3/4.5.4 BORON INJECTION SYSTEM

BORON INJECTION TANK

LIMITING CONDITION FOR OPERATION

The boron injection tank shall be OPERABLE with: 3.5.4.1

- A minimum contained volume of 900 gallons of borated water, a.
- Between 20,100 And 21,800 ppm of boron, and ь.
- A minimum solution temperature of 145°F. с.

APPLICABILITY: MODES 1 2 and 3.

ACTION:

With the boron injection tank inoperable, restore the tank to OPERABLE status within 1 hour or be in HOT STANDBY and borated to a SHUTDOWN MARGIN equivalent to 1% $\Delta k/k$ at 200°F within the next 6 hours; restore the tank to OPERABLE status within the next 7 days or be in HOT SHUTDOWN within the next/12 hours.*

SURVEILLANCE REQUIREMENTS

4.5.4.1 The Boron injection tank shall be demonstrated OPERABLE by:

Vérifying the water level through a recirculation flow test a. at least once per 7 days,

Verifying the boron concentration of the water in the tank at ь. least once per 7 days, and

Verifying the water temperature at least once per 24 hours.

*Effective 5:55 P.M. January 12, 1979 and expiring at 11:55 A.M., January 13, 1979 the following ACTION statement is applicable: With the boron injection tank inoperable, restore the tank to OPERABLE status within 1 hour or be in HOT STANDBY and borated to a SHUTDOWN MARGIN equivalent to $1\% \Delta k/k$ at 200°F within the next 24 hours; restore the tank to OPERABLE status within the next 7 days or be in HOT SHUTDOWN within the next 12 hours.

SALEM - UNIT 1

8511010226 851025 PDR ADOCK 05000272

PDR

3/4 5-7

Amendment No. 8, 15

HEAT TRACING

LIMITING CONDITION FOR OPERATION

3.5.4.2 At least two independent channels of heat tracing shall be OPERABLE for the boron injection tank and for the heat traced portions of the associated flow paths.

APPLICABILITY: MODES 1, 2 and 3.

ACTION:

With only one channel of heat tracing on either the boron injection tank or on the heat traced portion of an associated flow path OPERABLE, operation may continue for up to 30 days provided the tank and flow path temperatures are verified to be $> 145^\circ$ at least once per 8 hours; otherwise, be in HOT SHUTDOWN within /2 hours.

SURVEILLANCE REQUIREMENTS

4.5.4.2 Each heat tracing channel for the boron injection tank and associated flow path shall be demonstrated OPERABLE:

- a. At least once per 31 days by energizing each heat tracing channel, and
- b. At least once/per 24 hours by verifying the tank and flow path temperatures to be > 145°F. The tank temperature shall be determined by measurement. The flow path temperature shall be determined by either measurement or recirculation flow until establishment of equilibrium temperatures within the tank.

ISALEM - UNIT 1

REFUELING WATER STORAGE TANK

LIMITING CONDITION FOR OPERATION

3.5.4 The refueling water storage tank (RWST) shall be OPERABLE with:

- a. A contained volume of between 364,500 and 400,000 gallons of borated water,
- b. A boron concentration of between 2000 and 2200 ppm, and
- c. A minimum water temperature of 35°F.

APPLICABILITY: MODES 1, 2, 3 and 4.

ACTION:

With the refueling water storage tank inoperable, restore the tank to OPERABLE status within 1 hour or be in at least HOT STANDBY within 6 hours and in COLD SHUTDOWN within the following 30 hours.

SURVEILLANCE REQUIREMENTS

4.5.4 The RWST shall be demonstrated OPERABLE:

- a. At least once per 7 days by:
 - 1. Verifying the water level in the tank, and
 - 2. Verifying the boron concentration of the water.
- b. At least once per 24 hours by verifying the RWST temperature when the outside air temperature is less than 35°F.

BASES

3/4.5.4 REFUELING WATER STORAGE TANK

The OPERABILITY of the RWST as part of the ECCS ensures that a sufficient supply of borated water is available for injection by the ECCS in the event of a LOCA. The limits on RWST minimum volume and boron concentration ensure that 1) sufficient water is available within containment to permit recirculation cooling flow to the core, and 2) the reactor will remain subcritical in the cold condition following mixing of the RWST and the RCS water volumes with all control rods inserted except for the most reactive control assembly. These assumptions are consistent with the LOCA analyses.

In addition, the OPERABILITY of the RWST as part of the ECCS ensures that sufficient negative reactivity is injected into the core to counteract any positive increase in reactivity caused by RCS cooldown. RCS cooldown can be caused by inadvertent depressurization, a loss-of-coolant accident or a steamline rupture.

The limits on contained water volume and boron concentration of the RWST also ensure a pH value of between 8.5 and 11.0 for the solution recirculated within containment after a LOCA. This pH band minimizes the evolution of iodine and minimizes the effect of chloride and caustic stress corrosion on mechanical systems and components. The contained water volume limit includes an allowance for water not usable because of tank discharge line location or other physical characteristics.

B 3/4 5-2

4.5.4 BORON INJECTION SYSTEM

BORON INJECTION TANK

LIMITING CONDITION FOR OPERATION

3.5.4.1 The boron injection tank shall be OPERABLE/with:

- a. A minimum contained volume of 900 galløns of borated water,
- b. Between 20,000 and 22,500 ppm of borron, and
- c. A minimum solution temperature of /145°F.

APPLICABILITY: MODES 1, 2 and 3.

ACTION:

With the boron injection tack inoperable, restore the tank to OPERABLE status within 1 hour or be in HOT STANDBY and borated to a SHUTDOWN MARGIN equivalent to 1% $\Delta k/k$ at 200°F within the next 6 hours; restore the tank to OPERABLE status within the next 7 days or be in HOT SHUTDOWN within the next 12 hours.

SURVEILLANCE REQUIREMENTS

4.5.4.1 The boron injection tank shall be demonstrated OPERABLE by:

a. Verifying the water level through a recirculation flow test at least once per 7 days,

· · · · :

- b. Verifying the boron concentration of the water in the tank at least once per 7 days, and
- c. Verifying the water temperature at least once per 24 hours.

HEAT TRACING

LIMITING CONDITION FOR OPERATION

3.5.4.2 At least two independent channels of heat tracing shall be OPERABLE for the boron injection tank and for the heat traced portions of the associated flow paths.

APPLICABILITY: MODES 1, 2 and 3.

ACTION:

With only one channel of heat tracing on either the boron injection tank or on the heat traced portion of an associated flow path OPERABLE, operation may continue for up to 30 days provided the tank and flow path temperatures are verified to be greater than or equal to 145°F at least once per 8 hours; otherwise, be in HOT SHUMDOWN within 12 hours.

SURVEILLANCE REDUIREMENTS

4.5.4.2 Each heat vracing channel for the boron injection tank and associated flow path shall be demonstrated OPERABLE:

- a. At least once per 31 days by energizing each heat tracing channel, and \checkmark
- b. At least once per 24 hours by verifying the tank and flow path temperatures to be greater than or equal to 145°F. The tank temperatyre shall be determined by measurement. The flow path temperature shall be determined by either measurement or recirculation flow until establishment of equilibrium temperatures within the tank.

SALEM - UNIT 2

3/4 5-10

FUELING WATER STORAGE TANK

LIMITING CONDITION FOR OPERATION

3.5.4 The refueling water storage tank (RWST) shall be OPERABLE with:

- a. A contained volume of between 364,500 and 400,000 gallons of borated water,
- b. A boron concentration of between 2000 and 2200 ppm, and
- c. A minimum water temperature of 35°F.

APPLICABILITY: MODES 1, 2, 3 and 4.

ACTION:

With the refueling water storage tank inoperable, restore the tank to OPERABLE status within 1 hour or be in at least HOT STANDBY within 6 hours and in COLD SHUTDOWN within the following 30 hours.

SURVEILLANCE REQUIREMENTS

4.5.4 The RWST shall be demonstrated OPERABLE:

- a. At least once per 7 days by:
 - 1. Verifying the water level in the tank, and
 - 2. Verifying the boron concentration of the water.
- b. At least once per 24 hours by verifying the RWST temperature when the outside air temperature is less than 35°F.

BASES

ECCS SUBSYSTEMS (Continued)

With the RCS temperature below 350°F, one OPERABLE ECCS subsystem is acceptable without single failure consideration on the basis of the stable reactivity condition of the reactor and the limited core cooling requirements.

The limitation for a maximum of one safety injection pump to be OPERABLE and the Surveillance Requirement to verify all safety injection lumps except the allowed OPERABLE safety injection pump to be inoperable below 312°F provides assurance that a mass addition pressure transient can be relieved by the operation of a single POPS relief valve.

The Surveillance Requirements provided to ensure OPERABILITY of each component ensures that at a minimum, the assumptions used in the safety analyses are met and that subsystem OPERABILITY is maintained. Surveillance requirements for throttle valve position stops and flow balance testing provide assurance that proper ECCS flows will be maintained in the event of a LOCA. Maintenance of proper flow resistance and pressure drop in the piping system to each injection point is necessary to: 1) prevent total pump flow from exceeding runout conditions when the system is in its minimum resistance configuration, 2) provide the proper flow split between injection points in accordance with the assumptions used in the ECCS-LOCA analyses, and 3) provide an acceptable level of total ECCS flow to all injection points equal to or above that assumed in the ECCS-LOCA analyses.

3/4.5.4 REFUELING WATER STORAGE TANK

The OPERABILITY of the RWST as part of the ECCS ensures that a sufficient supply of borated water is available for injection by the ECCS in the event of a LOCA. The limits on RWST minimum volume and boron concentration ensure that 1) sufficient water is available within containment to permit recirculation cooling flow to the core, and 2) the reactor will remain subcritical in the cold condition following mixing of the RWST and the RCS water volumes with all control rods inserted except for the most reactive control assembly. These assumptions are consistent with the LOCA analyses.

In addition, the OPERABILITY of the RWST as part of the ECCS ensures that sufficient negative reactivity is injected into the core to counteract any positive increase in reactivity caused by RCS cooldown. RCS cooldown can be caused by inadvertent depressurization, a loss-of-coolant accident or a steamline rupture.

The limits on contained water volume and boron concentration of the RWST also ensure a pH value of between 8.5 and 11.0 for the solution recirculated within containment after a LOCA. This pH band minimizes the evolution of iodine and minimizes the effect of chloride and caustic stress corrosion on mechanical systems and components. The contained water volume limit includes an allowance for water not usable because of tank discharge line location or other physical characteristics.

SALEM - UNIT 2

LCR# 85-07

ATTACHMENT A

15.4.8.2 SECTION FSAR ISREAKS SALEM STEAMLINE MARKED-UP

been shown on similar plants to less severe than the double ended hot leg break. Cold leg breaks, on the other hand are lower both in the blowdown peak and in the reflood pressure rise. Thus an analysis of smaller pump suction breaks is representative of the spectrum of break sizes.

For these analyses it was assumed that the single failure occurred on a diesel generator such that one spray pump and two fan coolers failed to operate.

Figures 15.4-86 and 15.4-87 give the containment pressure transients for several break sizes and locations for the design basis case. Additional margin cases assuming entrainment continues up to the 10 foot core level were analyzed with results presented in Figures 15.4-88 and 15.4-89. The peak pressures for these cases are summarized in Table 15.4-22.

Structural heat transfer coefficients as a function of time are indicated in Figure 15.4-90.

The DEPS results are shown in Figure 15.4-91. This transient results in the highest peak pressure of 45 psig.

15.4.8.2 Steamline Breaks

15.4.8.2.1 Analytical Methods

-Various containment-models have been utilized to analyze steam break in the Salem-Plant.

Steartine break analysis The majority of the Analyses performed utilized the Westinghouse containment model developed for the IEEE-323-1971 Equipment Qualification program. These models and their justification (experimental and analytical) are detailed in References 56 through 60. Some major points of the model are as follows:

- 1. The saturation temperature corresponding to the partial pressure of the containment vapor is used in the calculation of condensing heat transfer to the passive heat sinks and the heat removal by containment fan coolers.
- 2. The Westinghouse containment model utilizes the analytical approaches described in References 6 and 60 to calculate the condensate removal from the condensate film. Justification of this model is provided in References 56, 59, 60, and 6. (For large breaks 100 percent revaporization of the condensate is used, and a calculated fractional revaporization due to convective heat flux is used for small breaks.)
- 3. The small steam line break containment analyses utilized the stagnant Tagami correlation, and the large steam line break analyses utilized the blowdown Tagami correlation with an exponential decay to the stagnant Tagami correlation. The details of these models are given in Reference 38. Justification of the use of heat transfer coefficients has been provided in References 58, 59, and 61.

[27]

ſ67

8326 A complete analysis of main steamline breaks inside containment has been performed using the $\frac{LGFTPAN}{MARVEL}$ code (WCAP- $\frac{107}{62}$ and the Westinghouse con tainment computer code, COCO, as described in WCAPand its references. All blowdown calculations with the MARVEL code were done assuming the reactor coolant pumps were running, (i.e. offsite power available) because this increases the primary-to-secondary heat trans fer and therefore maintains higher blowdown flow rates (Ref. Section 3.1.7 of WCAP-8822^[63]). Although this is inconsistent with the delay time's assumed in containment fan cooler and spray initiations, where loss of offsite power is assumed, the combined effect is extra conservatism in the calculated containment conditions.

15.4.8.2.2 Mass and Energy Releases

Several failures can be postulated which would impair the performance of various steam break protection systems and therefore would change the steamline

considered

net energy releases from a ruptured line. Three different single failures were analyzed for each break condition. These were 1) failure of a main feed isolation valve; 2) failure of main steam isolation valve; and 3) failure of auxiliary feedwater runout protection equipment.

Feedwater Flow

resulting in a limiting transient

There are two valves in each main feedwater line which serve to isolate main feed flow following a steam line break. One is the main feed regulator valve which receives dual, separate train trip signals from the plant protection system on any safety injection signal and closes within five seconds of receipt of this signal. The second is the feed line isolation valve which also receives dual, separate train trip signals from the protection system following a safety injection signal. This valve closes within 30 seconds. Additionally, the main feed pumps receive dual, separate train trip signals from the protection system following a steam line break. Thus, the worst failure in this system is a failure of the main feed regulator valve to close. This results in an additional 25 seconds during which feedwater from the condensate feed system may be added to the steam generator. Also, since the feed isolation valve is upstream of the regulator valve, failure of the regulator results in additional feed line volume which is not isolated from the steam generator. Thus, water in this portion of the lines can flash and enter into the steam generator.

The only non-safety grade equipment in the main feed system which is relied upon to terminate the main feed flow to the steam generators are the main feedwater control valves. These valves are not seismic category I. However, each valve receives dual, independent, safety grade trip=closed signals from the protection system following a steam line break. Also, the valves are air-operated fail-closed design. Since the assumed break is inside containment in a seismic category I pipe, it is not assumed to be initiated by a seismic event. Therefore, to assume a coincident seismic event with the hypothetical pipe rupture is not required, and thus a seismic classification for the main feed

regulation value is not necessary to insure closure following a steamline break inside containment.

Because of the conservative nature of the transient calculations used for the 1971 Equipment Qualification Program, the results of the Salem temperature transient calculation will fall under the peak transient calculated for the 1971 Equipment Qualification Program and presented in Reference 60 (approximately 385°F). The pressure transient will fall below the design limits for the Salem 2 containment.

Feedwater flow to the faulted steam generator from the main feed system is calculated using the hydraulic resistances of the system piping, head/flow curves for the main feed pumps, and the steam generator pressure decay as calculated by the MARVEL code. In the calculations performed to match these systems variables, a variety of assumptions are made to maximize the calculated flows. These include:

- No credit for extra pressure drop in the feed lines due to flashing of feedwater.
- 2. Feed regulator valve in the faulted loop is full open.
- Feed regulator values in the intact loop do not change position prior to a trip signal.and close instantly upon receipt of a signal to close.
- 4. All feed pumps are running at maximum speed.
- 5. No credit is taken for flow reduction through the feed regulator or feed isolation valve until they are full closed.
- 6. Flow from the pumps decays linearly following pump trip.

Calculation of feedwater flashing is performed by the MARVEL code as described in Section 2.2.3 of WCAP-8843. [27] For the Salem units, the 4.1.5 7907.

SGS-	υF	SAR	
------	----	-----	--

15.4-91

Revision O

maximum volume of unisolated feed lines is 328.2 ft³ without a feed regulator value failure, and increases to 868.5 ft³ with a feed regulator value failure. (See Table 4 of WCAP-8843). [62]

The feedwater flow as a function of time is presented in Figure 15.4-92.

Main Steam Isolation

Since all main steam isolation values have closing times of no more than five seconds, failure of one of these values affects only the volume of the main steam and turbine steam piping which cannot be isolated from the pipe rupture. Table 4 of WCAP-8822^[63] and Table 15.4-23 shows the mass in the steam lines with and without an isolation value failure at the four power levels considered in the analyses.

Steam contained in the unisolated portions of the steam lines and turbine plant were considered in the containment analyses in two ways. For the large double-ended ruptures, steam in the unisolated steam lines is released to the containment as part of the reverse flow. This is accomplished by having the reverse flow begin at the time of the break at the Moody critical flow rate for steam as established by the cross-sectional area of the steam line and the initial steam pressure. The flow is held constant at this rate for a time period sufficient to purge the entire unisolated portion of the steam lines. Enthalpy of the flow is also held constant at the initial steam enthalpy. Following the period of constant flow representing purging of the steam lines, flow from the intact steam generators, as calculated by MARVEL, is added to the containment and continues until steam line isolation is complete.

When considering the split ruptures, steam in the steam lines is included in the analysis by adding the total mass in the lines to the initial mass of steam in the faulted steam generator. This is necessary because, unlike double-ended ruptures, the total break area for a split is unchanged by steam line isolation; only the source of the blowdown effluent is changed. Thus, steam flow from the piping in the intact loops is indistinguishable from steam leaving the faulted steam generator. However, by adding the piping mass to the faulted steam generator mass, and by having dry steam blowdowns, the steam line inventory is included in the total blowdown.

Auxiliary Feedwater Flow

The Auxiliary Feedwater System is actuated shortly after the occurrence of a steam line break. The mass addition to the faulted steam generator from the Auxiliary Feedwater System was conservatively determined by using the following assumptions.

 The entire Auxiliary Feedwater System was assumed to be actuated at the time of the break and instantaneously pumping at its maximum capacity.

assumed

- The affected steam generator was assume to be at atmospheric pressure.
 - The intact steam generators were assumed to be at the safety valve set pressure.
 - 4. Flow to the affected steam generator was calcualited from the Auxiliary Feedwater System head curves, assumptions 2 and 3 above, and the system line resistances. The effects of flow limiting devices were considered.
 - 5. The flow to the faulted steam generator from the Auxiliary Feedwater System_was assumed to exist from the time of rupture until realignment of the system was completed.

6. The failure of auxiliary feedwater runout control was considered as one of three separately as a single failures. Failure of runout control was

simulated by assuming a constant auxiliary feedwater flow of 2040 gpm to the faulted steam generator.

SGS-UFSAR

15.4-93

The analysis used the following auxiliary feedwater flow rates:

- 1. With runout protection operational, a constant auxiliary feed flow of 1840 gpm to the faulted steam generator.

The above flow rates were held constant from time of break until realignment, which was assumed at ten minutes.

In the analysis, the auxiliary feedwater flow to the faulted steam generator was assumed to exist from the time of the rupture until realignment of the system was completed. The Auxiliary Feedwater System is manually realigned by the operator after 10 minutes. Therefore, the analysis assumes maximum auxiliary feedwater flow to a depressurized steam generator for full 10 minutes.

In the event a postulated main steam line break occurs, auxiliary feedwater to the affected steam generator must be terminated manually. Present design criteria allows ten minutes for the operator to recognize the postulated event and perform the necessary actions. However, the operator is expected to terminate auxiliary feedwater flow to the affected steam generator in much less time due to the amount of Class 1E indication provided to monitor plant conditions.

The information available to alert the operator of the need to isolate auxiliary feedwater to the affected steam generator is mounted on the control console in the control room. The pressure in each steam gendesplayed erator is monitored and displayed by two independent channels of instrumentation. Also, a bank of pen recorders indicates steam and feedwater flows for each steam generator; this allows the control room operator to readily view and compare the steam flow of one steam generator to the others.

The suction and discharge pressures of each auxiliary feedwater pump are indicated on the control console. The auxiliary feedwater flow indications for each steam generator are mounted on the control counsole next to each other, allowing the operator to easily view and compare flows.

In addition to the above mentioned indications, high steam flow, low steam pressure, and steam-feed flow deviation conditions for each steam generator are alarmed on the main control console in the control room. Alarms for these conditions are also provided on the overhead annunciator.

Since a sufficient number of trains of instrumentation must be available for normal plant operation, steam generator instrumentation will be in operation at the time of the postulated event. Therefore, changes in steam generator pressure and steam flow will be detected as they occur. The only delay expected in transmitting the information to the control room is the time required for the instrumentation to react to the changing conditions. This delay is expected to be no more than a few seconds.

Failure of the auxiliary feedwater isolation valve to close has not been considered. The maximum auxiliary feedwater flow that can be delivered to a faulted steam generator has been assumed in the analysis for ten the single failure minutes with two cases being considered: 1) - runout protection operational; 2) failure of runout protection. Only after ten minutes the operator takes action to isolate auxiliary feedwater isolation valves fails to close, the operator can trip the two auxiliary feedwater pumps feeding the broken steam generator until this valve or another in the line is manually closed.

The pump curves for the Auxiliary Feed pump are shown in Figure 15.4-93 (Steam Driven) and Figure 15.4-94 (Electrical Driven). A schematic of the Auxiliary Feed System is shown in Figure 10.4-17.

SGS-UFSAR 1750Q:1 15.4-95

15.4.8.2.3 Heat Sinks

The worst effect of a containment safeguards failure is the loss of a spray pump which reduces containment spray flow by 50 percent. In all analyses, the times assumed for initiation of containment sprays and fan coolers are 59 and 35 seconds respectively following the appropriate initiating trip signal. These times are based on the assumption of a loss of offsite power and the delays are consistent with Technical Specification limits. The delay time for spray delivery includes the time required for the spray pumps to reach full speed and the time required to fill the spray headers and piping.

The saturation temperature corresponding to the partial pressure of the vapor in the containment is conservatively assumed for the temperature in the calculation of condensing heat transfer to the passive heat sinks. This temperature is also conservatively assumed for the calculation of heat removal by the containment fan coolers.

Parameters for the Sprays and Fan Coolers are presented in Table 15.4-24. The parameters for the Passive Heat Sinks are presented in Table 15.4-25.

The Fan Cooler heat removal rate as a function of containment temperature is presented in Figure 15.4-96.

15.4.8.2.4 Results

Hwanty-nime (29) A total of forty-eight (48) different blowdowns covering four power five levels and three different break sizes were evaluated. The three break sizes considered at each power level (0, 30, 70 and 102 percent of nominal) were a full double-ended rupture upstream of the steam line flow restrictor, a full double-ended rupture downstream of the steam neither line flow restrictor and the largest split rupture that will not result in generation of a steam line isolation signal from the primary plant

replace W

Lovert (A) were a 4.25 ft full double-ended rupture with entrainment, a 1.4 ff² full druble-ended rupture with entrainment, a small double-ended rupture having an area just larger than that at which entrainment occurs, a small double-ended rupture having an area just smaller than that at which entrainment occurs,

nor result in entrainment. Fifth

protection equipment In the analysis of the third (split) break, reactor trip, feed line isolation and steam line isolation are generated by high containment pressure signals. Additionally, all blowdowns used in the analyses were assumed to consist of dry steam.

For each break condition, four different single failures were considered in the containment evaluation resulting in a limiting transient. evaluated. These were (1) failure of a containment safeguards train, (2) failure of a main feed isolation valve, (3) failure of a main steam isolation valve, and (4) failure of the auxiliary feedwater runout protection equipment.

WCAP-8822 provides containment initial values (See Table 15.4-26), and containment temperatures and pressures resulting from all cases considered are presented in Table 15.4-27 along with pertinent trips, trip times. and single failures associated with each. Also shown in Table 15.4-27 are four additional entries. These show the results of analyses of the worst temperature and pressure transients as analyzed with the COCO code modified to conform to the NRC interim containment evaluation model and the results of the worst pressure transient initiated by a double-ended-rupture when analyzed assuming-entrainment-in-the-blowdown as specified in Section 3.2.2 for WCAP-8822. t631 These results have been provided for comparison of Westinghouse and NRC containment models and for quantification effects on peak pressure from entrained moisture which is expected to be present in large break blowdowns. As can be seen from the table, the peak pressure for any case using the Westinghouse model is 42.8 psig and the peak temperature for any case using the Westinghouse model is 333.5°F. Mass and energy releases for the worst cases are provided in Table 15.4-28 thru 15.4-30. Graphical results showing containment atmospheric temperature, containment pressure, and other pertinent variables are provided in Figures 15.4-97 through 15.4-111 illustrating the resultant containment pressure and 102

temperature transients for the cases producing the limiting results in terms of the highest peak containment pressure and (insert B)

 1 Reference Section 2.3 of WCAP-8822 for a complete discussion of this split break.

15.4-102 provide the contraining pressure and pressure and temperature. Figures 15.4-101 and Frqueres 15.4-99 and 15.4-100 for Contrument break at 30% power transient illustrated in tilde att and freezence of 46.4 paig was the split Small break case which produced the peak enterment temperature of 268.3°F. The limiting containing pressure of 45.5 parg and a peak huntry large break case, producing a peak. the pressure and temperature curves to this 1.4 ft DER at that Zero Power transient generated As illustrated in Figuria 12.4-97 and 12.4-98, the ruptures (DERS) and the Small DERS and split breaks. temperature tor bet the large double - ended (rosv)

quelitication temperature. below the contaciment designe pressure and equipment briek arelysis demonstrate sufficient margin available In summary, the results provided in the steamline generated a peak containment lemperature of 345.5°F. DER without entreinment at that Full Power transies case for the small break cases. The 0.6 ft temperature transients for the limiting temperature

The large break case resulting in the calculated peak pressure has been identified as the 1.4 ft² break at 70 percent power. This case resulted in a peak pressure of 39.1 psig when dry steam blowdowns are used. When this same case was reanalyzed utilizing blowdowns which included the effect of liquid carryover from the secondary side, the resulting peak pressures were 37.7 and 37.2 using the Westinghouse and NRC containment models respectively. This indicates the overall conservatism of the Westinghouse containment model when used with dry steam, vs. using the expected mass and energy releases which include the effect of entrainment. Transients for the Westinghouse model with dry steam blowdowns are provided in Figures 15.4-97 through 15.4-99.

The case resulting in the calculated peak pressure for the small breaks has been identified as the 0.86 ft² break at 102 percent power. The resulting peak pressure for this case was 42.8 psig. When this case was reanalyzed utilizing the NRC containment model, and the same mass and energy release rates, the peak calculated pressure was found to be 43.0 psig. The transients for the Westingbouse model are provided in Figures 15.4-100 through 15.4-102. Similar transients for the case which used the NRC model are provided in Figures 15.4-103 through 15.4-105.

The case resulting in the calculated peak temperature has been identified as the 0.908 ft² break at 70 percent power. This case resulted in a peak temperature of 733.5°F. When this same case was analyzed with the NRC containment model a peak temperature of 341°F was calculated. These results verify that the Westinghouse and NRC models yield similar results. Transients for both of these cases have been provided in Figures 15.4-106 through 15.4-108.

An evaluation of the safety related instrumentation will be performed to show conformance with the requirements of IEEE-223-1971. This evaluation will be performed by comparing the containment equipment test conditions versus the calculated containment accident environments previously discussed. If a thermal analysis is necessary Westinghouse will

DELETE whole page

SGS-UFSAR

15:4-98

differences between the Westinghouse thermal analysis model and the proposed NRS interim model will be discussed and justified. Some major points of the model are the following:

- The condensing heat transfer coefficient will be the same as used in the approved Westinghouse model for ECCS analysis. This model is documented in Appendix A of WCAP-8339^[2] and is comparable to the model recommended in Branch Technical Position CBS 6-1.
- A convective heat transfer coefficient comparable to that recommended by the NRC will be used. If necessary, sensitivity studies will be performed to justify any model differences.

15.4.8.3 Subcompartment Pressure Analysis

Reference 64 presents the containment subcompartment pressure analysis using an 18 node containment model and the latest version of the TMD computer code.

15.4.8.4 Miscellaneous Analysis

15.4.8.4.1 Minor Reactor Coolant Leakage

The Hi Containment Pressure signal actuates engineered safety features. Since the set point for this signal is two psig, the maximum containment pressure caused by leakage is restricted to this value. The containment response to such leakage would be a gradual pressure and temperature rise which would reach a pressure peak of slightly less than two pounds gauge. At this point energy removal due to structural heat sinks and operating fan coolers would match the energy addition due to the leakage and other sources. Delete

15.4-99

 "Acceptance Criteria for Emergency Core Cooling Systems for Light Water Cooled Nuclear Power Reactors," 10CFR50.46 and Appendix K of 10CFR50. Federal Register, Volume 39, Number 3, January 4, 1974.

- 2. Bordelon, F. M., Massie, H. W. and Zordan T. A., "Westinghouse ECCS Evaluation Model - Summary," WCAP-8339, July 1974.
- Bordelon, F. M., et al., "SATAN-VI Program: Comprehensive Space-Time Dependent Analysis of Loss of Coolant," WCAP-8302, June, 1974 (Proprietary) and WCAP-8306, June 1974 (Non-Proprietary).
- Bordelon, F. M., et al., "LOCTA-IV Program: Loss of Coolant Transient Analysis," WCAP-8301, June 1974 (Proprietary) and WCAP-8305, June 1974 (Non-Proprietary).
- 5. Kelly R. D., et al., "Calculational Model for Core Reflooding After a Loss of Coolant Accident (<u>WREFLOOD Code</u>)," WCAP-8170, June 1974 (Proprietary) and WCAP-8171, June 1974 (Non-Proprietary).
- Bordelon, F. M. and Murphy, E. T., "Containment Pressure Analysis Code (COCO)," WCAP-8327, June 1974 (Proprietary) and WCAP-8326, June 1974 (Non-Proprietary).
- Bordelon, F. M., et al., "Westinghouse ECCS Evaluation Model Supplementary Information," WCAP-8471-P-A, April 1975 (Proprietary) and WCAP-8472-A, April 1975 (Non-Proprietary).
- "Westinghouse ECCS Evaluation Model October 1975 Version," WCAP-8622, November 1975 (Proprietary) and WCAP-8623, November 1975 (Non-Proprietary).
- Letter from C. Eicheldinger of Westinghouse Electric Corporation to D. B. Vassallo of the Nuclear Regulatory Commission. Letter Number NS-CE-924, dated January 23, 1976.

- 10. Kelly, R. D., Thompson, C. M., et al., "Westinghouse Emergency Core Cooling System Evaluation Model for Analyzing Large LOCA's During Operation With One Loop Out of Service for Plants Without Loop Isolation Valves," WCAP-9166, February 1978.
- 11. Eicheldinger, C., "Westinghouse ECCS Evaluation Model, February 1978 Version," WCAP-9220 (Proprietary Version), WCAP-9221 (Non-Proprietary Version), February 1978.
- 12. Letter from T. M. Anderson of Westinghouse Electric Corporation to John Stolz of the Nuclear Regulatory Commission, letter number NS-TMA-1830, June 16, 1978.
- 13. Letter from T. M. Anderson of Westinghouse Electric Corporation to John Stolz of the Nuclear Regulatory Commission, letter number NS-TMA-1834, June 20, 1978.
- 14. Letter from C. Eicheldinger of Westinghouse Electric Corporation to
 V. Stello of the Nuclear Regulatory Commission. Letter Number
 NS-CE-1163, dated August 13, 1976.
- 15. Beck, N. S. and Kemper, R. M., "Westinghouse ECCS Four-Loop Plant (17 x 17) Sensitivity Studies," WCAP-8865, October 1976.
- 16. Salvatori, R., "Westinghouse ECCS Plant Sensitivity Studies," WCAP-8340, July 1974 (Proprietary) and WCAP-8356, July 1974 (Non-Proprietary).
- 17. Johnson, W. J., Massie, H. W. and Thompson, C. M., "Westinghouse ECCS - Four Loog Plant (17 x 17) Sensitivity Studies," WCAP-8565, July 1975 (Proprietary) and WCAP-8566, July 1975 (Non-Proprietary).
- 18. U.S. Nuclear Regulatory Commission letter, D. G. Eisenhut to Utilities With Operating Light Water Reactors, November 9, 1979.

)

- 19. NUREG-0630, (Draft) Powers, D. A., Meyer, R. O., November 8, 1979, Cladding Swelling and Rupture Models for LOCA Analysis.
- 20. Letter from T. M. Anderson of Westinghouse Electric Corporation to D. G. Eisenhut of the Nuclear Regulatory Commission, letter number NS-TMA-2147, November 2, 1979.
- Letter from T. M. Anderson of Westinghouse Electric Corporation to D. G. Eisenhut of the Nuclear Regulatory Commission, letter number NS-TMA-2163, November 16, 1979.
- Letter from T. M. Anderson of Westinghouse Electric Corporation to D. G. Eisenhut of the Nuclear Regulatory Commission, letter number NS-TMA-2174, December 7, 1979.
- Letter from T. M. Anderson of Westinghouse Electric Corporation to <u>R</u>. Denise of the Nuclear Regulatory Commission, letter number NS-TMA-2175, December 10, 1979.
- 24. Geets, J. M., "MARVEL A Digital Computer Code for Transient Analysis of a Multiloop PWR System," WCAP-7909, June 1972.
- 25. Moody, F. S., "Transactions of the ASME, Journal of Heat Transfer," Figure 3, page 134, February 1965.
- 26. Bordelon, F. M., "Calculation of Flow Coastdown After Loss of Reactor Coolant Pump (PHOENIX Code)," WCAP-7973, September 1972.
- 27. Burnett, T. ₩. T., McIntyre, C. J., Buker, J. C. and Rose, R. P., "LOFTRAN Code Description," WCAP-7907, June 1972.
- 28. Hunin, C., "FACTRAN, A Fortran IV Code for Thermal Transients in a UO₂ Fuel Rod," WCAP-7908, June 1972.
- 29. Burnett, T. W. T., "Reactor Protection System Diversity in Westinghouse Pressurized Water Reactors," WCAP-7306, April 1969.

15.4-103

- 30. Taxelius, T. G. (Ed), "Annual Report Spert Project, October, 1968, September 1969," Idaho Nuclear Corporation IN-1370, June 1970.
- 31. Liimataninen, R. C. and Testa, F. J., "Studies in TREAT of Zircaloy-2-Clad, UO₂-Core Simulated Fuel Elements," ANL-7225, January -June 1966, p. 177, November 1966.
- 32. Risher, D. H., Jr., "An Evaluation of the Rod Ejection Accident in Westinghouse Pressurized Water Reactors Using Spatial Kinetics Methods," WCAP-7588, Revision 1-A, January 1975.
- 33. Risher, D. H., Jr., and Barry, R. F., "TWINKLE A Multi-Dimensional Neutron Kinetics Computer Code," WCAP-7979-P-A, January 1975 (Proprietary) and WCAP-8028-A, January 1975 (Non-Proprietary).
- 34. Barry, R. F., "LEOPARD A Spectrum Dependent Non-Spatial Depletion Code for the IBM-7094," WCAP-3269-26, September 1963.
- 35. Bishop, A. A., Sanberg, R. O. and Tong, L. S., "Forced Convection Heat Transfer at High Pressure After the Critical Heat Flux," ASME 65-HT-31, August 1965.
- 36. "Westinghouse Mass and Energy Release Datas for Containment Design," WCAP-8264 (Proprietary) and WCAP-8312 (Non-Proprietary).
- 37. Dittus, F. W., and Boelter, L. M. K., University of California (Berkely), Publs, Eng., 2 433 (1930).
- 38. Jens, W. H., and Lottes, P. A., "Analysis of Heat Transfer, Burnout, Pressure Drop, and Density Data for High Pressure Water," USAEC Report ANL-4627 (1951).

- 39. Macbech, R. V., "Burnout Analysis, Pt. 2, The Basis Burn-out Curve," U. K. Report AEEW-R 167, Winfrith (1963). Also Pt. 3, "The Low-Velocity Burnout Regimes," AEEW-R 222 (1963); Pt. 4, "Application of Local Conditions Hypothesis to World Data for Uniformly Heated Round Tubes and Rectangular Channels," AEEW-R 267 (1963).
- 40. Dougall, R. S., and Rehsenow, W. M., <u>Film Boiling on the Inside of</u> <u>Vertical Tubes with Upward Flow of Fluid at Low Quantities</u>, MIT Report 9079-26.
- 41. EcEligot, D. M., Ormond, L.W., and Perkins, Jr., H. C., "Internal Low Reynolds - Number Turbulent and Transitional Gas Flow with Heat Transfer," Journal of Heat Transfer, 88, 239-245 (May 1966).
- 42. W. H. McAdams, <u>Heat Transmission</u>, McGraw-Hill 3rd edition, 1954, p. 172.
- 43. Cunningham, V. P., and Yeh, H. C., "Experiments and Void Correlation for PWR Small-Break LOCA Condition," Transactions of American Nuclear Society, Vol. 17, Nov. 1973, pp. 369-370.
- 44. Tagami, Takaski, "Interim Report on Safety Assessments and Facilities Establishment Project in Japan for Period Ending June 1965 (No. 1)"
- 45. Kolflat, A., and Chittenden, W. A., "A New Approach to the Design of Containment Shells for Atomic Power Plants". Proc. of Amer. Power Conf., 1957 p. 651-9.
- 46. McAdams, W. H., <u>Heat Transmission</u>, 3rd Edition, McGraw-Hill Book Co., Inc., New York (1954).
- 47. Standards of Tubular Exchanger Manufacturers Association

SGS-UFSAR

15.4-105

- 48. Eckert, E. R. G., and Drake, P. M. J., <u>Heat and Mass Transfer</u>, McGraw-Hill Book Co., Inc., New York (1959).
- 49. Eckert, E. and Gross, J., "Introduction to Heat and Mass Transfer", McGraw-Hill, 1963.
- 50. Kern, D. Q., <u>Process Heat Transfer</u>, McGraw-Hill Book Co., Inc., New York (1950).
- 51. Chilton, T. H., and Colburn, A. P., "Mass Transfer (Absorption) Coefficients Prediction from Data on Heat Transfer and Fluid Friction", Imd. Eng. Chem., 26, (1934), pp. 1183-87.
- 52. WCAP 7336-L, Topical Report Reactor Containment Fan Cooler Cooling Test Coil, W. L. Boettinger, July 1969.
- 53. S. Weinberg, Proc. Inst. Mech. Engr., 164, pp. 240-258, 1952
- 54. Ranz, W. and Marshall, W., Chem, Engr., Prog. <u>48</u>, 3, pp. 141-146 and 48, 4, pp. 173-180, 1952.
- 55. Perry, J., "Chemical Engineers Handbook" 3rd Ed. McGraw-Hill, 1950.
- 56. Letter to Mr. D. B. Vassallo, Chief, Light Water Reactor Projects Branch 6, USNRC, From Mr. C. Eicheldinger, Manager, Nuclear Safety, Westinghouse Electric Corporation, Dated March 17, 1976 (NS-CE-992).
- 57. Letter to Mr. D. B. Vassalo, Chief, Light Water Reactor Projects Branch 6, USNRC, from Mr. C. Eicheldinger, Manager, Nuclear Safety, Westinghouse Electric Corporation, Dated July 10, 1975 (NS-CE-692).
- 58. Letter to Mr. D. B. Vassalo, Chief, Light Water Reactor Projects Branch 6, USNRC, From Mr. C. Eicheldinger, Manager, Nuclear Safety, Westinghouse Electric Corporation, Dated April 7, 1976 (NS-CE-1021).

- 59. Letter to Mr. J. F. Stolz, Chief, Light Water Reactor Projects Branch 6, USNRC, From Mr. C. Eicheldinger, Manager, Nuclear Safety, Westinghouse Electric Corporation, Dated August 27, 1976 (NS-CE-1883).
- 60. Hsieh, T., et. al., "Environmental Qualification Instrument Transmitter Temperature Transient Analysis," WCAP-8936, February 1977 (Proprietary) and WCAP-8937, February 1977 (Non-proprietary).
- 61. Letter to John F. Stolz, Chief, Light Water Reactor Projects Branch
 6, USNRC, from C. Eicheldinger, Manager, Nuclear Safety Westinghouse
 Electric Corporation, Dated June 14, 1977 (NS-CE-1453).
 Reference 62 deleted.
- 62. Krise, R. C., Miranda, S., "MARVEL A Digital Computer Code For-Transient Analysis of a Multi-Loop PWR System," WCAP-8843, November, 1977 (Proprietary) and WCAP-8844, November, 1977 (Non-proprietary).
- 63. Land, R. E., "Mass and Energy Releases Following a Steamline Rupture," WCAP-8822, September, 1976 (Proprietary) and WCAP-8860, September, 1976 (Non-proprietary).
- 64. "Evaluation of the Reactor Coolant System Considering Subcompartment Pressurization Following a LOCA for Salem Units 1 and 2," transmitted by PSEG letter, R. L. Mottle to O. D. Parr, dated March 6, 1979.

15.4-107

TABLE 15.4-23 (Sheet 1 of 2)

EFFECTS OF SINGLE FAILURES ON CONTAINMENT ANALYSES

I. MAIN STEAM ISOLATION VALVES*

•

Brea	ık Are	f a ({{t ² })	Power Percent	Piping Blowdown (lb/sec)	Durati Piping Blow	on of down (sec)	Steam	Mass (1b)
For	vard R	everse			No MSIV Failure	MSIV Failure	No MSI Failur	V MSIV e Failure
1.	4	4.25	102	7047	0.140	2,587 2.532	485 959	18,565
1.	4	4.25	70	7595	-0.137	2.54 2.541 2.55	1034	19,002 19,302
1.	4	4.25	30	8377	0.137	2.330 2.556	1148 1151	$\frac{71,55}{21,409}$
1.	.4	4.25	0	9002	0.138	2.332 2.568	1243	22,473 23,115
-4.	-25	1.4	102	2315	-0.414	7.706	- 	-17,840
-4;	-25	1.4		2495	0.416	7.736		-19,302
· 4.	25	1.4			-0.418			21,409
4.	25	1.4			0.420			-23,115
*Fai lir	lure Ne vol	of main ume from	steam line i 542 t ³ to	isolation valve in 10,083 At ³ .	creases the u	nisolatable	steam	
II	MAIN	FEED LIN	E ISOLATION	VALVE	ſ			
	Maxim Witho	um Uniso ut MFIV	latable Feed Failure	i Line Volume	$= 328.2 \ \mathrm{Kt}^3$			
	Maxim With	um Uniso MFIV Fai	latable Feed lure	1 Line Volume	= 868.5 Kt3			-
	Closi	ng Time	of Feed Regu	lation Valve	= <5.0 sec.			

Closing Time of Feed Isolation Valve = <30.0 sec.

Revision O July 22, 1982

III. AUXILIARY FEED SYSTEM RUNOUT PROTECTION FAILURE

Maudanum Aussilliams Fred Flass Utheraut	1040	-
Haxmidin Maximum Yor Ced mow wrendde	1040	ਗਰਸ
-Runout-Protection-Failure-		

Maximum Auxiliary Feed Flow With = 2040 gpm Runout Protection Failure

> Revision O July 22, 1982

٠.

TABLE 15.4-24

SPRAY SYSTEM

Number of Spray Trains	2	
Number of Spray Trains Operating in Minimum Safeguards Analysis	1	
Number of Spray Trains Operating in- Maximum Safeguards Analysis	-2	
Spray Flow Rate per Spray Train	2600	gpm

FAN COOLERS

Number of	Fan Coolers	5
Number of Minimum	Fan Coolers Operating in Safeguards Analysis	3
Number of	Fan Coolers Operating in-	4

INITIATION TIMES/SETPOINTS

System	Containment Setpoint used	Delay After Setpoint (sec)
Spray	26.7 psig	59.
Fan Coolers	7.9 psig	35.

TABLE 15.4-25 (Sheet 1 of 2)

PASSIVE HEAT SINK

Wall	(ft2) No. Area	Layer	Composition S	ft. Mhickness	Thermal Cond. BUT /HR-FT-°F BTU	Volumetric Heat Capacity BTU/FT3_°F
1	45169	1 2 3 4	Paint Steel Concrete Concrete	0.000625 0.03125 0.5 4.0	0.083 27.0 0.92 0.92	39.6 58.8 22.6 22.6
2	14206	1 2 3 4	Insulation Steel Concrete Concrete	0.2083 0.03125 0.5 4.0	0.024 27.0 0.92 0.92	3.94 58.8 22.6 22.6
3	29249	1 2 3 4	Paint Steel Concrete Concrete	0.000625 0.04167 0.5 3.0	0.083 27.0 0.92 0.92	39.6 58.8 - 22.6 22.6
_ *4	11611	1 2 3	Paint Concrete Concrete	0.0015 0.5 3.0	0.083 0.92 0.92	39.6 22.6 22.6
5	6806	1 2 3 4	Paint Concrete Concrete Concrete	0.0015 0.5 0.5 0.5	0.083 0.92 0.92 0.92	39.6 22.6 22.6 22.6
6	9424	1 2 3	Paint Concrete Concrete	0.0015 0.5 1.21	0.083 0.92 0.92	39.6 22.6 22.6
7	31660	1 2 3	Paint Concrete Concrete	0.00117 0.5 1.0	0.083 0.92 0.92	39.6 22.6 22.6
8 -	13279	1 2 3	Stainless Steel Concrete Concrete	0.01773 0.5 1.4	8.0 0.92 0.92	53.6 22.6 22.6
9	47590	1 2	Paint Steel	0.000625	0.083 27.0	39.6 58.8

* in contact with sump

SGS-UFSAR

÷.

TABLE 15.4-25 (Sheet 2 of 2)

PASSIVE HEAT SINK

Wall No.	(ft ²)-	Layer	Composition	Gft. Thickness	Thermal Cond. BUT /HR-FT-°F BTY	Volumetric Heat Capacity BTU/FT3-°F
10	76741	1 2	Paint Steel	0.000625 0.02102	0.083 27.0	39.6 58.8
11	19348	1 2	Paint Steel	0.000625 0.0437	0.083 27.0	39.6 58.8
12	9330	1 2	Paint Steel	0.000625	0.083 27.0	39.6 58.8
13	7452	1 2	Paint Steel	0.000625 0.086	0.083 27.0	39.6 58.8
14	3218	1	Paint Steel	0.000625 0.1112	0.083 27.0	.39.6 58.8
_ 15	1553	1 2	Paint Steel	0.000625 0.217	0.083 27.0	39.6 58.8
16	43740	1 2	Paint Steel	0.000625 0.0052	0.083 7.0	39.6 58.8
17	4272	1	Stainless Steel	0.0329	8.0	53.6
18	53745	1 2	Paint Steel	0.000625 0.0211	0.083 27.0	39.6 58.8
19	11244	1 2	Paint Steel	0.000625 0.0379	0.083 27.0	39.6 58.8
20	2989	1 2	Paint Steel	0.000625 0.15806	27.0 27.0	39.6 58.8

TABLE 15.4-26

CONTAINMENT INITIAL CONDITIONS FOR MSLB

Containment Design Pressure	47 psig
Containment Volume	2,620,000 ft ³
Initial Containment Pressure	0.3 psig
Initial Air Partial Pressure	14.7 psia
Initial Steam Partial Pressure	0.3 psia
Initial Containment Temperature	120°F
Refueling Water Storage Tank Inventory	350,000 gal
Service Water Temperature	85 °

Revision O July 22, 1982

SGS-UFSAR

DETELE MYOR HEPR

Sheet 1 of 10

TABLE 15.4-28

		0.944
	MASS AND ENERGY RELEASES	FROM A 0.86 FT ² SPLIT BREAK
	AT 102 PERCENT POWER	(Worst Temperature Case)
	· · · · · · · · · · · · · · · · · · ·	Pressure
Time	Break Flow	Energy Flow
(sec.)	(1b/sec.)	(million Btu/sec.)

-a,e-

PROPRIETARY

Refer to (50-311) "Application for Withholding" R. L. Mittl to Olan D. Parr November 20, 1978 and NRC Approval letter, Olan D. Parr to Wiesemann January 22, 1979

SGS-UFSAR

Revision O July 22, 1982

Sheet 2 of 10

Time sec.)	Break Flow (1b/sec.)	Energy Flow (million Btu/sec.)	Time (sec.)	Break Flow (1b/sec.)	Energy Flow (million Btu/sec)
0.0000	0.0000	0,0000	37.50	1420.	1.704
1,000	1741.	2.080	38.00	1616.	1.699
1.500	1728.	2.065	39.00	1606.	1.688
2.000	1718.	2.053	39.50	1401.	1.682
3.000	1698	2.030	40.00	1396.	1.676
3.500	1688.	2.018	41.00	1387.	1.665
4.000	1678.	2.007	41.50	1382.	1.659
5.000	1659.	1.984	42.50	1377.	1.653
5.500	1650.	1.976	43.00	1367.	1.642
6.000	1641.	1.963	43.50	1362.	1.636
7.000	1625.	1.944	44.50	1357.	1.630
7.500	1617.	1.935	45.00	1348.	1.619
8.000	1605.	1.925	45.50	1343.	1.613
9.000	1594.	1.908	46.50	1338.	1.607
9.500	1587.	1.899	47.00	1328.	1.595
10.00	1579.	1.891	47.50	1323.	1.590
11.00	1565.	1.874	48.50	1319.	1.584 1.578
11.50	1558.	1.866	49.00	1309	1.573
12.00	1552.	1.458	49.50	1304.	1.567
13.00	1539.	1.843	50.50	1299.	7.561
13.50	1533.	1.836	51.00	1290.	1.550
14.00	1520.	1.829	51.50	1287.	1.546
5.00	1515.	1.815	52.50	1287.	1.546
5.50	1509.	1.808	53.00	1283.	1.542
16.00	1503.	1.801	53.50	1280.	1.539
17.00	1493.	1.790	54.50	1278. 1275	1.536
			55.00	1272.	1.529
17.50	1487.	1.782	55.50	1269.	1.526
18.00	1483.	1.777	56.50	1267.	1.522
16.50	1477.	1.766	57.00	1261.	1.516
19.50	1467.	1.759	52.50	1258.	
20.00	1463.	1.754	58.00	1255.	1.509
21.00	1454	1.744	58.50	1252.	1.505
21.50	1448.	1.736	59.50	1246.	1.502
22.00	1443.	1.731	60.00	1243.	1.494
23.00	1475.	1.769	60.50	1240.	1.491
23.50	1481.	1.776	61.50	1234.	1.487
24.00	1482.	1.777	62.00	1231.	1.680
25.00	1484	1.779	62.50	1228.	1.476
25.50	1484.	1.780	63.50	1221.	1.472
20.00	1485.	1,781	64.00	1218.	1.465
27.00	1485.	1.781	64.50	1215.	1.461
27.50	1485.	1.781	65.50	1209.	1.457
28.50	1485.	1.781	66.00	1206.	1.450
29.00	1483.	1.779	66.50	1203.	1.446
29.50	1482.	1.777	67.50	1196.	1.443
30.50	1460.	1.771	68.00	1193.	1.435
31.00	1474.	1.768	69.00	1187.	1.431
1.50	1471.	1.764	69.50	1184.	1.424
50	1463.	1.755	70.00	1181. 1174	1.421
-33.00	1460.	1.751	71.00	1175	1.417
33.50	1456. 1481	1.746	71.50	1172.	1.610
34.50	1447.	1.736	72.00	1167. 1164	1.406
35.00	1443.	1.731	73.00	1163.	1.403
33.30	14 39. 1434	1.720	73.50	1160.	1.396
36.50	1430	1.715	74.00	1157.	1.392
37.00	1425.	1.710	· • • JU	1129.	1.389

-

Jime	Break Flow	Energy Flow	Time	Break Flow	Energy Flow
(,)	(lb/sec.)	(million Btu/sec.)	(sec.)	(lb/sec.)	(million Btu/sec)
75.00	1151.	1.385	112.0	ž76.6	1.056
75.50	1149.	1.382	112.5	866.8	1.044
76.00	1140.	1.378	113.0	\$57.2	1.033
76.50	1140.	1.3/3	113.5	848.0	1.021
77.00		1.372	114.0	639.1	1.071
77.50	1117	1.368	11403	630.5	
78.00	9934	1.365	115.0	822.1	.9902
78.50	1131.	1.361	115.5	814.0	.9805
79.00	1128.	1.358	116.0	806.Z	.9710
79.50	1125.	1.354	110.5	798.0	.9529
80.50	1123.	1.351	117.0	· · · • 6	
81.00	1117.	1.344			
61.50	1114.	1.341	117.5	784 0	- 9447
82.00	1111.	1.337	118.0	774.9	.9357
82.3U	1109.	1.334	118.5	770.1	.9275
43.50	1106.	1.331	119.0	763.5	.9194
84.00	1105.	1.324	119.5	757.0	.9116
84.50	1097.	1.321	120.0	750.7	• YU-U 804 4
85.00	1095.	1.316	121.0	738.5	
5.50	1092.	1.314	121.5	732.6	8822
86.00	1069.	1.311	122.0	726.9	.8753
87.00	1066.	1.305	122.5	721.3	.8685
87.50	1064.	1.301	123.0	715.9	.8620
88.00	1078.	1.296	123.3	710.5	•0777 \$407
88.50	1076.	1.295	-24.5	705.5	.8431
89.00	1073.	1.292	125.0	695.3	.8371
	1070.	1.287	125.5	690.5	.8313
50	1000.	1.282	126.0	685.8	.5256
71.00	1062.	1.279	127.0	47 4 4	
1.50	1060.	1.276	127.5	672.2	8093
92.50	1057.	1.275	128.0	668.0	.8041
93.00	1022.	1.267	128.5	663.8	.7990
93.50	1049.	1.263	129.5	03 7. 7	7891
94.00	1047.	1.260	130.0	651.8	.7846
99.20	1044.	1.257	130.5	648.0	.7800
95.50	1042.	1.224	131.0	644.3	.7755
96.00	1037.	1.268	131.3	640.7	-//11
96.50	1034.	1.245	132.5	03/.2 411 8	.7627
97.00	1032.	1.242	133.0	- 630.5	.7587
97 50			133.5	627.2	.7548
98.00	1027.	1.239	134.0	624.1	.7510
98.50	1024	1.233	134,5	621.0	•/\$/{ 7/34
99.00	1022.	1.230	135.5	415 1	.7401
99.50	1019.	1.227	136.0	612.2	.7367
100.5	1017. –	1.224	136.5	609.5	.7333
101.0	1014.		137.0	606.8	.7301
101.5	1009.	1.215	117 6	404 3	7240
102.0	1007.	-1.212	138.0	601.6	.7207
102.3	1004.	1.209	138.5	599.1	.7208
103.5	1002.	1.206	139.0	596.7	.7179
104.0	994.6	1.200	139.5	396.6	7151
104.5	994.5	1.196	140.0	272.1 580 0	-7125
105.0	991.9	1.196	141.0	587.7	.7070
106.0	969.7	1.192	141.5	585.6	.7045
104.5	967.1 965 0	1.186	142.0	583.6	.7020
0	962.6	1.183	142.2	261.0	.0770
	968.6	1.191	143.5	577.9	.6950
08.5	969.7	1-168	144.0	\$76.0	.6928
.09.0	770.3 013 B	1.126	144.5	574.3	.6907
169.5	931.4	1.122	145.5	37 6.0 570.0	•0770 •1844
110.0	919.6	1.106	146.0	569.3	.6847
111.0	908.3	1.094	146.5	567.7	.6827
111.5		1.068	167.U	566.2	.6809
			19793	204./	TV10.

Sheet 4 of 10

The second	Break Flow	Energy Flow	Time	Break Flow	Energy Flow
	(1b/sec.)	<u>(million Btu/sec.)</u>	(sec.)	<u>(1b/sec.)</u>	(million Btu/sec.)
148.0	563.2	.6773	185.0	515.2	.4192
148.5	561.8	.6756	185.5	\$14.9	.6189
149.0	559.1	.6723	186.5	514.7 514.4	.6185 .6182
150.0	557.8	-6708	187.0	514.2	.6179
150.5	>>o.> 555.3	-6678	186.0	513.9	-6176
151.5	554.1	.6663	168.5	513.4	.6170
152.0	551.8	• 66 • 7	189.5	513.Z	-6167
153.0	550.7	.6622	190.0	512.7	.6161
153.5	249.0 548.6	-6596	191.0	512.5	-6158
154.5	547.6	-6584	191.5	512.0	.6153
155.0	240.0 545.6	-6560	192.5	511.8	-6150
156.0	544.7	-6549	193.0	\$11.3	.6145
156.5	543.8 542.9	•033 8 -6527	193.5	511.1	-6142
12/+9			194.5	510.7	.6137
157.5	542.0	.4517	195.0	510.5	.6135
158.0 158.5	541.2	- 6506	196.0	510.1	.6130
159.0	\$39.5	.6487	196.5 197.0	509.9	-6127
159.5	538.8 518.0	.6477		207.1	-0123
160.5	537.2	.6459	197.5	509.5	-6122
161.0	536.5 Kic.a	-6450	198.0	509.3	.6120
O	535.1	.4433	199.0	508.9	-6115
	534.4 533.8	.6425	199.5	508.7	-6113
163.5	533.1	.6409	200.5	508.3	.6108
.64.5	532.5 531.9	-6401	201.0	508.1 507.0	.6106
165.0	\$31.3	.6386	202.0	507.8	.6102
166.0	530.7	-6379 6372	202.5	507.6 507.4	.6099
166.5	529.6	.6366	203.5	507.2	.6095
167.5	528-5	-6359	204.0	507.0	.6093
168.0	527.9	.6346	205.0	50ć.7	.6089
169.0	526.9	-6340	205.5	506.5	-6086
169.5 170.0	526.4	.4328	206.5	506.2	.6082
170.5	525.5	-6322	207.0	506.0	-6080
179.0	525.0	.4311	208.0	505.6	.6076
172.0	524.1	-6305	208.5	505.5	-6074 -6073
172.5	523.7	.6295	209.5	505.1	.6070
173.5	522.9 -	-6290 - 6285	210.0	505.0	-6068
174.0	522.5	.6280	211.0	504.7	.6064
175.0	521.7	-6275 - 6270	211.5	504.5	-6062
175.5	521.3	.6265	212.5	504.2	.6058
176.5	520.9	-6261 6257	213.0	504.0	.6056
177.0	520.2	.6252	214.0	503.7	.6052
177-5	84A A		214.5	503.5 503.4	-6050 -6048
176.0	519.5	. 6248	215.5	503.2	-6046
.0	519.1 518 e	.4240	216.5	502.9	.0045
.5	518.5	.6231	217.0	502.7	.6041
180.5	518.2 517.4	.6228			
181.0	517.5	-6220			
182.0	517.2 514.0	-6216			
182.5	516.6	.6209			
183.5	216.3 516.0	•6205 •A202			
184.0	515.4	.6199			
		A195			

ĺ

Sheet 5 of 10

e)	Break Flow (1b/sec.)	Energy Flow (million Btu/sec.)	Time (sec.)	Break Flow (lb/sec.)	Energy Flow (million Btu/sec.)
217 5	502.0	.6039	255.0	491.4	.5903
218.0	502.4	-6037	255.5	491.2	.5901
218.5	502-3	.6033	256.5	490.9	.5898
219.5	502.0	-6031	257.0	490.8	.5896
220.0	501.8	•6029 -6028			
220.5	501.5	.6026	257.5	490.5	-5874
221.5	501.3	•6024	258.5	490.3	.5890
222.0	501.2 501.0	-6020	259.0	490.2	5889
223.0	500.9	-6018	259.5	489.9	- 260/
223.5	500.7	-6017	260.5	489.7	
224.0	500.6	.6013	261.0	487.0 480.4	.5881
225.0	500.3	-6011	262.0	407.3	.5878
225.5	500.1	-6007	262.5	489.1	.5876
226.5	499.8	- 6006	263.0	444.8	-5874
227.0	499.7	-6004 -6002	264.0	448.7	.5871
227.5	499.5	.6000	264.5	466.5	.5869
228.5	499.2	.5998	265.5	444.2	- 5865
229.0	499.1	- 5995	266.0	488.1	.5863
229.5	498.8	.5993	206.5	488.0 487 8	-5862
230.5	498.6	.5991	267.5	47.7	-5458
231.0	496.5	. 3737 . 5987	268.0	487.5	5856
231.3	498.2	.5966	265.2	687.2	-5853
	498.0	.5964	269.5	487.1	.5851
233.0	497.9	.5980	270.0	486.7	.5849
234.0	497.6	.5978	271.0	486.6	.5845
234.5	497.4	.5977	271.5	486.5	.5843
235.0	497.2	.5973	272.0	480.3	-5842 5840
236.0	497.0	.5%.1	273.0	486.0	.5838
236.5	496.9	• 3 ¥C / • 5946	273.5	485.9	.5836
237.0	470.1		274.5	485.6	- 5833
237.5	496.6	.5966	275.0	485.4	.5831
238.0	496.3	.5964	275.5	445.3	.5829
239.0	496.1	.5960	276.5	485.0	-5825
239.5	496.0	.5959	277.0	484.8	.5824
240.5	495.7	-5955	277.5	484.7	5877
241.0	495.5	. 5953	278.0	484.5	.5820
241.5	495.2	• 5952 5050	278.5	4844	.5818
242.5	495.1 _	.5948	279.5	484.1	.5815
243.0	494.9 Lol 8	.5946	280.0	483.9	.5813
244.0	494.6	.5943	280.5	483.8	.5811
244.5	494.5	.5941	281.5	483.5	.5807
245.5	494.2	.5939	282.0	483.3	.5806
246.0	494.0	.5935	283.0	443.0	-5802
246.5	493.9	.5934	283.5	442.9	\$800
247.5	493.6	.5930	284.5	42.4	-5796
248.0	493.4	-5928	285.0	442.4	.5795
9.0	493.2	•2760 -5925	285.5	482.3	.5793
	493.0	.5923	266.5	482.0	.5789
250.5	472.7 492.7	.5921	287.0	4 6 1. 4	.5787
251.0	492.6	.5917	288.0	481.5	.5/80
251.5	492.4	.5916	268.5	481.4	.5782
252.5	492.1	-5916	289.0 289.5	451.Z	-5780
253.0	492.0	.5910	290.0	480.9	5777
254-0	491.8 491.7	.5908	290.5	480.8	.5775
254.5	491.5	.5905	291.5	480.7	.5775

•

Lime	Break Flow	Energy Flow	Time	Break Flow	Energy Flow
	(lb/sec.)	(million Btu/sec.)	(sec.)	(lb/sec.)	(million Btu/sec.)
0.5%	480.4	.5770	329.0	469.7	-5640
292.5	480.2	• 3768 \$744	327.3	407.0	- 5437
293.5	479.9	.5764	330.5	469.3	.5635
294.0	479.8	.5762	331.0	469.1	.5634
294.5	479.6	.5761	331.5	469.0	.5632
277.0	679.3	-3737	332.5	468.7	-5628
296.0	479.2	.5755	333.0	468.6	-5627
296.5	479.0	.5753	333.5	468.4	.5625
297.0	4/8.9	.2772	334.0	405 ° J	• 292 3 - 5622
343 4	478 7	8366	335.0	468.0	.5620
298.0	478.6	• 3750	335.5	467.9	-5618
298.5	478.4	.5746	336.0	467.7 147 A	• 5617 5415
299.0	478.3	.5745	337-0	467.5	-5613
299.5	478.0	-5743			
300.5	477.9	5739	337.5	467.3	.5612
301.0	477.7	.\$737	338.0	467.2	.5610
301.5	477.4	.5736	338.5	407.0 444.9	- 5606
302.5	477.3	-2734	337.0	466.8	.5605
303.0	477.1	.5730	340.0	466.6	.5603
303.5	477.0	•5729	340.5	400.5	.2001
304.5	476.7	• 5727 \$735	341.0	466.2	.5598
305.0	476.5	.\$723	342.0	466.1	.5596
- 305.5	476.4	.\$722	342.5	465.9	.5595
	476.J	.5720	343.0	407.8 445.7	.5591
	476.0	-5716	344.0	465.5	.5590
	475.8	.5715	344.5	465.4	.5588
308.0	4/3.7	.5713	345.0	407.2 445 1	•2280
X(9.0	475.4	•2/11	345.5	465.0	.5583
309.5	475.2	.5708	346.5	464.8	.5581
310.0	475.1	.5706	347.0	464.7	•5580
310.5	474.1	.5704	347.5	404.0	•2270 -5576
311.5	474.7	-5701	348.5	664.3	.5575
312.0	474.5	.5699	349.0	464.1	-5573
312.3	474.4	.5697	349.5	404.U 441 0	•3371
313.5	474.1	- 2072	350.5	463.7	.5568
314.0	474.0	.5692	351.0	463.6	-5566
314.5	473.8	-5690	351.5	463.5	• 5565
315.5	473.5	• 2055 5487	352.5	- 463.2	.5561
316.0	473.4	-5685	353.0	463.0	.5560
316.5	473.2	.5683	353.5	462.9	.5558
316.0	9/3.1 _	.5682	354.0	40C.8	• 7770
317.5	473.0	-5680	355.0	462.5	.5553
318.0	472.8	.5678	355.5	462.4	.5551
318.5	4/C.7 672_K	.7076 _\$475	356.0	402.2	• 333U
319.5	472.4	.5673	357.0	462.0	5547
320.0	472.2	.5671			
320.5	472.1	- 3670	357.5	6 PAA	.5545
321.5	471.8	.5666	358.0	441.7	.5543
322.0	471.7	.5664	358.5	461.6	.5542
322.5	471.5	- 2003 5441	359.5	461.4	-5538
.5	471.3	.5659	360.0	461.1	.\$537
l di la companya di la compan	471.1	.5658	360.5	441.0	
	471.0	- 5656	341.5	460.	
525.5	470.7	- 2024	362.0	440.7	.5530
326.0	470.6	.5651	362.5	460.5	-5528
326.5	470.4	- 5649	363.0	460.3	• 3 7 7 • 6 636
327.5	470.1	• 30 47	364.0	40U.2	.5523
328.0	470.0	.5644	364.5	459.9	.5522
328.5	469.8	.5642	302° Ô	459.8	.5520

Sheet 7 of 10

Time (sec.)	Break Flow (lb/sec.)	Energy Flow (million Btu/sec.)	Time (sec.)	Break Flow (lb/sec.)	Energy Flow
55.2	459.7	.\$519	403.0	449.7	.5398
	459.5 459.4	-5517	403.5	449.6	.5396
367.0	459.3	5514	404.5	449.3	.5393
367.5	459.0	-5510	405.0	449.2	-5392 -5390
368.5	458.8	\$509	406.0	448.9	.5389
369.5	458.6	-5507	406.5 407.0	44 8.8	•3387 •5385
370.0	458.4	-\$504	407.5	448.5	.5344
371.0	458.2	•5502 •5501	408.0	448.4	•5582 •5381
371.5	458.0	.5499	409.0	44.1	.5379
372.5	457.8	- 5497	409.5	448.0 447.9	.5376
373.0	457.6	.5494	410.5	447.8	.5374
374.0	457.4	• 5491	411.5	447.0 447.5	•5375
374.5	457.2	.5489	412.0	447.4	.5370
375.5	457.0	.5486	413.0	447.1	.5367
376.0	456.8	-5484	413.5	447.0	.5365
377.0	456.6	.5481	414.5	446.9 646.7	•5362
	· . . .		415.0	446.6	-5360
377.5	456.4 454.3	-5480	416.0	446.5	.5357
378.5	456.2	.5476	416.5	446.2	.5356
379.0	450.0 455.9	-5475-	417.0	440 <i>°</i> 1	•3334
380.0	455.8	.5471			
	433.0	-5470	417.5	445.9	.5352
.5	455.4	.\$467	418.0	443.8 645.7	.5351
382.5	455.1	.5405	419.0	445.6	.5348
383.0	455.0	.5462	420.0	445.3	.5345
384.0	454.7	-5460	420.5	445.2	.5343
384.5	454.6	.5457	421.5	444.9	.5340
385.5	454.3	.5454	422.0	444.8	-5338
386.0	454.2	.5452	423.0	444.5	.5335
387.0	453.9	.5449	423.5	444.4 444. 3	-5334
387.5	453.8	-5447	424.5	444.1	.5331
388.5	453.5	.5444	425.D 425.5	444.0	•5329
389.0	453.4 453.3	.5443	426.0	443.8	.5326
390.0	453.1	.5439	426.5	443.6	-5324
390.5 391.0	453.0 452.0	.5438	427.5	443.4	.5321
391.5	452.7 _	.5435	425.0 428.5	463.2	-5320
392.5	432.0 452.5		429.0	443.0	.5317
393.0	452.3	.5430	430.0	442.9 442.7	•2315 •5313
393.3	432.2	• 5428 • 5427	430.5	442.6	.5312
394.5	451.9	.5425	431.5	442.5 442.6	•5310
395.5	451.7	-5423	432.0	442.2	.5307
396.0	451.5	.5420	433.0	442.0	.5306
397.0	451.3	-5419	433.5	441.8	.5303
				441.7	.5300
.0	451.T	.5415	ن ر . 35-5	441.5	.5299
	450.9	-5412	-36.0	441.3	.5296
399.5	450.6	.5409	436.5 437.0	441.1	.5294
400.0	450.5	.5405		77 I o U	• 2673
401.0	450.2	.5404			
401.5	450.1	.5403			
402.5	449.8	.5400			

Sheet 8 of 10

Time (sec.)	Break Flow (1b/sec.)	Energy Flow (million Btu/sec.)	Time (sec.)	Break Flow (1b/sec.)	Energy Flow (million Btu/sec.)
7.5	440.9	.5291	475.0	431.4	.5176
438.5	440.6	.5288	475.5	431.3	.5173
439.0	440.5	-5286	476.5	431.0	.5172
440.0	440.2	.5283	477.0	430.9	.3170
440.5	440.1	-5282			
661.5	439.9	-5280	477.5	630.8 630.7	-5169
442.0	439.7	.5277	478.5	430.5	.5166
442.5	439.5	-3276	479.0	430.4	-5164
443.5	439.4	.5272	480.0	430.2	.5161
444.U 444.5	43V.Z 639.1	•5269	480.5	430.1	.5160
445.0	439.0	-5268	481.U 481.5	429.8	.5156
445.5	438.8	• 3266	482.0	429.7	.5155
446.5	438.6	.5263	482.5	429.4	.5152
447.0	438.5	• 5262	483.5	429.3	.5151
448.0	438.2	.5259	484.0	429.1	.5148
448.5 449 D	438.1	• 5257	445.0	428.9	.5146
449.5	437.8	•3233	485.5	428.7	.5145
. 450.0	437.7	•5252	486.5	428.6	.5142
451.0	437.4	• 5249	487.0	428.4 428.3	.5140
451.5	437.3	.5248	488.0	428.2	.5137
452.5	437.1	• 3240	488.5	428.1 427.9	.5136
\$3.0	436.9	.5243	489.5	427.8	.5133
	430.8	-5240	490.0	427.7 427.4	-5131
\$54.5	436.6	.5239	491.0	427.4	.5128
455.5	436.4	.5237	491.5	427.3	.5127
456.0	436.2	.5234	492.0	427.1	•5125
456.5 457.0	436.1	.5233	493.0	427.0	.5122
	433.7	• 3231	493.5	426.7	.5121
457.5 458.0	435.8	.5229	494.5	426.6	.5118
458.5	435.6	.5226	495.0	420.3 426.3	•5116
459.0	435.4	-5225	496.0	426.2	.5113
460.0	435.2	• • • • • • • • • • • • • • • • • • • •	496.5	- 420.1 626.0	.5112
460.5	435.1	-5220	47710		
461.5	434.8	.5217	497.5	425.8	-5109
462.0	434.7	.5216	498.0	425.7	.5107
463.0	434.5	.5213	498.0	425.5	-5106
463.5	434.3	.5211	499.5	425.4	.5103
464.5	434.0	•5208	500.0	425.1	-5101
465.0	433.9	5207	501.0	425.0	.5098
466.0	433.8 433.7	-5205	501.5	424.9 424.7	5097 5095
466.5	433.5	-5202	502.5	424.6	.5094
467.5	433.4	.5201	503.5	424.4	-5092
468.0	433.2	.5197	504.0	424.2	.5089
469.0	432.9	.5196	505.0	424.0	• 5086 • 5086
409.5	432.8	.5193	505.5	423.9	-5085
Š.Š	432.5	.5190	506.5	423.6	• 5083 • 5082
	432.4	-5188	507.0	423.5	-5080
472.0	•32.3 432.2	.5185	508.0	423.3	->U/9 -\$077
472.5	432.0	.5184	508.5	423.1	.5076
473.5	431.9 431.8	•2162 •5181	509-5	€C3.0 622.9	• 5074 - 5073
474.0 474.4	431.7	.5179	\$10.0	422.8	.5071
~~~~	431.5	.5178	510.5	422.6	.5070

### Sheet 9 of 9

Time	Break Flow	Energy Flow	Time	Break Flow	Energy Flow
	(10/380.)	(Internet bed/sec.)	(360.7	(10/360.)	(internation bed/sec.)
le lo	312.4	.3753	571.0	305.4	.3669
353.5	312.3	.3752	571.5	305.3	- 3667
534.5	312.2	.3750	572.5	305.2	.3665
535.0	312.1	.3749	573.0	305.1	.3664
535.7	311.9	.3747	574-0	305.0	.3003
536.5	311.8	.3746	574.5	304.8	.3661
537.0	211.1	• 37 93	575.0	304.7	.3660
537.5	311.6	.3744	576.0	304.5	.3657
538.0	311.5	-3742	576.5	304.4	.3656
538.0	311,6 311,3	.3740	311.0	304.3	• 3077
539.5	311.3	.3739			
540.0	311.2	.3737	577.5 578 0	304.2	.3036
541.0	311.0	.3736	578.5	304.1	. 3652
541.5	310.9	.3734	579.0 579.6	303.9	• 3650 ·
542.5	310.7	.3733	580.0	303.8	.3648
543.0	310.6	-3730	580.5	303.7	- 3647
544.0	310.4	.3729	581.5	303.6	.3645
544.5	310.3	.3728	582.0	303.4	.3644
545.5	310.2	.3726	583.0	303.3	.3641
546.0	310.1	.3725	583.5	303.1	.3640
. 340.3	309.9	.3723	284.U 584.5	303.0	.3638
547.5	309.8	.3721	585.0	302.8	.3637
	309.7 309.4	.3719	585.5	302.7	.3050
<b>K</b> o	309.5	.3718	586.5	302.5	.3633
-50.0	309.4 100 1	.3716	587.0 587.5	302.4	• 3632 • 3631
550.5	309.2	.3715	588.0	<b>302.3</b>	.3630
551.0	309.2	.3713	588.5	302.1	.3629
552.0	309.0	3711	589.5	302.1	.3626
552.5	306.9	.3709	590.0	301.9	.3625
553.5	308.7	.3708	591.0	301.8	.3623
554.0	308.6	.3707	<b>591.5</b>	301.6	.3622
555.0	308.4	.3705	592.5	301.5	.3620
555.5	308.3	-3704 1703	593.0	301.3	.3618
556.5	505.2 308 1	.3701	594.0	301.2	.3017
557.0	306.0	.3700	594.5	301.0	.3615
		<b>1</b> (00)	595.0 595.5	300.9	.3614
558.0	306.0	. 3676	596.0	500.8 300.7	.3612
558.5	307.8	3697	596.5 597 0	300.6	-3610
559.5	307.7	. 3070	377.00	300.5	
560.0	307.5	. 3693			
561.0	307.4	.3692	597.5 598.0	300.4	- 3608
561.5	307.2	.3690	598.5	300.3	.3606
562.U	307.1	- 3057	599.0 599.5	300.2	- 3605
563.0	306.9	.3687	600.0	300.0	.3602
564.0	306.8	- 3050 - 3684			
564.5	306.7	.3683			
5	306.6	- 3652			
	306.4	.3680			
	306.3	- 3679 - 3678			
567.5	306.1	.3677			
568.0	306.0	-3675 3474			
569.0	305.8	.3673			
569.5	305.7	.3672			
570.5	305.5	.3670			

#### Sheet 1 of 10

#### TABLE 15.4-30

DER AT HOT ZERO MASS AND ENERGY RELEASES FROM A 1.4 FT² der AT 70 PERCENT POWER (Including Entrained Moisture Effects)

Time (sec.) Break Flow (1b/sec.) Energy Flow (million Btu/sec.)

<del>.a,c</del>

#### -PROPRIETARY

> Revision 0 July 22, 1982

-- -- -- -

## Sheet 2 of 10

Time	Break Flow (1b/sec.)	Energy Flow (million Btu/sec.)	Time (sec.)	Break Flow (1b/sec.)	Energy Flow (million Btu/sec.)
0.000	11899 <b>.</b> 14945 -	14.179 14.849	37.50 38.00	774.8 773.6 772 3	.9313
3.052	14917.	14.530	39.00	770.8	.9282 .9264
3.552	14517.	13.977	40.00	767.5 765.8	.9245 .9225
4.052	13959	13.224	41.00	764.0	.9203 .9181
5.552	13208	12.409	42.00	760.1	.9158 .9135
0.552 7.552	11385.	11.104	43.00	756.2	.9111 .9087
8.552	11252.	10.527	44.00	752.1	•9063 •9038
9.552	9658	9.197	45.00	748.1	.9014 .8989
11.552	9357.	8.958	45.50	746.0	.8964
11.602	4422.	3.028	46.50 47.00	742.0	.8915
			47.50 48.00	737.9 736.0	•8866 •8866
13.00	4131		48.50 49.00	734.0 732.0	.0042 .8818
12.50	3928.	2.760 2.667	49.50 50.00	730.0 728.0	.8770
13.50	3518.	2.5 <del>69</del> 2.476	50.50 51.00	726.0 724.1	.8722
14.50	3158.	2.387	51.50	722.9 720.1	.8076 .8676
15.00	2840.	2.221 2.143	52.50	718.2	.8650 .8627
	2 <del>696</del> . 2515.	2.070	53.50	714.4	.8604 .8581
<b>~00</b>	2311.	1.895	54.50	710.6	.8558 .8535
			55.50	706.9	.8512
17.50 18.00	2131. 1971.	1.737	56.50	703.3	.8468
18.50 19.00	1829. 1701.	1.605	57.00	/01.5	.8424
19.50	1587. 1483.	1.493	57.50 58.00	699.7 697.9	.8403 .8381
20.50	1389. 1304.	1.443	58,50 59,00	696.2	.8360 .8339
21.50	1226.	1.352	59.50	692.7	.8318
22.50	1089.	1.271 1.235	60.50	689.4	.8277
23.50	1005. 986.0	1.210 1.187	61.50	656.1	.8237 .8217
24.50	968.0 950.7	1.165	62.50	682.8	.8198
25.50	934.2 918.3	1.124	63.50	679.7	.8160
26.50	903.1	1.067	64.50	676.6	.8122
27.50	874.5 861-0	1.052	65.50	673.6	.8056
28.00	848.0 835.5	1.020	66.50	672.1 670.6	.8050
29.50	823.5 811.9	.9902	67.50	667.7	.8015 .8015
30.50	600-8 790-0	9627	68.50	664.9	.7961
51.00	779.5	.9369	69.50	663.5 662.1	.7947
	777.2	9342	70.50	660.8 659.4	.7914
, 50	778.5	.9358 .9358	71.00	658.1 656.8	.7898 .7882
54.00 34.50	778.8	.9361	72.00	655.5 654.3	.7852
35.00 35.50	778.2	.9353	73.00 73.50	653.0 651.7	.7836 .7821
36.00 36.50	776.8	.9337	74.00 74.50	650 <b>.5</b> 649-7	.7806 .7791
37.00	(75.9	.736		•	

Time	Break Flow	Energy Flow	Time	Break Flow	Energy Flow
	(lb/sec.)	(million Btu/sec.)	(sec.)	(lb/sec.)	(million Btu/sec.)
75.00	648.0	.7776	111.0	595.2	.7136
75.50	646.8	.//61	111.5	594.8	.7131
76.00	.645.6	_ 77%%%	112.0	574.7	.7127
70.50	641.1	.7718	113.0	593.7	.7118
	~~~		113.5	593.4	.7114
	<i></i>	7704	114.0	593.0	.7109
77.50	642.9	.7690	114.5	592.7	.7105
78.50	639.8	.7677	115.0	592.0	7007
79.00	638.7	.7663	116.0	591.6	.7092
79.50	637.6	.7650	116.5	591.3	.7088
80.00	636.5	-763/	117.0	590.9	.7084
81.00	634.4	.7611			
81.50	633.3	.7598	117 5	590.6	2000
82.00	632.3	.7586	118.0	590.3	.7076
82.50	631.3	-/3/3 7541	118.5	589.9	.7072
83.00 83.50	630.3 620.3	.7549	119.0	589.6	.7068
84.00	628.3	.7537	119.5	589.3 588 0	.7064
84.50	627.4	.7526	120.5	588.6	2054
85.00	626.4	.7514	121.0	588.3	.7052
53.3U	023.3	.7505	121.5	588.0	.7048
86.50	623.7	7481	122.0	587.7	-7044
87.00	622.8	.7470	122.3	587 D	-7041
87.50	621.9	.7460	123.5	586.7	-7033
85.00	621.1 430 T	•/67U 7440	124.0	586.4	.7029
	619.4	.7430	124.5	586.1	-7026
30 ·	618.6	.7420	125.0	202.05 525 5	.7022
50	617.9	.7410	126.0	585.2	-7015
₹0.50	617.1	-7401	126.5	584.9	.7011
41.50	010.J	.7383	127.0	584.6	.7007
92.00	614.9	.7374	12/.5	204.3	.7004
92.50	614.2	.7366	128.5	583.7	•7000 6997
93.00	613.5	7357	129.0	583.4	.6993
94.00	012.8	.7347	129.5	583.1	.6990
94.50	611.5	.7333	130.0	282.9	.6986
95.00	610.8	.7325	130.5	582.3	•0703 4070
95.50	610.2	.7317	131.5	582.0	.6976
96.UU 94 50	609.6	•/31U 7302	132.0	581.7	.6972
97.00	607.0	.7295	132.5	581.4	.6969
	00014		133.0	580 0	.0700
			134.0	580.6	.6959
97.50	607.8	.7288	134.5	580.3	.6955
98.00	607.2	.7281	135.0	580.1	-6952
98.50	606.6	.7276	133.3	379.8 579 6	.6749
99.50	606.1 -	•/20/ 7261	136.5	579.2	-0740
100.0	605.0	.7254	137.0	579.0	.6939
100.5	604.4	.7248			
101.0	603.9	.7241	137.5	578.7	.6936
102.0	603.4 402 g	7229	138.0	578.4	.6933
102.5	602.4	.7223	136.5	578.2	.6929
103.0	601.9	.7217	139.5	577.6	.0720
105.5	601.4	.7211	140.0	577.4	.6920
104.5	601.0 600.5	- 7200	140.5	577.1	.6916
105.0	600.1	7195	141.U 141 C	3/0.¥ \$76 k	.6913
25.5	599.6	.7190	142.0	\$76.3	.0710 A907
	599.2	.7184	142.5	576.1	.6904
-07.0	370.0 598.4	•/ 1/7 _7174	143.0	575.8	.6901
07.5	598.0	.7169	143.3	7/3.0 575.1	
108.0	597.6	.7164	144.5	575.0	.0077 Aig1
109.0	597.2	.7159 7155	145.0	574.8	6888
109.5	596.4	-7150	145.5	574.5	.6885
110.0	596.0	.7145	144.5	574.0	.6552
110.5	595.6	.7141	147.0	573.8	.00/7 .4874
			147.5	573.5	6673

•

Sheet 4 of 10

•

Time	Break Flow	Energy Flow	Time	Break Flow	Energy Flow
(sec.)	(ID/sec.)	(million Btu/sec.)	(sec.)	(10/sec.)	(million Btu/sec.)
	573.3	-6870	185.5	556.3	.6664
	573.0	.6867	186.0	556.1	.6661
149.0	572.5	-0504	186.5	555.6	.6656
150.0	\$72.3	.6858	187.5	555.4	.6654
150.5	571.8	.6855 .6852	188.0	555.0	.0021
151.5	571.6	.6849	189.0	554.8	.6646
152.0	571.1	-6540 684 3	189.5	554.0 554.4	-6645 -6641
153.0	570.8	.6841	190.5	554.2	.6638
153.5	570.6 570.6	.6838	191.0	553.9	-0030
154.5	570.1	.6832	192.0	\$53.5	.6631
155.0	509.9	-6829	192.5	553.3	-0028
156.0	569.4	.6823	193.5	552.9	.6623
156.5	569.2 548.9	-6820	194.0	552.7	-6620 -6618
137.0	30011	.0017	195.0	552.3	.6615
157,5	568.7	6816	195.5	552.1	.6613
158.0	568.5	.6812	196.5	551.6	.6605
159.0	568.0	-6609	197.0	551.4	•6605
159.5	567.8	.6803			-
160.5	567.3	.6800	197.5	551.2	4408
161.0	567.1	.6795	198.0	551.0	.6600
162.0	200.9	-6792 - 4780	199.0	550.6	.6598 -
162.5	566.4	.6787	199.5	550.4	.6593
3.0	200.2 565.9	.6784	200.5	550.0	.6590
4.0	565.7	.6778	201.0	549.8	.6585
165.0	565.3	-6775	202.0	549.4	-6583 -6580
165.5	565.0	.6770	202.5	549.2	.6578
166.5	204.8	.67 67	203.5	548.7	.6575
167.0	564.4	.6762	204.0	548.5	.6570
168.0	204.1 563.9	•675 9	205.0	548.1	.6568
168.5	. 563.7	.6754	205.5	547.9	.6563
169.5	203.5 563.2	.6751	206.5	547.5	.6560
170.0	563.0	.6746	207.0	547.3	.6555
171.0	202.8 562.6	.6743	208.0	- 347.1	.6553
171.5	562.3	.6737	208.5	546.7	.6548
172.5	202.1 561.9	.6735	209.5	240.2 546.3	.6545
173.0	561.7	.07 <i>32</i> .6729	210.0	546.1	.0343
173.3	201.5 561.2 -	.6727	211.0	545.7	.6538
174.5	561.0	-6721	211.5	\$45.5	.6533
175.5	560.8 560-6	.6719	212.5	545.1	.6531
176.0	560.4	-6713	213.0	544.9	.0520
177.0	560.2	-6711	214.0	544.5	.6523
		.0/05	214.5	544.3	-6518
177.5	559.7	.6706	215.5	543.9	.6516
178.5	559.3	.6700	216.0	543.7	.6511
179.5	559.1	.6698	217.0	543.3	.6509
.0	220.0 558.6	.6692			•0200
	558.4	.6690 			
1.5	558.0	.6685			
(82 .5	557.8 557.4	.6652 _6679			
183.0 183.6	557.3	.6677			
184.0	557.1	.6674 .6672			
184.5	556.7	.6669			
V.CP.	556.5	.6666			

Sheet 5 of 10

Time,	Break Flow	Energy Flow	Time (sec)	Break Flow	Energy Flow (million Btu/sec)
	(ID/Sec./		(300.7		
217.5	543.1	.6504	253.5	529.0	.6334
218.0	542.7	.6499	254.0 254.5	528.6	.6329
219.0	542.5	.6496	255.0	528.4 528 T	.6327 .6324
219.5	542.1	.6492	255.5	528.1	.6322
220.5	541.9	-6489 	256.5	527.9 527 7	-6320
221.5	541.5	.6484	237.0		
222.0	541.3	-6482			
223.0	\$40.9	.6477	257.5	527.5	.6315
223.5	540.7	•6475 -6472	258.5	527.1	.6311
224.5	\$40.3	.6470	259.5	526.7	-6306
225.0	540.1 539.9	- 6465	260.0	526.6	.6304
226.0	539.7	.6463	261.0	526.2	.6299
226.5	539.3	.6458	261.5	526.0	.6297
227.5	539.1	.6455	262.5	525.6	.6292
228.0	538.7	.6451	263.0	525.4	.6290
229.0	538.5	.6448	264.0	525.1	.6286
230.0	538.1	.6444	264.5	524.9 526.7	.6283 6281
230.5	537.9	-6441	265.5	524.5	.6279
231.5	537.5	.6436	200.0	524.3	-6277 - -6276
213.0	537.3	.6434 .6432	267.0	523.9	-6272
b	536.9	.6429	268.0	523.6	-627U -6268
14.0	536.7	-0427	268.5	523.4	.6265
.4.5	536.3	.6422	245.5	523.0	_0203 _6261
235.0	535.9	.0420 .6417	270.0	522.8 522.4	.6259
236.0	535.7	.6415	271.0	522.5	.6254
237.0	535.4	.6410	271.5	522.3 522.1	.6252
			272.5	521.9	.6247
237.5	535.2	.6408	273.0	521.7 521.5	.6245
238.0	534.8	-6406	274.0	521.3	.6241
239.0	534.6	.6401	275.0	521.2	.6238
239.5	534.2	-6399 -6396	275.5	520.8	.6234
240.5	534.0	.6394	276.5	520.6	.623r .623r
241.0	533.6	-0372 -6389	277.0	520.2	.622
262.0	533.4	.6387			
242.5	533.0	•••••	277.5	520.1 519 9	.6225
243.5	532.7	.6380	278.5	519.7	.6223
244.5	532.5	.6375	279.5	519.5 519.3	.6218
245.0	532.1	.6373	280.0	519.2	.6216
246.0	531.9	.6368	261.0	519.0 518.8	.6212
246.5	531.5	-6366	281.5	518.6	.6208
247.5	531.3	-6361	282.5	518.3	-6206 -6206
248.0	530.9	.6357	263.0 283.5	518.1	.6202
	530.7 530.5	.6354	284.0	517.8	.6199 _6197
	530.4	.6350	285.0	517 .6 517_4	.6195
0.5	530.0	.6347	285.5	517.2	.0193 _6191
<u>5</u>	529.8	.6343	286.5	517 .1 516.9	.6189
252.0 252.5	529.4	.6340 .6338	287.0	516.7	.0150
253.0	<u>529.2</u>	.6336	268.0	516.3	-6182
			265.5 289.0	516.2	.6178
			289.5	515.8	.6176

Sheet 6 of 10

.

	Break Flow (1b/sec.)	Energy Flow (million Btu/sec.)	Time (sec.)	Break Flow	Energy Flow (million Btu(sec.)
	516 A			503 0	(m11110/1 DE0/ SEC. /
290.5	515.4	.6169	326.5	502.8	-6016
291.0	515.5	-6167	327.0	502.6 502.6	-6014
292.0	514.9	.6163	328.0	502.3	.6010
292.5	514.5	-6160	326.5	502.1	-6007 -6005
293.5	514.4	.6156	329.5	501.8	.6003
294.0	514.0	.6154 .6152	330.0	501.6	-6001
295.0	513.8	.6149	331.0	501.3	-5997
295.5	513.6	-6147 -6145	331.5 332.0	500.9	•5995 •5993
296.5	\$13.3	.6143	332.5	500.7	.5991
297.0	212-1	.6140	333.0	500.6	•5989 •5967
			334.0	500.2	.5965
297.5	512.9 512.7		334.5	499.9	•5983 •5981
298.0	512.5	6134	335.5	499.7	\$979
299.0	512.3	-6132	336.0	499.6	•5977 •5975
299.5 300.0	512.0	.6127	337.0	499.2	.5973
300.5	511.8 511.6	-6125	N N		
301.0	511.4	.6121	•	(00)	-
302.0	511 .5	-6118	317.5	498.9	.5969
- 303.0	510.9	.6114	336.5	496.7	.5967 -
.5	510.7 510.6	-6112	335.5	498.4	• 5963
	510.4	-6108	340.0	498.2	.5960
TOS.0	510.2	•6106 •6103	341.0	497.9	• 5956
J06.0	509.9	.6101	341.5 342 (1	497.7 497.5	.5954
306.5	509.7	-6099 -6097	342.5	497.4	•5752 •5950
307.5	509.3	-6095	343.0	497.2	.5948
308.0	509.0	-6093	344.0	496.9	.5944
309.0	508.8	-6089	344.5	496.7 496.5	-5942
309.5 310.0	508.5	-6085	345.5	496.4	.5938
310.5	508.3 508.1	-6082	346.0 346.5	496.Z	.5936
311.0	507.9	.6078	347.0	495.9	.5932
312.0	507 .8	-6076	347.5	495.5	•5930 •5928
312.5 313.0	507.4	.6072	348.5	495.4	.5926
313.5	507.3	-6070	349.5	495.0	•5924 •5922
314.0	506.9	.6066	350.0	494.9	-5920
315.0	506.7 -	.6064	351.0	494.5	•5916
316.0	506.4	.6060	351.5	494.4	.5914
316.5	506.2 506.1	-6058	352.5	494.0	•5910
517.0			353.0	493.9	-5908
197 C	505.9	. 6053	354.0	493.6	.5904
318.0	505.7	-6051	354.5	493.4	-5902
318.5 319.0	505.4	.6047	355.5	493.1	.5898
319.5	505.2	.6043	356.0 356.5	492.9 492.7	5896
1.5	504.9	.6041	357.0	492.6	.5892
•0.	504.7 504.5	.6037			-
?2.0	504.4	.6035			
,22.5 323.0	504.2	.6031			
323.5	503.8	-6028 -6026			
324.0 324.5	503.5	.6024			
325.0	503.3	.6022 .6020			

Sheet 7 of 10

Time	Break Flow (1b/sec.)	Energy Flow (million Btu/sec.)	Time (sec.)	Break Flow (1b/sec.)	Energy Flow (million Btu/sec.)
358.0	492.4	.5890	395.0 395.5	478.5 476.8	•\$722 •\$700
358.5 359.0	492.1 491.9	.5886	396.5	472.7 470 \$	•5677 •5651
359.5	491.7 491.6	.5682 .5680	34/.0	4/U.J	• • • • • • • • • • • • • • • • • • • •
360.5 361.0	491.4 491.2	.5878 .5876	397.5	468.2	.5597
361.5 362.0	491.1 490.9	.5674	398.0 398.5	465.8 463.3	•5568 •5537
362.5 363.0	490.8 490.6	.5870 .5868	399.0 399.5	460.7 458.0	.5505 .5473
363.5 364.0	490.4 490.3	.5866	400.0 400.5	455.1 452.2	.5438 .5403
364.5 365.0	490.1 489.9	.58 62 .58 60	401.0 401.5	449.2	.5367 .5330
365.5 366.0	489.8 489.6	.5858 .5856	402.0 402.5	443.0 439.8	.5292 .5252
366.5 367.0	489.4 489.3	.5854 .5852	403.0 403.5	436.5 433.2	.5213
367.5 368.0	489.1 489.0	.5850 .5848	404.0 404.5	429.7 426. <u>3</u>	.5131 .5088
368.5 369.0	488.8 488.6	.5846 .5844	405.0 405.5	422.7 419.1	.5046 .5002
369.5 370.0	488.5	-5842 -5840	406.0 406.5	415.5 411.8	.4958 .4913
370.5 371.0	488.1 488.0	-5838 -5836	407.0 407.5	408.1 404.3	.4868 .4822
371.5 372.0	487.8 487.7	-5834 -5832	408.0 408.5	400.4	4776
122.5	487.5 487.3	-5830 -5829	409.0 409.5	392.6 388.6	.4681 .4633
.0	487.2 487.0	-5827 -5825	410.0 410.5	384.6 360.6	4584
74 .5 75.0	486.8 486.7	-5823 -5821	411.0 411.5	376.5 372.4	.4486
375.5 376.0	486.5	.5819 .5817	412.0 412.5	368.3 364.1	4386
376.5	666.2 666.0	-5815 -5813	413.0 413.5	359.9 355.8	4286
			414.0	351.6 347.4	.4185 .4134
377.5 378.0	485.9 485.6	.5811 .5808	415.0 415.5	343.2 339.1	4084
378.5	485.4	.5806 .5804	416.0	334.9 330.8	.3983 .3933
379.5 380.0	485.0	•5802 •5800	417.0	326.6	.3884
380.5 381.0	484.8 484.7	.5798 .5796	417.5	897 A	. 3835
381.5 382.0	484.5	.5794 .5792	418.0	318.5	.3786
382.5 383.0	484.0 -	.5790 .5788	419.0 419.5	310.6	.3690
383.5 384.0	483.9 483.7	: .5787 .5785	420.0	302.9	.3598
384.5 385.0	483.5 483.4	•5783 •5781	421.0	295.5	.3508
385.5 386.0	483.2 483.1	.5779	422.0	268.2	.3421
386.5 387.0	482.9	.5775 .5773	423.0 423.5	281.4	.3338 .3299
387.5 388.0	482.0 482.4	.5771 .5769	424.0 424.5	275.0	.3261 .3224
388.5 389.0	482.3 482.1	.5765	425.0 425.5	268.9	.3166 .3153
	481.8 481.4	•5765 •5762	426.0 426.5	263.3	.3120 .3068
71.0	481.5	•5758	427.0 427.5	258.0	.3057 .3027
۶۹۲.۶ ۱.5 ۱۹۶۲.۵	481.2 481.0	•2720 •5754	428.0	253.2	.2999
392.5	480.8	.5750	429.0	248.8 246.7	.2945 .2921
393.5 394.0 394.5	480.5	.5746 .5738	430.0 430.5	244.7 242.9	.2897 .2874

Sheet 8 of 10

Lime	Break Flow (1b/sec.)	Energy Flow (million Btu/sec.)	Time (sec.)	Break Flow (1b/sec.)	Energy Flow (million Btu/sec.)
431.0 431.5 432.0 432.5 433.0 433.5 434.0 434.5 435.0 435.5 436.0 436.5 436.5 437.0	241.1 239.4 237.8 236.3 234.8 233.5 232.2 231.0 229.8 228.7 227.7 226.8 226.8 225.9	.2853 .2633 .2613 .2795 .2776 .2761 .2746 .2731 .2718 .2705 .2692 .2681 .2670	467.0 467.5 468.0 468.5 469.0 469.5 470.0 470.5 471.0 471.5 472.0 472.5 473.0 473.5 473.0 473.5	212.4 212.4 212.3 212.3 212.3 212.3 212.3 212.3 212.2 212.2 212.2 212.2 212.2 212.2 212.2 212.2	.2508 .2508 .2508 .2507 .2507 .2507 .2506 .2506 .2506 .2506 .2506 .2506 .2505 .2505 .2505 .2505
437.5 438.0 438.5 439.0 439.5 440.0 440.5	225.0 224.2 223.5 222.8 222.1 221.5 220.9	.2660 .2650 .2641 .2633 .2625 .2617 .2610	475.0 475.5 476.0 476.5 477.0	212.1 212.1 212.1 212.1 212.0 212.0	.2505 .2504 .2504 .2504 .2504
440.5 441.0 441.0 442.5 442.5 442.5 443.6 443.5 444.0 443.5 444.0 444.5 444.0 447.5 447.5 447.5 448.0 449.5 450.5 451.5 452.5 453.0 455.5 455.5 455.5 456.0 457.0	220.9 220.4 219.8 219.8 218.9 218.5 218.1 217.8 217.4 217.1 216.8 216.2 216.2 215.8 215.5 215.5 215.5 215.2 215.6 214.7 214.5 214.7 214.5 214.4 214.2 214.4 213.8 213.6 213.4 213.4	- 2610 - 2604 - 2598 - 2592 - 2587 - 2582 - 2577 - 2572 - 2568 - 2568 - 2558 - 2554 - 2554 - 2554 - 2554 - 2554 - 2554 - 2554 - 2544 - 2544 - 2544 - 2544 - 2544 - 2537 - 2535 - 2534 - 2532 - 2525 - 2526 - 2527 - 2526 - 2526 - 2526 - 2526 - 2526 - 2526 - 2526 - 2526 - 2527 - 2526 - 2526 - 2526 - 2526 - 2526 - 2527 - 2526 - 2526 - 2526 - 2526 - 2527 - 2526 - 2526 - 2526 - 2526 - 2526 - 2527 - 2526 - 2527 - 2526 - 2520 - 2519	477.5 478.5 479.0 480.0 480.5 480.0 481.0 481.0 482.5 483.5 484.0 485.0 485.5 484.5 485.0 485.5 486.5 486.5 487.5 488.0 489.5 488.0 489.5 490.5 491.5 492.5 493.0 493.0	212.0 212.0 212.0 212.0 212.0 212.0 212.0 211.9 211.9 211.9 211.9 211.9 211.9 211.9 211.9 211.8 211.9 211.8 21.8 21.8 21.8 21.8 21.8 21.8 21.8 21.8 21.8 21.8 21.8 21.8 21.8 21.8 21.8 21.8 21.8 21.8	.2504 .2503 .2503 .2503 .2503 .2503 .2503 .2503 .2502 .2502 .2502 .2502 .2502 .2502 .2502 .2502 .2502 .2502 .2502 .2502 .2502 .2502 .2501
457.5 458.5 459.0 459.5 460.0 460.5 461.5 5 53.5 54.0 53.5 54.0 465.5 465.0 465.5 466.0	213.2 213.2 213.1 213.0 212.9 212.9 212.8 212.8 212.8 212.8 212.8 212.7 212.7 212.7 212.7 212.6 212.6 212.6 212.5 212.5 212.5 212.5	.2518 .2517 .2517 .2516 .2515 .2515 .2513 .2513 .2513 .2513 .2512 .2511 .2511 .2511 .2510 .2510 .2509 .2509 .2509 .2509	494.5 495.0 495.5 496.0 496.5 497.0	211.7 211.7 211.7 211.7 211.7 211.7 211.7	.2500 .2500 .2500 .2500 .2500 .2500 .2500

Sheet 9 of 10

Time (sec.)	Break Flow (1b/sec.)	Energy Flow (million Btu/sec.)	Time (sec.)	Break Flow (1b/sec.)	Energy Flow (million Btu/sec.)
¥8.0	211.7	.250G .2500	533.0 533.5	211.5 211.5	.2498
499.0	211.7	• 2500 • 2500	534.0 534.5	211.5 211.5	.2498
500.0	211.7 211.7	•2500 •2500	535.0 535.5	211.5 211.5	.2498
501.0	211.7 211.7	-2500 -2500	536.0 536.5	211.5 211.5	.2498 .2498
501.5	211.7 211.7	-2500	537.0	211.5	.2498
502.5	211.7 211.7	2499	537.5	211.5	.2498
503.5 504.0	211.7 211.7	.2499	538.0 538.5	211.5	.2498 .2498
504.5 505.0	211.7 211.7	.2499	539.0	211.5 211.5	.2498 .2498
505.5 506.0	211.6	.2499	540.0	211.5	.2498
506.5	211.6	.2499	541.0	211.5	.2498
507.5	211.6	.2499	542.0	211.5	.2498
508.5	211.6	.2499	543.0	211.5	.2498
509.5	211.6	.2499	544.0	211.5	.2498
510.5	211.6	.2499 .2499	544.5	211.5	.2498
511.5	211.6	.2499 .2499	545.5 546.0	211.5	.2498
512.0	211.6 211.6	.2499	546.5 547.0	211.5	.2498
5.0	211.6 211.6	.2499	547.5 548.0	211.5 211.5	.2498 .2498
.0	211.6	2499	548.5	211.5 211.5	.2498
15.0 15.5	211.6	.2499	549.5	211.5	2498
516.0 516.5	211.6	.2499	550.5	211.5	.2496
517.0	211.6	.2499	551.5	211.5	.2498
	211 6	2/20	552.5	211.5	-2498
517.5 518.0	211.6	.2498	553.5	211.5	.2498
518.5 519.0	211.6	.2498	554.5	211.5	.2496
519.5 520.0	211.6	.2498 .2498	555.0 555.5	211.5	.2498
520.5	211.6	.2498 .2498	556.0 556.5	211.5	.2496
521.5	211.0	.2498 .2498	557.0	211.5	.2496
522.5	211.6 -	.2498 .2498	557 S		3108
523.5	211.6 211.6	.2498	558.0	211.5	.2498
524.5	211.6 211.6	.2498	559.0	211.5	.2498
525.5	211.6	. 2498	560.0	211.5 211.5	.2498
526.5	211.6	.2498 2498	561.0	211.5 211.5	.2498 .2496
527.5	211.6	• 2498 - 2498	5.105	211.5 211.5	.2498
528.5	211.6	• 2498	562.5 563.0	211.5	.2498
50.0	211.6	.2498	563.5 564.0	211.5	.2498 .2498
S	211.6	.2498	564.5 565.0	211.5	.2498
51.5	211.6	.2498	565.5 566.0	211.5	2498
532.0 532.5	211.5	.2498 .2498	566.5	211.5	.2498

Sheet 10 of 10

Time	Break Flow (1b/sec.)	Energy Flow (million Btu/sec.)	Time (sec.)	Break Flow (1b/sec.)	Energy Flow (million Btu/sec.)
.0 567.5 568.0 568.5 569.0 570.0 570.5 571.0 571.5 572.0 573.0 573.5 573.0 573.5 574.0 575.5 575.0 575.5 576.0 576.5 577.0	211.5 211.5	.2498 .2498	597.5 598.0 598.5 599.0 599.5 600.0	211.5 211.5 211.5 211.5 211.5 211.5	.2497 .2497 .2497 .2497 .2497 .2497
577.5 578.0 578.5 579.0 579.5 580.0 51.5 582.0 582.5 583.0 584.5 584.0 584.5 584.0 584.5 585.5 586.0 586.5 586.0 588.5 588.0 588.5 588.0 588.5 588.0 588.5 589.0 591.5 592.0 591.5 592.0 591.5 592.0 593.5 594.0 593.5 595.0 595.5 595.0 595.5 595.0 595.5 595.0	211.5 215 215 215 215 215 215	.2498 .2497			

TOTAL HEAD IN FEET

, , , ,

Figure 15.4-95 (Intentionally Deleted)

> Revision 1 July 22, 1983

Updated FSAR

Revision O July 22, 1982

PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM NUCLEAR GENERATING STATION Fan Cooler Heat Removal Rate

Figure 15.4-96

1.4ft² DER. HOT ZERO POWER

FIGURE

15.4-97

1.4 ft² DER, HOT ZERO POWER

TIME (SECONDS)

FIGURE 15.4-99

SPLIT BREAK, 30 PERCENT POWER

SPLIT BREAK, 30 PERCENT POWER

0.6 DER BREAK, HOT FULL POWER

W/O ENTRAINMENT

· .

W/O ENTRAINMENT

TIME (SECONDS)

ATTACHMENT B

:

REVISED SALEM FSAR SECTION 15.2.13 ACCIDENTAL DEPRESSURIZATION OF THE MAIN STEAM SYSTEM

15.2.12.3 Results

Figure 15.2-38 illustrates the flux transient following the accident. Reactor trip on overtemperature ΔT occurs as shown in Figure 15.2-38. The pressure decay transient following the accident is given in Figure 15.2-39. The resulting DNBR never goes below 1.30 as shown in Figure 15.2-40.

15.2.12.4 Conclusions

The pressurizer low pressure and the overtemperature ΔT Reactor Protection System signals provide adequate protection against this accident, and the minimum DNBR remains in excess of 1.30.

15.2.13 ACCIDENTAL DEPRESSURIZATION OF THE MAIN STEAM SYSTEM

15.2.13.1 Identification of Causes and Accident Description

The most severe core conditions resulting from an accidental depressurization of the Main Steam System are associated with an inadvertent opening of a single steam dump, relief or safety valve. The analyses performed assuming a rupture of a main steam pipe are given in Section 15.4.3.

The steam release as a consequence of this accident results in an initial increase in steam flow which decreases during the accident as the steam pressure falls. The energy removal from the Reactor Coolant System causes a reduction of coolant temperature and pressure. In the presence of a negative moderator temperature coefficient, the cooldown results in a reduction of core shutdown margin.

The analysis is performed to demonstrate that the following criterion is satisfied: Assuming a stuck rod cluster control assembly and a single failure in the Engineered Safety Features there will be no resurn to

Revision O July 22, 1982

15.2.13 ACCIDENTAL DEPRESSURIZATION OF THE MAIN STEAM SYSTEM

15.2.13.1 IDENTIFICATION OF CAUSES AND ACCIDENT DESCRIPTION

The most severe core conditions resulting from an accidental depressurization of the Main Steam System are associated with an inadvertent opening of a single steam dump, relief or safety valve. The analyses performed assuming a rupture of a main steam pipe are given in Section 15.4.3.

The steam release as a consequence of this accident results in an initial increase in steam flow which decreases during the accident as the steam pressure falls. The energy removal from the Reactor Coolant System causes a reduction of coolant temperature and pressure. In the presence of a negative moderator temperature coefficient, the cooldown results in a reduction of core shutdown margin.

The analysis is performed to demonstrate that the following criterion is satisfied: Assuming a stuck rod cluster control assembly, with or without offsite power, and assuming a single failure in the Engineered Safety Features there will be no consequential fuel damage after reactor trip for a steam release equivalent to the spurious opening, with failure to close, of the largest of any single steam dump, relief or safety valve. This criterion is satisfied by verifying the DNB design basis is met.

The following systems provide the necessary protection against an accidental depressurization of the Main Steam System:

- 1. Safety injection System actuation from any of the following:
 - a. Two out of three channels of low pressurizer pressure,
 - b. High differential pressure signals between steam lines.
- 2. The overpower reactor trips (neutron flux and ΔT) and the reactor trip occurring in conjunction with receipt of the safety injection signal.

SGS-UFSAR 89209:10/070885-

15.2-49A

3. Redundant isolation of the main feedwater lines: Sustained high feedwater flow would cause additional cooldown. Therefore, in addition to the normal control action which will close the main feedwater valves following reactor trip, a safety injection signal will rapidly close all feedwater control valves, trip the main feedwater pumps, and close the back up feedwater isolation valves.

15.2.13.2 METHOD OF ANALYSIS

The following analyses of a secondary system steam release are performed for this section.

- A full plant digital computer simulation, LOFTRAN (Ref. 4), is used to determine Reactor Coolant System temperature and pressure during cooldown.
- 2. An analysis to determine that there is no consequential fuel damage.

The following conditions are assumed to exist at the time of a secondary system steam release:

- End of life shutdown margin at no load, equilibrium xenon conditions, and with the most reactive assembly stuck in its fully withdrawn position. Operation of rod cluster control assembly banks during core burnup is restricted in such a way that addition of positive reactivity in a secondary system break accident will not lead to a more adverse condition than the case analyzed.
- 2. A negative moderator coefficient corresponding to the end of life rodded core with the most reactive rod cluster control assembly in the fully withdrawn position. The variation of the coefficient with temperature and pressure is included. The k_{eff} versus temperature at 1000 psi corresponding to the negative moderator temperature coefficient used plus the Doppler temperature effect is shown in Figure 15.2-41.

- 3. Minimum capability for injection of high concentration boric acid solution corresponding to the most restrictive single failure in the Safety Injection System. The injection curve used is shown in Figure 15.2-42. This corresponds to the flow delivered by one charging pump delivering its full contents to the cold leg header. No credit has been taken for the low concentration boric acid which must be swept from the safety injection lines downstream of the Refueling Water Storage Tank (RWST) prior to the delivery of boric acid (2,000 ppm) to the reactor coolant loops.
- 4. The case studied is an initial total steam flow of 228 lbs/second at 1015 psia from one steam generator with offsite power available. This is the maximum capacity of any single steam dump or safety valve. Initial hot shutdown conditions at time zero are assumed since this represents the most pessimistic initial condition.

Should the reactor be just critical or operating at power at the time of a steam release, the reactor will be tripped by the normal overpower protection signals when power level reaches a trip point. Following a trip at power the Reactor Coolant System contains more stored energy than at no load, the average coolant temperature is higher than at no load and there is appreciable energy stored in the fuel.

Thus, the additional stored energy is removed via the cooldown caused by the steam line break before the no load conditions of Reactor Coolant System temperature and shutdown margin assumed in the analyses are reached. After the additional stored energy has been removed, the cooldown and reactivity insertions proceed in the same manner as in the analysis which assumes no load condition at time zero. However, since the initial steam generator water inventory is greatest at no load, the magnitude and duration of the Reactor Coolant System cooldown are less for steam line breaks occurring at power.

5. In computing the steam flow the Moody Curve for fl/D = 0 is used.

6. Perfect moisture separation in the steam generator is assumed.

SGS-UFSAR 89200:10/070885-

15.2-51

15.2.13.3 RESULTS

The results presented are a conservative indication of the events which would occur assuming a secondary system steam release since it is postulated that all of the conditions described above occur simultaneously.

Figure 15.2-43 shows the transient arising as the result of a steam release having an initial steam flow of 228 lbs/second at 1015 psia with steam release from one safety valve. The assumed steam release is typical of the capacity of any single steam dump or safety valve. In this case safety injection is initiated automatically by low pressurizer pressure. Operation of one centrifugal charging pump is considered. Boron solution at 2,000 ppm enters the Reactor Coolant System providing sufficient negative reactivity to assure no fuel damage. A DNB analysis was performed for this case and the minimum DNBR was above the limit value of 1.3. The reactivity transient for the case shown in Figure 15.2-43 is more severe than that of a failed steam generator safety or relief valve which is terminated by steam line differential pressure, or a failed condenser dump valve which is terminated by low pressurizer pressure. The transient is quite conservative with respect to cooldown, since no credit is taken for the energy stored in the system metal other than that of the fuel elements or the energy stored in the other steam generators. Since the transient occurs over a period of about ten minutes, the neglected stored energy is likely to have a significant effect in slowing the cooldown.

15.2.13.4 CONCLUSIONS

The analysis has shown that the criteria stated earlier in this section is satisfied since a DNBR less than 1.30 does not occur.

SGS- UFSAR -89200:10/071185 Coelant System providing sufficient negative reactivity to maintain the reactor well below criticality. The reactivity transient for the cases shown in Figures 15.2-43 and 15.2-44 is more severe than that of a failed steam generator safety or relief valve which is terminated by steam line differential pressure, or a failed condenser dump valve which is terminated by low pressurizer pressure and level. The transient is quite conservative with respect to cooldown, since no credit is taken for the energy stored in the system metal other than that of the fuel elements or the energy stored in the other steam generators. Since the transient occurs over a period of about five minutes, the neglected stored energy is likely to have a significant effect in slowiny the cooldown.

15.2.13.4 Conclusions

The analysis has shown that the criteria stated earlier in this section is satisfied. Since the reactor does not return to critical the possibility of a DNBR less than 1.30 does not exist.

15.2.14 SPURIOUS UPERATION OF THE SAFETY INJECTION SYSTEM AT POWER

15.2.14.1 Identification of Causes

Spurious SIS operation at power could be caused by operator error or a false electrical actuating signal. A spurious signal in any of the following channels could cause this incident.

- 1. High containment pressure
- 2. High steam line differential pressure
- 3. High steam line flow and low average coolant temperature or low steam line pressure.

TABLE 15.2-1 (Sheet 1 of 10)

TIME SEQUENCE OF EVENTS FOR CONDITION II EVENTS

Accident	Event	<u>Time (sec.)</u>
Uncontrolled RCA	Initiation of uncontrolled	
Withdrawal from a	rod withdrawal 7.5 x 10^{-4}	
Subcritical	∆K/sec. reactivity insertion	
Condition	rate from 10 ⁻¹³ of nominal	
	power	0.0
	Power range high neutron	
	flux low setpoint reached	6.9
	Peak nuclear power occurs	7.0
ι. ·	Rods begin to fall into core	7.5
	Peak heat flux occurs	7.8
	Peak average fuel temperature	
	occurs	8.2
	Peak average clad temperature	
	occurs	8.8
 	Peak average coolant tempera-	
	ture occurs	9.2

SGS-UFSAR

Sheet 9 of 10

Time	Break Flow	Energy Flow	Time	Break Flow	Energy Flow
<u>c.</u>)	(ID/Sec.)	(million Btu/sec.)	(sec.)	(1D/sec.)	(million Btu/sec.)
11.0	422.5	.5068	548.0	413.5	.4959
512.0	422.4 422.3	-5065	549.0	413.3	.4958
512.5	422.2	.5064	549.5 550.0	413.2	.4955
513.5	421.9	.5061	550.5	412.9	.4954
514.0	421.8	-5060	551.0 551.5	412.8	.4951
515.0	421.5	\$057	552.0	412.6	.4948
515.5 516.0	421.4	• 5055 • 5054	553.0	412.5 412.3	.4946
516.5	421.2	-5052	553.5	412.2	.4943
517.0	421.1	• 505 1	554.5	412.0	.4942
517.5	420.9	-5049	555.0 555.5	411.9	.4939
518.5	420.8	- 5048	556.0	411.6	.4938 .4936
519.0	420.6	.5045	557.0	411.5	-4935
520.0	420.3	.5042		47764	. 4733
520.5	420.2	-5040	557.5	411.3	.4932
521.5	420.0	5037	558.5	411.0	• 4930 • 4929
522.5	419.7	• 5036 • 5034	559.0 559.5	410.9 410.8	.4927
. 523.0	419.6	-5033	560.0	410.7	.4925
524.0	419.4	.5030	561.0	410.5	•4923 •4922
. 524.5 525.0	619.2 619.1	-5028	561.5	410.3	.4920
25.5	419.0	.5026	562.5	410.1	• 4919
5.5	418.7	-5024	563.0 563.5	409.8	.4916
527.0	418.6	.5021	564.0	409.7	. 4913
528.0	418.4	.5018	565.0	409.5	-4911
528.5 529.0	418.3 418.1	-5017	565.5	409.3	.4909
529.5	418.0	-5014	566.5	409.1	•4907 •4906
530.5	417.9 417.8	-5012 -5011	567.0 567.5	409.0 408.9	-4904
531.0 531.5	417.7	.5009	568.0	408.7	•4901
532.0	417.4	•5006	569.0	408.5	-4900
532.5	417.3	-5005	569.5	408.4	.4897
533.5	417.0	.5003	570.5	408.1	- 4595 - 4894
534.5	416.9 416.8	• 5001 • 6999	571.0 571.5	408.0 407.9	-4893
535.0	416.7	4998	572.0	407.8	•4890
536.0	416.6	-4995	573.0	407.5	-4888
536.5 537.0	416.3 -	.4993	573.5	407.4	-4885
	410.2		574.5	407.2	• 4884 • 4882
537.5	416.1 414-0	- 4990	575.0 575.5	407.1	-4881
538.5	415.8	.4987	576.0	406.8	.4878
539.5	415. <i>/</i> 415.6	- 4986 - 4984	577.0	406.7	• 4877 4875
540.0 540.5	415.5	.4983			•••••
541.0	415.2	.4980	577.5	406.5	.4874
542.0	415.1 415.0	.4979 .4977	578.5	406.4	-4872 - 4871
2.5	414.9	-4976	579.0 579.5	406.1	.4869
6.5	414.6	.4973	580.0	405.9	. 4505 . 4867
44.5	414.5 414.4	.4971	581.0	405.8 405.4	.4865
545.0	414.3	-4968	581.5 582.0	405.5	.4862
546.0	414.0	• 4967 • 4965	582.5	405.3	.4861 .4859
340.3 547.0	413.9	-4964	583.5	405.2	.4858
547.5	413.7	.4961	584.0	404.9	.4855
				404.8	.4854

· .

Time (sec.)	Break Flow (1b/sec.)	Energy Flow (million Btu/sec.)
587.0 586.5 587.0 587.0 587.0 587.5 588.0 588.5 589.0 589.5 590.0 590.0 590.5 591.0 591.5 592.0 592.5 593.0 593.5 594.0 595.5 595.0 595.5 596.0	404.7 404.6 404.4 404.3 404.2 404.1 404.0 403.9 403.7 403.6 403.5 403.4 403.3 403.3 403.1 403.0 402.9 402.8 402.7 402.5 402.2 402.2 402.2	.4852 .4851 .4849 .4846 .4846 .4845 .4845 .4845 .4845 .4845 .4845 .4845 .4839 .4836 .4836 .4836 .4836 .4835 .4831 .4832 .4831 .4829 .4828 .4826 .4825 .4823 .4823 .4822 .4820
597.5 598.0 598.5 599.0	401.8 401.8 401.6 401.5 401.4	.4818 .4816 .4815 .4813 .4812 .4810
0.0	401.1	- 4809

:

ŧ.

Sheet 1 of 9

TABLE 15.4-29

0.6 FT² DER AT MASS AND ENERGY RELEASES FROM A 0.908 FT² SPLIT BREAK 102 AT 70 PERCENT POWER (Worst Temperature Case)

Time (sec.)

Break Flow (1b/sec.)

Energy Flow (million Btu/sec.)

3,C

- PROPRIETARY

Refer to (50-311) "Application for Withholding" R. L. Mittl to Olan D. Parr November 20, 1978 -and NRC Approval letter, Olan D. Parr to Wiesemann January 22, 1979-

Sheet 2 of 9

Time	Break Flow	Energy Flow	Time	Break Flow	Energy Flow
<u> </u>	(1b/sec.)	(million Btu/sec.)	(sec.)	(1D/Sec.)	(million Btu/sec.)
V. 0000	0.0000	0.0000	37.50	2215.	2.643
.5000	2048.	2.452 2.476	38.00	2205.	2.621
1.000	2078.	2.488	39.00	2186.	2.610
2.000	2089. 2100	2.501 2.514	39.50	2167.	2.588
3.000	2111.	2.527	40.50	2158.	2.577
3.500	2122.	2.551	41.00	2139.	2.555
4.500	2142.	2.563	42.00	<u>2130</u> .	2.544
5.000	2151. 2161.	2.585			
6.000	2170.	2.596	42,500	3438.	4.100
6.500 7.000	21/9.	2.617	43.000	2097	2.505
7.500	2198.	2.628	45.000	1984.	2.371
8.000 8.500	2205.	2.651	47.500	1844.	2.204
9.000	2228.	2.663	50.000	1705.	2.039
9.500	2248.	2.686	52.500	1568.	1.0(0
10.50	2258.	2.697	55.000	1432.	1-(14
11.00	2278.	2.721	57.500	1290.	1,395
12.00	2289.	2.733	62 500	1033	1.238
12.50	2310.	2.757	65 000	902.1	1.083
13.50	2320.	2.769	67,500	772.4	0.928
14.00	2350.	2.792	70.000	643.7	0.775
5.00	2351.	2.804 2.811	•		
5.00	2365.	2.820			
16.50	2373.	2.529	70.50 71.00	626.6 A24 7	•/540 •7523
17.00	6301.		71.50	622.7	.7500
17-50	2368.	2-847	72.00	620.8 619.0	.7454
18.00	2396.	2.856	73.00	617.1	.7432
19.00	2410.	2.804	74.00	015.3 613.6	.7389
19.50	2416.	2.879	74.50	611.8	.7368
20.50	2427.	2.890 2.891	75.50	605.4	.7327
21.00	2431.	2.896	76.00	606.7	•7307 7287
22.00	2661.	3.168	77.00	603.5	.7268
22.50	2865.	3.411	77.50	601.9	.7249
23.50	2751.	3.276	78.00	600.3 508.7	.7230
24.00	2677.	3.188	79.00	597.2	.7193
25.00	2528.	3.011	79.50	595.7 594.2	.7157
25.50	24/5	2,949	80.50	592.8	.7139
26.50	2420.	2.663	81.00 81.50	591.3	.7105
27.50	2386.	2.857	82.00	588.5	.7088
28.00	2379.	2.835	82.50	585.6	.7053
29.00	2365.	2.818	83.50	584.2	-7037 7021
29.50	2357.	2.809	84.50	581.6	7005
30.50	2341	2.791	85.00	560.3	-69769 -6974
31.00 31.50	2333.	2.781	86.00	577.8	.6959
2.00	2316.	2.761	86.50 87.00	576.5	0744
.50	2307。 2298	2.751	87.50	574.1	.6915
33.50	2289	2.730	88.00 88.50	572.9 571.7	.6856
34.00 34.50	2271-	2.719	89.00	570.5	-6872
35.00	2262.	2.696	89.50 90.00	569.4 568.2	.6844
35.50	2243.	2.657 2.676			-
39.50	2233.	2.665			
Jr • UU	6664.	C.034			

•90

Sheet 3 of 9

•

Time	Break Flow (lb/sec.)	Energy Flow (million Btu/sec.)	Time (s <u>ec.)</u>	Break Flow (1b/sec.)	Energy Flow (million Btu/sec.)
	567.1	.6830	127.5	506.8 506.2	-6104 -6097
91.50	564.9	.6604	128.5	505.6	.6089
92.00 92.50	563.8 562.7	.6777	129.5	504.4	.6075
93.00	561.6	-6764 -6752	130.0	503.8 503.2	.6061
94.00	559.5	.6739	131.0	502.6	.6053
94.50	558.5 557.4	.6714	132.0	501.4	6039
95.50	556.4	.6702	132.5 133.0	500.9 500.3	.6032
96.50	554.4	.6678	133.5	499.7	.6019
97.00	553.4	.0000	134.5	498.6	.6005
			135.0	498.0	.5998 .5991
97.50	552.5	.6643	136.0	496.9	.5984
98.50	550.5	6631	136.5	496.3	.5971
99.00	548.7	.6608			
100.0	547.7 544 B	-6597 -6586	137.5	495.2	.5964
100.5	545.9	.6575	138.0	494.7 494.1	
101.5	545.U 544.1	.6554	139.0	493.6	.5945
102.5	543.2	.6543	140.0	492.5	.5932
103.0 103.5	541.5	.6522	140.5 141.0	492.U 491.5	.5925
104.0	540.6 539.8	.6512	141.5	490.9	5913
	538.9	-6491	142.5	489.9	.5900
.5	537.2	.6471	143.0	489.4	.5894
06.5	536.4 535-6	.6401	144.0	488.3	.5681
107.5	534.8	.6461	145.0	487.8 487.3	.5875 .5869
106.0	533.2	.6422	145.5	486.8	.5863
109.0	532.4	-6412	146.5	485.8	•>•>• •\$650
109.5	530.8	-6394	147.0	485.3 484.8	.5844 .5838
110.5	530.0 529.3	.6375	148.0	484.3	.5832
111.5	528.5	-6366 -6357	149.0	483.3	.5820
112.0	527.0	.6348	149.5 150.0	482.8	-5614
113.0	526.3 525.5	.6330	150.5	481.8	5802
114.0	524.8	.6321	151.0	461.3	-5797
114 .5 115.0	523.4	.6304	152.0	480.4	.5785
115.5	522.6	.6295 .6286	153.0	479.4	
116.U 116.5	521.2	.6278	153.5	478.9 478.4	• • • • • • • • • • • • • • • • • • •
117.0	>20.5	.0207	154.5	478.0	.5756
· · - · -		4.94.4	155.5	477.0	.5745
117.5	519.1	.6253	156.0	476.6	.5739
118.5	518.4 517 8	.6244	157.0	475.6	.5728
119.5	517.1	.6228	157 . 5	475.2	-5722
120.0 120.5	515.7	.6212	158.0	476.7	.5797
121.0	515.1 514.4	-6204 -6196	159.0	473.8	5706
	513.8	.6188	160.0	472.9	-5700
123.0	512.5	.6172	160.5	472.4	.5689
123.5	511.8	.6164 .6157	161.5	471.5	.5678
124.5	510.5	.6149	162.0	471.1 470.6	.5673 .5667
125.0 125.5	507.9 509.3	.0161	163.0 163.E	470.2	.5662
126.0	508.7	.6126	164.0	469.3	.5057
127.0	507.4	.6111	165.0	465.8	.5646

-

•

Sheet 4 of 9

Time	Break Flow	Energy Flow	Time	Break Flow	Energy Flow
.)	(1b/sec.)	(million Btu/sec.)	(sec.)	(ID/sec.)	(million blu/sec.)
	668.0	.5635	202.5	438.6	.5280
166.0	467.5	.5630	203.0	437.8	.5271
166.5 167.0	466.7	.5619	204.0	437.5	.5267
167.5	466.2	.5614	204.5	436.8	.5258
165.0	465.4	.5604	205.5	436.4 436.0	•5254 •5250
169.0	464.9	.5593	206.5	435.7	.5245
170.0	464.1	-5588	207.0	435.0	.5237
170.5	463.2	.5578	208.0	434.6	-5232 -5228
171.5	462.8	.5573	209.0	433.9	.5224
172.5	462.0	.5563	209.5	433.5	.5219
173.0	461.5 461.1	.5553	210.5	432.8	-5211
174.0	460.7	.5548	211.0	432.5 432.1	.5202
174.5	459.9	.5538	212.0	431.8	.5198 .5194
175.5	459.5	•>>>3 •\$528	212.5	431.1	.5190
176.5	458.6	.5523	213.5	430.7 430.4	•5185 •5181
177.0	458.2	•2216	214.5	430.0	.517.7
			215.0	429.4	.5169
177.5	457.8	-5508	216.0	429.1 ·	•5165 •5162
178.0 178.5	457.0	.\$503	218.5	428.5	.5158
0	456.6 454 7	.5498			
	455.8	-5468	317 B	19 8 1	- 5154
1.0	455.0	5478	218.0	427.8	.5150
161.5	454.6	.5469	218.5	427.5	.5140
182.0	453.8	-5464	219.5	426.9	.5139
183.0	453.4 453.0	.5454	220.5	426.3	.5132
184.0	452.6	.5450 .5445	221.0	426.0	.5128
185.0	451.8	.5440	222.0	425.4	.5120
185.5 186.0	451.4 451.0	.5431	223.0	424.7	.5113
186.5	450.6	-5426	223.5	424.4	.5109 .5105
187.0	449.9	.5416	224.5	423.8	.5102
188.0	449.5 449.1	.5407	225.5	423.2	.5094
189.0	448.7	-5402	226.0	422.9	.5091 .5087
189.5 190.0	447.9	5393	227.0	422.3	.5083
190.5	447.5	.5384	227.5	422.0 421.7	.5076
191.5	446.8	.5379	228.5	429.4	-5072 5068
192.0 192.5	446.0	.5370	229.5	420.7	.5065
193.0	445.6	.5365 .5361	230.0	420.4 420.1	•5057
194.0	444.9	.5356	231.0	419.8	-5053 -5050
196.5 195.0	444.5	.5347	232.0	419.2	.5046
195.5	443.7	.5343	232.5	418.9 418.6	.5042 .5039
196.5	443.0	.5334	233.5	418.3	-5035
• ••	442.6	•3264	234.5	417.7	.5026
	442.3	.5325	235.0	417.4 417.1	.5024 .5020
/8.0	441.9 441.5	.5320	236.0	416.8	.5016
198.2	441.1	.5311	230.5	416.2	.500
199.5 200-0	440.4	.5302			
200.5	440.0	.5298			
201.5	439.3	.5289			
303 0	B 341 - Y	. 3/03			

Sheet 5 of 9

	Break Flow (1b/sec.)	Energy Flow (million Btu/sec.)	Time (sec.)	Break Flow (1b/sec.)	Energy Flow (million Btu/sec.)
237.5 238.0 238.5 239.0 239.5 240.0	415.9 415.5 415.2 414.9 414.6 414.3	.5005 .5002 .4998 .4994 .4991 .4987	275.0 275.5 276.0 276.5 277.0	393.3 393.0 392.7 392.4 392.1	.4733 .4729 .4725 .4722 .4718
240.5 241.0 242.0 242.0 243.0 243.5 243.5 244.0	413.7 413.4 413.4 412.8 412.5 412.2 411.9	.4960 .4976 .4972 .4965 .4961 .4958	277.5 278.0 278.5 279.0 279.5 280.0	391.8 391.5 391.2 390.9 390.6 390.4	.4715 .4711 .4706 .4704 .4701 .4697
244.5 245.0 245.5 246.0 246.5 247.0 247.5	411.6 411.3 411.0 410.7 610.4 410.1 409.8	.4954 .4950 .4947 .4943 .4939 .4936 .4936 .4936	280.5 281.0 281.5 282.0 282.5 283.0 283.5	390.1 389.8 389.5 389.2 388.9 388.6 388.4	.4694 .4690 .4687 .4683 .4680 .4676 .4673
248.5 249.0 249.5 250.5 250.5 251.0 251.5	409.2 408.9 408.6 406.3 408.0 407.7 407.4	.4925 .4921 .4918 .4914 .4910 .4907 .4903	284.5 285.0 285.5 286.0 286.5 286.5 287.0 287.5	367.8 367.5 367.2 366.9 386.6 386.4 386.1	.4666 .4662 .4659 .4656 .4652 .4649 .4645
3.5 4.0 1.34.5 255.0	407.1 406.8 406.5 406.2 405.9 405.6 405.3	.4899 .4896 .4892 .4889 .4885 .4885 .4881 .4878	288.0 288.5 289.0 289.5 290.0 290.5 291.0	385.6 385.5 385.2 385.0 384.7 384.4 384.1 43.9	.4642 .4638 .4635 .4632 .4628 .4625 .4622 .4622
256.0 256.5 257.0	404.7 404.4 404.1	.4870 .4867 .4863	292.0 292.5 293.0 293.5 294.0 294.5 295.0	383.6 383.0 382.7 382.5 382.2 381.9	.4615 .4612 .4608 .4605 .4602 .4598 .4595
258.0 258.5 259.0 259.5 260.0 260.5 261.0	403.5 403.2 402.9 402.6 402.3 402.0 401.7	.4856 .4853 .4849 .4845 .4842 .4838 .4838 .4835	295.5 296.0 296.5 297.0	381.7 381.4 381.1 380.8	.4592 .4588 .4585 .4582
261.5 262.0 262.5 263.0 263.5 264.0 264.5 264.0	401.4 401.1 400.8 400.6 400.3 400.0 399.7	.4831 .4827 .4824 .4820 .4817 .4813 .4810 .4806	298.0 298.5 299.0 299.5 300.0 300.5 301.0	360.3 380.0 379.8 379.5 379.2 378.9 378.7	.4575 .4572 .4569 .4565 .4562 .4559 .4556 .4556
265.5 266.0 266.5 267.0 267.5 248.0	399.1 398.8 398.4 398.1 397.8 397.8 397.5	4802 4799 4795 4791 4788 4784 4784	302.0 302.5 303.0 303.5 304.0 304.5 305.0	378.1 377.9 377.6 377.3 377.1 376.8 376.5	.4549 .4546 .4543 .4539 .4536 .4533 .4530
271.0 272.0 272.0 272.5	396.9 396.6 396.3 396.0 395.7 395.4 395.1	.4773 .4769 .4766 .4762 .4758 .4758 .4754	303.5 306.0 306.5 307.0 307.5 308.0 308.5 309.0	376.3 376.0 375.8 375.5 375.2 375.0 376.7 374.4	.4527 .4523 .4520 .4517 .4514 .4511 .4508 .4508
273.0 273.5 274.0	394.5 394.2 393.9	4747 4743 4740	309.5 310.0 310.5	374.2 373.9 373.7	.4501 .4498 .4495

Sheet 6 of 9

Time	Break Flow (1b/sec.)	Energy Flow (million Btu/sec.)	Time (sec.)	Break Flow (1b/sec.)	Energy Flow (million Btu/sec.)
511.0 511.5 312.0 312.5	373.4 373.1 372.9 372.6	.4492 .4489 .4485 .4482 .4482	349.0 349.5 350.0 350.5	354.8 354.6 354.4 354.1 353.0	.4267 .4264 .4261 .4258
313.0 313.5 314.0 314.5 315.0 315.5	372.1 371.8 371.6 371.3 371.3 371.1	.4476 .4473 .4470 .4467 .4464	351.5 352.0 352.5 353.0 353.5	353.7 353.4 353.2 353.0 352.8	.4253 .4250 .4247 .4245 .4242
316.0 316.5 317.0	370.8 370.6 370.3	.4451	354.0 354.5 355.0 355.5 356.0	352.5 352.3 352.1 351.9 351.6	.4239 .4237 .4234 .4231 .4228
317.5 318.0 318.5 319.0 319.5 320.0	369.8 369.5 369.3 369.0 369.0	.4448 .4445 .4442 .4439 .4436	356.5 357.0 357.5 358.0	351.4 351.2 351.0 350.8	.4226 .4223 .4220 .4218
320.5 321.0 321.5 322.0 322.5	368.5 368.3 368.0 367.8 367.5	.4433 .4430 .4427 .4424 .4421	358.5 359.0 359.5 360.0 360.5	350.5 350.3 350.1 349.9 349.7	.4215 .4212 .4210 .4207 .4204
323.0 323.5 324.0 324.5 325.0	367.3 367.0 366.8 366.5 366.3	.4415 .4415 .4409 .4406 .4403	361.0 361.5 362.0 362.5 363.0	349.2 349.0 348.8 348.6 448.6	.4202 .4199 .4196 .4196 .4191 .4191
.0 .5 2(8,0	365.8 365.6 365.3 365.1 364.8	.4400 .4397 .4394 .4391 .4388	364.0 364.5 365.0 365.5 366.0	348.1 347.9 347.7 347.5 347.3	4186 4183 4181 4178 4176
328.5 329.0 329.5 330.0 330.5	364.6 364.3 364.1 363.8 363.6	.4385 .4382 .4379 .4376 .4376	366.5 367.0 367.5 368.0 368.5	347.1 346.9 346.6 346.4 346.2	.4173 .4170 .4168 .4165 .4163
331.0 331.5 332.0 332.5 333.0	363.3 363.1 362.8 362.6 362.4 362.1	.4367 .4364 .4364 .4358 .4358	369.0 369.5 370.0 370.5 371.0 371.5	345.8 345.6 345.2 345.2	.4158 .4156 .4153 .4151 .4149
334.0 334.5 335.0 335.5 336.0	361.9 361.6 361.4 361.2 360.9	.4352 .4349 .4347 .4344 .4344	372.0 372.5 373.0 373.5 374.0	344.9 344.7 344.5 344.3 344.1	.4146 .4144 .4141 .4139 .4137
336.5 337.0 337.5 338.0	360.7 - 360.4 360.2 360.0	.4338 .4335 .4332 .4329	374.5 375.0 375.5 376.0 376.5	343.9 343.7 343.5 343.3 343.1	.4134 .4132 .4130 .4127 .4125
338.5 339.0 339.5 340.0 340.5 341.0	359.7 359.5 359.2 359.0 358.8 158.5	.4326 .4323 .4320 .4318 .4315 .4315	377.5 378.0 378.5	342.7 342.5 342.3	.4120 .4118 .4116
341.5 342.0 3/2 5	358.3 358.1 357.8 357.6 357.6	4309 4306 4303 4300 4298	379.5 380.0 380.5 381.0 381.5	542.0 541.8 341.6 341.4 341.2	.4111 .4109 .4107 .4104 .4104
	357.1 356.9 356.7 356.4 356.2	.4295 .4292 .4289 .4286 .4284 .4284	382.0 382.5 383.0 383.5 384.0	341.0 \$40.8 340.6 340.4 340.3	.4100 .4097 .4095 .4093 .4090
347.0 347.5 348.0 348.5	355.7 355.5 355.3 355.0	.4278 .4275 .4275 .4272	385.0 385.5 386.0	330.9 339.7 339.5	•4086 •4086 •4084 •4082

Sheet 7 of 9

Time	Break Flow	Energy Flow	Time	Break Flow	Energy Flow
<u>()</u>	(1b/sec.)	(million Btu/sec.)	(sec.)	(ID/sec.)	(million blu/sec.)
	339.3	.4079	424.0	328.1 328.0	. 3943
387.0	339.2 339.0	.4075	425.0	327.9	.3941
388.0	338.8	-6073 -6070	426.0	327.7	.3938
388.5 389.0	338.4	.4065	426.5	327.6	.3937 .3936
389.5 390.0	338.2 338.1	4064	427.5	327.4	. 3935
390.5	337.9	-4052 -4059	428.5	327.2	.3933
391.5	337.5	4057	429.0 429.5	327.1 327.0	.3930
392.0 392.5	337.1	.4053	430.0	326.9	. 3929
393.0	337.0 336.8	.4048	431.0	326.8	3927
394.0	336.6	-4046	432.0	326.6	.3925
395.0	336.3	.4042	432.5	326.5	. 3924 . 3923
395.5	336.1 335.9	.4038	433.5	326.3	.3922
396.5	335.8	•4036 •4034	434.5	326.2	.3920
34/ 0	.		435.0	326.1 326.0	_3919 _3918
397.5	335.4	.4032 .4030	436.0	325.9	-3917 3916
398.5	335.1	.4028	437.0	325.8	.3915
399.0 399.5	334.7	.4024			•
400.0	-334.6 334.4	.4020	437.5 438.0	325.7	.3914 .3913
	334.3	_4018 _4016	438.5	325.6	-3912
	333.9	.4014	439.5	325.4	.3911
····5	333.6	.4010	440.5	325.3	.3910
+U3.5	333.5	.4005	441.0	325.2	- 3908 - 3907
404.5	333.2	-4005 -4003	442.0	325.1	.3906
405.0	332.9	4001	443.0	325.U 324.9	.3905
406.0	332.6	3997	443.5 444.0	324.8 324.8	.3904
407.0	332.4	.3996	444.5	324.7	- 3902
408.0	332.1	.3992	445.5	324.6	.3901
408.5	331.6	.3988	446.5	324.5	.3499
409.5	331.7 331.6	.3985	447.0 447.5	324.4	.3898
410.5	331.4	.3983 .3982	448.0	324.3	.3897
411.0	<u></u>	.3960	449.0	324.1	.3895
412.0 412.5	331.0 - 330.9	.3977	449.5	324.1 324.0	.3895
413.0	330.7 330.6	.3974	450.5 451.0	324.0	- 3893 - 3892
414.0	330.5	.3972 .3970	451.5	323.8	.3892
414.5	330.2	.3969	452.5	323.7	-3890
415.5	330.1 330.0	.3966	453.0	323.7 323.6	.3889
416.5	329.8	.3963	454.0	323.5	-3888 3887
417.0			455.0	323.4	.3887
417.5	329.6 329.5	. 3961 . 3960	456.0	323.3	.3685
	329.4	. 3958 . 3957	457.0	323.3 323.2	.3685
	329.1	.3956			
.U ∙∠0.5	328.9	. 3953			
421.0 421.5	328. 8 328.7	.3950			
422.0	328.6	.3949			
423.0	328.3	3946	,		
~~~~					

# Sheet 8 of 9

Timo	Break Flow	Energy Flow	Time	Break Flow	Energy Flow
(sec.)	(lb/sec.)	(million Btu/sec.)	(sec.)	(1b/sec.)	(million Btu/sec.)
				318.4	. 3826
	\$23.1	. 3663	496.0	318.3	• 3825 • 3826
655.5	323.0	.3882	497.0	318.3	
459.0	323.0	-3660		<b>1</b> 44 A	
459.5	322.9	-3860	497.5	318.2	. 3623 . 3622
460.5	322.8	- 3679 - 3678	498.5	318.1	.3822
461.0	322.7	.3678	499.0	318.0 317.9	.3821
462.0	322.6	- <b>3677</b>	499.5 500.0	317.8	.3819
462.5	¥2.5	.3876	500.5	317.8	.3816
463.5	322.5	.3875	501.0	317.6	.3816
464.0	322.4	-3674	502.0	317.5	.3615
465.0	<b>\$22.5</b>	.3873	502.5	317.5	.3614
465.5	322.2	- 3672 - 3672	503.5	317.3	.3813
466.0	322.1	.3871	504.0	317.2	.3812 3811
467.0	322.1	-3870	504.5	517.1	.3810
467.5	322.0	.3869	505.5	317.0	.3809
468.5	321.9	.3868	506.0	316.9	.3607
469.0	321.8	.3667	507.0	316.8	.3806
470-0	<b>X1.7</b>	.3866	507.5	316.6	- 3607
470.5	321.7	-3865	506.5	316.5	3803
471.0	321.6	.3864	509.0	516.5 316-6	- 3802
472.0	321.5	.3863	509.5 510.0	316.3	.3800 .
472.5	321.4	.3662	510.5	516.2	.3799
	321.3	.3861	511.0	316.1	.3797
<b>O</b>	321.3	-3660	512.0	316.0	.3796
(3.0	321.1	.3859	\$12.5	315.8	-3794
,75.5	321.1	.3555	513.0	315.7	.3793
476.0	321.0	.3857	514.0	315.7	.3793
477.0	320.9	.3856	514.5	315.5	.3791
	•••• •		515.5	315.4	.3790
478.0	320.8	• 3855 • 1844	516.0	315.3	.3788
478.5	320.7	.3854	517.0	315.2	.3787
479.0	320.7	.3853			
480.0	320.5	.3852	517.5	315.1	.3786
480.5	320.5	-3851	518.U 518.5	314.9	.3784
481.5	320.4	.3849	519.0	314.8	. 3783
482.0	320.3	.3849	519.5	314.0 316.7	.3781
483.0	320.2	. 3645	520.5	314.6	. 3779
483.5	320.1	.3846	521.0 521 \$	314.5	.3775
484.5	320.0	- 3840	522.0	314.3	.3776
485.0	319.9	.3844	522.5	314.2	.3775
457.7 486.0	319.8	.3843 14/2	523.5	314.1	.3773
486.5	319.7	.3842	524.0	314.0	.3772
487.0	319.7	- 3841	525.0	313.8	.3770
488.0	319.5	.3839	525.5	313.7	.3769
485.5	319.5 319.4	.3838	526.5	313.6	.3767
489.5	319.3	.3837	527.0	313.5	.3766
490.0 490.5	319.3 319-2	.3836	528.0	313.3	.3764
.0	319.1	.3637	528.5	313.2	.3763
<b>1</b>	319.0 110 0	.3834	529.5	513.1 313.0	.3/02
.92.5	318.9	.3632	530.0	313.0	.3760
493.0	318.8	.3631	530.5 531.0	312.9 312.8	.3759
494.0	318.7	.3830	531.5	312.7	.3756
494.5	318.6	.3828	532.0	312.6	-3755
495.0	518.6 318.5	.3828	JJC,J	316.7	•2724

# TABLE 15.2-1 (Sheet 2 of 10)

## TIME SEQUENCE OF EVENTS FOR CONDITION II EVENTS

Accident	Event	Time (sec.)
lincontrollog PCCA	Initiation of uncontrolled	
Withdrawal at	PCCA withdrawal at maximum	
Nicharawai ac	reconstruction was	
	$(7.5 \times 10^{-4} \text{ km/sec})$	0
1. Case A	(7.5 X 10 AK/Sec.)	U
	Power range high neutron	
	flux high trip point reached	1.5
	Rods begin to fall into core	2.0
	Minimum DNBR occurs	<b>2</b> .7
2. Case B	Initiation of uncontrolled	
	RCCA withdrawal at a small	
	reactivity insertion rate	
	$(3.0 \times 10^{-5} \Delta K/sec. for 3$	
	loop, 3.0 x 10 ⁻⁵ ∆K/sec.	
	for 4 loop)	0
	Overtemperature ∆T reactor	
	trip signal initiated	32.6
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Rods begin to fall into core	34.6
	Minimum DNBR occurs	34.7

SGS-UFSAR

## TABLE 15.2-1 (Sheet 3 of 10)

## TIME SEQUENCE OF EVENTS FOR CONDITION II EVENTS.

Accident	Event	<u>Time (sec.)</u>
Uncontrolled Boron Dilution 1. Dilution during		
refueling and		
startup.	Dilution begins	0.
	Operator isolates source	
	of dilution; minimum margin	~2400
	to criticality occurs	or more
2. Dilution During Ful	l	
Power Operation		
a. Automatic	•	
Reactor	One percent shutdown margin	
Control	lost	~1300
b. Manual	•	
Reactor		
Control	Dilution begins	0
	Reactor trip setpoint reached	
-	for overtemperature ${}_{\Delta}T$	52
	Rods begin to fall into core .	54
	One percent shutdown is lost	
	(if dilution continues)	~
	atter trip)	900

## TABLE 15.2-1 (Sheet 4 of 10)

# TIME SEQUENCE OF EVENTS FOR CONDITION II EVENTS

Acciden	<u>t</u>	Event	Time (sec.)
Partial	Loss of Forced		
Reactor	Coolant Flow		
1. All	loops operating	3	
two	pumps coasting		
dow	n	Coastdown begins	0
		Low flow reactor trip	1.26
		Rods begin to drop	2.76
		Minimum DNBR occurs	3.7
2. All	but one loop		
ope	rating, two pumps	S	
coa	sting down.	Coastdown begins	0
		Low flow reactor trip	2.30
		Rods begin to drop	3.80
		Minimum DNBR occurs	4.70

-

SGS-UFSAR

÷

## TABLE 15.2-1 (Sheet 5 of 10)

# TIME SEQUENCE OF EVENTS FOR CONDITION II EVENTS

Accident	Events	Time (sec.)
Loss of External Electrical Load		
control (BOL)	Loss of electrical load	0
	Initiation of steam	
	safety valves	9.0
	Overtemperature <b>A</b> T	9.1
	Rods begin to drop	11.1
	Minimum DNBR occurs	11.5
	Peak pressurizer pressure occurs	12.5
<ol> <li>With pressurizer control (EOL)</li> </ol>	Loss of electrical load	0
-	Initiation of steam release	
	from steam generator safety valves	9.0
	Overtemperature AT Reactor	
	Trip Point Reached	9.5
	Rods begin to drop	11.5

Revision O July 22, 1982

SGS-UFSAR

#### TABLE 15.2-1 (Sheet 6 of 10)

# TIME SEQUENCE OF EVENTS FOR CONDITION II EVENTS

Accident	Event	Time (sec.)
	Minimum DNBR occurs	(1)
	Peak pressurizer pressure occurs	10.5
3. Without pres- surizer		
control (BOL)	Loss of electrical load	0
	Initiation of steam	
	release from steam generator	
	safety valves	9.0
•	High pressurizer pressure	
	reactor trip point reached	6.1
	Rods begin to drop	8.1
	Minimum DNBR occurs	(1)
	Peak pressurizer pressure	
	occurs	9.5

(1) DNBR does not decrease below its initial value.

:

# TABLE 15.2-1 (Sheet 7 of 10)

# TIME SEQUENCE OF EVENTS FOR CONDITION II EVENTS

Accident		Event	<u>Time (sec.)</u>
<b>1.</b>	Without pres- surizer control		
	(EOL)	Loss of electrical load	0
		Initiation of steam release	
•		from steam generator safety	
		valves	9.0
		High pressurizer pressure	
		reactor trip point reached	6.0
		Rods begin to drop	8.0
		Minimum DNBR occurs	(1)
		Peak pressurizer pressure	
		occurs	9.0

(1) DNBR does not decrease below its initial value.

:

SGS-UFSAR

# TIME SEQUENCE OF EVENTS FOR CONDITION II EVENTS

Accident	Event	Time (sec.)
Loss of Normal		
Feedwater and Loss		
of Off-site Power to		
the Station Auxiliaries		
(Station Blackout)	Low-low steam generator	
	water level reactor trip;	
	reactor coolant pumps	
	begin to coast down	0
	Rods begin to drop	2
	Two steam generators	
	begin to receive auxiliary	
	feed from one motor-	
	driven auxiliary feedwater	
	pump	60
	Peak water level in	
	pressurizer occurs	3250
Excessive feedwater		
at full load	One main feedwater control	
:	valve fails fully open	0
· · · · · · · · · · · · · · · · · · ·	Minimum DNBR occurs	15.2
	Feedwater flow isolated due to	
	high-high steam generator level	14.0

SGS-UFSAR

Revision O July 22, 1982

-

.
### TABLE 15.2-1 (Sheet 9 of 10)

# TIME SEQUENCE OF EVENTS FOR CONDITION II EVENTS

ident	Event	<u>Time (sec.)</u>
essive Load Increase		
Manual Reactor Control (BOL)	10 percent step load increase	0
· · · · · · · · · · · · · · · · · · ·	Equilibrium conditions reached (approximate times only)	200 [.]
Manual Reactor Control (EOL)	10 percent step load increase	O
	Equilibrium conditions	
	reached (approximate times only)	75
Automatic Reactor Control (BOL)	10 percent step load increase	0
	Equilibrium conditions reached	100
Automatic Reactor Control <u>(</u> EOL)	10 percent step load increase	0
:	Equilibrium conditions reached (approximate time only)	50
	ident essive Load Increase Manual Reactor Control (BOL) Manual Reactor Control (EOL) Automatic Reactor Control (BOL) Automatic Reactor Control (EOL)	ident       Event         essive Load Increase       Increase         Manual Reactor       10 percent step load increase         Equilibrium conditions       reached (approximate times only)         Manual Reactor       10 percent step load increase         Control (EOL)       10 percent step load increase         Equilibrium conditions       reached (approximate times only)         Automatic Reactor       10 percent step load increase         Equilibrium conditions       reached (approximate times only)         Automatic Reactor       10 percent step load increase         Equilibrium conditions       reached         Automatic Reactor       10 percent step load increase         Equilibrium conditions       reached         Automatic Reactor       10 percent step load increase         Equilibrium conditions       reached

SGS-UFSAR

TABLE 15.2-1 (Sheet 10 of 10) TIME SEQUENCE OF EVENTS FOR CONDITION II EVENTS

Accident	<u>Events</u>	<u>Time (sec.)</u>
Accidental depressuri- zation of the Reactor	Inadvertent Opening of	
Coolant system	one RCS Safety Valve	0
	Reactor Trip	22.1
	Minimum DNBR occurs	24.0
Accidental depressuri-	Inadvertent Opening of one	
zation of the Main	main steam safety or	
Steam System	relief valve	0
	Pressurizer Empties	172
· · · ·	2,000 ppm boron reaches	214
	RCS loops	
Inadvertent Operation	Charging pumps begin	
of SI during Power Operation	borated water	0
	、	
	Low pressure trip point	
_	reached	64
:	Rods begin to drop	66
·		

SGS-UFJAR - 09200:10/070885-







PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM NUCLEAR GENERATING STATION Safety Injection Curve

Updated FSAR

Figure 15.2-42

14202.2



 PUBLIC SERVICE ELECTRIC AND GAS COMPANY
 Transient Response for a Steam Line Break

 Equivalent to 228 Lb/Sec at 1015 PSIA with

 Outside Power Available

 Updated FSAR
 Figure 15.2-43



LCR # 85-07

ATTACHMENT C

RUPTURE 15.4.2 9195 SECTION としていてい FSAR SECONDARY SALEM REVISED MAJOR

٠.

#### 15.4.2 MAJOR SECONDARY SYSTEM PIPE RUPTURE

#### 15.4.2.1 IDENTIFICATION OF CAUSES AND ACCIDENT DESCRIPTION

The steam release arising from a rupture of a main steam pipe would result in an initial increase in steam flow which decreases during the accident as the steam pressure falls. The energy removal from the Reactor Coolant System causes a reduction of coolant temperature and pressure. In the presence of a negative moderator temperature coefficient, the cooldown results in a reduction of core shutdown margin. If the most reactive rod cluster control assembly is assumed stuck in its fully withdrawn position after reactor trip, there is an increased possibility that the core will become critical and return to power. A return to power following a steam pipe rupture is a potential problem mainly because of the high power peaking factors which exist assuming the most reactive rod cluster control assembly to be stuck in its fully withdrawn position. The core is ultimately shutdown by the boric acid injection delivered by the Safety Injection System.

The analysis of a main steam pipe rupture is performed to demonstrate that the following criteria are satisfied:

- Assuming a stuck rod cluster control assembly, with or without offsite power, and assuming a single failure in the engineered safeguards there is no consequential damage to the primary system and the core remains in place and intact.
- 2. Energy release to containment from the worst steam pipe break does not cause failure of the containment structure.

Although DNB and possible clad perforation following a steam pipe rupture are not necessarily unacceptable, the following analysis, in fact, shows that no DNB occurs for any rupture assuming the most reactive assembly stuck in its fully withdrawn position. The following functions provide the necessary protection against a steam pipe rupture:

- 1. Safety injection system actuation from any of the following:
  - a. Two-out-of-three channels of low pressurizer pressure
  - b. High differential pressure signals between steam lines
  - c. High steam line flow in two main steam lines (one-out-of-two per line) in coincidence with either low-low Reactor Coolant System average temperature or low steam line pressure in any two lines.
  - d. Two-out-of-three high containment pressure
- 2. The overpower reactor trips (neutron flux and  $\Delta T$ ) and the reactor trip occurring in conjunction with receipt of the safety injection signal.
- 3. Redundant isolation of the main feedwater lines: Sustained high feedwater flow would cause additional cooldown. Therefore, in addition to the normal control action which will close the main feedwater valves, a safety injection signal will rapidly close all feedwater control valves, trip the main feedwater pumps, and close the feedwater pump discharge valves.
- 4. Trip of the fast acting steam line stop valves (designed to close in less than 5 seconds) on:
  - a. High steam flow in two main steam lines in coincidence with low-low Reactor-Coolant System average temperature or low steam line pressure in any two lines.
  - b. High-high containment pressure

Fast-acting isolation values are provided in each steam line that will fully close within 7 seconds of a signal to close (including instrumentation delays). For breaks downstream of the isolation values, closure of all values would completely terminate the blowdown. For any break, in any location, no more than one steam generator would blowdown even if one of the isolation values fails to close. A description of steam line isolation is included in Chapter 10.

Steam flow is measured by monitoring dynamic head in nozzles inside the steam pipes. The nozzles which are of considerably smaller diameter than the main steam pipe are located inside the containment near the steam generators and also serve to limit the maximum steam flow for any break further downstream.

15.4.2.2 METHOD OF ANALYSIS

The analysis of the steam pipe rupture has been performed to determine:

- The core heat flux and Reactor Coolant System temperature and pressure resulting from the cooldown following the steam line break. The LOFTRAN^[27] code has been used.
- The thermal and hydraulic behavior of the core following a steam line break. A detailed thermal and hydraulic digital-computer code, THINC, has been used to determine if DNB occurs for the core conditions computed in (1) above.

The following conditions were assumed to exist at the time of a main steam line break accident.

 End of life shutdown margin at no load, equilibrium xenon conditions, and the most reactive assembly stuck in its fully withdrawn position: Operation of the control rod banks during core burnup is restricted in such a way that addition of positive reactivity in a steam line break accident will not lead to a more adverse condition than the case analyzed. 2. The negative moderator coefficient corresponding to the end of life rodded core with the most reactive rod in the fully withdrawn position: The variation of the coefficient with temperature and pressure has been included. The  $k_{eff}$  versus temperature at 1000 psi corresponding to the negative moderator temperature coefficient used is shown in Figure 15.4-48. The effect of power generation in the core on over-all reactivity is shown in Figure 15.4-49.

The core properties associated with the sector nearest the affected steam generator and those associated with the remaining sector were conservatively combined to obtain average core properties for reactivity feedback calculations. Further, it was conservatively assumed that the core power distribution was uniform. These two conditions cause underprediction of the reactivity feedback in the high power region near the stuck rod. To verify the conservatism of this method, the reactivity as well as the power distribution was checked. These core analyses considered the Doppler reactivity from the high fuel temperature near the stuck RCCA, moderator feedback from the high water enthalpy near the stuck RCCA, power redistribution and nonuniform core inlet temperature effects. For cases in which steam generation occurs in the high flux regions of the core, the effect of void formation was also included. It was determined that the reactivity employed in the kinetics analysis was always larger than the reactivity calculated for all cases. These results verified conservatism; i.e., underprediction of negative reactivity feedback from power generation.

3. Minimum capability for injection of boric acid (2,000 ppm) solution corresponding to the most restrictive single failure in the safety injection system. This corresponds to the flow delivered by one charging pump delivering its full flow to the cold leg header. Low concentration boric acid (<2,000 ppm) must be purged from the safety injection lines downstream of the Refueling Water Storage Tank prior to the delivery of boric acid to the reactor coolant loops. This effect has been allowed for in the analysis by assuming the lines to contain unborated water. The modeling of the Safety Injection System in LOFTRAN is described in Reference 27.

SGS- UFSAR 89200:10/070885-

15.4-19

For the cases where offsite power is assumed, the sequence of events in the Safety Injection System is the following. After the generation of the safety injection signal (appropriate delays for instrumentation, logic and signal transport included), the appropriate valves begin to operate and the high head injection pump starts. In an additional 12 sec, the valves are assumed to be in their final position and the pump is assumed to be at full speed. The volume containing the unborated water is purged before the 2,000 ppm boron reaches the core. This delay, described above, is inherently included in the modeling.

In cases where offsite power is not available, a 12-sec delay is assumed to start the diesels and to load the necessary safety injection equipment onto them.

- 4. Four combinations of break sizes and initial plant conditions have been considered in determining the core power and Reactor Coolant System transients:
  - a. Complete severance of a pipe outside the containment, downstream of the steam flow measuring nozzle, with the plant initially at no load conditions, full reactor coolant flow with offsite power available.
    - b. Complete severance of a pipe inside the containment at the outlet of the steam generator with the plant initially at no load conditions with offsite power available.
    - c. Case (a) above with loss of offsite power simultaneous with the initiation of the safety injection signal. Loss of offsite power results_in coolant pump coastdown.
    - d. Case (b) above with the loss of offsite power simultaneous with the initiation of the safety injection signal.
- 5. Power peaking factors corresponding to one stuck RCCA and non uniform core inlet coolant temperatures are determined at end of core life. The coldest core inlet temperatures are assumed to occur in the sector with the stuck rod. The power peaking factors account for the effect of the

5GS-UFSAR 89200:10/070885

15.4 - 20

local void in the region of the stuck control assembly during the return to power phase following the steam line break. This void in conjunction with the large negative moderator coefficient partially offsets the effect of the stuck assembly. The power peaking factors depend upon the core power, temperature, pressure, and flow, and thus, are different for each case studied.

All the cases above assume initial hot shutdown conditions at time zero since this represents the most pessimistic initial condition. Should the reactor be just critical or operating at power at the time of a steam line break, the reactor will be tripped by the normal overpower protection system when power level reaches a trip point. Following a trip at power the Reactor Coolant System contains more stored energy than at no load, the average coolant temperature is higher than at no load and there is appreciable energy stored in the fuel. Thus, the additional stored energy is removed via the cooldown caused by the steam line break before the no load conditions of Reactor Coolant System temperature and shutdown margin assumed in the analyses are reached. After the additional stored energy has been removed, the cooldown and reactivity insertions proceed in the same manner as in the analysis which assumes no load condition at time zero.

However, since the initial steam generator water inventory is greatest at no load, the magnitude and duration of the Reactor Coolant System cooldown are less for steam line breaks occurring at power.

- 6. In computing the steam flow during a steam line break, the Moody Curve^[25] for fl/D = 0 is used.
- 7. Perfect moisture separation in the steam generator is assumed. The assumption leads to conservative results since, in fact, considerable water would be discharged. Water carryover would reduce the magnitude of the temperature decrease in the core and the pressure increase in the containment.

SGS- UFSAR 89200:10/071185

15.4-21

### 15.4.2.3 RESULTS

The results presented are a conservative indication of the events which would occur assuming a steam line rupture since it is postulated that all of the conditions described above occur simultaneously.

#### 15.4.2.4 CORE POWER AND REACTOR COOLANT SYSTEM TRANSIENT

and 15.4-50B

Figures15.4-50Ashows the Reactor Coolant System transient and core heat flux following a main steam pipe rupture (complete severance of a pipe) outside the containment, downstream of the flow measuring nozzle, at initial no load condition (case a). The break assumed is the largest break which can occur anywhere outside the containment either upstream or downstream of the isolation valves. Offsite power is assumed available such that full reactor coolant flow exists. The transient shown assumes an uncontrolled steam release from only one steam generator. Should the core be critical at near zero power when the rupture occurs the initiation of safety injection by high differential pressure between any steam line and the remaining steam lines. or by high steam flow signals in coincidence with either low-low Reactor coolant System temperature or low steam line pressure will trip the reactor. Steam release from more than one steam generator will be prevented by automatic trip of the fast action isolation valves in the steam lines by the high steam flow signals in coincidence with either low Reactor Coolant System temperature or low steam line pressure. The steam line isolation valves are designed to be fully closed in less than 5 seconds after receipt of closure signal with no flow through them. With the high flow existing during a steam line rupture the valves will close considerably faster.

50BThe steam flow on Figure 15.4-50 as well as Figures 15.4-51? through 15.4-53B represent steam flow from the faulted steam generator only. In addition, all steam generators were assumed to discharge through the break until steam line isolation has occurred.

SGS-UFSAR <del>89200:10/070885</del>

15.4 - 22

53B 52B

As shown in Figures 15.4-52 and 15.4-53, the core attains criticality with the rod cluster control assemblies inserted (with the design shutdown assuming one stuck assembly) before boron solution at 2,000 ppm enters the Reactor Coolant system from the Safety Injection System. The delay time consists of the time to receive and actuate the safety injection signal and the time to completely open valve trains in the safety injection lines. The safety injection pumps are then ready to deliver flow. At this stage a further delay time is incurred before 2,000 ppm boron solution can be injected to the Reactor Coolant System due to low concentration solution being purged from the safety injection lines. A peak core power well below the nominal full power value is attained.

The calculation assumes the boric acid is mixed with, and diluted by the water flowing in the Reactor Coolant System prior to entering the reactor core. The concentration after mixing depends upon the relative flow rates in the Reactor Coolant System and in the Safety Injection System. The variation of mass flow rate in the Reactor Coolant system due to water density changes is included in the calculation as in the variation of flow rate from the Safety Injection System and accumulator due to changes in the Reactor Coolant System pressure.

The Safety Injection System flow calculation includes the line losses in the system as well as the pump head curve. The accumulators provide the additional source of borated water if the RCS pressure decreases to below 580 psia. The integrated flow rate of borated water from both the accumulators and the Safety Injection System for each of the four cases analyzed are shown in Figure 15.4-54.

### 51A and 15.4-51B

Figures15.4-57 shows case b, a steam line rupture at the exit of a steam generator at no load. The sequence of events is similar to that described above for the rupture outside the containment except that criticality is attained earlier due to more rapid cooldown and a higher peak core average power is attained.

52A, 52B 53A, 53BFigures 15.4-52, and 15.4-53 show the responses of the salient parameters for cases c and d which correspond to the cases discussed above with additional loss of offsite power at the time the safety injection signal is generated. The Safety Injection System delay time includes 12 seconds to start the diesel (including instrumentation delay time) and 12 seconds to get the safety injection pump to full speed. In each case criticality is achieved later and the core power increase is slower than in the similar case with offsite power available. The ability of the emptying steam generator to extract heat from the Reactor Coolant System is reduced by the decreased flow in the Reactor Coolant System. For both these cases the peak core power remains well below the nominal full power value.

It should be noted that following a steam line break only one steam generator blows down completely. Thus, the remaining steam generators are still available for dissipation of decay heat after the initial transient is over. In the case of loss of offsite power this heat is removed to the atmosphere via the steam line safety valves which have been sized to cover this condition.

The sequence of events is shown on Table 15.4-1.

#### 15.4.2.5 MARGIN TO CRITICAL HEAT FLUX

A DNB analysis was performed for the three cases most critical to DNB. It was found that all cases had a minimum DNBR greater than 1.30.

15.4.2.6 OFFSITE DOSES

The off-site doses resulting from the steam line break accident, assuming a primary to secondary steam generator tube leak in the intact steam generators, were calculated. The assumptions and parameters including the mass transferred through the steam generator tube leak used in the analysis are listed below:

 Prior to the accident, activity of fission products in the primary system is as given in Table 15.4-8. The iodine concentration in the secondary side is 0.28 uCi/cc of equivalent I-131.

15.4 - 24

- Off-site power is lost, main steam condensers are not available for steam dump.
- 3. Eight hours after the accident the Residual Heat Removal System starts operation to cool down the plant.
- The primary to secondary leakage is evenly distributed in the three non-defective steam generators, no tube leakage in the defective steam generator.
- 5. Defective fuel is 1 percent.
- After eight hours following the accident, no steam and activity are released to the environment.
- 7. No air ejector release and no steam generator blowdown during the accident.
- 8. No noble gas is dissolved in the steam generator water.
- 9. The iodine partition factor  $\frac{\text{amount of iodine/unit mass steam}}{\text{amount of iodine/unit mass liquid}} = 0.1$ in steam generators
- 10. The atmosphere dispersion factors (x/Q) at site boundary and low population zone are as listed in Table 15.4-9. The breathing rate is  $3.47 \times 10^{-4} \text{ m}^3$ /sec for 0-8 hours.
- 11. In the affected steam generator, all the water boils off and releases through the break immediately after the accident. One tenth of the iodines in the water is released to the environment.
- 12. The primary pressure remains constant at 2235 psig for 0-2 hour and decreases linearly to atmosphere from 2235 psig during the period 2-8 hour.

### STEAM LINE BREAK STEAM RELEASE

	<u>0-2 Hours</u>	<u>2-8 Hours</u>
Mass release from defective S.G. lbs	95,000	0
Steam release from non-defective S.G.'s lbs	424,000	1,188,000
Feedwater Flow to 3 non-defective S.G.'s lbs	433,000	1,300,000
Mass of reactor coolant transferred into		
3 non-defective S.G.'s lbs for a primary		
to secondary leak rate of 1 gpm, 1bm	719	2,510

Using the above assumptions, the thyroid inhalation exposure was calculated to be 2.1 rem at the minimum exclusion distance (1270 meters) and 0.37 rem at the 5 mile low population zone radius. Using the conservative calculational models presented in Safety Guide 4, the whole body doses were calculated to be 0.0067 rem at the minimum exclusion distance and 0.0014 rem at the low population zone radius.

SGS-UFSAR 89200:10/070885

15.4 - 26

### TABLE 15.4-1 (Sheet 1 of 3)

### TIME SEQUENCE OF EVENTS FOR CONDITION IV EVENTS

Accident	Event	Time(Seconds)
Major Reactor Coolant System Pipe Ruptures Double-Ended Cold Leg		
Guillotine		
1. $(C_n = 1.0)$	Start	0.0
U	Reactor trip signal	1.65
	Safety injection signal	0.86
	Accumulator injection	14.1
	End of Blowdown	28.1
	Bottom of core recovery	40.34
	Accumulators empty	51.15
	Pump injection	25.86
	End of bypass	25.4
2. $(C_{\rm p} = 0.8)$	Start	0.0
	Reactor trip signal	1.66
	Safety injection signal	0.92
	Accumulator injection	14.6
	End of Blowdown	28.8
	Bottom of core recovery	40.95
	Accumulators empty	51.6
	Pump injection	25.92
<b>-</b> 2 1	End of bypass	26.0
3. $(C_{D} = 0.6)$	Start	0.0
	Reactor trip signal	1.66
	Safety injection signal	1.03
	Accumulator injection	16.8

Revision O July 22, 1982

SGS-UFSAR

### TABLE 15.4-1 (Sheet 2 of 3)

## TIME SEQUENCE OF EVENTS FOR CONDITION IV EVENTS

Accident	Event	Time(Seconds)
	End of Blowdown	30.46
	Bottom of core recovery	42.5
	Accum_lators empty	53.64
	Pump injection	26.03
	End of bypass	27.51
Rupture of main feedwater pipe	Feedline rupture occurs	0.00
	High pressure reactor trip	
	setpoint reached (This trip	
	was not considered in the	
	analysis).	11.0
	Affected steam generator liqu	id
	discharge; low level coincide	nt
	with feed/steam flow mismatch	
	in other steam generators;	
	reactor trip setpoints reached	1. 18.5
	Reactor trip occurs	20.5
- :	Peak steam relief from	
	pressurizer safety valves	22.5
	Pressurizer fills	527
	Bulk boiling begins in	
	reactor coolant fluid	876

. . . .

# TABLE 15.4-1 (Sheet 3 of 3) TIME SEQUENCE OF EVENTS FOR CONDITION IV EVENTS

Accident	Event	<u>Time (Seconds)</u>
	Core decay heat decreases	
	to auxiliary feedwater	
	heat removal capacity	2100
Major Secondary System		
Pipe Rupture		.•
1. Case a	Steam line ruptures	0
	Criticality attained	40
	Pressurizer empty	13
	2,000 ppm boron	
· · · · ·	reaches loops	27
2. Case b	Steam line ruptures	0
	Criticality attained	24
	Pressurizer empty	13
	2,000 ppm boron	
	reaches loops	27
3. Case C	Steam line ruptures	0
	Criticality attained	49
	Pressurizer empty	14
	2,000 ppm boron	
	reaches loops	33
4. Case d	Steam line ruptures	0
,	Criticality attained	28
	Pressurizer empty	15
	2,000 ppm boron	
	reaches loops	34
	-	



1.1.4.1

SGS-UFSAR

Revision O July 22, 1982 '

DELETE			TABLE	15.4-7 (Sr	neet 2 of 3	3)	•			
TABLE	15.4.7	<u>Core pa</u>	RAMETERS	JSED IN ST	EAM BREAK	DNB ANAL	<u>YSIS</u>			
	- <u></u>			Case b,	Time Poin	 t				
Parameter		·	2	· · · · · · · · · · · · · · · · · · ·	. 3				, , ,	5
	Unit 1	Ünit2	Unit 1	Unit 2	Unit 1	Unit 2	Unit 1	Unit 2	Unit 1	Unit 2
Reactor Vessel inlet temperature to sector connected to affected steam generator °F	391.4	386.7	377.8	375.9	348.7	372.5	340.1	367.7	328.6	358.4
Reactor Vessel inlet temperature to re- maining sector °F	526.8	523.5	518.8	516.4	470.3	512.0	451.0	505.3	427.8	488.7
RCS pressure, psia RCS flow,	1303.9	1098.8	898.9 100	879 <b>.</b> 9 100	573.9 100	849.5 100	523.8 109	795.5	487 <b>.</b> 9	644.4 100
Heat flux,	8.22	9.57	8.37	12.45	9.65	11.65	8.46	12.58	7.75	12.02
Time (sec)	25	27.5	35	37	80	41.5	100	49.5	122.5	70

SGS-UFSAR

Revision O Julv 22, 1982

DELETE					_					
TABLE	15.4	-7	TABLE	15. <b>4-7</b> (Sh	eet 3 of 3	5)				/
	. · ·	CORE PA	RAMETERS U	SED IN STE	AM BREAK	DNB ANALY	<u>ISIS</u>			
		······		Case d,	Time Point	· · · · · · · · · · · · · · · · · · ·		/		
	1									-
Parameter	$\frac{1}{10000000000000000000000000000000000$		$\frac{2}{10 \text{ if } 1}$	Unit 2	$\frac{3}{100000000000000000000000000000000000$	llnit 2	$\frac{4}{100000000000000000000000000000000000$	linit 2	linit 1	llnit 2
1	oniti									onic L.
Reactor Vessel inlet temperature to sector connected to affected									··	
steam generator °F	390.5	375.5	356.6	350.9	345.5	322.1	312.1	303.2	281.5	284.3
Reactor Vessel inlet temperature to re-										
maining sector °F	530.2	\$29.9	528.9	529.2	529.1	528.9	528.0	527.5	• 524.5	526.8
RCS pressure, psia	1712.5	1469.3	1359.1	1264.8	1270.4	1112.1	1004.9	998.3	877.5	891
RCS flow,	47	40.6	33.9	32.3	30.7	24.9	22.8	20.9	17.0	17:4
Heat flux,	5.27	5.8	6.10	6.74	6.2	7.87	4.52	5.10	3.59	3.58
Time (sec)	20	<b>25</b> [°]	32.5	35	37.5	50.5	57.5	65	87.5	85

4.1.4.1

SGS-UF SAR

.

.

Revision 0 July 22. 1982

SGS-UFSAR

2

REACTOR COOLANT EQUILIBRIUM FISSION AND CORROSION PRODUCT ACTIVITIES (BASED ON PARAMETERS GIVEN IN TABLE 11.1-7)

	Activity		Activity
Isotope	μc/cc	Isotope	μc/cc
Br-84	$3.34 \times 10^{-2}$	CS-136	2.93 x $10^{-2}$
Rb-88	2.66	Cs-137	.859
Rb-89	6.74 x $10^{-2}$	Cs-138	.670
Sr-89	$3.18 \times 10^{-5}$	Ba-140	$3.24 \times 10^{-3}$
Sr-90	7.88 × 10 ⁻⁵	La-140	$1.27 \times 10^{-3}$
Sr-91	$1.42 \times 10^{-3}$	Ce-144	$3.88 \times 10^{-4}$
Sr-92	5.97 x 10 ⁻⁴	Pr-144	$3.88 \times 10^{-4}$
Y-90	$1.05 \times 10^{-4}$	Kr-85	3.93
Y-91	5.83 × 10 ⁻³	Kr-85m	1.70
Y-92	7.68 x $10^{-4}$	Kr-87	.942
Zr-95	6.66 x $10^{-4}$	Kr-88	2.66
Nb-95	6.57 x 10 ⁻⁴	Xe-133	194.7
Mo-99	2.36	Xe-133m	2.09
I-131	1.87	Xe-135	5.45
I-132	.657	Xe-135m	.132
I-133	2.89	Xe-138	.468
I-134	.376	Mn-54	5.87 x 10 ⁻⁴
I-135	1.46	Mn-56	$2.20 \times 10^{-2}$
Te-132	.208	Co-58	$1.89 \times 10^{-2}$
Te-134	2.04 × 10 ⁻²	Co-60	5.67 x 10 ⁻⁴
Cx-134	.142	Fe-59	7.87 x 10 ⁻⁴

.



# TABLE 15.4-9 ATMOSPHERIC DISPERSION FACTORS AND BREATHING RATES

. ----

tmospheric Disp	ersion Factors,	X/Q (sec/m ³ )	
<u>0 - 2 hrs</u>	<u>2 - 24 hrs</u>	<u>1 - 5 days</u>	<u>5 - 30 days</u>
$5.0 \times 10^{-4}$	2.5 x 10 ⁻⁴	4.25 x 10 ⁻⁶	2.53 x $10^{-6}$
4.0 x $10^{-5}$	$2.0 \times 10^{-5}$	1.8 x 10 ⁻⁷	9.6 x 10 ⁻⁸
Prosthing	Datos m /soc		
breathing			
3.47	× 10 ⁻⁴		
1.75	× 10 ⁻⁴		
	tmospheric Disp 0 - 2 hrs $5.0 \times 10^{-4}$ $4.0 \times 10^{-5}$ <u>Breathing</u> 3.47 1.75	tmospheric Dispersion Factors,	tmospheric Dispersion Factors, X/Q (sec/m ³ )

24 - 720 2.32 x 10⁻⁴

SGS-UFSAR 1785Q:1 Revision 1 July 22, 1983



PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM NUCLEAR GENERATING STATION	Variation of K _{EFF} wi	ith Core Temperature
	Updated FSAR	Figure 15.4-48

14202.4



	SALEM NUCLEAR GENERATING STATION		rature
Updated FSAR Figure 15.4-4		Updated FSAR	Figure 15.4-49

÷

14202.5



Transient Response to Steam Line Break Downstream of Flow Measuring Nozzle with Safety PUBLIC SERVICE ELECTRIC AND GAS COMPANY Injection and Offsite Power (Case a) SALEM NUCLEAR GENERATING STATION Updated FSAR Figure 15.4-50A



PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM NUCLEAR GENERATING STATION	Transient Response to Steam Line Break Downstream of Flow Measuring Nozzle with Safety Injection and Offsite Power (Case a)	
	Updated FSAR	Figure 15.4-50B



PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM NUCLEAR GENERATING STATION	Transient Response to Steam Line Break at Exit of Steam Generator with Safety Injection and Offsite Power (Case b)	
	Updated FSAR	Figure 15.4.51A



14202.8



PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM NUCLEAR GENERATING STATION	Transient Response to Steam Line Break Downstream of Flow Measuring Nozzle with Safety Injection, Without Offsite Power (Case c)	
	Updated FSAR	Figure 15.4-52A

÷

14202.10



PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM NUCLEAR GENERATING STATION	Transient Response to Steam Line Break Downstream of Flow Measuring Nozzle with Safety Injection, Without Offsite Power (Case c)	
	Updated FSAR	Figure 15.4-52B

14202.11



PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM NUCLEAR GENERATING STATION	Transient Response to Steam Line Break at Exit of Steam Generator With Safety Injection and Without Offsite Power (Case d)	
	Updated FSAR	Figure 15.4-53A

:

3.500 3.000 STEAM FLOW (FRAC OF NOM) z.500 z.000 1.500 1.000 0.500 0 0.250 CORE HEAT FLUX (FRAC OF NOM) 0.200 0.150 0.100 0.500 ο 2500 2000 2,000 PPM Boron Reaches Loops at 34 Sec. REACTIVITY (PCM) 1000 0 -1000 -ż000 -2500 100 200 400 500 0 300 600 TIME (SEC)

PUBLIC SERVICE ELECTRIC AND GAS COMPANY SALEM NUCLEAR GENERATING STATION	Transient Response to Steam Line Break at Exit of Steam Generator With Safety Injection and Without Offsite Power (Case d)	
	Updated FSAR	Figure 15.4-53B

ż

14202.12

>














BORON MARKED-UP ATTACHMENT していっている SALEM ーマント U FSAR ひにいのと LUR TABLE Ħ 10-58 PARAMETERS 6.3-3

í

۰.

### TABLE 6.3-3

## BORON INJECTION TANK DESIGN PARAMETERS

Number	1
Total volume, gal (also useable volume)	900
Boron-concentration	
— Nominal, ppm—	21,000
Maximum, ppm	<u> </u>
Design pressure, psig	2735
Design temperature, °F	150-180
Materia]	SS Clad Carbon Steel
Code	ASME III Class C

HEATERS

-Number-

C<del>apacity, <u>k</u>w</del>

Strip.

Revision O July 22, 1982

SGS-UF SAR

# LCR # 85-07

ATTACHMENT E

REVISED SALEM FSAR TABLE 15.1-2 SUMMARY OF INITIAL CONDITIONS AND COMPUTER CODES USED

# TABLE 15.1-2 (Sheet 1 of 4) SUMMARY OF INITIAL CONDITIONS AND COMPUTER CODES USED

	COMPUTER	REACTIV MODERATOR ⁽¹⁾ TEMPERATURE	ITY COEFFICIENTS ASSUMED MODERATOR ⁽¹⁾ DENSITY		INITIAL NSSS THERMAL POWER OUTPUT ASSUMED
FAULTS	CODES UTILIZED	( <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> ( <u></u>	( <u>s</u> K/gm/cc)	DOPPLER	((()))
CONDITION II					
Uncontrolled RCC assembly Bank Withdrawal from a Subcritical Condition	WIT-6, FACTRAN	+1 × 10 ⁻⁵		Lower	0
Uncontrolled RCC Assembly Bank Withdrawal at Power	LOFTRAN		0 and 0.43	lower and upper	3423
RCC Assembly Misalignment	THINC, TURTLE, LOFTRAN		0	upper	3423
Uncontrolled Boron Dilution	NA	NA	NA	NA	0 and 3423
Partial Loss of Forced Reactor Coolant	PHOENIX, LOFTRAN THINC, FACTRAN		0	upper	2396 and 3423
Start-up of an Inactive Reactor Coolant Loop	MARVEL, THINC		0.43	lower	2369
Loss of External Electrical Load and/or Turbine Trip	LOFTRAN		0 and 0.43 .	upper	3423
Loss of Normal Feedwater	BLKOUT		NA	NA	3577
Loss of Off-Site Power to the Plant Auxiliaries (Plant Blackout)	BLKOUT		NA	NA	3423



### SUMMARY OF INITIAL CONDITIONS AND COMPUTER CODES USED

	REACTIVITY COEFFICIENTS				
FAULTS	COMPUTER <u>Codes_utilized</u>	ASSU MODERATOR ⁽¹⁾ TEMPERATURE <u>(AK/°F)</u>	MED MODERATOR ⁽¹⁾ DENSITY <u>(AK/gm/cc)</u>	DOPPLER ⁽²⁾	INITIAL NSSS THERMAL POWER OUTPUT ASSUMED (Hwt)
CONDITION II (continued)		•			· ·
Excessive Heat Removal Due to Feedwater System Malfunctions	MARVEL		0.43	lower	0 and 3423
Excessive Load Increase	LOFTRAN		0 and 0.43	lower	3423
Accident Depressurization of the Reactor Coolant System	LOFTRAN		0	, upper	3423
Accident Depressurization of the Main Steam System	LOFTRAN		Function of Mod- erator Density See Sec. 15.2.13 (Fig. 15.2.41)	Fig. 15.4-49	0 (Subcritical)
Inadvertent Operation of ECCS During Power Operation	LOFTRAN		0.	lower	3423
CONDITION III					
Loss of Reactor Coolant from Small Ruptured Pipes or from Cracks in Large Pipe which Actuate Emergency	WFLASH, LOCTA-R	2			3577

Core Cooling



	REACTIVITY COEFFICIENTS				
		ASSU	HED		INITIAL NSSS
	COMPUTED	TEMDEDATUR	MUDERATUR		ASSIMED
	CONFS UTILIZED	(AK/ºF)	(AK/am/cc)	DOPPIER(2)	(Mut)
			Taki dun cel	DUTTER	(IIWC)
CONDITION III (continued)	·				
Inadvertent Loading of a Fuel Assembly into an Improper Position	LEOPARD, TURTLE	·	<b>NA</b> .	NA	3423
Complete Loss of Forced Reactor Coolant Flow	PHOENIX, LOFTRAN THINC, FACTRAN	<b>_</b> / <b>_</b>	0	upper	2396 and 3423
Waste Gas Decay Tank Rupture	NA		NA	NA	3577
Single RCC Assembly Withdrawal at Full Power	TURTLE, THINC LEOPARD		NA '	NA	3423
CONDITION IV					
Major rupture of pipes containing reactor	SATAN	Function of		Function of	3579
coolant up to an including double-ended	LOCTA-R2	Moderator		Fuel Temp.	
rupture of the largest pipe in the Reactor		density See		See Section	
Coolant System (Loss of Coolant Accident)		Section 15.4.1		15.4.1	
Major secondary system pipe rupture up	LOFTRAN, THINC	Function of		Fig. 15.4-49	0
to and including double ended rupture		Moderator			(Subcritical)
(Rupture of a Steam Pipe)		Density See			
		Section 15.2.1	3		
		(F1g. 15.2-41)			



#### TABLE 15.1-2 (Sheet 4 of 4) SUMMARY OF INITIAL CONDITIONS AND COMPUTER CODES USED

١	REACTIVITY COEFFICIENTS ASSUMED MODERATOR ⁽¹⁾ MODERATOR ⁽¹⁾				INITIAL NSSS Thermal Power Output
FAULTS	CODES UTILIZED	( <u>ak</u> /°F)	ΔK/gm/cc)	DOPPLER ⁽²⁾	(MWT)
CONDITION IV (cont'd)					
Steam Generator Tube Rupture	NA	NA	NA	NA	3577
Single Reactor Coolant Pump Locked Rotor	PHOENIX, LOFTRAN THINC, FACTRAN		0	upper	2396 and 3423
Fuel Handling Accident	NA	NA	NA		3577
Rupture of a Control Rod Mechanism Housing (RCCA Ejection)	TWINKLE, FACTRAN LEOPARD	-1 pcm/°E BOL -26 pcm/°F EOL		Consistent with lower limit shown Fig. 15.1-5	0 and 3423

NOTES:

(1) Only one is used in an analysis i.e. either moderator temperature or moderator density coefficient

(2) Reference Figure 15.1-5