha                  | $20.0 \pm 0.4$                  | 20.1              | 16.1 - 24.1                    | Pass       |  |
| SPW-46      | 1/9/2017  | Gr. Beta                   | 29.0 ± 0.3                      | 28.9              | 23.1 ~ 34.6                    | Pass       |  |
| SPW-92      | 1/11/2017 | H-3                        | 18,095 ± 397                    | 17,243            | 10,346 - 24,140                | Pass       |  |
| SPW-142     | 1/12/2017 | Sr-90                      | 39.4 ± 2.3                      | 36.6              | 29.3 - 43.9                    | Pass       |  |
| SPW-155     | 1/19/2017 | H-3                        | $17,974 \pm 400$                | 17,243            | 10,346 - 24,140                | Pass       |  |
| SPW-186     | 1/23/2017 | H-3                        | 17,383 ± 366                    | 17,243            | 10,346 - 24,140                | Pass       |  |
| SPW-232     | 1/19/2017 | H-3                        | 17,542 ± 368                    | 17,243            | 10,346 - 24,140                | Pass       |  |
| SPW-304     | 1/26/2017 | H-3                        | $17,782 \pm 400$                | 17,243            | 10,346 - 24,140                | Pass       |  |
| SPW-333     | 1/30/2017 | H-3                        | 17,910 ± 406                    | 17,243            | 10,346 - 24,140                | Pass       |  |
| SPW-353     | 2/2/2017  | U-234                      | 47.8 ± 2.3                      | 41.7              | 33,4 - 50.0                    | Pass       |  |
| SPW-353     | 2/2/2017  | U-238                      | 50.4 ± 2.4                      | 41,7              | 33.4 - 50.0                    | Pass       |  |
| W-020217    | 4/29/2016 | Cs-134                     | 33.7 ± 6.1                      | 36,2              | 29.0 - 43.4                    | Pass       |  |
| W-020217    | 4/29/2016 | Cs-137                     | 78.4 ± 7.3                      | 71.9              | 57.5 - 86.3                    | Pass       |  |
| SPW-412     | 2/6/2017  | Sr-90                      | 36.2 ± 2.4                      | 36.6              | 29.3 - 43.9                    | Pass       |  |
| SPW-465     | 2/8/2017  | H-3                        | 17,573 ± 396                    | 17,243            | 10,346 - 24,140                | Pass       |  |
| SPW-561     | 2/15/2017 | H-3                        | 17,358 ± 395                    | 17,243            | 10,346 - 24,140                | Pass       |  |
| SPW-605     | 2/16/2017 | H-3                        | 17,820 ± 401                    | 17,243            | 10,346 - 24,140                | Pass       |  |
| SPW-657     | 2/17/2017 | H-3                        | 17,614 ± 376                    | 17,243            | 10,346 - 24,140                | Pass       |  |
| SPW-714     | 2/23/2017 | H-3                        | 17,662 ± 400                    | 17,243            | 10,346 - 24,140                | Pass       |  |
| SPW-737     | 2/28/2017 | H-3                        | 17,196 ± 395                    | 17,243            | 10,346 - 24,140                | Pass       |  |
| SPAP-740    | 2/28/2017 | Gr. Beta                   | 38.9 ± 0.1                      | 41.5              | 33.2 - 49.8                    | Pass       |  |
| SPAP-742    | 2/24/2017 | Cs-134                     | 1.05 ± 0.60                     | 0.98              | 0.78 - 1.18                    | Pass       |  |
| SPAP-742    | 2/24/2017 | Cs-137                     | 90.4 ± 2.5                      | 92.9              | 74.3 - 111.5                   | Pass       |  |
| SPW-746     | 2/28/2017 | Sr-90                      | 42.8 ± 2.5                      | 36.6              | 29.3 - 43.9                    | Pass       |  |
| SPW-748     | 2/28/2017 | C-14                       | 4270 ± 17                       | 4735              | 3788 - 5682                    | Pass       |  |
| SPW-750     | 2/28/2017 | Ni-63                      | 463 ± 4                         | 400               | 240 - 560                      | Pass       |  |
| SPF-752     | 2/28/2017 | Cs-134                     | 1033 ± 38                       | 1090              | 870 - 1300                     | Pass       |  |
| SPF-762     | 2/28/2017 | Cs-137                     | 3071 ± 61                       | 2820              | 2250 - 3380                    | Pass       |  |
| SPW-781     | 3/1/2017  | Ra-226                     | 18.1 ±0.4                       | 16.7              | 13.4 - 20.1                    | Pess       |  |
| SPW-783     | 3/1/2017  | H-3                        | 17,653 ± 400                    | 17,243            | 13,794 - 20,692                | Pass       |  |
| W-030517    | 4/29/2016 | Cs-134                     | 38.0 ± 9.0                      | 36.2              | 29.0 - 43.4                    | Pass       |  |
| W-030517    | 4/29/2016 | Cs-137                     | 80.9 ± 9.2                      | 71.9              | 57.5 - 86.3                    | Pass       |  |
| SPW-1010    | 3/14/2017 | H-3                        | 17,312 ± 395                    | 17,243            | 13,794 - 20,692                | Pass       |  |
| SPW-1026    | 3/16/2017 | Gr. Alpha                  | 22.4 ± 0.5                      | 20:1              | 12.0 - 28.1                    | Pass       |  |
| SPW-1026    | 3/16/2017 | Gr. Beta                   | 29.2 ± 0.3                      | 28.9              | 17.3 - 40.4                    | Pass       |  |
|             |           |                            | · · ·                           |                   | 13,794 - 20,692                | Pass       |  |
| SPW-1092    | 3/21/2017 | H-3                        | 17,252 ± 390                    | 17,243            | ****                           | 2 ****     |  |
| SPW-1151    | 3/24/2017 | H-3                        | 17,009 ± 388                    | 17,243            | 13,794 - 20,692                | Pass       |  |
| SPW-1163    | 3/28/2017 | Sr-90                      | 39.0 ± 2.3                      | 36.3              | 29.0 - 43.5                    | Pass       |  |
| SPW-1178    | 3/29/2017 | Ra-228                     | 15.1 ± 1.9                      | 16.0              | 9.6 - 22.4                     | Pa         |  |

TABLE A-3. In-House "Spiked" Samples

|            |           | <del>~</del> | Concentration                  | ) <del>"</del> .  |                                |            |
|------------|-----------|--------------|--------------------------------|-------------------|--------------------------------|------------|
| Lab Code b | Date      | Analysis     | Laboratory results<br>2s, n=1° | Known<br>Activity | Control<br>Limits <sup>d</sup> | Acceptance |
| SPW-1232   | 3/30/2017 | H <b>-</b> 3 | 17,150 ± 390                   | 17,243            | 13,794 - 20,692                | Pass       |
| SPW-1246   | 3/31/2017 | I-131(G)     | 33.0 ± 7.3                     | 36.6              | 29.3 - 43.9                    | Pass       |
| SPW-1246   | 3/31/2017 | Cs-134       | 28.9 ± 4.6                     | 26.6              | 21.3 - 31.9                    | Pass       |
| SPW-1246   | 3/31/2017 | Cs-137       | 80.6 ± 8.2                     | 70:4              | 56.3 - 84.5                    | Pass       |
| SPMI-1248  | 3/31/2017 | I-131(G)     | 39.8 ± 7.0                     | 36.6              | 29.3 - 43.9                    | Pass       |
| SPMI-1248  | 3/31/2017 | Cs-134       | 26.9 ± 5.9                     | 26.6              | 21.3 - 31.9                    | Pass       |
| SPMI-1248  | 3/31/2017 | Cs-137       | 70.4 ± 6.9                     | 70.4              | 56.3 - 84.5                    | Pass       |
| SPMI-1248  | 3/31/2017 | 1-131        | 36.2 ± 0.6                     | 36.6              | 29.3 - 43.9                    | Pass       |
| SPW-1295   | 3/31/2017 | Ra-226       | 17.9 ± 0.4                     | 16.7              | 13.4 - 20.1                    | Pass       |
| SPW-1304   | 4/4/2017  | H-3          | 17,741 ± 398                   | 17,243            | 13,794 - 20,692                | Pass       |
| SPW-1359   | 4/5/2017  | I-131        | $44.3 \pm 0.5$                 | 47.6              | 38.1 - 57.1                    | Pass       |
| SPW-1378   | 4/7/2017  | H-3          | 17,528 ± 395                   | 17,243            | 13,794 - 20,692                | Pass       |
| SPW-1391   | 4/7/2017  | Gr. Alpha    | 21.1 ± 0.4                     | 20.1              | 12.0 - 28.1                    | Pass       |
| SPW-1391   | 4/7/2017  | Gr. Beta     | $27.8 \pm 0.3$                 | 28.2              | 17.3 - 40.4                    | Pass       |
| SPW-1480   | 4/12/2017 | H-3          | 17,399 ± 392                   | 17,243            | 13,794 - 20,692                | Pass       |
| W-041317   | 4/29/2016 | Cs-134       | 34.6 ± 5.6                     | 36.2              | 29.0 - 43.4                    | Pass       |
| W-041317   | 4/29/2016 | Cs-137       | 81.9 ± 8.0                     | 71.9              | 57.5 - 86.3                    | Pass       |
| SPW-1480   | 4/12/2017 | H-3          | 17,399 ± 392                   | 17,243            | 13,794 - 20,692                | Pass       |
| SPW-1575   | 4/18/2017 | H-3          | 17,419 ± 393                   | 17,243            | 13,794 - 20,692                | Pass       |
| SPW-1626   | 4/20/2017 | Sr-90        | 37.2 ± 2.4                     | 36.3              | 29.0 - 43.5                    | Pass       |
| SPW-1658   | 4/21/2017 | H-3          | 17,194 ± 391                   | 17,243            | 13,794 - 20,692                | Pass       |
| SPW-1776   | 4/26/2017 | H-3          | 16,609 ± 386                   | 17,243            | 13,794 - 20,692                | Pass       |
| SPW-1806   | 4/27/2017 | H-3          | 17,203 ± 390                   | 17,243            | 13,794 - 20,692                | Pass       |
| SPW-1937   | 5/3/2017  | H-3          | 16,690 ± 385                   | 17,243            | 13,794 - 20,692                | Pass       |
| SPW-1971   | 5/5/2017  | Sr-90        | 41.5 ± 2.2                     | 36.3              | 29.0 - 43.5                    | Pass       |
| SPW-2033   | 5/8/2017  | H-3          | 16,780 ± 386                   | 17,243            | 13,794 - 20,692                | Pass       |
| SPW-2420   | 5/9/2017  | Ra-226       | $16.3 \pm 0.5$                 | 16.7              | 13.4 - 20.1                    | Pass       |
| W-051517   | 4/29/2016 | Cs-134       | $36.3 \pm 5.0$                 | 36.2              | 29.0 - 43.4                    | Pass       |
| W-051517   | 4/29/2016 | Cs-137       | $68.9 \pm 6.6$                 | 71.9              | 57.5 - 86.3                    | Pass       |
| SPW-2284   | 5/22/2017 | H-3          | $16,935 \pm 389$               | 16,703            | 13,362 - 20,043                | Pass       |
| SPW-2354   | 5/23/2017 | H-3          | 17,006 ± 390                   | 16,700            | 13,360 - 20,040                | Pass       |
| SPW-2891   | 5/23/2017 | Ra-226       | $17.5 \pm 0.4$                 | 16.7              | 13.4 - 20.1                    | Pass       |
| SPW-2418   | 5/23/2017 | Ra-228       | 14.0 ± 1.8                     | 16.0              | 11.2 - 20.8                    | Pass       |
| SPW-2439   | 5/25/2017 | Ra-228       | 13.0 ± 1.8                     | 16.0              | 11.2 - 20.8                    | Pass       |
| SPMI-2378  | 5/24/2017 | Sr-89        | 83.7 ± 4.9                     | 98.4              | 78.7 - 118.1                   | Pass       |
| SPMI-2378  | 5/24/2017 | Sr-90        | 39.5 ± 1.5                     | 36.1              | 28.9 - 43.4                    | Pass       |
| SPW-2468   | 5/26/2017 | H-3          | 17,065 ± 391                   | 16,692            | 13,354 - 20,031                | Pass       |
| SPW-2848   | 5/26/2017 | I-131        | $56.4 \pm 0.6$                 | 58.3              | 46.6 - 70.0                    | Pass       |
| SPW-2502   | 6/1/2017  | H-3          | 17,596 ± 396                   | 16,677            | 13,342 - 20,012                | Pass       |
| SPW-2659   | 6/5/2017  | H-3          | 17,027 ± 390                   | 16,677            | 13,342 - 20,012                | Pass       |
| SPW-2790   | 6/9/2017  | H-3          | 17,101 ± 392                   | 17,101            | 13,325 - 19,988                | Pass       |

TABLE A-3. In-House "Spiked" Samples

| Lab Code <sup>6</sup> | Date        | Analysis           | Concentration Laboratory results | Known    | Control                |            |
|-----------------------|-------------|--------------------|----------------------------------|----------|------------------------|------------|
| Lab Code              | Date        | Allalysis          | 2s, n=1 °                        | Activity | Limits <sup>d</sup>    | Acceptance |
|                       | <del></del> | <del></del>        | 20, 11-1                         | Activity | Pittito                | Acceptance |
| SPW-2798              | 6/12/2017   | H-3                | 16,683 ± 364                     | 16,649   | 13,319 - 19,978        | Pass       |
| SPW-2943              | 6/19/2017   | Sr-90              | 39.2 ± 2.3                       | 36.1     | 28.9 - 43.4            | Pass       |
| SPW-3509              | 6/15/2017   | Ra-226             | 17.6 ± 0.5                       | 16.7     | 13.4 - 20.1            | Pass       |
| W-061317              | 4/29/2016   | Cs-134             | 35.0 ± 6.2                       | 36.2     | 29.0 - 43.4            | Pass       |
| W-061317              | 4/29/2016   | Cs-137             | 77.4 ± 7.8                       | 71.9     | 57.5 - 86.3            | Pass       |
| SPW-3041              | 6/23/2017   | H-3                | 16,419 ± 378                     | 16,620   | 13,296 - 19,945        | Pass       |
| SPW-3511              | 6/23/2017   | Ra-226             | 15.5 ± 0.6                       | 16.7     | 13.4 - 20.1            | Pass       |
| SPW-3103              | 6/28/2017   | H-3                | 16,507 ± 380                     | 16,507   | 13,286 - 19,929        | Pass       |
| SPW-3117              | 6/29/2017   | Tc-99              | 112.7 ± 1.9                      | 107.8    | 86.2 - 129.4           | Pass       |
| SPW-3513              | 6/29/2017   | Ra-226             | 17.8 ± 0.5                       | 16.7     | 13.4 - 20.1            | Pass       |
| SPW-3188              | 7/3/2017    | Sr-90              | 38.1 ± 2.2                       | 36.1     | 28.9 - 43.4            | Pass       |
| SPW-3283              | 7/11/2017   | H-3                | 16,057 ± 347                     | 16,649   | 13,319 - 19,978        | Pass       |
| SPW-4054              | 7/11/2017   | Ra-226             | 17.7 ± 0.4                       | 16.0     | 11.2 - 20,8            | Pass       |
| SPW-3467              | 7/14/2017   | Gr. Alpha          | 22.3 ± 0.5                       | 20.1     | 12.0 - 28.1            | Pass       |
| SPW-3467              | 7/14/2017   | Gr. Beta           | 29.1 ± 0.3                       | 28.2     | 17.3 - 40.4            | Pass       |
| SPW-3449              | 7/15/2017   | H-3                | 17,196 ± 393                     | 16,507   | 13,286 - 19,929        | Pass       |
| SPW-3548              | 7/19/2017   | H-3                | 16,764 ± 386                     | 16,507   | 13,286 - 19,929        | Pass       |
| SPW-3728              | 7/24/2017   | H-3                | 16,117 ± 354                     | 16,507   | 13,286 - 19,929        | Pass       |
| SPW-3794              | 7/28/2017   | H-3                | 18,645 ± 384                     | 16,507   | 13,286 - 19,929        | Pass       |
| N-072817              | 4/29/2016   | Cs-134             | 38.6 ± 5.6                       | 36.2     | 29.0 - 43.4            | Pass       |
| Ń-072817              | 4/29/2016   | Cs-137             | 76.5 ± 7.6                       | 71.9     | 57.5 - 86.3            | Pass       |
| SPW-3905              | 8/3/2017    | Gr. Alpha          | 22.3 ± 0.5                       | 20.1     | 12.0 - 28.1            | Pass       |
| SPW-3905              | 8/3/2017    | Gr. Beta           | 27.6 ± 0.3                       | 28.2     | 17.3 - 40.4            | Pass       |
| SPW-4030              | 8/9/2017    | H-3                | 17,636 ± 403                     | 16,507   | 13,286 - 19,929        | Pass       |
| SPW-4086              | 8/14/2017   | H-3                | 17,472 ± 401                     | 16,507   | 13,286 - 19,929        | Pass       |
| SPW-4207              | 8/17/2017   | H-3                | 17,013 ± 393                     | 16,507   | 13,286 - 19,929        | Pass       |
| V-083017              | 4/29/2016   | Cs-134             | 34.7 ± 6.4                       | 36.2     | 29.0 - 43.4            | Pass       |
| V-083017              | 4/29/2016   | Cs-137             | 78.2 ± 6.7                       | 71.9     | <b>57.5 - 86.3</b>     | Pass       |
| SPW-4241              | 8/19/2017   | H-3                | 17,222 ± 371                     | 16,507   | 13,286 - 19,929        | Pass       |
| SPW-4458              | 9/1/2017    | Ra-226             | 14.1 ± 1.8                       | 16.7     | 13.4 - 20.1            | Pass       |
| SPW-4466              | 9/6/2017    | Sr-89              | 22.8 ± 8.5                       | 26.4     | 21.1 - 31.7            | Pass       |
| SPW-4466              | 9/6/2017    | Sr <del>.</del> 90 | 32.5 ± 2.1                       | 33.8     | 27.0 - 40.6            | Pass       |
| SPW-4512              | 9/8/2017    | Gr. Alpha          | $19.2 \pm 0.4$                   | 20.1     | 10.1 - 30.2            | Pass       |
| SPW-4512              | 9/8/2017    | Gr. Beta           | $27.8 \pm 0.3$                   | 27.9     | 22.3 - 33.5            | Pass       |
| SPW-4586              | 9/9/2017    | H-3                | 16,586 ± 362                     | 16,507   | 13,286 - 19,929        | Pass       |
| PW-4720               | 9/16/2017   | H-3                | 16,439 ± 362                     | 16,507   | 13,286 - 19,929        | Pass       |
| SPW-4834              | 9/22/2017   | H-3                | 16,238 ± 378                     | 16,507   | 13,286 - 19,929        | Pass       |
| SPW-4935              | 9/27/2017   | H-3                | 16,595 ± 381                     | 16,507   | <b>13,286 - 19,929</b> | Pass       |
| SPW-4937              | 9/27/2017   | Ra-228             | $5.7 \pm 0.9$                    | 5.8      | 4.1 - 7.5              | Pass       |
| N-092717              | 4/29/2016   | Cs-134             | $36.0 \pm 5.9$                   | 36.2     | 29.0 - 43.4            | Pass       |
| N-092717              | 4/29/2016   | Cs-137             | 82.6 ± 8.5                       | 71.9     | 57.5 - 86.3            | Pass       |
| SPW-5001              | 9/29/2017   | H-3                | 16,446 ± 358                     | 16,507   | 13,286 - 19,929        | Pass       |

TABLE A-3. In-House "Spiked" Samples

|            |                                       |           | Concentration      | <u> </u> |                 |              |
|------------|---------------------------------------|-----------|--------------------|----------|-----------------|--------------|
| Lab Code b | Date                                  | Analysis  | Laboratory results | Known    | Control         | <del>-</del> |
|            | · · · · · · · · · · · · · · · · · · · |           | 2s, n=1 °          | Activity | Limits d        | Acceptance   |
| SPW-5134   | 10/6/2017                             | H-3       | 16,128 ± 373       | 16,507   | 13,286 - 19,929 | Pass         |
| SPW-5274   | 10/12/2017                            | H-3       | 16,108 ± 374       | 16,507   | 13,286 - 19,929 | Pass         |
| W-101217S  | 10/12/2017                            | Fe-55     | 1,491 ± 77         | 1,482    | 1,186 - 01,778  | Pass         |
| SPW-5408   | 10/18/2017                            | Ni-63     | 203 ± 3            | 199      | 159 - 238       | Pass         |
| SPW-5430   | 10/19/2017                            | H-3       | 16,453 ± 380       | 16,507   | 13,286 - 19,929 | Pass         |
| W-102017   | 4/29/2016                             | Cs-134    | 31.3 ± 4.9         | 36.2     | 29.0 - 43.4     | Pass         |
| W-102017   | 4/29/2016                             | Cs-137    | 80.4 ± 6.9         | 71.9     | 57.5 - 86.3     | Pass         |
| SPW-5674   | 10/25/2017                            | H-3       | 16,313 ± 380       | 16,507   | 13,286 - 19,929 | Pass         |
| SPW-5719   | 10/27/2017                            | H-3       | 16,113 ± 350       | 16,507   | 13,286 - 19,929 | Pass         |
| SPW-5730   | 10/31/2017                            | H-3       | 16,776 ± 387       | 16,507   | 13,286 - 19,929 | Pass         |
| SPW-5944   | 10/27/2017                            | Ra-226    | 16.4 ± 0.5         | 16.7     | 13.4 - 20.1     | Pass         |
| SPW-5915   | 11/9/2017                             | H-3       | 16,930 ± 390       | 16,507   | 13,286 - 19,929 | Pass         |
| SPW-5989   | 11/11/2017                            | H-3       | 16,084 ± 352       | 16,507   | 13,286 - 19,929 | Pass         |
| W-111417   | 4/29/2016                             | Cs-134    | $38.1 \pm 6.2$     | 36.2     | 29.0 - 43.4     | Pass         |
| W-111417   | 4/29/2016                             | Cs-137    | $74.0 \pm 7.5$     | 71.9     | 57.5 - 86.3     | Pass         |
| SPW-6121   | 11/16/2017                            | H-3       | 16,276 ± 378       | 16,507   | 13,286 - 19,929 | ′ Pass       |
| SPW-6132   | 11/20/2017                            | H-3       | 15,897 ± 374       | 16,507   | 13,286 - 19,929 | Pass         |
| SPW-6249   | 11/30/2017                            | Ra-226    | 12.2 ± 0.4         | 12.3     | 9.8 - 14.8      | Pass ,       |
| SPW-6226   | 12/1/2017                             | н-3       | 16,164 ± 378       | 16,507   | 13,286 - 19,929 | Pass         |
| SPW-6318   | 12/7/2017                             | H-3       | 15,779 ± 372       | 16,507   | 13,286 - 19,929 | Pass         |
| N-120817   | 4/29/2016                             | Cs-134    | 29.5 ± 5.6         | 36.2     | 29.0 - 43.4     | Pass         |
| N-120817   | 4/29/2016                             | Cs-137    | $78.8 \pm 9.6$     | 71.9     | 57.5 - 86.3     | Pass         |
| SPW-65     | 12/11/2017                            | Ra-226    | 12.5 ± 0.4         | 12.3     | 9.8 - 14.8      | Pass         |
| SPW-6437   | 12/13/2017                            | Gr. Alpha | 19.6 ± 0.4         | 20.1     | 10.1 - 30.2     | Pass         |
| SPW-6437   | 12/13/2017                            | Gr. Beta  | 28.2 ± 0.3         | 27.9     | 22.3 - 33.5     | Pass         |
| SPW-6463   | 12/15/2017                            | H-3       | 15.560 ± 372       | 16.507   | 13.286 - 19.929 | Pass         |

<sup>&</sup>lt;sup>a</sup> Liquid sample results are reported in pCi/Liter, air filters ( pCi/m3), charcoal (pCi/charcoal canister), and solid samples (pCi/kg).

b Laboratory codes: W (Water), MI (milk), AP (air filter), SO (soil), VE (vegetation), CH (charcoal canister), F (fish), U (urine).

<sup>&</sup>lt;sup>c</sup> Results are based on single determinations.

<sup>&</sup>lt;sup>d</sup> Control limits are established from the precision values listed in Attachment A of this report, adjusted to ± 2s. NOTE: For fish, gelatin is used for the spike matrix. For vegetation, cabbage is used for the spike matrix.

TABLE A-4. In-House "Blank" Samples

|          |        |             |                       |          | Concentration a    |                   |  |
|----------|--------|-------------|-----------------------|----------|--------------------|-------------------|--|
| Lab Code | Sample | Date        | Analysis <sup>b</sup> | Laborato | ry results (4.66a) | Acceptance        |  |
|          | Туре   | <del></del> |                       | LLD      | Activity           | Criteria (4.66 σ) |  |
| SPW-31   | Water  | 1/6/2017    | H-3                   | 143      | 71 ± 75            | 200               |  |
| SPW-45   | Water  | 1/9/2017    | Gr. Alpha             | 0.41     | $0.09 \pm 0.30$    | 2                 |  |
| SPW-45   | Water  | 1/9/2017    | Gr. Beta              | 0.74     | -0.56 ± 0.50       | 4                 |  |
| SPW-91   | Water  | 1/11/2017   | H-3                   | 151      | -23 ± 71           | 200               |  |
| SPW-141  | Water  | 1/12/2017   | Sr-89                 | 0.55     | $0.29 \pm 0.47$    | 5                 |  |
| SPW-141  | Water  | 1/12/2017   | Sr-90                 | 0.67     | -0.02 ± 0.31       | ì                 |  |
| SPW-154  | Water  | 1/19/2017   | H-3                   | 155      | -17 ± 73           | 200               |  |
| SPW-185  | Water  | 1/23/2017   | H-3                   | 176      | 44 ± 94            | 200               |  |
| SPW-231  | Water  | 1/19/2017   | H-3                   | 179      | 26 ± 87            | 200               |  |
| SPW-303  | Water  | 1/26/2017   | H-3                   | 160      | 8 ± 77             | 200               |  |
| SPW-305  | Water  | 1/4/2017    | Ra-226                | 0.02     | $0.02 \pm 0.01$    | 2                 |  |
| SPW-307  | Water  | 1/27/2017   | I-131                 | 0.21     | $0.01 \pm 0.11$    | 1.00              |  |
| SPW-332  | Water  | 1/30/2017   | H-3                   | 169      | -52 ± 86           | 200               |  |
| SPW-352  | Water  | 2/2/2017    | U-234                 | 0.14     | 0.00 ± 0.08        | 1                 |  |
| SPW-352  | Water  | 2/2/2017    | U-238                 | 0.14     | $0.12 \pm 0.15$    | 1                 |  |
| SPW-411  | Water  | 2/8/2017    | Sr-89                 | 0.49     | $0.30 \pm 0.35$    | 5                 |  |
| SPW-411  | Water  | 2/6/2017    | Sr-90                 | 0.52     | -0.22 ± 0.21       | 1                 |  |
| SPW-464  | Water  | 2/8/2017    | H-3                   | 155      | 2 ± 74             | 200               |  |
| SPW-560  | Water  | 2/15/2017   | H-3                   | 156      | 38 ± 77            | 200               |  |
| SPW-604  | Water  | 2/16/2017   | H-3                   | 154      | 59 ± 77            | 200               |  |
| SPW-656  | Water  | 2/17/2017   | H-3                   | 187      | 28 ± 94            | 200               |  |
| SPW-713  | Water  | 2/23/2017   | H-3 <sup>*</sup>      | 161      | 20 ± 81            | 200               |  |
| SPW-736  | Water  | 2/28/2017   | H-3                   | 161      | -75 ± 76           | 200               |  |
| SPAP-739 | AP     | 2/28/2017   | Gr. Beta              | 0.002    | $0.004 \pm 0.001$  | 0.01              |  |
| SPAP-741 | AP     | 2/24/2017   | Cs-134                | 2.27     | -0.95 ± 1.29       | 100               |  |
| SPAP-741 | AP     | 2/24/2017   | Cs-137                | 2.65     | 0.17 ± 1.67        | 100               |  |
| SPW-747  | Water  | 2/28/2017   | C-14                  | 161      | -28 ± 97           | 200               |  |
| SPW-749  | Water  | 2/28/2017   | Ni-63                 | 17       | -3 ± 10            | 200               |  |
| SPF-751  | Fish   | 2/28/2017   | Cs-134                | 0.008    | 0.002 ± 0.004      | 100               |  |
| SPF-751  | Fish   | 2/28/2017   | Cs-137                | 0.008    | 0.000 ± 0.005      | 100               |  |
| SPW-780  | Water  | 3/1/2017    | Ra-226                | 0.02     | 0.02 ± 0.01        | 2                 |  |
| SPW-782  | Water  | 3/1/2017    | H-3                   | 154      | 35 ± 78            | 200               |  |
| SPW-3506 | Water  | 3/1/2017    | Ra-226                | 0.03     | $0.02 \pm 0.02$    | 2                 |  |
| SPW-836  | Water  | 3/3/2017    | I-131                 | 0.38     | $0.04 \pm 0.18$    | 1                 |  |
| SPW-1009 | Water  | 3/14/2017   | H-3                   | 154      | -31 ± 72           | 200               |  |
| SPW-1025 | Water  | 3/16/2017   | Gr. Alpha             | 0.43     | -0.16 ± 0.28       | 2                 |  |
| SPW-1025 | Water  | 3/16/2017   | Gr. Beta              | 0.75     | $-0.24 \pm 0.52$   | 4.                |  |
| SPW-1091 | Water  | 3/21/2017   | H-3                   | 145      | 60 ± 73            | 200               |  |
| SPW-1150 | Water  | 3/24/2017   | H-3                   | 152      | -31 ± 71           | 200               |  |
| SPW-1162 | Water  | 3/28/2017   | Sr-89                 | 0.61     | -0.39 ± 0.45       | 5                 |  |
| SPW-1162 | Water  | 3/28/2017   | Sr-90                 | 0.52     | $0.18 \pm 0.27$    | 1                 |  |

<sup>\*</sup> Liquid sample results are reported in pCi/Liter, air filters ( pCi/m³), charcoal (pCi/charcoal canister), and solid samples (pCi/g).

<sup>&</sup>lt;sup>b</sup> I-131(G); iodine-131 as analyzed by gamma spectroscopy.

<sup>&</sup>lt;sup>c</sup> Activity reported is a net activity result.

TABLE A-4. In-House "Blank" Samples

|           | _      |           |                       |                  | Concentration <sup>a</sup> |                   |
|-----------|--------|-----------|-----------------------|------------------|----------------------------|-------------------|
| Lab Code  | Sample | Date      | Analysis <sup>b</sup> |                  | ry results (4.66σ)         | Acceptance        |
| ··        | Туре   |           |                       | LLD              | Activity <sup>c</sup>      | Criteria (4.66 σ) |
| SPW-1177  | Water  | 3/29/2017 | Ra-228                | 0.83             | -0.14 ± 0.36               | 2                 |
| SPW-1231  | Water  | 3/30/2017 | H-3                   | 150              | 24 ± 73                    | 200               |
| SPW-1245  | Water  | 3/31/2017 | Cs-134                | 3.73             | 0.43 ± 2.18                | 100               |
| SPW-1245  | Water  | 3/31/2017 | Cs-137                | 3.01             | -1.23 ± 2.12               | 100               |
| SPW-1245  | Water  | 3/31/2017 | I-131(G)              | 5.39             | 0.92 ± 2.15                | 100               |
| SPW-1245  | Water  | 3/31/2017 | 1-131                 | 0.32             | $0.03 \pm 0.18$            | 1                 |
| SPMI-1247 | Milk   | 3/31/2017 | Cs-134                | 3.70             | 1.23 ± 1.96                | 100               |
| SPMI-1247 | Milk   | 3/31/2017 | Cs-137                | 3.62             | -0.84 ± 2.15               | 100               |
| SPMI-1247 | Milk   | 3/31/2017 | I-131(G)              | 4.42             | 0.39 ± 2.14                | 100               |
| SPW-1294  | Water  | 3/31/2017 | Ra-226                | 0.02             | 0.18 ± 0.02                | 2                 |
| SPW-1303  | Water  | 4/4/2017  | H-3                   | 151              | 8 ± 75                     | 200               |
| SPW-1377  | Water  | 4/7/2017  | H-3                   | 150              | 29 ± 72                    | 200               |
| SPW-1390  | Water  | 4/7/2017  | Gr. Alpha             | 0.42             | $0.15 \pm 0.31$            | 2                 |
| SPW-1390  | Water  | 4/7/2017  | Gr. Beta              | 0.73             | -0.17 ± 0.51               | 4                 |
| SPW-1479  | Water  | 4/12/2017 | H-3                   | 151              | 89 ± 77                    | 200               |
| SPW-1574  | Water  | 4/18/2017 | H-3                   | 144              | 55 ± 79                    | 200               |
| SPW-1625  | Water  | 4/20/2017 | Sr-89                 | 0.59             | $-0.01 \pm 0.50$           | 5                 |
| SPW-1625  | Water  | 4/20/2017 | Sr-90                 | 0.71             | 0.16 ± 0.35                | 1                 |
| SPW-1657  | Water  | 4/21/2017 | H-3                   | 147              | 34 ± 73                    | 200               |
| SPW-1775  | Water  | 4/26/2017 | H-3                   | 155 <sup>-</sup> | $67 \pm 80$                | 200               |
| SPW-1805  | Water  | 4/27/2017 | H-3                   | 153              | 15 ± 74                    | 200               |
| SPW-1936  | Water  | 5/3/2017  | Н-3                   | 148              | 33 ± 71                    | 200               |
| SPW-1970  | Water  | 5/5/2017  | Sr- <b>8</b> 9        | 0.66             | $0.34 \pm 0.54$            | 5                 |
| SPW-1970  | Water  | 5/5/2017  | Sr-90                 | 0.62             | $-0.08 \pm 0.28$           | 1                 |
| SPW-2032  | Water  | 5/8/2017  | H-3                   | 147              | $66 \pm 73$                | 200               |
| SPW-2419  | Water  | 5/9/2017  | Ra-226                | 0.03             | $0.01 \pm 0.03$            | 2                 |
| SPW-2283  | Water  | 5/22/2017 | H-3.                  | 155              | 24 ± 78                    | 200               |
| SPW-2353  | Water  | 5/23/2017 | H-3                   | 151              | 56 ± 76                    | 200               |
| SPW-2890  | Water  | 5/23/2017 | Ra-226                | 0.03             | -0.01 ± 0.02               | 2                 |
| SPMI-2377 | Milk   | 5/24/2017 | Sr-89                 | 0.78             | $0.86 \pm 0.93$            | 5                 |
| SPMI-2377 | Milk   | 5/24/2017 | Sr-90                 | 0.49             | $0.95 \pm 0.33$            | 1                 |
| SPW-2438  | Water  | 5/25/2017 | Ra-228                | 0.90             | $-0.28 \pm 0.38$           | 2                 |
| SPW-2467  | Water  | 5/26/2017 | H-3                   | 152              | 27 ± 77                    | 200               |
| SPW-2417  | Water  | 5/26/2017 | Ra-228                | 0.80             | $1.58 \pm 0.54$            | 2                 |
| SPW-2447  | Water  | 5/26/2017 | I-131                 | 0.21             | $-0.05 \pm 0.12$           | 1                 |
| SPW-2501  | Water  | 6/1/2017  | H-3                   | 151              | -23 ± 70                   | 200               |
| SPW-2658  | Water  | 6/5/2017  | H-3                   | 152              | 107 ± 78                   | 200               |
| SPW-2789  | Water  | 6/9/2017  | H-3                   | 150              | 52 ± 77                    | 200               |
| SPW-2797  | Water  | 6/12/2017 | H-3                   | 177              | 7 ± 93                     | 200               |
| SPW-2847  | Water  | 6/14/2017 | l÷131                 | 0.18             | $0.03 \pm 0.10$            | 1                 |

Liquid sample results are reported in pCi/Liter, air filters ( pCi/m³), charcoal (pCi/charcoal canister), and solid samples (pCi/g).
 I-131(G); iodine-131 as analyzed by gamma spectroscopy.

<sup>&</sup>lt;sup>c</sup> Activity reported is a net activity result.

TABLE A-4. In-House "Blank" Samples

|          |        |            |                                       |           | Concentration <sup>e</sup>     | ·                 |
|----------|--------|------------|---------------------------------------|-----------|--------------------------------|-------------------|
| Lab Code | Sample | Date       | Analysis <sup>b</sup>                 | Laborator | y results (4.66 <sub>0</sub> ) | Acceptance        |
|          | Type   | ·          | · · · · · · · · · · · · · · · · · · · | LLD       | <u>Activity</u> <sup>c</sup>   | Criteria (4.66 o) |
| SPW-3508 | Water  | 6/15/2017  | Ra-226                                | 0.03      | 0.00 ± 0.02                    | 2                 |
| SPW-2942 | Water  | 6/19/2017  | Sr-89                                 | 0.58      | 0.80 ± 0.53                    | -<br>-5           |
| SPW-2942 | Water  | 6/19/2017  | Sr-90                                 | 0.50      | 0.15 ± 0.25                    | 4                 |
| SPW-3042 | Water  | 6/23/2017  | H-3                                   | 146       | 25 ± 74                        | 200               |
| SPW-3510 | Water  | 6/23/2017  | Ra-226                                | 0.02      | $0.03 \pm 0.02$                | 2                 |
| SPW-3102 | Water  | 6/28/2017  | H-3                                   | 148       | -7 ± 73                        | 200               |
| SPW-3116 | Water  | 6/29/2017  | Tc-99                                 | 5.91      | -0.39 ± 3.58                   | 10                |
| SPW-3512 | Water  | 6/29/2017  | Ra-226                                | 0.02      | $-0.01 \pm 0.02$               | 2                 |
| SPW-3187 | Water  | 7/3/2017   | Sr-89                                 | 0.62      | 0.00 ± 0.48                    | 5                 |
| SPW-3187 | Water  | 7/3/2017   | Sr-90                                 | 0.48      | $0.07 \pm 0.23$                | 1*                |
| SPW-3282 | Water  | 7/11/2017  | H-3                                   | 178       | -37 ± 84                       | 200               |
| SPW-4053 | Water  | 7/11/2017  | Ra-226                                | 0.03      | $0.02 \pm 0.02$                | 2                 |
| SPW-3466 | Water  | 7/14/2017  | Gr. Alpha                             | 0.42      | $-0.09 \pm 0.28$               | 2                 |
| SPW-3466 | Water  | 7/14/2017  | Gr. Beta                              | 0.76      | $-0.18 \pm 0.53$               | 4                 |
| SPW-3448 | Water  | 7/15/2017  | H-3                                   | 150       | 54 ± 77                        | 200               |
| SPW-3727 | Water  | 7/27/2017  | Ni-63                                 | 90        | 18 ± 55                        | 200               |
| SPW-3793 | Water  | 7/28/2017  | H-3                                   | 151       | 47 ± 82                        | 200               |
| SPW-3904 | Water  | 8/3/2017   | Gr. Alpha                             | 0.47      | -0.02 ± 0.33                   | Ź                 |
| SPW-3904 | Water  | 8/3/2017   | Gr. Beta                              | 0.75      | -0.11 ± 0.52                   | 4                 |
| SPW-4029 | Water  | 8/9/2017   | H-3                                   | 159       | 11 ± 79                        | 200               |
| SPW-4206 | Water  | 8/17/2017  | H-3                                   | 157       | 55 ± 76                        | 200               |
| SPW-4241 | Water  | 8/19/2017  | H-3                                   | 190       | 61 ± 96                        | 200               |
| SPW-4085 | Water  | 8/14/2017  | H-3                                   | 159       | -28 ± 77                       | 200               |
| SPW-4206 | Water  | 8/17/2017  | H-3                                   | 157       | 55 ± 76                        | 200               |
| SPW-4241 | Water  | 8/19/2017  | H-3                                   | 190       | 61 ± 96                        | 200               |
| SPW-4457 | Water  | 9/1/2017   | Ra-228                                | 0.7в      | -0.02 ± 0.36                   | 2.                |
| SPW-4465 | Water  | 9/6/2017   | Sr-89                                 | 0.51      | $0.30 \pm 0.37$                | · 5`              |
| SPW-4465 | Water  | 9/6/2017   | Sr-90                                 | 0.46      | $-0.09 \pm 0.20$               | 1                 |
| SPW-4585 | Water  | 9/9/2017   | .H-3                                  | 187       | -86 ± 83                       | 200               |
| SPW-5720 | Water  | 9/13/2017  | Ra-226                                | 0.02      | 0.13 ± 0.02                    | <b>2</b> :        |
| SPW-4703 | Water  | 9/15/2017  | 1-131                                 | 0.17      | $0.10 \pm 0.10$                | 1                 |
| SPW-4719 | Water  | 9/16/2017  | H-3                                   | 184       | -86 ± 93                       | 200               |
| SPW-4833 | Water  | 9/22/2017  | H-3                                   | 150       | 5 ± 72                         | 200               |
| SPW-4934 | Water  | 9/27/2017  | H-3                                   | 148       | 5 ± 70                         | 200               |
| SPW-4936 | Water  | 9/27/2017  | Ra-228                                | 0.80      | $0.55 \pm 0.44$                | 2                 |
| SPW-5000 | Water  | 9/29/2017  | H-3                                   | 183       | -13 ± 90                       | 200               |
| SPW-5133 | Water  | 10/6/2017  | H-3                                   | 144       | 64 ± 71                        | 200               |
| SPW-5273 | Water  | 10/12/2017 | H-3                                   | 142       | 106 ± 72                       | 200               |

<sup>&</sup>lt;sup>a</sup> Liquid sample results are reported in pCi/Liter, air filters ( pCi/m³), charcoal (pCi/charcoal canister), and solid samples (pCi/g).

<sup>&</sup>lt;sup>b</sup> I-131(G); iodine-131 as analyzed by gamma spectroscopy.

<sup>&</sup>lt;sup>c</sup> Activity reported is a net activity result.

TABLE A-4. In-House "Blank" Samples

|             |        |            | -                     |           | Concentration <sup>8</sup> |                   |  |
|-------------|--------|------------|-----------------------|-----------|----------------------------|-------------------|--|
| Lab Code    | Sample | Date       | Analysis <sup>b</sup> | Laborator | y results (4.66o)          | Acceptance        |  |
| <del></del> | Туре   |            |                       | LLD       | Activity <sup>c</sup>      | Criteria (4.66 o) |  |
| SPW-5407    | Water  | 10/18/2017 | Ni-63                 | 69        | 43 ± 43                    | 200               |  |
| SPW-5429    | Water  | 10/19/2017 | H-3                   | 148       | 54 ± 72                    | 200               |  |
| SPW-5603    | Water  | 10/23/2017 | Sr-89                 | 0.57      | 0.16 ± 0.47                | 5                 |  |
| SPW-5603    | Water  | 10/23/2017 | Sr-90                 | Ö:70      | $-0.12 \pm 0.31$           | 1                 |  |
| SPW-5673    | Water  | 10/25/2017 | H-3                   | 156       | $-36 \pm 71$               | 200               |  |
| SPW-5718    | Water  | 10/27/2017 | H-3                   | 182       | 45 ± 92                    | 200               |  |
| SPW-5943    | Water  | 10/27/2017 | Ra-226                | 0.02      | $0.08 \pm 0.02$            | 2                 |  |
| SPW-5723    | Water  | 10/30/2017 | I-131                 | 0.10      | $0.03 \pm 0.07$            | 1                 |  |
| SPW-5914    | Water  | 11/09/17   | H-3                   | 149       | -39 ± 68                   | 200               |  |
| SPW-5988    | Water  | 11/11/2017 | H-3                   | 183       | -8 ± 88                    | 200               |  |
| SPW-6120    | Water  | 11/16/2017 | H-3                   | 146       | 83 ± 75                    | 200               |  |
| SPW-6131    | Water  | 11/20/2017 | H-3                   | 151       | 16 ± 72                    | 200               |  |
| SPW-6197    | Water  | 11/29/2017 | I-131,                | 0.38      | 0.01 ± 0.18                | 1                 |  |
| SPW-6248    | Water  | 11/30/2017 | Ra-226                | 0.03      | $0.15 \pm 0.03$            | 2                 |  |
| SPW-6225    | Water  | 12/1/2017  | H-3                   | 154       | -10 ± 72                   | 200               |  |
| SPW-6317    | Water  | 12/7/2017  | H-3                   | 148       | 44 ± 74                    | 200               |  |
| SPW-64      | Water  | 12/11/2017 | Ra-226                | 0.03      | $0.18 \pm 0.03$            | 2                 |  |
| SPW-6436    | Water  | 12/13/2017 | Gr. Alphá             | 0.54      | -0.17 ± 0.37               | 2                 |  |
| SPW-6436    | Water  | 12/13/2017 | Gr. Beta              | 0.74      | $0.12 \pm 0.52$            | 4                 |  |
| SPW-6464    | Water  | 12/15/2017 | H-3                   | 148       | 31 ± 75                    | 200               |  |

Liquid sample results are reported in pCi/Liter, air fitters ( pCi/m³), charcoal (pCi/charcoal canister), and solid samples (pCi/g).

b I-131(G); iodine-131 as analyzed by gamma spectroscopy.

<sup>&</sup>lt;sup>6</sup> Activity reported is a net activity result.

TABLE A-5. In-House "Duplicate" Samples

|               |           | · · · · · · · · · · · · · · · · · · · |                   | Concentration <sup>a</sup> |                   |            |
|---------------|-----------|---------------------------------------|-------------------|----------------------------|-------------------|------------|
|               |           |                                       |                   |                            | Averaged          |            |
| Lab Code      | Date      | Analysis                              | First Result      | Second Result              | Result            | Acceptance |
| AP-7178.7179  | 1/3/2017  | Be-7                                  | 0.047 ± 0.015     | 0.062 ± 0.017              | 0.054 ± 0.012     | Pass       |
| SW-6986,6987  | 1/3/2017  | Gr. Beta                              | $1.39 \pm 0.41$   | 0.77 ± 0.41                | 1.08 ± 0.29       | Pass       |
| E-66.67       | 1/3/2017  | Gr. Beta                              | 1.62 ± 0.05       | 1.45 ± 0.04                | 1.54 ± 0.11       | Pass       |
| E-66,67       | 1/3/2017  | K-40                                  | 1.26 ± 0.14       | 1.39 ± 0.16                | 1.32 ± 0.11       | Pass       |
| CF-87,88      | 1/3/2017  | Be-7                                  | $0.25 \pm 0.11$   | 0.30 ± 0.12                | 0.28 ± 0.08       | Pass       |
| CF-87,88      | 1/3/2017  | K-40                                  | 7.77 ± 0.39       | 6.84 ± 0.37                | 7.31 ± 0.27       | Pass       |
| AP-011217     | 1/12/2017 | Be-7                                  | $0.137 \pm 0.078$ | 0.139 ± 0.082              | 0.138 ± 0.056     | Pass       |
| MI-212,213    | 1/16/2017 | K-40                                  | 1.515 ± 98        | 1,347 ± 107                | 1,431 ± 73        | Pass       |
| WW-321,322    | 1/19/2017 | H-3                                   | 675 ± 118         | 506 ± 133                  | 590 ± 89          | Pass       |
| WW-674,675    | 1/20/2017 | H-3                                   | 7,326 ± 254       | 7,717 ± 259                | 7,522 ± 181       | Pass       |
| AP-012317     | 1/23/2017 | Gr. Beta                              | $0.034 \pm 0.005$ | 0.038 ± 0.005              | 0.036 ± 0.004     | Pass       |
| WW-298,299    | 1/24/2017 | н-3                                   | 5,916 ± 239       | 5764 ± 237                 | 5840 ± 168        | Pass       |
| AP-013117     | 1/30/2017 | Gr. Beta                              | $0.027 \pm 0.004$ | $0.028 \pm 0.004$          | $0.028 \pm 0.003$ | Pass       |
| WW-500,501    | 1/31/2017 | H-3                                   | 1,058 ± 122       | 1.054 ± 121                | 1,056 ± 86        | Pass       |
| SW-391,392    | 1/31/2017 | Gr. Beta                              | $1.40 \pm 0.56$   | 1.62 ± 0.61                | 1.51 ± 0.41       | Pass       |
| SPS-370,371   | 2/1/2017  | K-40                                  | 23.47 ± 0.66      | 23.11 ± 0.72               | 23.29 ± 0.49      | Pass       |
| AP-456,457    | 2/2/2017  | Be-7                                  | 0.129 ± 0.076     | 0.167 ± 0.092              | 0.148 ± 0.060     | Pass       |
| AP-020217     | 2/2/2017  | Gr. Beta                              | $0.021 \pm 0.004$ | $0.027 \pm 0.004$          | $0.024 \pm 0.003$ | Pass       |
| SPS-414,415   | 2/3/2017  | K-40                                  | 19.45 ± 1.85      | 21.58 ± 1.99               | 20.52 ± 1.36      | Pass       |
| AP-020617     | 2/6/2017  | Gr. Beta                              | $0.023 \pm 0.004$ | 0.023 ± 0.004              | $0.023 \pm 0.003$ | Pass.      |
| AP-021417A    | 2/14/2017 | Gr. Beta                              | 0.031 ± 0.004     | 0.030 ± 0.004              | $0.030 \pm 0.003$ | Pass       |
| SPW-543       | 2/14/2017 | Gr. Beta                              | $7.99 \pm 0.82$   | 9.45 ± 0.88                | 8.72 ± 0.60       | Pass       |
| AP-021417B    | 2/14/2017 | Gr. Beta                              | $0.024 \pm 0.004$ | $0.028 \pm 0.004$          | 0.026 ± 0.003     | Pass       |
| WW-718,719    | 2/14/2017 | H-3                                   | 737 ± 113         | 643 ± 110                  | 690 ± 79          | Pass       |
| AP-022017     | 2/20/2017 | Gr. Bela                              | $0.018 \pm 0.005$ | 0.021 ± 0.005              | $0.020 \pm 0.004$ | Pass       |
| WW-755,756    | 2/22/2017 | H-3                                   | 3,709 ± 196       | 3,823 ± 198                | 3,766 ± 139       | Pass       |
| AP-022717     | 2/27/2017 | Gr. Beta                              | $0.021 \pm 0.004$ | 0.019 ± 0.004              | 0.020 ± 0.003     | Pass       |
| SPDW-80011,2  | 3/2/2017  | Ra-226                                | 7.29 ± 0.32       | 6.76 ± 0.30                | 7.03 ± 0.22       | Pass       |
| SPDW-80011,2  | 3/2/2017  | Ra-228                                | $4.68 \pm 0.82$   | 6.29 ± 1.03                | 5.49 ± 0.66       | Pass       |
| SPDW-80013,4  | 3/2/2017  | Gr. Alpha                             | 13.57 ± 1.43      | 12.44 ± 1.37               | 13.01 ± 0.99      | Pass       |
| NW-845,846    | 3/2/2017  | H-3                                   | 314 ± 93          | 249 ± 90                   | 281 ± 65          | Pass       |
| AP-030617     | 3/6/2017  | Gr. Beta                              | $0.022 \pm 0.004$ | 0.019 ± 0.004              | $0.020 \pm 0.003$ | Pass       |
| WW-1050,1051  | 3/8/2017  | H-3                                   | 14,994 ± 364      | 14,745 ± 362               | 14,870 ± 257      | Pass       |
| SPS-920,921   | 3/9/2017  | K-40                                  | 23.30 ± 1.76      | 23.13 ± 1.64               | 23.21 ± 1.20      | Pass       |
| WW-1004,1005  | 3/13/2017 | H-3                                   | 182 ± 80          | 158 ± 79                   | 170 ± 56          | Pass       |
| SPS-1029,1030 | 3/15/2017 | K-40                                  | $11.82 \pm 0.68$  | 12.01 ± 0.68               | 11.92 ± 0.48      | Pass       |
| AP-031517     | 3/15/2017 | Gr. Beta                              | $0.020 \pm 0.003$ | $0.020 \pm 0.003$          | $0.020 \pm 0.002$ | Pass       |
| SPDW-80037,8  | 3/20/2017 | Gr. Alpha                             | $4.54 \pm 0.82$   | 5.29 ± 0.91                | 4.91 ± 0.61       | Pass       |
| AP-032017     | 3/20/2017 | Gr. Beta                              | $0.021 \pm 0.006$ | $0.021 \pm 0.006$          | $0.021 \pm 0.005$ | Pass       |
| WW-1094,1095  | 3/20/2017 | H-3                                   | 1,571 ± 137       | 1,595 ± 138                | 1,583 ± 175       | Pass       |

TABLE A-5. In-House "Duplicate" Samples

|                       |           |                                        |                   | Concentration B   |                   |            |
|-----------------------|-----------|----------------------------------------|-------------------|-------------------|-------------------|------------|
|                       |           | ······································ |                   |                   | Averaged          | ********   |
| Lab Code              | Date      | Analysis                               | First Result      | Second Result     | Result            | Acceptance |
| WW-1175,1176          | 3/20/2017 | H-3                                    | 218 ± 84          | 211 ± 84          | 214 ± 59          | Pass       |
| WW-1129,1130          | 3/21/2017 | Gr. Beta                               | 3.51 ± 1.24       | 2.99 ± 1.17       | 3.25 ± 0.85       | Pass       |
| WW-1219,1220          | 3/22/2017 | H-3                                    | 11,467 ± 322      | 11,516 ± 323      | 11,492 ± 200      | Pass       |
| SPS-1152,1153         | 3/27/2017 | Ac-228                                 | 20.39 ± 0.75      | 20.43 ± 0.88      | 20.41 ± 0.58      | Pass       |
| SPS-1152,1153         | 3/27/2017 | Pb-214                                 | 17.22 ± 0.50      | 16.44 ± 0.52      | 16.83 ± 0.36      | Pass       |
| SPDW-80047,8          | 3/28/2017 | Ra-226                                 | $2.06 \pm 0.23$   | $1.60 \pm 0.32$   | 1.83 ± 0.20       | Pass       |
| SPDW-80047,8          | 3/28/2017 | Ra-228                                 | $0.53 \pm 0.48$   | $0.78 \pm 0.49$   | 0.66 ± 0.34       | Pass       |
| SWU-1242,1243         | 3/28/2017 | Gr. Beta                               | $2.04 \pm 0.81$   | $2.47 \pm 0.69$   | 2.26 ± 0.53       | Pass       |
| SPS-1198,1199         | 3/29/2017 | K-40                                   | 16.95 ± 1.85      | 18.33 ± 1.71      | 17.64 ± 1.26      | Pass       |
| SPDW-80050,1          | 3/29/2017 | Gr. Alpha                              | 3.19 ± 0.80       | 3.39 ± 0.78       | 3.29 ± 0.56       | Pass       |
| SPDW-80050,1          | 3/29/2017 | Gr. Beta                               | 1.58 ± 0.60       | 2.08 ± 0.63       | 1.83 ± 0.44       | Pass       |
| AP-1706,1707          | 3/30/2017 | Be-7                                   | 0.068 ± 0.018     | $0.072 \pm 0.017$ | 0.070 ± 0.012     | Pass       |
| SW-1381,1382          | 4/5/2017  | H-3                                    | 402 ± 92          | 309 ± 88          | 356 ± 64          | Pass       |
| WW-1446,1447          | 4/6/2017  | H-3                                    | 305 ± 89          | 358 ± 91          | 332 ± 64          | Pass       |
| WW-1532,1533          | 4/10/2017 | H-3                                    | 19,124 ± 412      | 18,991 ± 410      | 19,058 ± 291      | Pass       |
| WW-1618,1619          | 4/12/2017 | H-3                                    | 4,187 ± 203       | 4,305 ± 205       | 4,246 ± 144       | Pess       |
| SS-1553,1554          | 4/13/2017 | Gr. Beta                               | 7.16 ± 0.99       | 6.09 ± 0.91       | 6.63 ± 0.67       | Pass       |
| SS-1553,1554          | 4/13/2017 | K-40                                   | 4.60 ± 0.32       | 4.84 ± 0.34       | 4.72 ± 0.23       | Pass       |
| SS-1553,1554          | 4/13/2017 | TI-208                                 | 0.038 ± 0.016     | 0.032 ± 0.011     | 0.035 ± 0.010     | Pass       |
| SS-1553,1554          | 4/13/2017 | Pb-212                                 | 0.101 ± 0.015     | 0.096 ± 0.015     | $0.098 \pm 0.010$ | Pass       |
| SS-1553,1554          | 4/13/2017 | Bi-214                                 | 0.094 ± 0.032     | 0.109 ± 0.022     | 0.101 ± 0.019     | Pass       |
| SS-1553,1554          | 4/13/2017 | Ac-228                                 | $0.089 \pm 0.042$ | $0.111 \pm 0.046$ | $0.100 \pm 0.031$ | Pass       |
| P-2015,2016           | 5/4/2017  | H-3                                    | 189 ± 80          | 212 ± 81          | 200 ± 57          | Pass       |
| WW-2336,2337          | 5/8/2017  | H-3                                    | 422 ± 97          | 298 ± 91          | 360 ± 66          | Pass       |
| AP-051117             | 5/11/2017 | Gr. Beta                               | $0.018 \pm 0.003$ | $0.025 \pm 0.004$ | 0.021 ± 0.002     | Pass       |
| WW-2497,2498          | 5/23/2017 | H-3                                    | 1,268 ± 127       | 1,247 ± 126       | 1,257 ± 89        | Pass       |
| WW-2583,2584          | 5/23/2017 | H-3                                    | 5,159 ± 224       | 5,223 ± 126       | 5,191 ± 129       | Pass       |
| WW-2732,2733          | 5/23/2017 | H-3                                    | 8,559 ± 282       | 8,570 ± 283       | 8,564 ± 200       | Pass       |
| XW-1218,1219          | 5/23/2017 | н-з                                    | 11,467 ± 282      | 11,516 ± 283      | 11,492 ± 200      | Pass       |
| MI-2428,2429          | 5/24/2017 | K-40                                   | 1,752 ± 137       | 1,805 ± 132       | 1,778 ± 95        | Pass       |
| SO-2562,2563          | 5/24/2017 | K-40                                   | 7.87 ± 0.50       | 8.64 ± 0.49       | 8.25 ± 0.35       | Pass       |
| WW-3023,3024          | 5/24/2017 | н-3                                    | 27,398 ± 486      | 27,733 ± 489      | 27,565 ± 344      | Pess       |
| SO-2453,2454          | 5/25/2017 | Gr. Beta                               | 14.38 ± 0.93      | 15.70 ± 1.06      | 15.04 ± 0.70      | Pass       |
| SO-2453,2454          | 5/25/2017 | Cs-137                                 | $0.17 \pm 0.03$   | $0.18 \pm 0.03$   | 0.17 ± 0.02       | Pass       |
| SO-2453,2454          | 5/25/2017 | K-40                                   | $9.80 \pm 0.50$   | 9.19 ± 0.57       | 9.50 ± 0.38       | Pass       |
| SO-2453,2454          | 5/25/2017 | TI-208                                 | 0.09 ± 0.02       | $0.10 \pm 0.03$   | $0.09 \pm 0.02$   | Pass       |
| SO-2453,24 <b>5</b> 4 | 5/25/2017 | Pb-212                                 | $0.29 \pm 0.03$   | $0.30 \pm 0.03$   | $0.29 \pm 0.02$   | Pass       |
| SO-2453,2454          | 5/25/2017 | BI-214                                 | $0.24 \pm 0.03$   | $0.18 \pm 0.04$   | $0.21 \pm 0.03$   | Pass       |
| SO-2453,2454          | 5/25/2017 | Ra-226                                 | $0.82 \pm 0.22$   | $0.62 \pm 0.27$   | 0.72 ± 0.17       | Pass       |
| SO-2453,2454          | 5/25/2017 | Ac-228                                 | $0.32 \pm 0.07$   | $0.28 \pm 0.08$   | $0.30 \pm 0.05$   | Pass       |

TABLE A-5. In-House "Duplicate" Samples

|                |                                   |          |                   | Concentration <sup>a</sup> |                   |            |
|----------------|-----------------------------------|----------|-------------------|----------------------------|-------------------|------------|
|                |                                   |          |                   |                            | Averaged          |            |
| Lab Code       | Date                              | Analysis | First Result      | Second Result              | Result            | Acceptance |
| SWT-2625,2626  | 5/30/2017                         | Gr. Beta | 0.64 ± 0.53       | 1.08 ± 0.55                | 0.86 ± 0.38       | Pass       |
| AP-053117      | 5/31/2017                         | Gr. Beta | $0.013 \pm 0.003$ | 0.011 ± 0.003              | 0.012 ± 0.002     | Pass       |
| G-2646,2647    | 6/1/2017                          | Be-7     | 1.02 ± 0.17       | 1.06 ± 0.26                | 1.04 ± 0.15       | Pass       |
| G-2646,2647    | 6/1/2017                          | K-40     | $7.51 \pm 0.49$   | 6.55 ± 0.51                | 7.03 ± 0.36       | Pass       |
| SL-2669,70     | 6/1/2017                          | Be-7     | $0.34 \pm 0.06$   | $0.30 \pm 0.08$            | $0.32 \pm 0.04$   | Pass       |
| SL-2669,70     | 6/1/2017                          | K-40     | 4.35 ± 0.14       | $4.39 \pm 0.15$            | 4.37 ± 0.10       | Pass       |
| F-2711,2712    | 6/2/2017                          | K-40     | 2.56 ± 0.32       | 2.77 ± 0.44                | 2.66 ± 0.27       | Pass       |
| AP-060617      | 6/6/2017                          | Gr. Beta | $0.026 \pm 0.005$ | 0.027 ± 0.005              | 0.027 ± 0.004     | Pass       |
| SW-2849,50     | 6/8/2017                          | H-3      | 8,178 ± 273       | 8,563 ± 279                | 8,371 ± 195       | Pass       |
| AP-061217      | 6/12/2017                         | Gr. Beta | 0.027 ± 0.005     | 0.027 ± 0.005              | $0.027 \pm 0.004$ | Pass       |
| BS-3446,3447   | 6/12/2017                         | K-40     | 8.30 ± 0.47       | $8.57 \pm 0.47$            | 8.44 ± 0.33       | Pass       |
| VE-2870,2871   | 6/13/2017                         | K-40     | 3.65 ± 0.25       | 3.90 ± 0.26                | 3.77 ± 0.18       | Pass       |
| AP-2914,5      | 6/15/2017                         | Be-7     | 0.269 ± 0.146     | 0.212 ± 0.123              | 0.240 ± 0.095     | Pass       |
| AP-3067,8      | 6/15/2017                         | Be-7     | 0.204 ± 0.113     | 0.328 ± 0.126              | 0.266 ± 0.085     | Pass       |
| AP-061917      | 6/19/2017                         | Gr. Beta | 0.020 ± 0.004     | 0.019 ± 0.004              | 0.020 ± 0.003     | Pass       |
| AP-3610,1      | 6/26/2017                         | Be-7     | 0.107 ± 0.015     | 0.116 ± 0.021              | 0.111 ± 0.013     | Pass       |
| AP-062617      | 6/26/2017                         | Gr. Beta | $0.017 \pm 0.004$ | 0.021 ± 0.004              | $0.019 \pm 0.003$ | Pass       |
| AP-3673,3674   | 7/3/2017                          | Be-7     | 0.087 ± 0.008     | 0.078 ± 0.008              | 0.083 ± 0.006     | Pass       |
| AP-3287,3288   | 7/6/2017                          | Be-7     | 0.207 ± 0.112     | 0.244 ± 0.096              | 0.226 ± 0.074     | Pass       |
| WW-3308,3309   | 7/7/2017                          | H-3      | 549 ± 108         | 501 ± 107                  | 525 ± 76          | Pass       |
| VE-3362,3363   | 7/12/2017                         | K-40     | 2.32 ± 0.17       | 2.40 ± 0.16                | $2.36 \pm 0.12$   | Pass       |
| VE-3589,3590   | 7/18/2017                         | K-40     | $5.25 \pm 0.33$   | $4.64 \pm 0.33$            | 4.94 ± 0.23       | Pass       |
| SG-3631,3632   | 7/18/2017                         | Pb-214   | 3.03 ± 0.11       | 2.97 ± 0.11                | $3.00 \pm 0.08$   | Pass       |
| SG-3631,3632   | 7/18/2017                         | Ac-228   | 2.47 ± 0.22       | $2.56 \pm 0.23$            | 2.52 ± 0.16       | Pass       |
| WW-3846,3847   | 7/25/2017                         | H-3      | 505 ± 101         | 446 ± 98                   | 475 ± 70          | Pass       |
| F-4509,4510    | 7/26/2017                         | K-40     | $0.85 \pm 0.25$   | $1.00 \pm 0.25$            | $0.93 \pm 0.18$   | Pass       |
| F-4509,4510    | 7/26/2017                         | Gr. Beta | 1.19 ± 0.03       | 1.18 ± 0.03                | 1.18 ± 0.02       | Pass       |
| G-3804,3805    | 7/27/2017                         | Be-7     | 3.72 ± 0.39       | $3.47 \pm 0.40$            | $3.59 \pm 0.28$   | Pass       |
| G-3804,3805    | 7/27/2017                         | K-40     | $4.21 \pm 0.52$   | 4.46 ± 0.52                | 4.34 ± 0.33       | Pass       |
| SL-3888,3889   | 8/1/2017                          | Be-7     | 0.77 ± 0.04       | 0.73 ± 0.07                | 0.75 ± 0.04       | Pass       |
| SL-3888,3889   | 8/1/2017                          | K-40     | 0.94 ± 0.04       | $0.87 \pm 0.08$            | $0.90 \pm 0.23$   | Pass       |
| WW-4158,4159   | 8/8/2017                          | H-3      | 321 ± 90          | 270 ± 88.                  | 295 ± 63          | Pass       |
| VE-4179,4180   | 8/14/2017                         | K-40     | 1.84 ± 0.18       | 1.90 ± 0.21                | $1.87 \pm 0.14$   | Pass       |
| AP-4289,4290   | 8/17/2017                         | Be-7     | 0.212 ± 0.095     | $0.162 \pm 0.080$          | 0.187 ± 0.062     | Pass       |
| F-4333,4334    | 8/18/2017                         | K-40     | 3.22 ± 0.41       | $3.62 \pm 0.42$            | 3.42 ± 0.29       | Pass       |
| CF-4310,4311   | 8/21/2017                         | K-40     | 10.94 ± 0.74      | 11.48 ± 0.50               | 11.21 ± 0.45      | Pass       |
| DW-80161,80162 | 8/22/2017 Ra-226 1.22 ± 0.15 1.19 |          | $1.19 \pm 0.17$   | 1,21 ± 0.11                | Pass              |            |
| DW-80161,80162 | 8/22/2017                         | Ra-228   | 1.99 ± 0.63       | $0.70 \pm 0.49$            | 1.35 ± 0.40       | Pass       |
| VE-4398,4399   | 8/28/2017                         | Be-7     | 0.13 ± 0.07       | $0.13 \pm 0.08$            | 0.13 ± 0.05       | Pass       |

TABLE A-5. In-House "Duplicate" Samples

|                |            |           |                   | Concentration <sup>a</sup> |                   |            |
|----------------|------------|-----------|-------------------|----------------------------|-------------------|------------|
| •              |            |           |                   |                            | Averaged          |            |
| Lab Code       | Date       | Analysis  | First Result      | Second Result              | Result            | Acceptance |
| VE-4398,4399   | 8/28/2017  | K-40      | 3.32 ± 0.22       | 3.48 ± 0.25                | 3.40 ± 0.17       | Pass       |
| SW-4463,4464   | 8/29/2017  | H-3       | 495 ± 106         | 491 ± 106                  | 493 ± 75          | Pass       |
| LW-4486,4487   | 8/31/2017  | Gr. Beta  | 0.425 ± 0.471     | 1.358 ± 0.571              | $0.892 \pm 0.370$ | Pass       |
| VE-4561,4562   | 9/6/2017   | Be-7      | 5.89 ± 0.29       | 5.76 ± 0.25                | 5.83 ± 0.19       | Pass       |
| VE-4561,4562   | 9/6/2017   | K-40      | $3.73 \pm 0.34$   | $3.77 \pm 0.29$            | $3.75 \pm 0.22$   | Pass       |
| BO+5122,5123   | 9/8/2017   | K-40      | $4.50 \pm 0.36$   | $4.50 \pm 0.36$            | $4.50 \pm 0.25$   | Pass       |
| VE-4692,4693   | 9/12/2017  | K-40      | $5.16 \pm 0.13$   | 5.31 ± 0.36                | $5.24 \pm 0.19$   | Pass       |
| SS-4650,4651   | 9/12/2017  | K-40      | $10.55 \pm 0.51$  | 10.41 ± 0.54               | 10.48 ± 0.37      | Pass       |
| MI-4671,4672   | 9/13/2017  | K-40      | 1,347 ± 115       | 1,283 ± 118                | 1,315 ± 82        | Pass       |
| MI-4671,4672   | 9/13/2017  | Sr-90     | $0.7 \pm 0.3$     | $0.5 \pm 0.3$              | $0.6 \pm 0.2$     | Pass       |
| VE-4973,4974   | 9/17/2017  | K-40      | 1.11 ± 0.15       | $1.17 \pm 0.13$            | 1.14 ± 0.10       | Pass       |
| F-4928,4929    | 9/19/2017  | K-40      | $1.84 \pm 0.31$   | $1.68 \pm 0.34$            | $1.76 \pm 0.23$   | Pass       |
| S-4865,4866    | 9/20/2017  | K-40      | 21.07 ± 2.39      | 19.09 ± 2.51               | 20.08 ± 1.73      | Pass       |
| VE-4907,4908   | 9/20/2017  | K-40      | $3.83 \pm 0.44$   | 4.28 ± 0.31                | $4.05 \pm 0.27$   | Pass       |
| VE-4844,4845   | 9/21/2017  | K-40      | 1.81 ± 0.22       | $1.88 \pm 0.21$            | 1.84 ± 0.15       | Pass       |
| AP-5572,5573   | 9/27/2017  | Be-7      | $0.082 \pm 0.015$ | $0.075 \pm 0.014$          | $0.078 \pm 0.010$ | Pass       |
| LW-5145,5146   | 9/28/2017  | Gr. Beta  | $0.84 \pm 0.49$   | 1.47 ± 0.57                | $1.16 \pm 0.38$   | Pass       |
| AP-092917      | 9/29/2017  | Gr. Beta  | 0,038 ± 0,004     | 0.031 ± 0.004              | $0.035 \pm 0.003$ | Pass       |
| WW-5080,5081   | 10/2/2017  | H-3       | 208 ± 79          | 223 ± 80                   | 215 ± 56          | Pass       |
| AP-100217      | 10/2/2017  | Gr. Beta  | $0.025 \pm 0.005$ | $0.028 \pm 0.005$          | $0.026 \pm 0.003$ | Pass       |
| AP-100317      | 10/3/2017  | Gr. Beta  | $0.037 \pm 0.004$ | $0.033 \pm 0.004$          | $0.035 \pm 0.003$ | Pass       |
| S-5165,5166    | 10/4/2017  | K-40      | 15.93 ± 2.30      | 20.34 ± 3.15               | 18.14 ± 1.95      | Pass       |
| VE-5228,5229   | 10/5/2017  | K-40      | 3.25 ± 0.25       | 2.82 ± 0.24                | $3.04 \pm 0.17$   | Pass       |
| AP-100917      | 10/9/2017  | Gr. Beta  | $0.021 \pm 0.004$ | $0.025 \pm 0.004$          | $0.023 \pm 0.003$ | Pass       |
| VE-5293,5294   | 10/10/2017 | K-40      | $3.89 \pm 0.30$   | $4.08 \pm 0.34$            | $3.99 \pm 0.22$   | Pass       |
| DW-80184,80185 | 10/11/2017 | Gr. Alpha | 2.17 ± 0.81       | $2.50 \pm 0.81$            | 2.34 ± 0.57       | Pass       |
| DW-80184,80185 | 10/11/2017 | Gr. Beta  | 9.45 ± 0.79       | 10.20 ± 0.83               | 9.83 ± 0.57       | Pass       |
| S-5421,5422    | 10/12/2017 | K-40      | 8.82 ± 1.94       | $7.97 \pm 0.72$            | 8.40 ± 1.03       | Pass       |
| AP-101617      | 10/16/2017 | Gr. Beta  | $0.025 \pm 0.005$ | $0.022 \pm 0.004$          | $0.024 \pm 0.003$ | Pass       |
| F-5658,5659    | 10/19/2017 | K-40      | 2.44 ± 0.41       | $2.57 \pm 0.39$            | $2.51 \pm 0.28$   | Pass       |
| SO-5704,5705   | 10/25/2017 | Cs-137    | $0.05 \pm 0.02$   | $0.04 \pm 0.02$            | 0.04 ± 0.01       | Pass       |
| SO-5704,5705   | 10/25/2017 | K-40      | $10.08 \pm 0.51$  | 9.57 ± 0.56                | $9.83 \pm 0.38$   | Pass       |
| SO-5704,5705   | 10/25/2017 | Ti-208    | $0.10 \pm 0.02$   | $0.09 \pm 0.02$            | $0.10 \pm 0.01$   | Pass       |
| SO-5704,5705   | 10/25/2017 | BI-214    | $0.34 \pm 0.04$   | $0.27 \pm 0.04$            | $0.30 \pm 0.03$   | Pass       |
| SO-5704,5705   | 10/25/2017 | Pb-212    | 0.28 ± 0.03       | 0.27 ± 0.03                | $0.27 \pm 0.02$   | Pass       |
| SO-5704,5705   | 10/25/2017 | Ra-226    | 1.15 ± 0.52       | 0.59 ± 0.22                | $0.87 \pm 0.28$   | Pass       |
| SO-5704,5705   | 10/25/2017 | Ac-228    | 0.33 ± 0.05       | $0.31 \pm 0.07$            | $0.32 \pm 0.04$   | Pass       |
| SO-5704,5705   | 10/25/2017 | Gr. Beta  | 18.34 ± 1.80      | 16.50 ± 1.03               | 17.42 ± 1.04      | Pass       |
| AP-5732,5733   | 10/26/2017 | Be-7      | 0.139 ± 0.064     | $0.175 \pm 0.075$          | 0.157 ± 0.049     | Pass       |

TABLE A-5. In-House "Duplicate" Samples

|                |            |           |                   | Concentration a   |                   |            |
|----------------|------------|-----------|-------------------|-------------------|-------------------|------------|
|                |            |           |                   |                   | Averaged          |            |
| Lab Code       | Date       | Analysis  | First Result      | Second Result     | Result            | Acceptance |
| SW-5753,5754   | 10/31/2017 | H-3       | 220 ± 83          | 279 ± 86          | 249 ± 60          | Pass       |
| SWU-5816,5817  | 10/31/2017 | Gr. Beta  | 1.51 ± 1.00       | 2.02 ± 1.02       | 1.76 ± 0.71       | Pass       |
| AP-103117      | 10/31/2017 | Gr. Beta  | $0.015 \pm 0.004$ | 0.014 ± 0.004     | 0.015 ± 0.003     | Pass       |
| SO-5923,5924   | 11/1/2017  | Cs-137    | 0.30 ± 0.04       | 0.31 ± 0.04       | 0.31 ± 0.03       | Pass       |
| SO-5923,5924   | 11/1/2017  | K-40      | $10.52 \pm 0.61$  | 10.56 ± 0.67      | 10.54 ± 0.45      | Pass       |
| AP-5858,5859   | 11/2/2017  | Be-7      | $0.145 \pm 0.075$ | 0.146 ± 0.084     | $0.145 \pm 0.056$ | Pass       |
| AP-110717      | 11/7/2017  | Be-7      | $0.026 \pm 0.004$ | $0.030 \pm 0.004$ | $0.028 \pm 0.003$ | Pass       |
| WW-6032,6033   | 11/7/2017  | H-3       | 204 ± 86          | 298 ± 80          | 251 ± 59          | Pass       |
| WW-6074,6075   | 11/8/2017  | H-3       | $72,247 \pm 786$  | 73,062 ± 791      | 72,655 ± 558      | Pass       |
| BS-6053,6054   | 11/13/2017 | K-40      | $7.99 \pm 0.62$   | $9.20 \pm 0.68$   | 8.60 ± 0.46       | Pass       |
| BS-6053,6054   | 11/13/2017 | Cs-137    | $0.07 \pm 0.03$   | $0.08 \pm 0.03$   | $0.07 \pm 0.02$   | Pass       |
| DW-80211,80212 | 11/14/2017 | Gr. Alpha | $2.30 \pm 0.80$   | 3.60 ± 1.00       | 2.95 ± 0.64       | Pass       |
| DW-80211,80212 | 11/14/2017 | Gr. Beta  | 9.32 ± 0.81       | 8.99 ± 0.81       | 9.16 ± 0.57       | Pass       |
| DW-80214,80215 | 11/14/2017 | Ra-226    | 1.36 ± 0.22       | 1.35 ± 0.15       | 1.355 ± 0.13      | Pass       |
| DW-80214,80215 | 11/14/2017 | Ra-228    | 1.41 ± 0.51       | $0.90 \pm 0.45$   | $1.16 \pm 0.34$   | Pass       |
| WW-6152,6153   | 11/15/2017 | H-3       | 416 ± 94          | 328 ± 90          | 372 ± 65          | Pass       |
| SWU-6219,6220  | 11/28/2017 | Gr. Beta  | $1.04 \pm 0.54$   | 1.75 ± 0.58       | $1.39 \pm 0.39$   | Pass       |
| SS-6242,6243   | 11/29/2017 | K-40      | 24.17 ± 1.05      | 22.31 ± 1.03      | 23.24 ± 0.74      | Pass       |
| SS-6242,6243   | 11/29/2017 | Cs-137    | $0.11 \pm 0.03$   | $0.08 \pm 0.03$   | $0.10 \pm 0.02$   | Pass       |
| SG-6938,6939   | 11/28/2017 | Pb-214    | 15.28 ± 0.34      | 14.96 ± 0.43      | 15.12 ± 0.27      | Pass ·     |
| SG-6938,6939   | 11/28/2017 | Ac-228    | 18.99 ± 0.59      | 19.92 ± 0.79      | 19.46 ± 0.49      | Pass       |
| AP-112817      | 11/28/2017 | Gr. Beta  | 0.026 ± 0.004     | $0.030 \pm 0.004$ | 0.028 ± 0.003     | Pass       |
| SQ-6286,6287   | 12/1/2017  | Gr. Alpha | 70.6 ± 6.2        | 60.9 ± 6.0        | 65.8 ± 4.3        | Pass       |
| SQ-6286,6287   | 12/1/2017  | Gr. Beta  | 48.9 ± 2.7        | $53.7 \pm 2.8$    | 51.3 ± 1.9        | Pass       |
| SQ-6286,6287   | 12/1/2017  | Ra-226    | $11.3 \pm 0.4$    | $10.7 \pm 0.5$    | 11.0 ± 0.3        | Pass       |
| SQ-6286,6287   | 12/1/2017  | Ra-228    | 13.5 ± 0.9        | $13.2 \pm 1.0$    | 13.4 ± 0.7        | Pass       |
| SG-6286,6287   | 12/1/2017  | K-40      | 5.10 ± 1.82       | 6.65 ± 1.53       | 5.88 ± 1.19       | Pass       |
| AP-120417      | 12/4/2017  | Gr. Beta  | $0.037 \pm 0.006$ | $0.035 \pm 0.005$ | $0.036 \pm 0.004$ | Pass       |
| WW-6548,6549   | 12/19/2017 | H-3       | 8,428 ± 280       | 8,604 ± 282       | 8,516 ± 199       | Pass       |
| AP-122717      | 12/27/2017 | Gr. Beta  | $0.047 \pm 0.004$ | $0.043 \pm 0.004$ | 0.045 ± 0.003     | Pass       |
| XAP-6762,6763  | 12/31/2017 | Co-60     | 2.43 ± 1.30       | 2.24 ± 0.82       | 2.34 ± 0.77       | Pass       |
| XAP-6762,6763  | 12/31/2017 | Cs-137    | 4.21 ± 1.11       | 4.05 ± 0.96       | 4.14 ± 0.73       | Pass       |

Note: Duplicate analyses are performed on every twentieth sample received in-house. Results are not listed for those analyses with activities that measure below the LLD.

Results are reported in units of pCi/L, except for air filters (pCi/Filter or pCi/m3), food products, vegetation, soil and sediment (pCi/g).

TABLE A-6. Department of Energy's Mixed Analyte Performance Evaluation Program (MAPEP).

|                      |           |            |                   | Concentration | A               |            |
|----------------------|-----------|------------|-------------------|---------------|-----------------|------------|
|                      | Reference |            |                   | Known         | Control         |            |
| Lab Code b           | Date      | Analysis   | Laboratory result | Activity      | Limits °        | Acceptance |
| MASO-903             | 2/1/2017  | Am-241     | 60.9 ± 6.9        | 67.0          | 46.9 - 87.1     | Pass       |
| MASO-903             | 2/1/2017  | Cs-134     | 1360 ± 14         | 1550          | 1085 - 2015     | Pass       |
| MASO-903             | 2/1/2017  | Cs-137     | 678 ± 13          | 611           | 428 - 794       | Pass       |
| MASO-903             | 2/1/2017  | Co-57      | 1.63 ± 1.69       | 0.00          | NA <sup>c</sup> | Pass       |
| MASO-903             | 2/1/2017  | Co-60      | 909 ± 12          | 891           | 624 - 1158      | Pass       |
| MASO-903             | 2/1/2017  | Mn-54      | 1052 ± 17         | 967           | 677 - 1257      | Pass       |
| MASO-903             | 2/1/2017  | K-40       | 657 ± 68          | 607           | 425 - 789       | Pass       |
| MASÖ-903             | 2/1/2017  | Zn-65      | $-0.52 \pm 7.40$  | 0.00          | NA C            | Pass       |
| MASO-903             | 2/1/2017  | Ni-63      | 3.25 ± 7.17       | 0.00          | NA ¢            | Pass       |
| MASO-903             | 2/1/2017  | Pu-238     | 0.46 ± 0.69       | 0.41          | NA ª            | Pass       |
| MASO-903             | 2/1/2017  | Pu-239/240 | 56.8 ± 5.9        | 59.8          | 41.9 - 77.7     | Pass       |
| MASO-903             | 2/1/2017  | Sr-90      | 501 ± 17          | 624           | 437 - 811       | Pass       |
| MASO-903             | 2/1/2017  | Tc-99      | 748 ± 16          | 656           | 459 - 853       | Pass       |
| MAW-849              | 2/1/2017  | 1-129      | -0.05 ± 0.12      | 0.00          | NA <sup>s</sup> | Pass       |
| MAVE-905             | 2/1/2017  | Cs-134     | 6.61 ± 0.16       | 6.95          | 4.87 - 9.04     | Pass       |
| MAVE-905             | 2/1/2017  | Cs-137     | 4.97 ± 0.18       | 4.60          | 3.22 - 5.98     | Pass       |
| MAVE-905             | 2/1/2017  | Co-57      | -0.01 ± 0.03      | 0.00          | NA C            | Pass       |
| MAVE-905             | 2/1/2017  | Co-60      | 9.51 ± 0.17       | 8.75          | 6.13 - 11.38    | Pass       |
| MAVE-905             | 2/1/2017  | Mn-54      | 3.67 ± 0.17       | 3.28          | 2.30 - 4.26     | Pass       |
| MAVE-905             | 2/1/2017  | Zn-65      | $6.12 \pm 0.44$   | 5.39          | 3.77 - 7.01     | Pass       |
| MAW-847              | 2/1/2017  | Am-241     | 0.679 ± 0.079     | 0.846         | 0.592 - 1.100   | Pass       |
| MAW-847              | 2/1/2017  | Cs-134     | $0.03 \pm 0.10$   | 0.00          | NA <sup>o</sup> | Pass       |
| MAW-847              | 2/1/2017  | Cs-137     | $12.7 \pm 0.4$    | 11.1          | 7.8 - 14.4      | Pass       |
| MAW-847 <sup>d</sup> | 2/1/2017  | Co-57      | $2.7 \pm 0.3$     | 28.5          | 20.0 - 37.1     | Fail       |
| MAW-847              | 2/1/2017  | Co-60      | 13.5 ± 0.3        | 12.3          | 8.6 - 16.0      | Pass.      |
| MAW-847              | 2/1/2017  | Mn-54      | 16.5 ± 0.4        | 14.9          | 10.4 - 19.4     | Pass       |
| MAW-847              | 2/1/2017  | K-40       | 287 ± 6           | 254           | 178 - 330       | Pass       |
| MAW-847              | 2/1/2017  | Zn-65      | -0.15 ± 0.23      | 0.00          | NA <sup>c</sup> | Pass       |
| MAW-847              | 2/1/2017  | H-3        | 275 ± 10          | 249           | 174 - 324       | Pass.      |
| MAW-847              | 2/1/2017  | Fe-55      | 2.4 ± 13.6        | 1.7           | NA *            | Pass       |
| VAW-847              | 2/1/2017  | Ni-63      | 10.1 ± 2.8        | 12.2          | 8.5 - 15.9      | Pass       |
| MAW-847              | 2/1/2017  | Pu-238     | $0.729 \pm 0.097$ | 0.703         | 0.492 - 0.914   | Pass       |
| MAW-847              | 2/1/2017  | Pu-239/240 | 0.866 ± 0.102     | 0.934         | 0.654 - 1.214   | Pass       |
| MAW-847              | 2/1/2017  | Ra-226     | $0.506 \pm 0.053$ | 0.504         | 0.353 - 0.655   | Pass       |
| MAW-847              | 2/1/2017  | Sr-90      | $10.0 \pm 0.8$    | 10.1          | 7.1 - 13.1      | Pass       |

TABLE A-6. Department of Energy's Mixed Analyte Performance Evaluation Program (MAPEP).

|            |           |            |                     | Concentration | B                         |                   |
|------------|-----------|------------|---------------------|---------------|---------------------------|-------------------|
|            | Reference |            |                     | Known         | Control                   |                   |
| Lab Code b | Date      | Analysis   | Laboratory result   | Activity      | Limits c                  | Acceptance        |
| MAW-847    | 2/1/2017  | Tc-99      | 4.77 ±0.62          | 6:25          | 4.38 - 8.13               | Pass              |
| MAW-847    | 2/1/2017  | U-234/233  | 1.19 ± 0.10         | 1.16          | 0.81 - 1.51               | Pass              |
| MAW-847    | 2/1/2017  | U-238      | 1.15 ± 0.10         | 1.20          | 0.84 - 1.56               | Pass              |
| الحمة جديد | 014/5015  |            |                     |               |                           | <b>-</b>          |
| MAAP-9071  | 2/1/2017  | Am-241     | 0.0540 ± 0.0140     | 0.0376        | 0.0263 - 0.0489           | Fail              |
| MAAP-907   | 2/1/2017  | Cs-134     | 1.31 ± 0.06         | 1.42          | 0.99 - 1.85               | Pass              |
| MAAP-907   | 2/1/2017  | Cs-137     | $0.797 \pm 0.080$   | 0.685         | 0.480 - 0.891             | Pass              |
| MAAP-907   | 2/1/2017  | Co-57      | 1.86 ± 0.06         | 1.70          | 1.19 - 2.21               | Pass              |
| MAAP-907   | 2/1/2017  | Co-60      | $0.86 \pm 0.05$     | 0.78          | 0.55 - 1.01               | Pass              |
| MAAP-907   | 2/1/2017  | Mn-54      | $0.01 \pm 0.03$     | 0.00          | NA <sup>c</sup>           | Pass              |
| MAAP-907   | 2/1/2017  | Žn-65      | 1.62 ± 0.13         | 1.29          | 0.90 - 1.68               | Pass              |
| MAAP-907   | 2/1/2017  | Pu-238     | $0.0530 \pm 0.0190$ | 0.0598        | 0.0419 - 0.0777           | Pass              |
| MAAP-907   | 2/1/2017  | Pu-239/240 | $0.0490 \pm 0.0160$ | 0.0460        | 0.0322 - 0.0598           | Pass              |
| MAAP-907   | 2/1/2017  | Sr-90      | $0.648 \pm 0.120$   | 0.651         | 0.456 - 0.846             | Pass              |
| MAAP-907   | 2/1/2017  | U-234/233  | $0.086 \pm 0.024$   | 0.104         | 0.073 - 0.135             | Pass              |
| MAAP-907   | 2/1/2017  | U-238      | 0.097 ± 0.024       | 0.107         | 0.075 - 0.139             | Pass              |
| MASO-4515  | 8/1/2017  | Am-241     | 45.9 ± 7.0          | 58.8          | 41.2 - 76.4               | Pass <sup>9</sup> |
| MASO-4515  | 8/1/2017  | Cs-134     | 409 ± 7             | 448           | 314 - 582                 | Pass <sup>o</sup> |
| MASO-4515  | 8/1/2017  | Cs-137     | 798 ± 12            | 722           | 505 - 939                 | Pass              |
| MASO-4515  | 8/1/2017  | Co-57      | 1572 ± 10           | 1458          | 1021 - 1895               | Pass <sup>9</sup> |
| MASO-4515  | 8/1/2017  | Co-60      | 0.2 ± 1.4           | 0.00          | NA °                      | Pass <sup>g</sup> |
| MASO-4515  | 8/1/2017  | Mn-54      | 934 ± 13            | 825           | 578 - 1073                | Pass <sup>g</sup> |
| MASO-4515  | 8/1/2017  | K-40       | 704 ± 53            | 592           | 414 - 770                 | Pass <sup>0</sup> |
| MASO-4515  | 8/1/2017  | Zn-65      | 667 ± 17            | 559           | 3 <b>9</b> 1 <i>-</i> 727 | Pass <sup>p</sup> |
| MASO-4515  | 8/1/2017  | Pu-238     | 101 ± 9             | 92            | 64 - 120                  | Pass <sup>3</sup> |
| MASO-4515  | 8/1/2017  | Pu-239/240 | 74.8 ± 7.7          | 68.8          | 48,2 - 89,4               | Pass <sup>9</sup> |
| MASO-4515  | 8/1/2017  | Sr-90      | 252 ± 7             | 289           | 202 - 376                 | Pass <sup>9</sup> |
| MAW-4494   | 8/1/2017  | I-J29      | 2.31 ± 0.10         | 2.31          | 1.62 - 3.00               | Pass              |
| MAVE-4517  | 8/1/2017  | Cs-134     | 2.40 ± 0.10         | 2.32          | 1.62 - 3.02               | Pass              |
| MAVE-4517  | 8/1/2017  | Cs-137     | $-0.002 \pm 0.048$  | 0.000         | NA.c                      | Pass              |
| MAVE-4517  | 8/1/2017  | Co-57      | $3.3 \pm 0.1$       | 2.8           | 2.0 ÷ 3.6                 | Pass              |
| MAVE-4517  | 8/1/2017  | Co-60      | $2.10 \pm 0.10$     | 2.07          | 1.45 - 2.69               | Pass              |
| MAVE-4517  | 8/1/2017  | Mn-54      | $3.00 \pm 0.20$     | 2.62          | 1.83 - 3.41               | Pass              |
| MAVE-4517  | 8/1/2017  | Zn-65      | 5.90 ± 0.30         | 5.37          | 3.76 - 6.98               | Pass              |

TABLE A-6. Department of Energy's Mixed Analyte Performance Evaluation Program (MAPEP).

|                       |           |            |                     | Concentration | 8                |            |
|-----------------------|-----------|------------|---------------------|---------------|------------------|------------|
|                       | Reference |            |                     | Known         | Control          |            |
| Lab Code <sup>b</sup> | Date      | Analysis   | Laboratory result   | Activity      | Limits °         | Acceptance |
| MAW-4513              | 8/1/2017  | Am-241     | 0.820 ± 0.220       | 0.892         | 0.624 - 1.160    | Päss       |
| MAW-4513              | 8/1/2017  | Cs-134     | 10.3 ± 0.3          | 11.5          | 8.1 - 15.0       | Pass       |
| MAW-4513              | 8/1/2017  | Cs-137     | 17.2 ± 0.5          | 16.3          | 11.4 - 21.2      | Pass       |
| MAW-4513              | 8/1/2017  | Co-57      | 12.7 ± 0.4          | 12.1          | 8.5 - 15.7       | Pass       |
| MAW-4513              | 8/1/2017  | Co-60      | 10.6 ± 0.3          | 10.7          | 7.5 - 13.9       | Pass       |
| MAW-4513              | 8/1/2017  | Mn-54      | 15.6 ± 0.4          | 14.9          | 10.4 - 19.4      | Pass       |
| MAW-4513              | 8/1/2017  | Zn-65      | 15.9 ± 0.7          | 15.5          | 10.9 - 20.2      | Pass       |
| MAW-4513              | 8/1/2017  | H-3        | 255 ± 9             | 258           | 181 - 335        | Pass       |
| MAW-4513              | 8/1/2017  | Fe-55      | 21.6 ± 6.6          | 19.4          | 13.6 - 25.2      | Pass       |
| MAW-4513              | 8/1/2017  | Ni-63      | -0.1 ± 2.0          | 0.0           | NA °             | Pass       |
| MAW-4513              | 8/1/2017  | Pu-238     | $0.590 \pm 0.080$   | 0.603         | 0.422 - 0.784    | Pass       |
| MAW-4513              | 8/1/2017  | Pu-239/240 | $0.740 \pm 0.090$   | 0.781         | 0.547 - 1.015    | Pass       |
| MAW-4513              | 8/1/2017  | Ra-226     | $1.000 \pm 0.100$   | 0.858         | 0.601 - 1.115    | Pass       |
| MAW-4513              | 8/1/2017  | Sr-90      | $7.80 \pm 0.60$     | 7.77          | 5.44 - 10.10     | Pass       |
| MAW-4513              | 8/1/2017  | Tc-99      | $6.70 \pm 0.40$     | 6.73          | 4.71 - 8.75      | Pass       |
| MAW-4513              | 8/1/2017  | U-2344/233 | $0.94 \pm 0.06$     | 1.01          | 0.71 - 1.31      | Pass       |
| MAW-4513              | 8/1/2017  | U-238      | $0.97 \pm 0.07$     | 1.04          | 0.73 - 1.35      | Pass       |
| MAAP-4519h            | 8/1/2017  | Am-241     | 0.0400 ± 0.0100     | 0.0612        | 0.0428 - 0.0796  | Fail       |
| MAAP-4519             | 8/1/2017  | Cs-134     | $0.90 \pm 0.10$     | 1.00          | 0.70 - 1.30      | Pass       |
| WAAP-4519             | 8/1/2017  | Cs-137     | $0.90 \pm 0.10$     | 0.82          | 0.57 - 1.07      | Pass       |
| WAAP-4519             | 8/1/2017  | Co-57      | $0.01 \pm 0.01$     | 0.00          | NA <sup>'ĕ</sup> | Pass       |
| WAAP-4519             | 8/1/2017  | Co-60      | $0.70 \pm 0.10$     | 0.68          | 0.48 - 0.88      | Pass       |
| MAAP-4519             | 8/1/2017  | Mn-54      | 1.50 ± 0.10         | 1.30          | 0.91 - 1.69      | Pass       |
| MAAP-4519             | 8/1/2017  | Zn-65      | 1.30 ± 0.10         | 1.08          | 0.76 - 1.40      | Pass       |
| MAAP-4519             | 8/1/2017  | Pu-238     | $0.0300 \pm 0.0100$ | 0.0298        | 0.0209 - 0.0387  | Pass       |
| MAAP-4519             | 8/1/2017  | Pu-239/240 | $0.0400 \pm 0.0200$ | 0.0468        | 0.0328 - 0.0608  | Pass       |
| MAAP-4519             | 8/1/2017  | Sr-90      | $0.800 \pm 0.100$   | 0.801         | 0.561 - 1.041    | Pass       |
| MAAP-4519             | 8/1/2017  | U-234/233  | $0.070 \pm 0.010$   | 0.084         | 0.059 - 0.109    | Pass       |
| MAAP-4519             | 8/1/2017  | U-238      | $0.090 \pm 0.010$   | 0.087         | 0.061 - 0.113    | Pass       |

<sup>&</sup>lt;sup>8</sup> Results are reported in units of Bq/kg (soil), Bq/L (water) or Bq/total sample (filters, vegetation).

<sup>&</sup>lt;sup>b</sup> Laboratory codes as follows: MAW (water); MAAP (air filter), MASO (soil), MAVE (vegetation).

MAPEP results are presented as the known values and expected laboratory precision (1 sigma, 1 determination) and control limits as defined by the MAPEP. A known value of "zero" indicates an analysis was included in the testing series as a "false positive". MAPEP does not provide control limits.

Decimal point was misplaced while performing a unit conversion. The result is within control limits when the proper unit conversion is performed.

<sup>\*</sup> Provided in the series for "sensitivity evaluation", MAPEP does not provide control limits.

Sample was reanalyzed in duplicate with acceptable results. Original plating was inferior to platings obtained during reanalysis.
It is believed that isotopic tracer was not accurately quantified due to poor resolution of its peak.

<sup>&</sup>lt;sup>9</sup> Data were erroneously submitted in units of Bq/g. All results pass MAPEP criteria when evaluated in units of Bq/Kg.

h Laboratory is not currently offering analysis for Am-241 in Air Particulate samples.

TABLE A-7. Interlaboratory Comparison Crosscheck Program, Environmental Resource Associates (ERA)<sup>a</sup>.

MRAD Study Concentration | Lab Code b Date **ERA** Analysis Laboratory Control Limits c Result Result Acceptance **ERAP-1112** 3/20/2017 Am-241 55.3 ± 2.8 76.4 47.1 - 103.0 Pass **ERAP-1112** 3/20/2017 Co-60 1,230 ± 8 1030 797 - 1290 Pass **ERAP-1112** 3/20/2017 Cs-134  $1.110 \pm 9$ 1100 700 - 1360 Pass **ERAP-1112** 1,040 - 1,830 3/20/2017 Cs-137 1,810 ± 12 1,390 Pass ERAP-1112 d 3/20/2017 Fe-55 590 ± 385 256 79.4 - 500 Fail **ERAP-1112** 3/20/2017 Mn-54 < 5.14 < 50.0 0.00 - 50.0Pass **ERAP-1112** 3/20/2017 Pu-238 54.3 37.2 - 71.4 54.6 ± 2.8 **Pass ERAP-1112** 3/20/2017 Pu-239/240 62.0 44.9 - 81.0 63.6 ± 3.0 **Pass ERAP-1112** 3/20/2017 Sr-90 55.3 ± 8.3 52.4 25.6 - 78.5 Pass **ERAP-1112** U-233/234 3/20/2017  $65.7 \pm 3.0$ 73.1 45.3 - 110 Pass **ERAP-1112** 3/20/2017 **U-238**  $67.3 \pm 3.0$ 72.4 46.8 - 100 Pass **ERAP-1112** 3/20/2017 Zn-65 984 705 - 1,360 1,355 ± 16 Pass **ERAP-1114** 3/20/2017 Gr. Alpha 106 ± 5 85.5 28.6 - 133 Pass ERAP-1114 e 3/20/2017 Gr. Beta 67.6 ± 3.0 45,2 28.6 - 65.9 Fail **ERSO-1116** 3/20/2017 Am-241 418 ± 98 448 262 - 582 **Pass** 3/20/2017 Ac-228 795 - 1,720 **ERSO-1116** 1,540 ± 260 1,240 **Pass ERSO-1116** 3/20/2017 Bi-212  $1,550 \pm 90$ 1,240 330 - 1,820 **Pass ERSO-1116** 3/20/2017 Bi-214 2,560 ± 20 2,750 1,660 - 3,960 Pass 3/20/2017 Co-60 3,000 - 6,100 **ERSO-1116**  $4,620 \pm 100$ 4,430 Pass 8,340 ± 100 8,860 5,790 - 10,600 ERSO-1116 3/20/2017 Cs-134 Pass **ERSO-1116** 3/20/2017 Cs-137 8,420 ± 100 7,500 5,750 - 9,650 **Pass ERSO-1116** 3/20/2017 K-40 13.600 ± 900 10.600 7.740 - 14.200 **Pass ERSO-1116** 3/20/2017 Mn-54 < 1000 0.00 - 1.000Pass < 68.1 3/20/2017 Pb-212 812 - 1,730 **ERSO-1116**  $1,060 \pm 70$ 1,240 Pass ERSO-1116 3/20/2017 Pb-214  $2,620 \pm 160$ 2,890 1,690 - 4,310 Pass **ERSO-1116** 3/20/2017 Pu-238 424 ± 154 648 390 - 894 Pass ERSO-1116 1 3/20/2017 Pu-239/240 252 ± 112 484 316 - 669 Fail ERSO-1116 g 316 - 669 3/20/2017 Pu-239/240  $436 \pm 106$ 484 Pass ERSO-1116 3/20/2017 Sr-90  $7,930 \pm 250$ 9,150 3,490 - 14,500 **Pass ERSO-1116** 3/20/2017 Th-234 1,820 ± 200 1,940 614 - 3,650 **Pass** ERSO-1116 h 3/20/2017 U-233/234  $1.030 \pm 130$ 1,950 1,190 - 2,500 Fail ERSO-1116 ' 3/20/2017 U-233/234  $1,820 \pm 200$ 1,950 1,190 - 2,500 **Pass** 3/20/2017 1,200 - 2,460 ERSO-1116 U-238 1,240 ± 140 1,940 Pass ERSO-1116 1 3/20/2017 U-238 1,930 ± 200 1,940 1,200 - 2,460 Pass 4,850 - 8,090 **ERSO-1116** 3/20/2017 Zn-65  $7,190 \pm 240$ 6,090 Pass Gr. Alpha ERW-1122 3/20/2017 65.3 ± 2.4 89.5 31.8 - 139 Pass ERW-1122 3/20/2017 Gr. Beta 34.9 - 90.4 **Pass**  $54.8 \pm 1.5$ 61.0 ERW-1124 3/20/2017 H-3 19,000 ± 410 19,400 13,000 - 27,700 **Pass** 

TABLE A-7. Interlaboratory Comparison Crosscheck Program, Environmental Resource Associates (ERA)<sup>a</sup>.

MRAD Study

|            | <del></del> | <del></del> | Concentratio    |        |                     | <del></del> |
|------------|-------------|-------------|-----------------|--------|---------------------|-------------|
| Lab Code b | Date        | Analysis    | Laboratory      | ERA    | Control             |             |
| Lab Obde   | )           | ritialysis. | Result          | Result | Limits <sup>c</sup> | Acceptance  |
| ERVE-1118  | 3/20/2017   | Am-241      | 1,560 ± 140     | 1,860  | 1,140 - 2,470       | Pass        |
| ERVE-1118  | 3/20/2017   | Cm-244      | 530 ± 80        | 734    | 360 - 1,140         | Pass        |
| ERVE-1118  | 3/20/2017   | Co-60       | 1,400 ± 350     | 1,390  | 959 - 1,940         | Pass        |
| ERVE-1118  | 3/20/2017   | Cs-134      | 1,650 ± 460     | 1,830  | 1,180 - 2,380       | Pass        |
| ERVE-1118  | 3/20/2017   | Cs-137      | 2,580 ± 540     | 2,500  | 1,810 - 3,480       | Pass        |
| ERVE-1118  | 3/20/2017   | K-40        | 32,100 ± 700    | 30,900 | 22,300 - 43,400     | Pass        |
| ERVE-1118  | 3/20/2017   | Mn-54       | < 27.3          | < 300  | 0.00 - 300          | Pass        |
| ERVE-1118  | 3/20/2017   | Zn-65       | 889 ± 64        | 853    | 615 - 1,200         | Pass        |
| ERVE-1118  | 3/20/2017   | Pu-238      | 3,250 ± 210     | 3,250  | 1,940 - 4,450       | Pass        |
| ERVE-1118  | 3/20/2017   | Pu-239/240  | 2,180 ± 170     | 2,150  | 1,320 - 2,960       | Pass        |
| ERVE-1118  | 3/20/2017   | Sr-90       | 665 ± 135       | 726    | 414 - 963           | Pass        |
| ERVE-1118  | 3/20/2017   | U-233/234   | 2,840 ± 200     | 3,090  | 2,030 - 3,970       | Pass        |
| ERVE-1118  | 3/20/2017   | U-238       | 2,990 ± 200     | 3,060  | 2,040 - 3,890       | Pass        |
| ERW-1120   | 3/20/2017   | Am-241      | 108 ± 7         | 140    | 94.3 - 188          | Pass        |
| ERW-1120   | 3/20/2017   | Co-60       | 2,600 ± 198     | 2,540  | 2,210 - 2,970       | Pass        |
| ERW-1120   | 3/20/2017   | Cs-134      | 2,380 ± 250     | 2,510  | 1,840 - 2880        | Pass        |
| ERW-1120   | 3/20/2017   | Cs-137      | 1,470 ± 243     | 1,400  | 1,190 - 1,680       | Pass        |
| ERW-1120   | 3/20/2017   | Mn-54       | < 12.3          | < 100  | 0.00 - 100          | Pass        |
| ERW-1120   | 3/20/2017   | Pu-238      | 117 ± 4         | 128    | 94.7 - 159          | Pass        |
| ERW-1120   | 3/20/2017   | Pu-239/240  | $74.8 \pm 3.3$  | 85.8   | 66.6 - 108          | Pass        |
| ERW-1120   | 3/20/2017   | U-233/234   | 75.3 ± 3.2      | 90.3   | 67.8 - 116          | Pass        |
| ERW-1120   | 3/20/2017   | U-238       | 76.4 ± 3.2      | 89.5   | 68.2 - 110          | Pass        |
| ERW-1120   | 3/20/2017   | Zn-65       | 2,130 ± 378     | 1,960  | 1630 - 2,470        | Pass        |
| ERW-1120 J | 3/20/2017   | Fe-55       | $1,400 \pm 403$ | 984    | 587 - 1,340         | Fail        |
| ERW-1120 k | 3/20/2017   | Fe-55       | 1,081 ± 383     | 984    | 587 - 1,340         | Pass        |
| ERW-1120   | 3/20/2017   | Sr-90       | 652 ± 12        | 714    | 465 - 944           | Pass        |

Results obtained by Environmental, Inc., Midwest Laboratory as a participant in the crosscheck program for proficiency testing administered by Environmental Resources Associates, serving as a replacement for studies conducted previously by the Environmental Measurements Laboratory Quality Assessment Program (EML).

b Laboratory codes as follows: ERW (water), ERAP (air filter), ERSO (soil), ERVE (vegetation), Results are reported in units of pCi/L, except for air filters (pCi/Filter), vegetation and soil (pCi/kg).

<sup>&</sup>lt;sup>a</sup> Results are presented as the known values, expected laboratory precision (2 sigma, 1 determination) and control limits as provided by ERA.

Fe-55 analysis result was outside the acceptable range. Recounting the sample disk for 1000 minutes resulted in 254 ± 364 with an LLD calculation of < 342. Insufficient sample was available after performing other required analyses on the sample to quantify the activity with an uncertainty less than the activity.</p>

<sup>&</sup>lt;sup>6</sup> ERA appears to have applied the standard material to the filter in a pattern closer to the center of the filter compared to previous studies and different from the filter efficiency utilized by the laboratory. This likely caused the efficiency used the calculation to be understated and the result obtained by the laboratory to be overstated. For comparison the in-house spike for gross beta in AP (table A-3 SPAP-740 2/28/17) was acceptable with a ratio of 0.94 of lab result to known.

Analysis result for Plutonium-239/240 was below the lower limit of acceptance,

<sup>9</sup> Samples were reanalyzed in duplicate with acceptable results for each. Original analysis had poor resolution possibly due to a poor electroplating and is suspected in contributing to poor results.

<sup>&</sup>lt;sup>h</sup> Analysis result for U-233/234 was below the lower limit of acceptance.

<sup>&</sup>lt;sup>1</sup> The reanalysis result for U-233/234 was within the acceptance limits and U-238 reanalysis result was closer to the known value. Original analysis had poor resolution possibly due to a poor electroplating and is suspected in contributing to poor results.

Fe-55 analysis result was outside acceptable range.

Result of recounting was acceptable. Using available aliquot after dividing sample for other analyses leaves insufficient sample to reliably determine the activity present in sample.

# APPENDIX B

DATA REPORTING CONVENTIONS

### **Data Reporting Conventions**

1.0. All activities, except gross alpha and gross betà, are decay corrected to collection time or the end of the collection period.

### 2.0. Single Measurements

Each single measurement is reported as follows:

x ± s

where:

x = value of the measurement;

s = 2s counting uncertainty (corresponding to the 95% confidence level).

In cases where the activity is less than the lower limit of detection L, it is reported as: <L, where L = the lower limit of detection based on 4.66s uncertainty for a background sample.

### 3.0. Duplicate analyses

3.1 Individual results: For two analysis results;  $x_1 \pm s_1$  and  $x_2 \pm s_2$ 

Reported result: 
$$x \pm s$$
; where  $x = (1/2)(x_1 + x_2)$  and  $s = (1/2)\sqrt{s_1^2 + s_2^2}$ 

- 3.2. <u>Individual results:</u> <L1, <L2 <u>Reported result:</u> <L, where L = lower of L1 and L2
- 3.3. Individual results:  $x \pm s$ , <L Reported result:  $x \pm s$  if  $x \ge L$ ; <L otherwise.

### 4.0. Computation of Averages and Standard Deviations

4.1 Averages and standard deviations listed in the tables are computed from all of the individual measurements over the period averaged; for example, an annual standard deviation would not be the average of quarterly standard deviations. The average  $\bar{x}$  and standard deviation s of a set of n numbers  $x_1, x_2, \dots x_n$  are defined as follows:

$$\bar{x} = \frac{1}{n} \sum x$$
  $s = \sqrt{\frac{\sum (x - \bar{x})^2}{n-1}}$ 

- 4.2 Values below the highest lower limit of detection are not included in the average.
- 4.3 If all values in the averaging group are less than the highest LLD, the highest LLD is reported.
- 4.4 If all but one of the values are less than the highest LLD, the single value x and associated two sigma error is reported.
- 4.5 In rounding off, the following rules are followed:
  - 4.5.1. If the figure following those to be retained is less than 5, the figure is dropped, and the retained figures are kept unchanged. As an example, 11.443 is rounded off to 11.44.
  - 4.5.2. If the figure following those to be retained is equal to or greater than 5, the figure is dropped and the last retained figure is raised by 1. As an example, 11.445 is rounded off to 11.45.
- 4.6 Composite samples which overlap the next month or year are reported for the month or year in which most of the sample is collected.

## APPENDIX C

### **TECHNICAL SPECIFICATION 2.1.3**

# REACTOR COOLANT DOSE EQUIVALENT IODINE ABOVE TECHNICAL SPECIFICATION LIMIT

During the 2017 reporting period, radioactivity of primary coolant did not exceed the limits of Technical Specification 2.1.3.

# APPENDIX D

SAMPLE LOCATION MAPS



Table 5.2 - Radiological Environmental Sampling Locations And Media

| Sample                   |                                                                     | Approximate<br>Distance                     | Approximate Direction           |        | Air Mon                 | itoring            |     |       |      |               |      | Magajablaa                         |                  |
|--------------------------|---------------------------------------------------------------------|---------------------------------------------|---------------------------------|--------|-------------------------|--------------------|-----|-------|------|---------------|------|------------------------------------|------------------|
| Sample<br>Station<br>No. | Approximate<br>Collection Sites                                     | from Center<br>of<br>Containment<br>(miles) | (degrees<br>from true<br>north) | Sector | Airborne<br>Particulate | Airborne<br>lodine | TLD | Water | Milk | Sedi-<br>ment | Fish | Vegetables<br>and Food<br>Products | Ground-<br>water |
| . 1                      | Onsite Station,<br>110-meter weather<br>tower                       | 0.53                                        | 293°/WNW                        | Р      |                         |                    | x   |       |      |               |      |                                    |                  |
| 2 <sup>C,E</sup>         | Onsite Station, adjacent to old plant access road                   |                                             | 207°/SSW                        | К      | ×                       | х                  | х   |       |      |               |      |                                    |                  |
| 3                        | Offsite Station,<br>Intersection of Hwy. 75<br>and farm access road | 0.94                                        | 145°/SE                         | G      |                         |                    | x   |       |      |               |      |                                    |                  |
| 4                        | Blair OPPD office                                                   | 2.86                                        | 305°/NW                         | Q      | X                       | х                  | х   |       |      |               |      |                                    |                  |
| 5 <sup>A</sup>           |                                                                     |                                             |                                 |        |                         |                    |     |       |      |               |      |                                    |                  |
| 6                        | Fort Calhoun, NE City<br>Hall                                       | 5.18                                        | 150°/SSE                        | Н      |                         |                    | х   |       |      |               |      |                                    |                  |
| 7                        | Fence around intake<br>gate, Desoto Wildlife<br>Refuge              | 2.07                                        | 102%ESE                         | F      |                         |                    | x   |       |      |               |      |                                    |                  |

Table 5.2 - Radiological Environmental Sampling Locations And Media

| In                       |                                                                        | Approximate Distance                        | Approximate Direction | <del></del> | Air Mon                 | itoring            |       |       |      | :             |      | Vės sa dalbi sa                    |                  |
|--------------------------|------------------------------------------------------------------------|---------------------------------------------|-----------------------|-------------|-------------------------|--------------------|-------|-------|------|---------------|------|------------------------------------|------------------|
| Sample<br>Station<br>No. | Approximate Collection Sites                                           | from Center<br>of<br>Containment<br>(miles) | (degrees              | Sector      | Airborne<br>Particulate | Airborne<br>lodine | TLD   | Water | Milk | Sedi-<br>ment | Fish | Vegetables<br>and Food<br>Products | Ground-<br>water |
| 8                        | Onsite Station,<br>entrance to Plant Site<br>from Hwy. 75              | 0.55                                        | 191°/S                | J           | ŗ                       |                    | х     |       |      |               |      |                                    |                  |
| 9                        | Onsite Station, NW of<br>Plant                                         | 0.68                                        | 305°/NW               | Q           | :                       |                    | х     |       |      | ٠             |      |                                    |                  |
| 10                       | Onsite Station, WSW of Plant                                           | 0.61                                        | 242°/WSW              | М           | ,, ,                    |                    | х     |       |      |               |      |                                    |                  |
| 11                       | Offsite Station, SE of Plant                                           | 1.07                                        | 39°/SE                | G           |                         |                    | X     |       |      |               |      |                                    |                  |
| 12                       | Metropolitan Utilities Dist., Florence Treatment Plant North Omaha, NE | 14.3                                        | 154°/SSE              | Н           |                         |                    | , vo. | X     |      |               | ,    |                                    |                  |
| 13                       | West bank Missouri<br>River, downstream from<br>Plant discharge        | 0.45                                        | 108°/ESE              | F           |                         |                    |       | x     | ,    | x             |      |                                    |                  |
| 14 <sup>D</sup>          | Upstream from Intake<br>Bldg, west bank of river                       | 0.09                                        | 4°/N                  | Α           |                         |                    |       | X     |      | X             | ·    |                                    |                  |

Table 5.2 - Radiological Environmental Sampling Locations And Media

|                                              | Distance                                                                                          | Approximate                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                               | Air Mon                                                                                                                                                                                                                                         | itoring                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                     | Vogetábles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                 |
|----------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Approximate<br>Collection Sites              | ·of                                                                                               | (degrees                                                                                                                                                                                                  | Sector                                                                                                                                                                                                                                                                                                                        | Airborne                                                                                                                                                                                                                                        | Airborne<br>lodine                                                                                                                                                                                                                                                                                                                                                                                                           | TLD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Water                                                                                                                                                                                                                                        | Milk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sedi-<br>ment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Fish                                                                                                                                                                                                                | and Food<br>Products                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ground-<br>water                                                                                                                |
| Smith Farm                                   | 1.99                                                                                              | 134°/SE                                                                                                                                                                                                   | G                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | х                                                                                                                               |
| <u>.                                    </u> |                                                                                                   |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                 | <del> </del> -                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                 |
|                                              |                                                                                                   | -                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                     | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                 |
|                                              |                                                                                                   |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                 |
|                                              |                                                                                                   |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                 |
| Mohr Dairy                                   | 9.86                                                                                              | 186°/S                                                                                                                                                                                                    | J                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                              | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                     | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×                                                                                                                               |
|                                              |                                                                                                   | <u> </u>                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                     | <u>.                                    </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                 |
| Fish Sampling Area,<br>Missouri River        | 0.08<br>(R.M. 645.0)                                                                              | 6°/N                                                                                                                                                                                                      | .A                                                                                                                                                                                                                                                                                                                            | ,                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | x                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                 |
| Fish Sampling Area,<br>Missouri River        | 17.9<br>(R.M. 666.0)                                                                              | 358°/N                                                                                                                                                                                                    | Α                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | x                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                 |
|                                              | 7.7                                                                                               | <del></del>                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                 |
|                                              |                                                                                                   |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                              | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                 |
|                                              | Collection Sites  Smith Farm  Mohr Dairy  Fish Sampling Area, Missouri River  Fish Sampling Area, | Approximate Collection Sites  Distance from Center of Containment (miles)  Smith Farm  1.99  Mohr Dairy  9.86  Fish Sampling Area, Missouri River  (R.M. 645.0)  Fish Sampling Area, Missouri River  17.9 | Approximate Collection Sites  Approximate Collection Sites  Containment (miles)  Smith Farm  1.99  134°/SE  Mohr Dairy  9.86  Fish Sampling Area, Missouri River  Missouri River  Direction (degrees from true north)  1.99  134°/SE  Approximate from Center of (degrees from true north)  1.99  134°/SE  186°/S  6°/N  17.9 | Approximate Collection Sites  Distance from Center of Containment (miles)  Smith Farm  1.99  134°/SE  G  Mohr Dairy  9.86  186°/S  J  Fish Sampling Area, Missouri River  Missouri River  Direction (degrees from true north)  1.99  134°/SE  G | Approximate Collection Sites  Collection Sites  Containment (miles)  Smith Farm  1.99  134°/SE  G  Mohr Dairy  9.86  186°/S  J  Fish Sampling Area, Missouri River  Missouri River  Direction (degrees from true north)  1.99  134°/SE  G  Airborne Particulate  J  Airborne Particulate  Airborne Particulate  Airborne Particulate  Airborne Particulate  Airborne Particulate  Airborne Particulate  Airborne Particulate | Approximate Collection Sites  Distance from Center of Containment (miles)  Smith Farm  1.99  134°/SE  G  Mohr Dairy  9.86  186°/S  J  Fish Sampling Area, Missouri River  Missouri River  Direction Clegrees from true north)  Sector Airborne Particulate  Alrborne Par | Approximate Collection Sites From Center of Containment (miles)  Smith Farm  1.99  134°/SE  G  Mohr Dairy  9.86  186°/S  J  Fish Sampling Area, Missouri River  Fish Sampling Area, Missouri River  Fish Sampling Area, Missouri River  17.9 | Approximate Collection Sites Containment (miles)  Smith Farm  1.99  134°/SE  G  Mohr Dairy  9.86  186°/S  J  Water  Airborne Particulate  Airborne Particu | Approximate Collection Sites  Distance from Center of Containment (miles)  Sector From true north)  Smith Farm  1.99  134°/SE  G  Mohr Dairy  9.86  186°/S  J  Water Milk  TLD  Water Milk  Milk  TLD  Water Milk | Approximate Collection Sites  Distance from Center of Containment (miles)  Smith Farm  1.99  134°/SE  G  Airborne Particulate  G  Airborne Particulate  Airborne Particulate  G  G  G  G  G  G  G  G  G  G  G  G  G | Approximate Collection Sites  Approximate Collection Sites  Containment (miles)  Smith Farm  1.99  134°/SE  G  G  Airborne Particulate  G  Airborne Particulate  In Indian | Approximate Collection Sites   Distance from Center Of Containment (miles)   1.99   134°/SE   G   G   G   G   G   G   G   G   G |

Table 5.2 - Radiological Environmental Sampling Locations And Media

| Sample          |                                                       | Approximate Distance from Center of Containment (miles) | Direction<br>(degrees | Sector | Air Monitoring          |                    |     | 0110711 |      |               |         | Vegetables           |                  |
|-----------------|-------------------------------------------------------|---------------------------------------------------------|-----------------------|--------|-------------------------|--------------------|-----|---------|------|---------------|---------|----------------------|------------------|
| Station<br>No.  |                                                       |                                                         |                       |        | Airborne<br>Particulate | Airborne<br>lodine | TLD | Water   | Milk | Sedi-<br>ment | Fish    | and Food<br>Products | Ground-<br>water |
| 26 <sup>A</sup> |                                                       |                                                         |                       |        |                         |                    |     |         |      |               |         |                      |                  |
| 27 <sup>A</sup> |                                                       | ·                                                       |                       |        |                         |                    |     |         |      |               |         |                      |                  |
| 28 <sup>A</sup> |                                                       |                                                         |                       | -      |                         |                    |     |         |      |               |         |                      |                  |
| 29^             |                                                       |                                                         |                       |        |                         |                    |     |         |      |               |         |                      |                  |
| 30 <sup>A</sup> |                                                       | 10                                                      |                       |        | - <u></u>               |                    |     |         |      |               |         |                      |                  |
| 31 <sup>A</sup> | •                                                     |                                                         |                       |        |                         | :                  |     |         |      |               |         |                      |                  |
| 32 <sup>D</sup> | Valley Substation #902                                | 19.6                                                    | 221°/SW               | L      | X                       | Х                  | Х   |         |      |               | <u></u> |                      |                  |
| 33 <sup>A</sup> |                                                       |                                                         |                       |        |                         |                    |     | -       |      |               |         |                      |                  |
| 34 <sup>A</sup> |                                                       |                                                         |                       |        |                         |                    |     |         |      |               |         |                      |                  |
| 35              | Onsite Farm Field                                     | 0.52                                                    | 118°/ESE              | F      |                         |                    |     |         |      |               |         | Х                    | ,                |
| 36              | Offsite Station<br>Intersection Hwy 75/Co.<br>Rd. P37 | 0.75                                                    | 227°/SW               | L      |                         |                    | X   |         |      |               |         |                      | ,                |

Table 5.2 - Radiological Environmental Sampling Locations And Media

| Sample          |                                    | Approximate Distance                        | Direction (degrees | Sector | Air Mon                 |                    |     |       |      |               |      | Vegetables                            |                  |
|-----------------|------------------------------------|---------------------------------------------|--------------------|--------|-------------------------|--------------------|-----|-------|------|---------------|------|---------------------------------------|------------------|
| Station<br>No.  |                                    | from Center<br>of<br>Containment<br>(miles) |                    |        | Airborne<br>Particulate | Airborne<br>lodine | TLD | Water | Milk | Sedi-<br>ment | Fish | and Food<br>Products                  | Ground-<br>water |
| 37              | Offsite Station Desoto<br>Township | 1.57                                        | 144°/SE            | G      | х                       | х                  | х   |       |      |               |      |                                       |                  |
| 38 <sup>A</sup> |                                    |                                             |                    |        |                         |                    |     |       |      |               |      | · · · · · · · · · · · · · · · · · · · |                  |
| 39 <sup>A</sup> |                                    |                                             |                    |        |                         |                    |     |       |      |               |      |                                       |                  |
| 40 <sup>A</sup> |                                    | ·                                           |                    |        |                         |                    |     |       |      |               |      |                                       |                  |
| 41 <sup>C</sup> | Dowler Acreage                     | 0.73                                        | 175°/S             | J      | х                       | Х                  | Х   |       | B,C  |               |      |                                       |                  |
| 42              | Sector A-1                         | 1.94                                        | 0°/NORTH           | Α      |                         |                    | х   |       |      |               |      |                                       |                  |
| 43              | Sector B-1                         | 1.97                                        | 16°/NNE            | В      |                         |                    | х   |       |      |               |      |                                       |                  |
| 44              | Sector C-1                         | 1.56                                        | 41°/NE             | С      |                         |                    | Х   |       |      |               |      |                                       |                  |
| 45              | Sector D-1                         | 1.34                                        | 71°/ENE            | D      |                         |                    | Х   |       |      |               |      |                                       |                  |
| 46              | Sector E-1                         | 1.54                                        | 90°/EAST           | Е      |                         |                    | х   |       |      |               |      |                                       |                  |
| 47              | Sector F-1                         | 0.45                                        | 108°/ESE           | F      |                         |                    | Х   |       |      |               |      |                                       |                  |
| 48              | Sector G-1                         | 1.99                                        | 134°/SE            | G      |                         |                    | Х   |       |      |               |      |                                       |                  |

Table 5.2 - Radiological Environmental Sampling Locations And Media

| Sample         |            | Approximate Distance                        | Direction (degrees Sect |        | Air Mon                 |                    |     |       |      |               |             | Mondahlan                          | Ground-<br>water |
|----------------|------------|---------------------------------------------|-------------------------|--------|-------------------------|--------------------|-----|-------|------|---------------|-------------|------------------------------------|------------------|
| Station<br>No. |            | from Center<br>of<br>Containment<br>(miles) |                         | Sector | Airborne<br>Particulate | Airborne<br>lodine | TLD | Water | Milk | Sedi-<br>ment | Fish        | Vegetables<br>and Food<br>Products |                  |
| 49             | Sector H-1 | 1.04                                        | 159°/SSE                | Н      |                         |                    | X   |       |      |               |             |                                    |                  |
| 50             | Sector J-1 | 0.71                                        | 179°/SOUTH              | J      |                         |                    | Х   |       |      |               |             |                                    |                  |
| 51             | Sector K-1 | 0.61                                        | 205°/SSW                | K      |                         |                    | Х   |       |      |               |             |                                    |                  |
| 52             | Sector L-1 | 0.74                                        | 229°/SW                 | Ĺ      |                         |                    | Х   |       |      |               | <del></del> | -                                  |                  |
| 53             | Sector M-1 | 0.93                                        | 248°/WSW                | М      |                         |                    | Х   |       |      |               |             |                                    |                  |
| 54             | Sector N-1 | 1.31                                        | 266°/WEST               | N      | <del></del>             |                    | Х   |       |      |               |             |                                    |                  |
| 55             | Sector P-1 | 0.60                                        | 291°/WNW                | P      |                         |                    | Х   |       |      |               |             |                                    |                  |
| 56             | Sector Q-1 | 0.67                                        | 307°/NW                 | Q      |                         |                    | Х   | _     |      |               |             |                                    |                  |
| 57             | Sector R-1 | 2.32                                        | 328°/NNW                | R      |                         |                    | Х   |       |      |               |             |                                    |                  |
| 58             | Sector A-2 | 4.54                                        | 350°/NORTH              | Α      |                         |                    | Х   |       |      |               |             |                                    |                  |
| 59             | Sector B-2 | 2.95                                        | 26°/NNE                 | В      |                         |                    | Х   |       |      |               |             |                                    |                  |
| 60             | Sector C-2 | 3.32                                        | 50°/NE                  | С      |                         |                    | Х   |       |      |               |             |                                    | -                |

Table 5.2 - Radiological Environmental Sampling Locations And Media

| Samala                   |            | Approximate Distance                        | Direction (degrees | Sector | Air Mon                                 | itoring            |     |       |             |               |      | Vegetables           |                  |
|--------------------------|------------|---------------------------------------------|--------------------|--------|-----------------------------------------|--------------------|-----|-------|-------------|---------------|------|----------------------|------------------|
| Sample<br>Station<br>No. |            | from Center<br>of<br>Containment<br>(miles) |                    |        | Airborne<br>Particulate                 | Airborne<br>lodine | TLD | Water | Milk        | Sedi-<br>ment | Fish | and Food<br>Products | Ground-<br>water |
| 61                       | Sector D-2 | 3.11                                        | 75°/ENE            | :D     |                                         |                    | X   |       |             |               | -    |                      |                  |
| 62                       | Sector E-2 | 2.51                                        | 90°/EAST           | Ē      |                                         |                    | Х   |       |             |               |      |                      |                  |
| 63                       | Sector F-2 | 2.91                                        | 110°/ESE           | F      | <del>-, -:</del>                        |                    | Х   |       |             |               |      |                      |                  |
| 64                       | Sector G-2 | 3.00                                        | 140°/SE            | G      |                                         |                    | Х   | ,     |             |               |      |                      |                  |
| 65                       | Sector H-2 | 2.58                                        | 154°/SSE           | Н      |                                         |                    | Х   |       |             |               |      | <u>.</u>             |                  |
| 66                       | Sector J-2 | 3.53                                        | 181°/SOUTH         | J      | · • • • • • • • • • • • • • • • • • • • |                    | Х   |       | <del></del> |               |      | ,-                   | -                |
| 67                       | Sector K-2 | 2.52                                        | 205°/SSW           | К      |                                         |                    | Х   |       |             |               |      |                      |                  |
| 68                       | Sector L-2 | 2.77                                        | 214°/SW            | L      |                                         |                    | X   |       |             |               |      |                      |                  |
| 69                       | Sector M-2 | 2.86                                        | 243°/WSW           | M      | - 6-                                    |                    | Х   |       |             |               |      |                      |                  |

Table 5.2 - Radiological Environmental Sampling Locations And Media

| Sample          |                | Distance                                    | Direction (degrees                     |        | Air Mon                 |                    |     |       |      |               |             | Vegetables           |                  |
|-----------------|----------------|---------------------------------------------|----------------------------------------|--------|-------------------------|--------------------|-----|-------|------|---------------|-------------|----------------------|------------------|
| Station<br>No.  |                | from Center<br>of<br>Containment<br>(miles) |                                        | Sector | Airborne<br>Particulate | Airborne<br>lodine | TLD | Water | Milk | Sedi-<br>ment | Fish        | and Food<br>Products | Ground-<br>water |
| 70              | Sector N-2     | 2.54                                        | 263°/WEST                              | N      |                         |                    | х   |       |      |               | <del></del> |                      |                  |
| 71 -            | Sector P-2     | 2.99                                        | 299°/WNW                               | Р      |                         |                    | Х   |       |      |               |             |                      |                  |
| 72              | Sector Q-2     | 3.37                                        | 311°/NW                                | Q      |                         |                    | Х   |       | ,    |               |             |                      |                  |
| 73              | Sector R-2     | 3.81                                        | 328°/NNW                               | R      |                         |                    | Х   |       |      |               | -           | <del>-</del>         |                  |
| 74              | D. Miller Farm | 0.65                                        | 203°/SSW                               | К      |                         |                    |     |       | -    |               |             |                      | Х                |
| 75 <sup>c</sup> | Lomp Acreage   | 0.65                                        | 163°/SSE                               | Н      | х                       | х                  | Х   |       | B, C |               |             | х                    | Х                |
| 76              | Stangl Farm    | 3.40                                        | 169°/S                                 | J      |                         |                    |     |       | X    |               |             |                      |                  |
| 77 <sup>G</sup> | River N-1      |                                             |                                        | R      |                         |                    | X   |       |      |               |             | ·                    |                  |
| 78 <sup>G</sup> | River S-1      |                                             | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | E      |                         | <u> </u>           | Х   |       | _    |               |             |                      | -                |
| 79 <sup>G</sup> | Lagoon S-1     |                                             |                                        | G      |                         |                    | х   |       | ,    |               | ·           |                      |                  |
| 80 <sup>G</sup> | Parking S-1    |                                             |                                        | Н      |                         |                    | Х   |       |      |               | <del></del> |                      |                  |
| 81 <sup>G</sup> | Training W-1   |                                             |                                        | К      |                         |                    | х   |       |      |               |             |                      |                  |

Table 5.2 - Radiological Environmental Sampling Locations And Media

| Sample                   | 1                            | Approximate Distance                        | Approximate Direction | Sector | Air Mon                 |                    |     |       |      |               |      | Vegetables           |                  |
|--------------------------|------------------------------|---------------------------------------------|-----------------------|--------|-------------------------|--------------------|-----|-------|------|---------------|------|----------------------|------------------|
| Sample<br>Station<br>No. | Approximate Collection Sites | from Center<br>of<br>Containment<br>(miles) | (degrees              |        | Airborne<br>Particulate | Airborne<br>lodine | TLD | Water | Milk | Sedi-<br>ment | Fish | and Food<br>Products | Ground-<br>water |
| 82 <sup>G</sup>          | Switchyard S-1               |                                             |                       | L      |                         |                    | Х   |       |      |               |      |                      |                  |
| 83 <sup>G</sup>          | Switchyard SE-1              | 7                                           |                       | L      |                         |                    | х   |       |      |               |      |                      |                  |
| 84 <sup>G</sup>          | Switchyard NE-1              |                                             |                       | М      |                         |                    | Х   |       |      |               |      |                      |                  |
| 85 <sup>G</sup>          | Switchyard W-1               |                                             |                       | L      |                         |                    | Х   |       |      |               |      |                      | ,                |
| 86 <sup>G</sup>          | Switchyard N-1               |                                             |                       | N      |                         | <u> </u>           | Х   |       |      |               |      | <u></u>              |                  |
| 87 <sup>G</sup>          | Range S-1                    |                                             |                       | Р      |                         |                    | Х   |       |      |               |      |                      | <del></del>      |
| 88 <sup>G</sup>          | Mausoleum E-1                |                                             |                       | L      |                         |                    | х   |       |      |               |      |                      |                  |

### NOTES:

- A. Location is either not in use or currently discontinued and is documented in the table for reference only.
- B. If milk samples are temporarily not available at a sampling site due to mitigating circumstances, then vegetation (broadleaf, pasture grass, etc.) shall be collected as an alternate sample at the site. If there are no milk producers within the entire 5-mile radius of the plant, then vegetation shall be collected monthly, when available, at two offsite locations having the highest calculated annual average ground level D/Q and a background locale. (Reference Off-Site Dose Calculation Manual, Part II, Table 4 "Highest Potential Exposure Pathways for Estimating Dose")
- C. Locations represent highest potential exposure pathways as determined by the biennial Land Use Survey, performed in accordance with Part I, Section 7.3.2, of the Off-Site Dose Calculation Manual and are monitored as such.
- D. Background location (control). All other locations are indicators.
- E. Location for monitoring Sector K High Exposure Pathway Resident Receptor for inhalation.
- F. When broad leaf (pasture grasses) are being collected in lieu of milk, background broad leaf samples will be collected at a background locale.
- G. Location for special interest monitoring general dose to the public per 40CFR190 (Figure 2)