

David W. Rogers Plant Safety and Licensing Director

MICHIGAN'S PROGRESS

Palisades Nuclear Plant: 27780 Blue Star Memorial Highway, Covert, MI 49043

March 10, 1994

Nuclear Regulatory Commission Document Control Desk Washington, DC 20555

DOCKET 50-255 - LICENSE DPR-20 - PALISADES PLANT - LICENSEE EVENT REPORT 94-004, ESS PUMP COOLING SINGLE FAILURE

Licensee Event Report (LER) 94-003 is attached. This event is reportable to the NRC per 10CFR50.73(a)(2)(ii)(B) as a condition outside the design basis.

David W. Rogers Plant Safety and Licensing Director

CC Administrator, Region III, USNRC NRC Resident Inspector - Palisades

Attachment

9403170092 940310 PDR ADDCK 050002

160008

A CMS ENERGY COMPANY

									•													
NRC Form (9-83)	366	-		,			3 ²						Ô			U.S	NUC		REG	ULATO	RY COM 0. 3150	MISSION
-	- :•		٠.,	•••	۰.		LIC	ENSEE	EVEN	T REPO	RT (LEF	aj se					. 6	EXPIR	ES: (
FACILITY	NAME (1)	· · · · · · · · · · · · · · · · · · ·			- .			<u> </u>		:			OCKE		FR (2)						PAGE	(3)
Palisa	ades	Plant		· .			•		•	· •			0 5	5 0	0	0	2	6		\$ 17	OF	0 5
TITLE (4)	ESS	PUMP	CO	OLING	SINGL	EF	AILURE	•			÷.,			· · ·			·			_		
EVE	NT DATE	(6)			LER NUMBE	A (6)	* .	RE	PORT DAT	TE (6)				OTHE	R FACI	UTIE	S INV		ED (8)			
MONTH	DAY	YEAR	'YE/	AR (*	SEQUENTIA		NUMBER	MONTH	DAY	YEAR	ļ	F		Y NAMES	8						ŕ	
- ·]											N/.	A			•		-	0	6	0	0	
0 2	0 9	94	9	4	0 0 4	. -	00	0 3	10	94	N/	A	•	÷				•	6	0	• •	1 1
OPE	RATING		THIS	s report	IS SUBMITT	ED PUR	SUANT TO T	HE REQU	REMENTS	OF 10 CFF	S: (Chec	ane o	more	of the foi	lowing.	/ (11))		_			
MO	DE (9)		Ц	20.402	(b)			20.406	c) ·	•		50.73	(a)(2)(iv	/) -		•	Ŀ	73	.716 .716	a		
LEVEL		010	\vdash	20.406	(a)(1)(i)	•		60.38(c)	(2)		H	60.73	(a)(2)(v	') ii)		•	┢	01		:) (Soecity	in Abet	ect
(10)	1 * 1	<u> </u>	H	20.405	(a)(1)(iii)			50.73(e)	(2)ű)		Н	50.73	(a)(2)(v	iii)(A)	÷	,	<u> </u>] be	low a	nd in Te	urt,	
	·		\square	20.405	(a)(1)(iv)		X	50.73(a)	(2)(ii)	•		60.73	(a)(2)(v	·iii)(B)				NF	RC Fo	rm 366	A)	
		· ·		20.406	.a/\ : j(¥)			LICENSEE	CONTAC	T FOR THIS	LER (12)	30.73	(a)(2)()(<u> </u>			
NÂME	1						.1 -	•	•			· .			T T	T	ELEPH	ONE	NUM	BER		
Bar	rry N	. You	ing	, Sta	ff Lic	ens	ing En	ginee	er -		· · ·		6		6	7.	6	4	.	8	9	1 3
					сом	PLETE	DNE LINE FOI	R EACH C	OMPONEN	T FAILURE	DESCRIBE	D IN TH	IIS REP	ORT (13	,							
CAUSE	SYSTEM		MPO	NENT	TU	RER	TO.N	SYSTEM	TURER TO NPRDS					IPRDS								
		1							· · · ·		<u>l</u>	<u> </u>		Ĺ			•					·
	1.	-l r	. 1	ŀ		I I					1			I		1	· . • 1	1				а 19
	,				SUPPLE	AENTA	L REPORT EX	PECTED (14)					_	EX	PECT	ED	Ľ	IONT	н	DAY	YEAR
X YES	s ur yee, c	complete E	XPEC	TED SUBA	SSION DAT	ัก		NO							SUB DA	MISS	SION 16)				İ	
ABSTRAC	CT (Limit I	o 1400 ap	ocel,	i.e., eppro	ximately fift	ien sing	ie-apace type	owritten lii	nes) (16)		• •											
				2	•	۰.			r. 19									•				
5.1	• •																					
0	F - L		•	1004	.+ E	A E.	๛๛ ๎ ๛ฅ	il.	tha 'n	lant (wac 0	nor	atir	na 21	F 10	ነበ%	. n	ດພດ	r	a		
UN Dre	rebru	uary : slv u	9, nid	lenti:	fied s	:45 inal	e fail	ure i	mécha	nism	which	C0	uld	aff	ečt	th	ie i	Eng	, jin	eere	ed	
Saf	egua	rds S	yst	em (ESS) pi	umps	was c	lisco	vered	I. It	was	dis	cove	ered	tha	at j	a	sir	ig1	e ac	tiv	5
fai	lure	coul	d d	isab	le the	sea		ing '	to th	he ESS	pump	s a nla	nd 1 nt (that	th€ iti⊄	e b Sn	aci an	kup d c) C of	00 1 the	ng eff	erts
sup	ply i the i	was n noten	or tia	Tuli 1 fa	ilure i	nech	anism	conc	luded	l that	the	ope	rab	ilit	y of	ft	he	ο ρι	imp	s Wa	as no	ot
aff	ecte	d.							-			•					· ·.		-			
۸۰	an i	mmodi	ato	cor	rectiv	<u>م</u> د م	tion	the -	affer	ted v	alves	. We	re (open	ed 1	to	el	imi	ina	te 1	the	
pos	sibi	lity	of	the	subjec	t si	ngle	failu	re, t	their	faili	ng	to	open		The	s p	l ar	it 	rema	aine	d at
pow	er.	Anal	yse	es ar	e Dein	g pe	ertorme	a to	aete	erinine		iou I	TIC	αιΙΟ	15 (are	ε Τ'	eyu	4 I T	eu.	•	
																				•		
					•																	
	ļ									, · ·					2							
L			•	•			` \		-										·			
								-								·						
				77			. ~	•														

•

ć

· · ·

. .

NRC Form	366A
(9-83)	

U.S. NUCLEAR REGULATORY COMMISSION APPROVED OMB NO. 3150-0104 EXPIRES: 8/31/86

LICENSEE EVENT REPORT (LER) TEXT CONTINUATION

FACILITY NAME (1)	DOCKET NUMBER (2)			LER NUMBER (PAGE (4)					
		YEAR		SEQUENTIAL NUMBER						
Palisades Plant	0 5 0 0 0 2 5 5	9 4	-	0 0 4	-	0 0	0 2	OF	0	5

EVENT DESCRIPTION

On February 9, 1994, at 5:45 pm, while the plant was operating at 100% power, a previously unidentified single failure mechanism which could affect the Engineered Safeguards System (ESS) pumps was discovered. It was discovered that a single active failure could disable the seal cooling to the ESS pumps and that the backup cooling supply was not fully qualified. An evaluation of the plant condition and of the effects of the potential failure mechanism concluded that the operability of the pumps was not affected.

The affected valves were opened to eliminate the possibility of the subject single failure, their failing to open. The plant remained at power.

This event is reportable in accordance with 10CFR50.73(a)(2)(ii)(B) as a condition outside the design basis.

CAUSE_OF_THE_EVENT

The cause of this event was the failure to recognize that the CS pumps are dependent on seal and bearing cooling and that this dependence was outside the plant design basis.

ANALYSIS OF THE EVENT

The Palisades Engineered Safeguards Systems (ESS) pumps are equipped with seal and bearing cooling. The initial design, as currently understood, considered the seal and bearing cooling as an optional function intended to extend pump bearing and seal life. Subsequent correspondence with the equipment vendors has put this statement in question. Until a positive conclusion can be made to the contrary, it is assumed that without cooling, the pumps might fail prematurely when called upon to pump hot water from the containment sump during recirculation. This is a condition outside the plant design basis.

ESS pump cooling is provided by: diverting a small portion of each pump's discharge flow through a heat exchanger, where it is cooled by Component Cooling Water (CCW); directing it through cooling jackets around the pump's seal areas; and then returning it to the pump suction. CCW is also directed to cooling jackets around the pump bearing areas. The CCW flow for all pump cooling is controlled by common supply and return valves, CV-0913 and CV-0950. (The Palisades CCW system has redundant trains of pumps and pump controls, but uses a single, common, piping system.) These two valves are opened automatically on a Safety Injection Signal (SIS). A backup cooling supply is available, through non-automatic valves, from the Service Water System (SWS). A sketch of the pertinent portions of the piping systems is attached.

<u>م</u>

U.S. NUCLEAR REGULATORY COMMISSION APPROVED OMB NO. 3150-0104 EXPIRES: 8/31/85

LICENSEE EVENT REPORT (LER) TEXT CONTINUATION

FACILITY NAME (1)	DOG	KET N	KET NUMBER (2)						LER NUMBER (3)									PAGE (4)				
									YEAR			SEQUENTIAL NUMBER				ISION MBER						
Palisades Plant	0	5	0	0	0	2	5	5	9	4	-	0	0	4		0	0	: d	3	OF	0	5
The normal configuration and CV-0950 to be closed.	for Bo	the th	CC of	W t the	o t se	he va	pur ve:	np : s ai	sea re	l co	ool ina	ing lo	ha ade	d b d t	een ot	n fo che	or b	oth n p	ĊV	-09 tio	13 n.	

and CV-0950 to be closed. Both of these valves are spring loaded to the open position, requiring both instrument air and electrical power to hold them closed. The valves which supply the SWS backup cooling are also normally closed, but are spring loaded to the closed position, requiring availability of both instrument air and electrical power to open them.

If, following a Loss Of Coolant Accident (LOCA), either CV-0913 or CV-0950 failed to open on demand (possibly due to binding of the valve stem or similar failure) cooling flow to the ESS pumps would not be available from the CCW system. Conceptually, recovery from such a failure would simply require the operators to initiate the alternate cooling by closing the open CCW valve and opening the SWS valves. Palisades design features complicate this recovery; instrument air is not a safety grade system and thereby might not be available. These conditions lead to the possibility of a single active failure disabling the ESS pumps.

The use of non-safety grade instrument air to open the backup cooling implies that credit should not be taken, in the design basis, for operation of backup cooling. Therefore, if either CV-0913 or CV-0950 should fail to open on demand, all (safety grade) cooling to the ESS pumps, and consequently the functioning of the pumps themselves, could eventually be lost.

There are three types of ESS pumps used at Palisades, Containment Spray (CS), High Pressure Safety Injection (HPSI), and Low Pressure Safety Injection (LPSI). In the FSAR descriptions of both the HPSI and the LPSI pumps, the seal coolers are described as being supplied "to prolong seal life"; the FSAR description of the CS pumps makes no mention of the seal cooling at all. The statement "to prolong seal life" has typically been taken to mean that the pumps would survive their required accident duties without cooling, but cooling was provided to reduce maintenance due to normal wear. The safety injection pumps were supplied by Combustion Engineering; the containment spray pumps by Bechtel. The system designers and, probably, the writers of the FSAR descriptions were different. It is not known, at this time, why a description of the seal cooling appeared for two pump types and not for the third. It is also not known how long a pump seal would function if its life were not "prolonged." An evaluation of ESS pump and seal performance and cooling dependence is being performed. Each pump type is discussed below:

1) The CS pumps are single stage centrifugal pumps. The effect of operation of the spray pumps without cooling is not known. The original quotation from the vendor stated "Should there be a stoppage of cooling water, the only damage would occur to the pump seal." Subsequent correspondence, discussing pump operation with 325°F water, states that operation without cooling could quickly lead to seal failure, and questioned the effects on bearing life. The 325°F temperature discussed in that correspondence is inappropriate for the CS and HPSI pumps, since they never operate at that temperature. Current analyses conclude that the sump temperature at initiation of recirculation never reaches 250°F, and cools after that.

NRC Form 366A (9-83)

IRC Form (9-83)	386A			r þer	DÓPT	// 58	1. 75	YT CON	T 1811	1471		U	.S. NUCI AI ED	LEAR F PPROV KPIRES	REGULATO /ED OMB N 5: 8/31/85	RY COM 0. 3150	MISSIO -0104
	۔						/ I.E.										
ACILITY N	IAME (1)	DOCKET	DOCKET NUMBER (2)							LER	UMBER (3				PAGE (4)		
						, ,		YEAR		SEQUENTIAL NUMBER		 		ION SER.			
Palisa	des Plant	0 5	0	0 0	0 2	5	5	9 4	-	0	0 4		0	0	0 4	OF	0
<u>_2</u>)	The HPSI pumps are se has supplied data tha while pumping 300°F w cooling, while pumpin would encounter would which calculate sump accident, and assume highest analytical sum in the analyses which using the same comput operating (as may be valves) the sump temp therefore, would not	ven st t stat g 250° be th temper the co mp tem assume er cod assume eratur be dir	age c e the The F wat at at ature mplet perat es fa es bu d if e wou ectly	ent pui HPS er. the s w e f ilu the the ld af	rifu mp s I pu e in ere ailu at ot y sin be s fect	gal eals mp \ e hi itia done re c the re c the f th gle igni ed b	pun s ca /enc ighe atio of c tim full fa ific oy a	nps. an fun dor ap est te on of boun one tr ne of right ly rev ilure cantly a loss	The cti pro mpe d t ain rec tra is of	HP on ved rat irc he of in. ed, ole co	SI pui prope bear ure w ulati condi safe ulati An show en to r. T oling	np rly ing ater on. tion guan on, eng tha be be	seal open the Exins for cds e 235 ineen at w ⁴ one HPSI	man th r rat e HI ist ollo equ .5°I ring ith of	nufac no cou ion w PSI pu ing au owing ipment F, is g est both the (mps,	turen oling ith r umps nalys an t. 1 four imate CCW	r J, no Sis The nd e, ins
	The HPSI pumps do, ho controlled suction pa cooling heat exchange the original Palisade suction head of the H that use of this "sub Subsequent engineerin currently believed th suction is necessary particularly high flo operating procedures sub-cooled suction pa the sub-cooled suction design, as presented from the CS pump disc seal and bearing cool	wever, th fro rs, to s desi PSI pu -coole g eval at use to mai w port direct th fol n path in the harge, ing.	have m the gn. mps b d suc uatio of t ntain ions the lowin s for FSAR whic	a di suc Use y r tio ns he of ope g i HP	depe scha of aisi have inqua the rato SI SI Iso	nder rge of this ath lec te te post atic pera sth make	nce of the s su the is d to e in NPSI t-L(to ation nis	on th the C HPSI uction sucti not r ques for CA re align of rec on is depen the HP	e C S pu on equition the circ inct SI	S p ump mps th pre ire nin e f HP cul HP ula in ce, pum	umps. s, th was can b ssure d for g of rom u SI pu ation SI pu tion. conf on t ps in	A roug provoos pun thi se mps ph mps The orm he dir	manu gh th video t the The I np op s sta of th dur ase. to u his u ance sub-o	ual ne for for for for for for for for for for	ly shutdo s par et po R sta ation ment. sub-co urren lize iance th th led s epend	own t of sitiv tes It ooled t the upon e pla uctio ant o	ve is d ant on
3)	The LPSI pumps are si accident scenarios, b automatically tripped	ngles yalo onin	tage ss of itiat	cen se ion	trif al a of	uga nd l rec	l pi bear irci	umps. ring c ulatio	Th cool	ing	åre n sinc	ot e t	affe hey a	cte are	d, dụ	ring	
	The LPSI pumps are us where pumped fluid te design to bypass the after initiation of r operation at 325°F.	ed, ho mperat LPSI p ecircu	wever ure c ump t llatio	, f an rip n.	ors bea on The	huto s h rec FS/	dowi igh irci AR	n cool as 30 ulatio states	ing 0°f on i 5 th	ı (d nit nat	ecay Provi iatio the s	hea sio n, eal	t ren n is or to s are	mov ma or ed	al) s de in estar esign	ervi the t th ed f	ce, em or
	· · ·																

probability of such a failure due to the subject single failure is judged to be quite low. The two valves involved are both "fail open" valves, meaning that if instrument

:					•						
				•							
NRC Form 3 (9-83)	386A Lic	Censee event ri	EPORT (LER) TE	XT CON	TINUA	TION	U	.S. NUCLEAR APPRO EXPIRE	REGULATOR VED OMB NO S: 8/31/86	IY COMMIS	SSION
	AME (1)	DOCKET NUMBER (2)	· · _ · _ · · · · · · · · · ·			R NUMBER (3)			P	AGE (4)	<u> </u>
					s	EQUENTIAL	_	REVISION			
			•	YEAR		NUMBER	 _	NUMBER			
Palisa	des Plant	0 5 0 0	0 2 5 5	9 4	- o	04	 -	0 0	0 5	оғ О	5
oper add With the oper for	n'(safety) position. P ition, the effect of pu hout knowledge of both safety significance of rate with both of the s their failing to open omplete evaluation of t	roper operat mp operation the time to this event ubject valve on demand. he safety si	ion of thes without co "failure," cannot yet s in their gnificance	e valv oling and th be ass open p of thi	es is water e typ essec ositi	verif is, a be and i d. The ion, rem	ied t tl magn act move	quarte nis tim nitude tion ta es the e provi	ded in	In (nown. ilure, io ial	•
sup	prement to this LER.		. .				-				
LUK	RECTIVE ACTION				2		•	· 			
-,	normal position for bo that position. Since require both instrumen eliminates the potenti the subject failure.	th CV-0913 a the valves a t air and el al for a sin	nd CV-0950 re spring o ectrical po gle active	is "OP perate wer to failur	EN", d to clos e dis	and to the op se them sabling	pla en j , tl	ace the position nis act e ESS p	valve on, and ion oumps d	ic is in i lue to	D
2)	Assess the interim val pumps (CV-0913 and CV- plant risk.	ve alignment 0950 open) t	for the CC o verify th	W cool at the	ing t alig	o the o gnment	eng ser	ineered ves to	l safeç minimi	guards ize	5
3)	Determine the cooling	requirements	for the ES	S pump	S.						
4)	Determine the NPSH req	uirements fo	r the ESS p	umps.	;	• • •		•			
5)	Modify the plant desig	n or operati	ng methods	to mee	t the	ese req	uir	ements.			
6)	Perform a design revie analysis of the system	w of the CCW is.	and SWS sy	stems,	incl	uding	a s'	ingle f	ailure	9	
<u>ADD</u>	ITIONAL INFORMATION							•			
A si com	upplement to this LER w pleted.	vill be provi	ded when co	rrecti	ve ac	ctions	2, 3	3, and	4 are		
• • •						•			·		
، . 			· · · · · · · · · · · · ·								
`							-	i			

