ATTACHMENT

Consumers Power Company Palisades Plant Docket 50-255

AUXILIARY FEEDWATER SYSTEM RELIABILITY ANALYSIS

March 21, 1986

131 Pages

PALISADES PLANT

AUXILIARY FEEDWATER SYSTEM RELIABILITY ANALYSIS

TABLE OF CONTENTS

		Page
1.0	BACKGROUND	1
2.0	RELIABILITY ANALYSIS	2
	 2.1 METHODOLOGY 2.2 FAULT TREES 2.3 CRITERIA AND ASSUMPTIONS 2.4 DATA SOURCES 2.5 CORRECTIONS TO FAULT TREES 2.6 RESULTS 	2 3 4 5 5 7
3.0	MSLB AFW MODEL	9
4.0	CONCLUSIONS	13
5.0	REFERENCES	14

APPENDICES

A. SYSTEM UNAVAILABILITY RESULTS

B. MSLB AFW MODEL CUTSETS

C. FIGURES AND DRAWINGS

D. HARDWARE FAULT TREE

E. TEST AND MAINTENANCE FAULT TREE

F. ELECTRICAL FAULT TREES

G. DATA

AUXILIARY FEEDWATER SYSTEM RELIABILITY ANALYSIS

1

1.0 BACKGROUND

As a result of the Palisades Main Steam Line Break submittal, concern has been raised, by the NRC, regarding the adequacy of the existing Palisades auxiliary feedwater system (AFW). This concern is based on the evaluation of the AFW model used in the Main Steam Line Break (MSLB) submittal. Because of the importance of the issue, this report was created to clarify any potential misinterpretation of the results of the AFW system model analysis included in the MSLB submittal. The intent of this report is to provide information in support of the position that the AFW system model, as used in the MSLB submittal, should not be construed to represent the reliability of the system. This report focuses on two main elements 1) an analysis which more closely represents our state of knowledge regarding the reliability of the AFW system design and operation, and 2) a discussion of the results derived for the MSLB AFW model and why a significant portion is inappropriate in the context of the overall system reliability (refer to sections 2.1 and 3.0).

In order to accomplish item 1), a separate analysis of the AFW system was conducted using the guidelines of NUREG-0635. The reasons for using NUREG-0635 are;

- a) to maintain consistency in the method of analysis (the system has undergone two previous analyses using these criteria).
- b) the system has been significantly modified since the first analysis, using the same criteria allows direct comparison of the new results to the original results.
- c) the results of the new analysis can be compared to the results for other plants already analyzed using the same criteria.

As indicated in a) above, two previous reliability analyses have been conducted. The purpose of the second analysis was to demonstrate the level of increased reliability attainable from proposed modifications to the system. A recent review of this second analysis showed that the fault tree models already developed could be used for an analysis of our existing system. Necessary corrections and alterations to the models were made and are identified in section 2.5.

As indicated in b) above, modifications to the system to improve reliability by minimizing the failure effects of human error, common causes, and single- or double-point vulnerabilities were completed after NUREG-0635 was published. Therefore, the results obtained by the original analysis are no longer accurate. Several of the significant modifications are listed below.

- 1. Addition of a third dedicated AFW pump.
- 2. Manual or automatic flow initiation on receipt of low steam generator water level, and manual or automatic isolation of the depressurized steam generator following secondary system line breaks.
- 3. Safety grade AFW flow indication to the main control room.
- 4. Redundant emergency power supply for the electrical equipment, instrumentation, and control circuits associated with the modifications.
- 5. Testability of AFW control circuits.
- 6. Seismic and environmental qualification to meet applicable Palisades guidelines.

2.0 RELIABILITY ANALYSIS

2.1 METHODOLOGY

Fault tree analysis was used to identify those potential failures that could be chief contributors to AFW system unreliability during the three transient conditions listed below.

- LMFW Loss of main feedwater with concurrent reactor trip and with offsite power available.
- LMFW/LOOP LMFW with concurrent reactor trip and loss of offsite power (LOOP). Onsite emergency power sources remain available.
- LMFW/LOAC LMFW and concurrent loss of all alternating current power (LOAC), except that which is battery derived.

The model used in the current analysis is not the same as the model used in the MSLB submittal. The reasons for using a different model are detailed below.

 The time interval of interest as stated in NUREG-0635 is the unavailability of the AFW system during period of time to boil the steam generator dry which for Palisades has been established as 15 minutes. The model used in the MSLB submittal is based on a 24 hour mission time and therefore introduces significant contributions from failures of the system to continue to function.

- 2) The model used in the MSLB submittal is a modified version of the complete AFW fault tree. A discussion of the differences is provided in section 3.0 "MSLB AFW Model". However, a major difference in the models is due to an arbitrary assumption that the failed steam generator was unavailable. This assumption effectively eliminates the redundancy in flow paths from the AFW pumps to the steam generators.
- 3) The level of detail in the current plant model goes well beyond the level of detail prescribed by NUREG-0635. Since part of the concern is based on the degree of reliability as compared to other plants or proposed goals, it was decided that the reliability analysis should be completed in a manner that allows such comparisons.

As additional insight, each model was evaluated with two sets of data. The first set of data is generic as provided by NUREG-0635. The second set includes plant specific data where such data was available. When plant specific data was not available, generic data was used. This allows comparison of the relative impact of the use of plant specific data to generic data.

Analysis of the fault trees was conducted using the WAMCUT computer code.

2.2 FAULT TREES

Three fault tree models were used. The fault trees include random failures of electrical and mechanical components and the effects of testing and maintenance, and human error. The fault trees are shown in appendices D, E, and F.

The trees were examined for causes of specific component failure modes and evaluation of their likelihood of occurrence. The causes considered were:

> Random independent failures; Test and maintenance; and Human error.

Each of the three master trees was developed for the loss of main feedwater (LMFW) transient condition. For other transient conditions - LMFW with loss of offsite power (LMFW/LOOP) or LMFW with loss of all alternating current power (LMFW/LOAC) - some systems or components are unavailable. Those systems or components were deleted before analysis.

NUREG-0635 was used to establish the top event of the master fault tree, set the initiating events, and as the basic guide for the analysis. The top event is taken from NUREG-0635 which states;

3

The time interval of interest for all transient events considered is the unavailability of the auxiliary feedwater system during the period of time required to boil the steam generator dry. (Reference 2, page III-10)

The fault tree models were developed assuming statistical independence for hardware/operator failures, human error, and test and maintenance failures.

2.3 CRITERIA AND ASSUMPTIONS

The following analytical criteria and assumptions were used.

- * AFW system availability is defined as successful system startup within the steam generator boil dry time of 15 minutes.
- The availability conditions for AFW system power sources during the analyzed transients were as follows;
 - 1) LMFW All alternating and direct current power available.
- 2) LMFW/LOOP Two diesel generators and battery backup available.
- LMFW/LOAC Direct current and battery-backed alternating current available (instrument and control power available only)
- Although water from the fire protection system and service water system is available to backup the AFW system condensate storage tank, these sources were not considered in the fault tree analysis.
- All component and operator actions were assumed to be either successes or failures. No partial successes were considered.
- Top event failure probability will be calculated by summing the failure probabilities from hardware, test and maintenance, and human error contributions. The probabilities for each category are rare event approximations.
- ' Human error probability has been considered in the Hardware and Test and Maintenance fault trees.
- Component outage due to maintenance will only be considered for active components (pumps, control valves, etc). Maintenance on manual valves is considered negligible.

2.4 DATA SOURCES

Data used for the component failure rates in the hardware and test and maintenance trees was taken from the NRC data found in Appendix III, Table III-3 of NUREG-0635. Electrical tree component data was taken from IEEE Std 500. Human error probabilities were drawn from NUREG-1278 and NUREG-0635. Specific component failure data is listed in Appendix G.

2.5 CORRECTIONS TO FAULT TREES

As part of the preparation for this analysis, the fault trees utilized in the second reliability analysis were reviewed for accuracy. Several discrepancies were identified and corrected. Changes made are indicated on the fault trees and discussed below.

2.5.1 Hardware fault tree

- Operator errors had been treated as independent events. Since each operator error in this tree involved operator response to a failure of the automatic initiation of the system, it was decided that a high degree of dependence was involved. Based on this decision, all operator actions were grouped into three basic types; a) failure to actuate the system from the control room, b) failure to actuate the system locally, and c) failure to manually operate components.
- 2) The original hardcopy of the model did not identify the primary events representing the failure of preferred ac power for instrumentation and control. These events were added to the model.
- 3) The failure mode for the motor-operated values in the AFW flow paths was originally identified as fail to open. These values are normally open and should be identified as fail to remain open. The correction to the fault trees did not get accomplished. However, in the examination of the system cutsets it was noted that the failure of these values did not contribute significantly to the system unavailability. Therefore, no corrections were made since the only impact was a slight conservatism in the numerical results and relative ranking of cutsets of intermediate to low contribution.

2.5.2 Test and maintenance fault tree

 As in 2.5.1 (1) above, the human error associated with restoration of the outlet valves from the condensate storage tank to the AFW pumps was treated as independent for each valve. Because of the location and basis for restoration (ie if isolation was necessary at that point then both valves must be closed and restored), the separate events were combined into one.

- 2) Credit was taken for a manual valve which bypasses the pressure control valve in the steam line to the turbine-driven pump. The current PRA model does not take credit for successful operation of this valve. While it may be possible to control steam inlet pressure to the turbine driver by manually regulating a gate valve, the ability to do this efficiently and consistently has not been demonstrated and it was deleted from the model.
- 3) In several cases, maintenance on valves was included when a) it is not physically possible to isolate these valves during power operation or b) isolation would disable 2 of the 3 pumps which is not allowed by Technical Specifications. Each of these valves was removed from the WAMCUT input deck and are shown lined-out in the model in Appendix E.

2.5.3 Electrical fault trees.

The majority of the failure probabilities for electrical components were derived by treating the components as standby with a monthly testing interval. Since several of the components are performing their normal function and failures associated with them would be immediately detectable, while this treatment is inaccurate its importance was not obvious. Since the failure of power is represented in the master tree as basic events with a probability derived from the output of the evaluation of the appropriate electrical tree, the impact of this treatment was determined by reevaluating the electrical trees and by examining the cutsets from the three transient cases using generic data to determine the importance of loss of power as a contributor to system unavailability.

The reevaluation of the electrical trees was accomplished by changing the failure probability of components which do not experience demands to probabilities of mission time failures of 8 hours (first reevaluation) and 15 minutes (second reevaluation). In general the changes resulted in reduced unavailabilities for the electric power sources.

The examination of system cutsets disclosed that the only case where the failure of electric power was identified as a significant contributor (>1%) to system unavailability was for the transient initiator loss of main feedwater with concurrent loss of offsite power. In this case, the failure of bus 1D and/or bus 1C contributed substantially to the system unavailability. However, the change in unavailability (using 8 hour or 15 minute mission times) for these buses under loss of offsite power conditions was insignificant (changed from 3.06E-02 to 3.05E-02). The reason for the lack of difference is that the dominant failures for these buses under loss of offsite power are actual demand failures of the diesel generators and their output breakers.

'

Based on these results, the system fault trees were not rerun with the revised electrical failure data. The results from the analyses with the initial electrical data were retained while recognizing that they were numerically conservative with respect to the electrical failures.

RESULTS

2.6

The results of the analyses of the system fault trees are included in Appendix A and are discussed in the following sections. The information provided in Appendix A is arranged as follows.

Page 1 is a presentation in table form of the numerical unavailabilities of electrical power and the system for each transient case analyzed for both generic and plant specific data. The contributions from hardware, maintenance, and human error were derived by an arbitrary reorganization of cutsets. The reorganization was completed by 1) moving all cutsets containing an operator error to a separate group (human error), 2) of the remaining cutsets any which incuded maintenance were separated into another group (maintenance), and 3) the remaining cutsets were identified as hardware.

The remainder of the Appendix is comprised of listings of the cutsets for each transient case. Pages two through seven involve the output from the use of generic data. Pages eight through thirteen is the output from plant specific data. For each type of data, three pages represent unavailabilities from the master hardware tree for each transient and three pages for unavailabilities from all considerations for each transient. Each page includes a listing of dominant cutsets and the contribution of each (cutset unavailability/system unavailability) and a listing of the basic events which contribute substantially to the system unavailability (sum of the unavailabilities of the cutsets containing the basic event/system unavailability).

2.6.1 Results from Generic Data Evaluation

2.6.1.1 General Results

The analysis indicates the factor having the greatest impact on the unavailability in all three cases was failure of the relief valve at the discharge of pumps P8A and P8B failing to remain closed, either as a single or in combination with the unavailability of pump P8C or its flow paths. Other significant contributors are: failure of P8C either as a pump failure or due to loss of bus 1D; maintenance on control valves or check valves; operator error; and various causes of P8C or P8B pump trains (ie maintenance, power failure, or valve failures).

2.6.1.2 Loss of Main Feedwater

The dominant failure modes for this transient are double faults. The most significant cutset contribution is the failure of the pump discharge relief valve to remain closed and the failure of P8C to start. The relief valve failure represents the common mode failure of pumps P8A and P8B. Primary event contributors in order of significance are: failure of the relief valve; failure of P8C to start; maintenance on control valves, check valves and P8C; and operator errors involving restoration of valves after testing or maintenance.

2.6.1.3 Loss of Main Feedwater/Loss of Offsite Power

The dominant failure modes for this transient are also double faults. The most significant cutset contributor is the relief valve and the loss of power to P8C. Primary event contributions in order of importance are: the relief valve; loss of power from bus 1D; P8C fail to start; loss of power from bus 1C; maintenance on control valves, check valves, or P8C; operator restoration errors; and maintenance on P8B, a pressure regulating valve, and a check valve.

2.6.1.4 Loss of Main Feedwater/Loss of all AC

The dominant failure modes for this transient are single faults. The dominant contributors are: the relief valve; maintenance on P8B, its check valve, and its pressure regulating valve; and P8B fails to start and operator restoration errors.

- 2.6.2 Results from Plant Specific Data Evaluation
- 2.6.2.1 General Results

The failures representing the largest contribution to unavailability in all three transients is pump fails to start. Other general contributors are: the relief valve failing to remain closed; failure of the auto start circuitry and the operator error associated with placing the system in service.

2.6.2.2 Loss of Main Feedwater

The dominant failures modes for this transient are triple faults. The most significant contribution is made by the first cutset (approximately 24%). This cutset represents the combination of all three pumps failing to start. The more important primary event contributions in order of significance are: P8C fails to start; P8A fails to start; P8C fails to start; the relief valve fails to remain closed; and failure of the auto start circuit and the associated operator error in response to the failure of the start circuitry.

2.6.2.3 Loss of Main Feedwater/Loss of Offsite Power

The dominant failure modes for this transient are again triple failures. The largest contribution to the system unavailability (approximately 47%) is identified in the first four cutsets. These cutsets represent failure of all three pumps. They include combinations of pumps failing to start and loss of power to P8A and/or P8C. The significant primary event contributions include: P8B fails to start; loss of power from bus 1C; loss of power from bus 1D; P8C fails to start; and P8A fails to start.

2.6.2.4 Loss of Main Feedwater/Loss of all AC

The dominant contributors to this transient are single faults. The most significant contribution is the failure of P8B to start (approximately 72%). Other contributors are: maintenance on P8B, its steam pressure regulating valve, or its discharge check valve; and operator restoration errors associated with test and maintenance.

2.6.3 General Conclusions

In comparing the results from generic data versus plant specific data, the calculated system unavailability is not significantly different. The major difference in the results was a reorganization of the importance of the primary events in their contribution to the system unavailability. In the analyses using generic data, the failure of the pump discharge relief valve for P8A and P8B is the dominant contributor in both cutset and primary event contribution. For analyses using plant specific data, the combination of all available pumps failing to start is the dominant contributor in both cutsets and primary event contribution.

In evaluating the results from the analyses using plant specific data, no serious deficiencies were identified. There were no single point vulnerabilities associated with hardware or maintenance identified. Any further changes considered should be made only after careful evaluation of costs, benefits and importance in relation to the results of the analysis of the plant integrated risk model.

3.0 MSLB AFW MODEL

In this section, the reliability of the auxiliary feedwater system as developed for examination of main steam line break issues is discussed (ref CPC to NRC May 23, 1985). The purpose of the main steam line break logic models was to determine the risks associated with steam generator blowdown events and to determine the benefits of various backfits being proposed to minimize these risks. In this regard, assumptions were made that significantly alter the system

configuration (ie eliminated redundant portions of the system) and therefore bias the numerical results of the analysis in a way that make it inappropriate to use these logic models for comparison with other risk based AFW reliability analyses such as that presented in the preceding section. Some of the more significant assumptions include:

- those particular to the main steam line break transient which artificially enhance the benefits of some of the proposed backfits,
- those conservative with respect to system reliability that had no affect on the outcome of the main steam line break analysis and were therefore left uncorrected,
- the exclusion of any repair or recovery of failed hardware and
- an explicit attempt to model common cause events (those component failures which result from common manufacturer, function, etc).

The auxiliary feedwater cutsets extracted from the main steam line break report are included in appendix B. They are rearranged into sections to permit an understanding of the contributors to AFW failure (as developed in that specific evaluation) and to identify where the assumptions outlined above had an effect. A brief description of these cutsets follows including a discussion of their contribution to AFW unavailability.

The first group of cutsets include those independent to the auxiliary feedwater system. The independent module (AUX3IT) will be discussed in detail later. The remaining cutset contains a single operator error - AFVOT - which represents failure to increase the flow to the intact steam generator. This cutset results from the assumption that the failed steam generator is isolated following the steam line break event and remains disabled as a viable heat sink throughout the transient. In reality, feedwater can be supplied to this generator, particularly during non-steam line break transients and this operator error should not be a single. In the normal system configuration - AFVOT - would be part of group of doubles in which the second event represented the failure of the redundant flow path from a given pump train. This cutset, therefore, is a result of assumptions made that are peculiar to the steam line break evaluation. Additionally, preliminary analyses in support of the upgrade of emergency procedures indicate that the flow supplied automatically through a single AFW train may be sufficient for decay heat removal.

The second group of cutsets are associated with makeup to the condensate storage tank. Given that there is normally several hours of condensate available in the tank, these failures are more closely associated with the long term functioning of the auxiliary feedwater system than the failures which would be identified in other reliability analyses (such as NUREG 0635). This part of the steam

line break analysis did not take credit for operator action to supply makeup from available systems including service water and the fire system, as outlined in plant procedures. In the normal system configuration with service water and fire water included as backups, these cutsets would become substantially lower in their contribution to the system unreliability. These cutsets, therefore, are a result of simplifying assumptions made with respect to auxiliary feedwater reliability that had little effect on the outcome of the steam line break evaluation.

The last group of cutsets identify power dependencies coupled with failures of pumps and flow control valves. The AC power system failures involve disabling of an emergency bus (Bus 1C) which in these models is assumed to take out one motor driven pump and the air pressure to steam supply valves for the steam driven pump. The models conservatively ignore the nitrogen backup to instrument air supply to the steam driven pump valves as well as the ability to operate these valves locally by hand. In the normal system configuration these cutsets would be ANDED with failures of the turbine driven pump train or an operator action to manually admit steam to the pump. Consequently, these cutsets result from uncorrected assumptions which had no affect on the outcome of the steam line break study plus a lack of accounting for repair and recovery actions. Additionally, two of the cutsets contain flow control valve failures which, like AFVOT discussed above, appear because it is assumed that only one steam generator is available. In the normal system configuration these cutsets would also include failures of the redundant flow path from the respective pump train.

The cutsets which remain are those which make up the independent module, AUX3IT, introduced above. The first group presented are those associated with the attempt to explicitly quantify common cause failures in the steam line break evaluation. Common cause events were developed for various classes of equipment in the AFW system including the pumps, air operated valves, and instrumentation required to actuate the system. Generic industry data was used to quantify these events and they end up making up the bulk of the independent module in terms of its probability. Setting the appropriateness of these values aside, there are a number of features of the plant design which deserve some discussion for which credit could be taken to mitigate these failures. Diversity in the pump design has been provided by including both turbine and motor drivers, for example. Also, the motor driven pumps are located in separate areas of the plant minimizing location dependencies. Failure of flow controllers and instrumentation can be overcome by operator action to maintain level in the steam generators rather than concentrate on AFW flow only. In addition, the valves themselves can be operated locally if necessary.

The next cutset is associated with spurious FOGG actuation (Feed Only Good Generator). The assumption that only one steam generator is available enters in to the generation of this cutset. Given that two steam generators are normally available this cutset should be ANDED with failures of components in the other flow trains. In the normal system configuration, this event would be represented by a group of triples involving spurious actuation AND failure of two flow paths. Additionally, it should be noted that FOGG signals for the two steam generators are interlocked such that FOGG isolation of one generator precludes this spurious FOGG signal for the other generator. This interlock was not included in the steam line break logic.

The next group of forty cutsets involve the loss of both flow paths to the unaffected steam generator. Again, this is a set of failures which results from assuming that only one steam generator is available as a heat sink throughout the transient. These cutsets should in fact be coupled with corresponding failures in the flow paths to the other steam generator. In the normal system configuration these cutsets would change to 3d and 4th order cutsets which represent combinations of a pump train and two flow paths; or four flow paths; or three flow paths and an operator action.

The next cutsets deal with the potential for flow diversion in the AFW pump suction. In fact, these failure modes are incorrect. A conservative assumption was made that a Y-strainer in the suction line to the AFW pumps, if left open following maintenance could lead to sufficient diversion of condensate to fail a portion of the system. Subsequent investigation reveals that the line from the strainer is small and will not divert sufficient flow to cause pump suction to drop significantly, is not only valved but capped, and if it were to be left open would result in condensate to pour on the floor of the turbine building where it would be difficult not to notice. These cutsets are a result of conservative modeling assumptions that had no affect on the outcome of the steam line break evaluation and were left uncorrected in the analysis. This failure mode has been deleted from the model.

The next group of cutsets represent human error in the calibration of instrumentation associated with AFW pump and flow control valve operation. Similar to the common cause failure of flow control instrumentation, miscalibration of this equipment will result in the operator taking feedwater flow control into manual in order to maintain steam generator inventory. This recovery action was not included in the steam line break logic. The pump suction pressure miscalibration should be a single event (as was noted in the staffs review of these cutsets). Nevertheless, it should be noted that testing of these instruments independent of their calibration occurs frequently during pump surveillance tests. Further, even if these monthly surveillances were to fail to uncover the deficiency, normal operator response to low suction trip of the AFW pumps would be to provide fire or service water pressure to the pump suction

12

effectively eliminating the low pressure condition. Additionally, steam supply to the turbine driven pump can be provided locally even in the presence of a low suction signal. Again, recovery actions such as these were not incorporated in the steam line break models.

The final group of cutsets found in the independent module are the random pump and valve failures similar to those associated with the reliability analysis presented in the preceding section.

Given the preceding discussion, it should be clear that the main steam line break logic models were not developed with the intention of demonstrating the overall reliability of auxiliary feedwater. Assumptions specific to the main steam line break transient, assumptions that conservatively enhance the benefits of various backfits and conservative assumptions that had no affect on the outcome of the main steam line break evaluation bias the bottom line results. Explicit attempts to model common cause and a lack of obvious repair and recovery actions result in additional bias. While the modelling was sufficient for the purpose of evaluating main steam line break issues, it is not appropriate to use them to draw conclusions as to the strengths and weaknesses of the system for a spectrum of more common transients.

4.0 CONCLUSIONS

As indicated in section 1.0, the purpose of this report is to provide an analysis of the reliability of the AFW system and justification for not equating the results of the MSLB AFW model with system reliability. In section 2.0, the results of a separate reliability analysis are discussed. The results indicate that the system as modified is reliable. Additionally, in a qualitative context the system includes multiple trains any of which is capable of removing decay heat, is automatically actuated, and has no single point vulnerabilities except for perhaps some human errors associated with calibration. These are the features of an AFW system "characterized as having a high reliability" as explicitly outlined in section 4.6.1 of NUREG-0635.

In section 3.0, inconsistencies between the MSLB model and a reliability model were presented. The differences between the special case MSLB model and a general case reliability model are significant and cause a substantial disparity in both numerical and qualitative results. The MSLB model represents the system under unique conditions which do not allow an accurate derivation of the system reliability.

In addition, substantial improvement in the system reliability has been achieved through the completion of modifications as identified in section 1.0.

In conclusion, we believe the system is reliable and that the results of the reliability analysis have not disclosed any serious deficiencies in the current system.

5.0 REFERENCES

- Guide to the Collection and Presentation of Electrical, Electronic, and Sensing Component Reliability Data for, Nuclear Power Generating Stations, IEEE Std 500 (1977), Institute of Electrical and Electronics Engineers, Inc.
- Generic Evaluation of Feedwater Transients and Small Break Loss of Coolant Accidents in Combustion Engineering Designed Operating Plants, NUREG-0635, U.S. Nuclear Regulatory Commission, January 1980.
- Handbook of Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications, NUREG/CR-1278, U.S. Nuclear Regulatory Commission, April 1980.
- Reactor Safety Study: An Assessment of Accident Risks in U.S. Commercial Nuclear Power Plants, WASH-1400, U.S. Nuclear Regulatory Commission, 1975.
- 5. Equipment Availability Component Cause Code Summary Report for the Ten-Year Period 1967-1976, EEI Publication 77-64A, January 1978.
- 6. Clarification of TMI Action Plan Requirements, NUREG-0737, U.S. Nuclear Regulatory Commission, October 1980.
- 7. Auxiliary Feedwater System (PWR), NUREG-0800, Standard Review Plan 10.4.9, U.S. Nuclear Regulatory Commission, July 1981.

PALISADES PLANT

AUXILIARY FEEDWATER SYSTEM RELIABILITY ANALYSIS

TABLE OF CONTENTS

		Page
1.0	BACKGROUND	1
2.0	RELIABILITY ANALYSIS	2
	 2.1 METHODOLOGY 2.2 FAULT TREES 2.3 CRITERIA AND ASSUMPTIONS 2.4 DATA SOURCES 2.5 CORRECTIONS TO FAULT TREES 2.6 RESULTS 	2 3 4 5 5 7
3.0	MSLB AFW MODEL	9
4.0	CONCLUSIONS	13
5.0	REFERENCES	14

APPENDICES

A. SYSTEM UNAVAILABILITY RESULTS

B. MSLB AFW MODEL CUTSETS

C. FIGURES AND DRAWINGS

D. HARDWARE FAULT TREE

E. TEST AND MAINTENANCE FAULT TREE

F. ELECTRICAL FAULT TREES

G. DATA

AUXILIARY FEEDWATER SYSTEM RELIABILITY ANALYSIS

1

1.0 BACKGROUND

As a result of the Palisades Main Steam Line Break submittal concern has been raised, by the NRC, regarding the adequacy of the existing Palisades auxiliary feedwater system (AFW). This concern is based on the evaluation of the AFW model used in the Main Steam Line Break (MSLB) submittal. Because of the importance of the issue, this report was created to clarify any potential misinterpretation of the results of the AFW system model analysis included in the MSLB submittal. The intent of this report is to provide information in support of the position that the AFW system model as used in the MSLB submittal should not be construed to represent the reliability of the system. This report focuses on two main elements 1) an analysis which more closely represents our state of knowledge regarding the reliability of the AFW system design and operation, and 2) a discussion of the results derived for the MSLB AFW model and why a significant portion is inappropriate in the context of the overall system reliability (refer to sections 2.1 and 3.0).

In order to accomplish item 1) a separate analysis of the AFW system was conducted using the guidelines of NUREG-0635. The reasons for using NUREG-0635 are;

- a) to maintain consistency in the method of analysis (the system has undergone two previous analyses using these criteria).
- b) the system has been significantly modified since the first analysis, using the same criteria allows direct comparison of the new results to the original results.
- c) the results of the new analysis can be compared to the results for other plants already analyzed using the same criteria.

As indicated in a) above, two previous reliability analyses have been conducted. The purpose of the second analysis was to demonstrate the level of increased reliability attainable from proposed modifications to the system. A recent review of this second analysis showed that the fault tree models already developed there could be used for an analysis of our existing system. Necessary corrections and alterations to the models were made and are identified in section 2.4.

As indicated in b) above, modifications to the system to improve reliability by minimizing the failure effects of human error, common causes, and single- or double-point vulnerabilities were completed after NUREG-0635 was published. Therefore the results obtained by the original analysis are no longer accurate. Several of the significant modifications are listed below.

- 1. Addition of a third dedicated AFW pump.
- 2. Manual or automatic flow initiation on receipt of low steam generator water level, and manual or automatic isolation of the depressurized steam generator following secondary system line breaks.
- 3. Safety grade AFW flow indication to the main control room.
- 4. Redundant emergency power supply for the electrical equipment, instrumentation, and control circuits associated with the modifications.
- 5. Testability of AFW control circuits.
- 6. Seismic and environmental qualification to meet applicable Palisades guidelines.

2.0 RELIABILITY ANALYSIS

2.1 METHODOLOGY

Fault tree analysis was used to identify those potential failures that could be chief contributors to AFW system unreliability during the three transient conditions listed below.

- LMFW Loss of main feedwater with concurrent reactor trip and with offsite power available.
- LMFW/LOOP LMFW with concurrent reactor trip and loss of offsite power (LOOP). Onsite emergency power sources remain available.

LMFW/LOAC - LMFW and concurrent loss of all alternating current power

(LOAC), except that which is battery derived.

The model used in the current analysis is not the same as the model used in the MSLB submittal. The reasons for using a different model are detailed below.

 The time interval of interest as stated in NUREG-0635 is the unavailability of the AFW system during period of time to boil the steam generator dry which for Palisades has been established as 15 minutes. The model used in the MSLB submittal is based on a 24 hour mission time and therefore introduces significant contributions from failures of the system to continue to function.

- 2) The model used in the MSLB submittal is a modified version of the complete AFW fault tree. A discussion of the differences is provided in section 3.0 "MSLB AFW Model". However, a major difference in the models is due to an arbitrary assumption that the failed steam generator was unavailable. This assumption effectively eliminates the redundancy in flow paths from the AFW pumps to the steam generators.
- 3) The level of detail in the current plant model goes well beyond the level of detail prescribed by NUREG-0635. Since part of the concern is based on the degree of reliability as compared to other plants or proposed goals, it was decided that the reliability analysis should be completed in a manner that allows such comparisons.

As additional insight, each model was evaluated with two sets of data. The first set of data is generic as provided by NUREG-0635. The second set includes plant specific data where such data was available. When plant specific data was not available, generic data was used. This allows comparison of the relative impact of the use of plant specific data to generic data.

Analysis of the fault trees was conducted using the WAMCUT computer code.

2.2 FAULT TREES

Three fault tree models were used. The fault trees include random failures of electrical and mechanical components and the effects of testing and maintenance, and human error. The fault trees are shown in appendices D, E, and F.

The trees were examined for causes of specific component failure modes and evaluation of their likelihood of occurrence. The causes considered were:

> Random independent failures; Test and maintenance; and Human error.

Each of the three master trees was developed for the loss of main feedwater (LMFW) transient condition. For other transient conditions - LMFW with loss of offsite power (LMFW/LOOP) or LMFW with loss of all alternating current power (LMFW/LOAC) ~ some systems or components are unavailable. Those systems or components were deleted before analysis.

NUREG-0635 was used to establish the top event of the master fault tree, set the initiating events, and as the basic guide for the analysis. The top event is taken from NUREG-0635 which states;

3

The time interval of interest for all transient events considered is the unavailability of the auxiliary feedwater system during the period of time required to boil the steam generator dry. (Reference 2, page III-10)

The fault tree models were developed assuming statistical independence for hardware/operator failures, human error, and test and maintenance failures.

2.3 CRITERIA AND ASSUMPTIONS

The following analytical criteria and assumptions were used.

- AFW system availability is defined as successful system startup within the steam generator boil dry time of 15 minutes.
- The availability conditions for AFW system power sources during the analyzed transients were as follows;
- 1) LMFW All alternating and direct current power available.
- 2) LMFW/LOOP Two diesel generators and battery backup available.
- 3) LMFW/LOAC Direct current and battery-backed alternating current available (instrument and control power available only)
- Although water from the fire protection system and service water system is available to backup the AFW system condensate storage tank, these sources were not considered in the fault tree analysis. Use of these water systems would require successful operation of manual valves, which is difficult within the 15-minute boil-dry time limit.
- All component and operator actions were assumed to be either successes or failures. No partial successes were considered.
- Top event failure probability will be calculated by summing the failure probabilities from hardware, test and maintenance, and human error contributions. The probabilities for each category are rare event approximations.
- Human error probability has been considered in the Hardware and Test and Maintenance fault trees.
- Component outage due to maintenance will only be considered for active components (pumps, control valves, etc). Maintenance on manual valves is considered negligible.

2.4 DATA SOURCES

Data used for the component failure rates in the hardware and test and maintenance trees was taken from the NRC data found in Appendix III, Table III-3 of NUREG-0635. Electrical tree component data was taken from IEEE Std 500. Human error probabilities were drawn from NUREG-1278 and NUREG-0635. Specific component failure data is listed in Appendix G.

2.5 CORRECTIONS TO FAULT TREES

As part of the preparation for this analysis the fault trees utilized in the second reliability analysis were reviewed for accuracy. Several discrepancies were identified and corrected. Changes made are indicated on the fault trees and discussed below.

2.5.1 Hardware fault tree

- Operator errors had been treated as independent events. Since, each operator error in this tree involved operator response to a failure of the automatic initiation of the system, it was decided that a high degree of dependence was involved. Based on this decision all operator actions were grouped into three basic types - a) failure to actuate the system from the control room, b) failure to actuate the system locally, and c) failure to manually operate components.
- 2) The original hardcopy of the model did not identify the primary events representing the failure of preferred ac power for instrumentation and control. These events were added to the model.
- 3) The failure mode for the motor-operated values in the AFW flow paths was originally identified as fail to open. These values are normally open and should be identified as fail to remain open. The correction to the fault trees did not get accomplished. However, in the examination of the system cutsets it was noted that the failure of these values did contribute significantly to the system unavailability. Therefore, no corrections were made since the only impact was a slight conservatism in the numerical results and relative ranking of cutsets of intermediate to low contribution.

2.5.2 Test and maintenance fault tree

 As in 2.5.1 (1) above the human error associated with restoration of the outlet valves from the condensate storage tank to the AFW pumps was treated as independent for each valve. Because of the location and basis for restoration (ie if isolation was necessary at that point then both valves must be closed and restored), the separate events were combined into one.

- 2) Credit was taken for a manual valve which bypasses the pressure control valve in the steam line to the turbine-driven pump. The current PRA model does not take credit for successful operation of this valve. While it may be possible to control steam inlet pressure to the turbine driver by manually regulating a gate valve, the ability to do this efficiently and consistently has not been demonstrated and it was deleted from the model.
- 3) In several cases, maintenance on valves was included when a) it is not physically possible to isolate these valves during power operation or b) isolation would disable 2 of the 3 pumps which is not allowed by Technical Specifications. Each of these valves was removed from the WAMCUT input deck and are shown lined-out in the model in Appendix E.

2.5.3 Electrical fault trees.

The majority of the failure probabilities for electrical components were derived by treating the components as standby with a monthly testing interval. Since several of the components are performing their normal function and failures associated with them would be immediately detectable, while this treatment is inaccurate its importance was not obvious. Since the failure of power is represented in the master tree as basic events with a probability derived from the output of the evaluation of the appropriate electrical tree, the impact of this treatment was determined by reevaluating the electrical trees and by examining the cutsets from the three transient cases using generic data to determine the importance of loss of power as a contributor to system unavailability.

The reevaluation of the electrical trees was accomplished by changing the failure probability of components which do not experience demands to probabilities of mission time failures of 8 hours (first reevaluation) and 15 minutes (second reevaluation). In general the changes resulted in reduced unavailabilities for the electric power sources.

The examination of system cutsets disclosed that the only case where the failure of electric power was identified as a significant contributor (>1%) to system unavailability was for the transient initiator loss of main feedwater with concurrent loss of offsite power. In this case the failure of bus 1D and/or bus 1C contributed substantially to the system unavailability. However, the change in unavailability (using 8 hour or 15 minute mission times) for these buses under loss of offsite power conditions was insignificant (changed from 3.06E-02 to 3.05E-02). The reason for the lack of difference is that the dominant failures for these buses under loss of offsite power are actual demand failures of the diesel generators and their output breakers.

Based on these results the system fault trees were not rerun with the revised electrical failure data. The results from the analyses with the initial electrical data were retained while recognizing that they were numerically conservative with respect to the electrical failures.

2.6 RESULTS

The results of the analyses of the system fault trees are included in Appendix A and are discussed in the following sections. The information provided in Appendix A is arranged as follows.

Page 1 is a presentation in table form of the numerical unavailabilities of electrical power and the system for each transient case analyzed for both generic and plant specific data. The contributions from hardware, maintenance, and human error were derived by an arbitrary reorganization of cutsets. The reorganization was completed by 1) moving all cutsets containing an operator error to a separate group (human error), 2) of the remaining cutsets any which incuded maintenance were separated into another group (maintenance), and 3) the remaining cutsets were identified as hardware.

The remainder of the Appendix is comprised of listings of the cutsets for each transient case. Pages two through seven involve the output from the use of generic data. Pages eight through thirteen is the output from plant specific data. For each type of data three pages represent unavailabilities from the master hardware tree for each transient and three pages for unavailabilities from all considerations for each transient. Each page includes a listing of dominant cutsets and the contribution of each (cutset unavailability/system unavailability) and a listing of the basic events which contribute substantially to the system unavailability (sum of the unavailabilities of the cutsets containing the basic event/system unavailability).

2.6.1 Results from Generic Data Evaluation

2.6.1.1 General Results

The analysis indicates the factor having the greatest impact on the unavailability in all three cases was failure of the relief valve at the discharge of pumps P8A and P8B failing to remain closed, either as a single or in combination with the unavailability of pump P8C or its flow paths. Other significant contributors are: failure of P8C either as a pump failure or due to loss of bus 1D; maintenance on control valves or check valves; operator error; and various causes of P8C or P8B pump trains (ie maintenance, power failure, or valve failures).

2.6.1.2 Loss of Main Feedwater

The dominant failure modes for this transient are double faults. The most significant cutset contribution is the failure of the pump discharge relief valve to remain closed and the failure of P8C to start. The relief valve failure represents the common mode failure of pumps P8A and P8B. Primary event contributors in order of significance are: failure of the relief valve; failure of P8C to start; maintenance on control valves, check valves and P8C; and operator errors involving restoration of valves after testing or maintenance.

2.6.1.3 Loss of Main Feedwater/Loss of Offsite Power

The dominant failure modes for this transient are also double faults. The most significant cutset contributor is the relief valve and the loss of power to P8C. Primary event contributions in order of importance are: the relief valve; loss of power from bus 1D; P8C fail to start; loss of power from bus 1C; maintenance on control valves, check valves, or P8C; operator restoration errors; and maintenance on P8B, a pressure regulating valve, and a check valve.

2.6.1.4 Loss of Main Feedwater/Loss of all AC

The dominant failure modes for this transient are single faults. The dominant contributors are: the relief valve; maintenance on P8B, its check valve, and its pressure regulating valve; and P8B fails to start and operator restoration errors.

- 2.6.2 Results from Plant Specific Data Evaluation
- 2.6.2.1 General Results

The failures representing the largest contribution to unavailability in all three transient is pump fails to start. Other general contributors are: the relief valve failing to remain closed; failure of the auto start circuitry and the operator error associated with placing the system in service.

2.6.2.2 Loss of Main Feedwater

The dominant failures modes for this transient are triple faults. The most significant contribution is made by the first cutset (approximately 24%). This cutset represents the combination of all three pumps failing to start. The more important primary event contributions in order of significance are: P8C fails to start; P8A fails to start; P8C fails to start; the relief valve fails to remain closed; and failure of the auto start circuit and the associated operator error in response to the failure of the start circuitry.

2.6.2.3 Loss of Main Feedwater/Loss of Offsite Power

The dominant failure modes for this transient are again triple failures. The largest contribution to the system unavailability (approximately 47%) is identified in the first four cutsets. These cutsets represent failure of all three pumps. They include combinations of pumps failing to start and loss of power to P8A and/or P8C. The significant primary event contributions include: P8B fails to start; loss of power from bus 1C; loss of power from bus 1D; P8C fails to start; and P8A fails to start.

2.6.2.4 Loss of Main Feedwater/Loss of all AC

The dominant contributors to this transient are single faults. The most significant contribution is the failure of P8B to start (approximately 72%). Other contributors are: maintenance on P8B, its steam pressure regulating valve, or its discharge check valve; and operator restoration errors associated with test and maintenance.

2.6.3 General Conclusions

In comparing the results from generic data versus plant specific data, the calculated system unavailability is not significantly different. The major difference in the results was a reorganization of the importance of the primary events in their contribution to the system unavailability. In the analyses using generic data the failure of the pump discharge relief valve for P8A and P8B is the dominant contributor in both cutset and primary event contribution. For analyses using plant specific data the combination of all available pumps failing to start is the dominant contributor in both cutsets and primary event contribution.

In evaluating the results from the analyses using plant specific data no serious deficiencies were identified. There were no single point vulnerabilities associated with hardware or maintenance identified. Any further changes considered should be made only after careful evaluation of costs, benefits and importance in relation to the results of the analysis of the plant integrated risk model.

3.0 MSLB AFW MODEL

In this section the reliability of the auxiliary feedwater system as developed for examination of main steam line break issues is discussed (ref CPC to NRC May 23, 1985). The purpose of the main steam line break logic models was to determine the risks associated with steam generator blowdown events and to determine the benefits of various backfits being proposed to minimize these risks. In this regard, assumptions were made that significantly alter the system

configuration (ie eliminated redundant portions of the system) and therefore bias the numerical results of the analysis in a way that make it inappropriate to use these logic models for comparison with other risk based AFW reliability analyses such as that presented in the preceding section. Some of the more significant assumptions include:

- those particular to the main steam line break transient which artificially enhance the benefits of some of the proposed backfits,
- those conservative with respect to system reliability that had no affect on the outcome of the main steam line break analysis and were therefore left uncorrected,
- the exclusion of any repair or recovery of failed hardware and
- an explicit attempt to model common cause events (those component failures which result from common manufacturer, function, etc).

The auxiliary feedwater cutsets extracted from the main steam line break report are included in appendix B. They are rearranged into sections to permit an understanding of the contributors to AFW failure (as developed in that specific evaluation) and to identify where the assumptions outlined above had an effect. A brief description of these cutsets follows including a discussion of their contribution to AFW unavailability.

The first group of cutsets include those independent to the auxiliary feedwater system. The independent module (AUX3IT) will be discussed in detail later. The remaining cutset contains a single operator error - AFVOT - which represents failure to increase the flow to the intact steam generator. This cutset results from the assumption that the failed steam generator is isolated following the steam line break event and remains disabled as a viable heat sink throughout the transient. In reality, feedwater can be supplied to this generator, particularly during non-steam line break transients and this operator error should not be a single. In the normal system configuration - AFVOT - would be part of group of doubles in which the second event represented the failure of the redundant flow path from a given pump train. This cutset, therefore, is a result of assumptions made that are peculiar to the steam line break evaluation. Additionally, preliminary analyses in support of the upgrade of emergency procedures indicate that the flow supplied automatically through a single AFW train may be sufficient for decay heat removal.

The second group of cutsets are associated with makeup to the condensate storage tank. Given that there is normally several hours of condensate available in the tank, these failures are more closely associated with the long term functioning of the auxiliary feedwater system than the failures which would be identified in other reliability analyses (such as NUREG 0635). This part of the steam

line break analysis did not take credit for operator action to supply makeup from available systems including service water and the fire system, as outlined in plant procedures. In the normal system configuration with service water and fire water included as backups these cutsets would become substantially lower in their contribution to the system unreliability. These cutsets, therefore, are a result of simplifying assumptions made with respect to auxiliary feedwater reliability that had little effect on the outcome of the steam line break evaluation.

The last group of cutsets identify power dependencies coupled with failures of pumps and flow control valves. The AC power system failures involve disabling of an emergency bus (Bus 1C) which in these models is assumed to take out one motor driven pump and the air pressure to steam supply valves for the steam driven pump. The models conservatively ignore the nitrogen backup to instrument air supply to the steam driven pump valves as well as the ability to operate these valves locally by hand. In the normal system configuration these cutsets would be ANDED with failures of the turbine driven pump train or an operator action to manually admit steam to the pump. Consequently, these cutsets result from uncorrected assumptions which had no affect on the outcome of the steam line break study plus a lack of accounting for repair and recovery actions. Additionally, two of the cutsets contain flow control valve failures which, like AFVOT discussed above, appear because it is assumed that only one steam generator is available. In the normal system configuration these cutsets would also include failures of the redundant flow path from the respective pump train.

The cutsets which remain are those which make up the independent module, AUX3IT, introduced above. The first group presented are those associated with the attempt to explicitly quantify common cause failures in the steam line break evaluation. Common cause events were developed for various classes of equipment in the AFW system including the pumps, air operated valves, and instrumentation required to actuate the system. Generic industry data was used to quantify these events and they end up making up the bulk of the independent module in terms of its probability. Setting the appropriateness of these values aside, there are a number of features of the plant design which deserve some discussion for which credit could be taken to mitigate these failures. Diversity in the pump design has been provided by including both turbine and motor drivers, for example. Also, the motor driven pumps are located in separate areas of the plant minimizing location dependencies. Failure of flow controllers and instrumentation can be overcome by operator action to maintain level in the steam generators rather than concentrate on AFW flow only. In addition, the valves themselves can be operated locally if necessary. (Barry, is any of this part of current procedures?)

11

The next cutset is associated with spurious FOGG actuation (Feed Only Good Generator). The assumption that only one steam generator is available enters in to the generation of this cutset. Given that two steam generators are normally available this cutset should be ANDED with failures of components in the other flow trains. In the normal system configuration this event would be represented by a group of triples involving spurious actuation AND failure of two flow paths. Additionally, it should be noted that FOGG signals for the two steam generators are interlocked such that FOGG isolation of one generator precludes this spurious FOGG signal for the other generator. This interlock was not included in the steam line break logic.

The next group of forty cutsets involve the loss of both flow paths to the unaffected steam generator. Again, this is a set of failures which results from assuming that only one steam generator is available as a heat sink throughout the transient. These cutsets should in fact be coupled with corresponding failures in the flow paths to the other steam generator. In the normal system configuration these cutsets would change to 3d and 4th order cutsets which represent combinations of a pump train and two flow paths; or four flow paths; or three flow paths and an operator action.

The next cutsets deal with the potential for flow diversion in the AFW pump suction. In fact, these failure modes are incorrect. Α conservative assumption was made that a Y-strainer in the suction line to the AFW pumps, if left open following maintenance could lead to sufficient diversion of condensate to fail a portion of the Subsequent investigation reveals that the line from the system. strainer is small and will not divert sufficient flow to cause pump suction to drop significantly, is not only valved but capped, and if it were to be left open would result in condensate to pour on the floor of the turbine building where it would be difficult not to notice. These cutsets are a result of conservative modeling assumptions that had no affect on the outcome of the steam line break evaluation and were left uncorrected in the analysis. This failure mode has been deleted from the model.

The next group of cutsets represent human error in the calibration of instrumentation associated with AFW pump and flow control valve operation. Similar to the common cause failure of flow control instrumentation, miscalibration of this equipment will result in the operator taking feedwater flow control into manual in order to maintain steam generator inventory. This recovery action was not included in the steam line break logic. The pump suction pressure miscalibration should be a single event (as was noted in the staffs review of these cutsets). Nevertheless, it should be noted that testing of these instruments independent of their calibration occurs frequently during pump surveillance tests. Further, even if these monthly surveillances were to fail to uncover the deficiency, normal operator response to low suction trip of the AFW pumps would be to provide fire or service water pressure to the pump suction

12

effectively eliminating the low pressure condition. Additionally, steam supply to the turbine driven pump can be provided locally even in the presence of a low suction signal. Again, recovery actions such as these were not incorporated in the steam line break models.

The final group of cutsets found in the independent module are the random pump and valve failures similar to those associated with the reliability analysis presented in the preceding section.

Given the preceding discussion, it should be clear that the main steam line break logic models were not developed with the intention of demonstrating the overall reliability of auxiliary feedwater. Assumptions specific to the main steam line break transient, assumptions that conservatively enhance the benefits of various backfits and conservative assumptions that had no affect on the outcome of the main steam line break evaluation bias the bottom line results. Explicit attempts to model common cause and a lack of obvious repair and recovery actions result in additional bias. While the modelling was sufficient for the purpose of evaluating main steam line break issues, it is not appropriate to use them to draw conclusions as to the strengths and weaknesses of the system for a spectrum of more common transients.

4.0 CONCLUSIONS

As indicated in section 1.0 the purpose of this report is to provide an analysis of the reliability of the AFW system and justification for not equating the results of the MSLB AFW model with system reliability. In section 2.0 the results of a separate reliability analysis are discussed. The results indicate that the system as modified is reliable. Additionally in a qualitative context the system includes multiple trains any of which is capable of removing decay heat, is automatically actuated, and has no single point vulnerabilities except for perhaps some human errors associated with calibration. These are the features of an AFW system "characterized as having a high reliability" as explicitly outlined in section 4.6.1 of NUREG-0635.

In section 3.0 inconsistencies between the MSLB model and a reliability model were presented. The differences between the special case MSLB model and a general case reliability model are significant and cause a substantial disparity in both numerical and qualitative results. The MSLB model represents the system under unique conditions which do not allow an accurate derivation of the system reliability.

In addition, substantial improvement in the system reliability has been achieved through the completion of modifications as identified in section 1.0.

In conclusion we believe the system is reliable and that the results of the reliability analysis have not disclosed any serious deficiencies in the current system.

5.0 REFERENCES

- Guide to the Collection and Presentation of Electrical, Electronic, and Sensing Component Reliability Data for, Nuclear Power Generating Stations, IEEE Std 500 (1977), Institute of Electrical and Electronics Engineers, Inc.
- Generic Evaluation of Feedwater Transients and Small Break Loss of Coolant Accidents in Combustion Engineering Designed Operating Plants, NUREG-0635, U.S. Nuclear Regulatory Commission, January 1980.
- Handbook of Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications, NUREG/CR-1278, U.S. Nuclear Regulatory Commission, April 1980.
- Reactor Safety Study: An Assessment of Accident Risks in U.S. Commercial Nuclear Power Plants, WASH-1400, U.S. Nuclear Regulatory Commission, 1975.
- 5. Equipment Availability Component Cause Code Summary Report for the Ten-Year Period 1967-1976, EEI Publication 77-64A, January 1978.
- 6. Clarification of TMI Action Plan Requirements, NUREG-0737, U.S. Nuclear Regulatory Commission, October 1980.
- 7. Auxiliary Feedwater System (PWR), NUREG-0800, Standard Review Plan 10.4.9, U.S. Nuclear Regulatory Commission, July 1981.

APPENDIX A

SYSTEM UNAVAILABILITY RESULTS

APPENDIX A

AFW SYSTEM UNAVAILABILITIES

CONTRIBUTORS TO UNAVAILABILITY	LOSS OF FEEDWATER	LOSS OF OFFSITE POWER	LOSS OF ALL AC POWER
	(GENERIC	DATA)	
HARDWARE	2.04E-05	1.34E-04	5.03E-03
MAINTENANCE	3.15E-05	3.99E-05	6.46E-Ø3
HUMAN ERROR	1.49E-05	1.76E-05	2.02E-03
TOTAL	6.68E-05	1.91E-04	1.35E-02
	(PLANT SPECI	FIC DATA)	
HARDWARE	1.17E-05	7.05E-05	3.11E-02
MAINTENANCE	9.17E-06	3.33E-05	8.30E-03
HUMAN ERROR	7.47E-06	1.71E-05	2.04E-03
TOTAL.	2.83E-05	1.21E-Ø4	4.14E-02

CONDITIONAL UNAVAILABILITIES OF THE ELECTRICAL POWER SUPPLY

CASE		IAL POWER AVAILABLE DC BUS #1(#2)	FROM AC BUS 1C(1D)			
	(GENERIC DATA)				
1.	6.52E-05	6.39E-05	9.40E-05			
2	7.88E-05	7.60E-05	3.06E-02			
3	2.83E-03	1.67E-03	1.0			
(PLANT SPECIFIC DATA)						
1	1.04E-05	3.12E-05	1.21E-05(1.03E-05)			
2	1.07E-05	3.13E-05	3.43E-02(2.35E-02)			
3	2.20E-04	1.15E-04	1.0			
CASE 1 - LOSS OF MAIN FEEDWATER						

CASE 2 - LOSS OF MAIN FEEDWATER & LOSS OF OFFSITE POWER

CASE 3 - LOSS OF MAIN FEEDWATER & LOSS OF ALL AC POWER

A-1

GENERIC DATA

DOMINANT HARDWARE CUT SETS AND BASIC EVENTS

LOSS OF MAIN FEEDWATER

RANK 1. 2. 2. 2. 2.	UNAVAILABILITY 1.83E-05 3.65E-07 3.65E-07 3.65E-07 3.65E-07 3.65E-07	CUT PS8C GV0752 CK0726 GV0751 CK0725	RVØ783 RVØ783 RVØ783 RVØ783 RVØ783	CONTRIBUTION 91.6 1.8 1.8 1.8
2.	3.65E-Ø7	GVØ751	RVØ783	1.8
- 3. 4.	3.83E-07 3.43E-07 2.38E-07	EAC1D EACY20	RVØ783 RVØ783 RVØ783	1.8 1.7 1.2

RANK	UNAVAILABILITY	BASIC EVENT	CONTRIBUTION
1.	3.65E-03	RVØ783	99.5
2.	5,00E-03	PSBC	91.8
3.	1.00E-04	CK0725	1.8
3.	1.00E-04	CKØ726	1.8
. J.	1.00E-04	GVØ751	1.8
3.	1.00E-04	GVØ752	1.8
4.	9.40E-05	EAC1D	1.7
5.	6.52E-05	EACY20	1.2

APPENDIX A

GENERIC DATA

DOMINANT HARDWARE CUT SETS AND BASIC EVENTS

LOSS OF MAIN FEEDWATER AND LOSS OF OFFSITE POWER

1. 1.12E-04 EAC1 2. 1.83E-05 PS8C 3. 9.36E-07 EAC1 4. 3.65E-07 GV07 4. 3.65E-07 GV07 4. 3.65E-07 CK07 4. 3.65E-07 CK07 4. 3.65E-07 CK07	C RV0783 13.7 1C EAC1D PS8B 0.7 752 RV0783 0.3 751 RV0783 0.3 726 RV0783 0.3
--	--

RANK	UNAVAILABILITY	BASIC EVENT	CONTRIBUTION
1.	3.65E-03	RVØ783	98.5
2.	3.Ø6E-02	EAC1D	81.2
з.	5.00E-03	PS8C	17.3
4.	3.06E-02	EAC1C	1.2
5.	1.00E-03	PS8B	. 1 "Ø
6.	1.00E-04	CKØ725	0.3
6.	1.00E-04	CKØ726	0.3
6.	1.00E-04	GVØ751	0.3
6.	1.00E-04	GV 0 752	0.3

8-3

APPENDIX A

GENERIC DATA

DOMINANT HARDWARE CUT SETS AND BASIC EVENTS

LOSS OF MAIN FEEDWATER AND LOSS OF ALL ALTERNATING CURRENT

RANK	UNAVAILABILITY	CUT	SETS	CONTRIBUTION
1.	3.65E-Ø3	RVØ783		72.6
2.	1.00E-03	PS8B		19.9
3.	1.00E-04	GVØ742		2.0
3.	1.00E-04	CKØ743		2.0
3.	1.00E-04	GVØ132		2.0
4.	6.53E-05	GOVERNOR		1.13
5.	1.00E-05	PCVØ521A		Ø.2

RANK	UNAVAILABILITY	BASIC B	EVENT	CONTRIBUTION
1.	3.65E-03	RVØ783		72.6
2.	1.00E-03	PS8B		19.9
3.	1.00E-04	GVØ742		2.0
3.	1.00E-04	CKØ743		2.0
3.	1.00E-04	GVØ132		2.0
4.	6.53E-Ø5	GOVERNOR		1.3
5.	1.00E-05	PCVØ521A		Ø. 2

GENERIC DATA

DOMINANT CONTRIBUTORS TO CONDITIONAL UNAVAILABILITY

LOSS OF MAIN FEEDWATER

RANK	UNAVAILABILITY	CUT	SETS	CONTRIBUTION
1.	1.83E-05	PS8C	RVØ783	27.4
2.	7.81E-06	MCV0736A	RVØ783	11.7
2.	7.81E-06	MCVØ737A	RVØ783	11.7
2.	7.81E-06	MCK0726	RVØ783	11.7
2.	7.81E-Ø6	MP8C	RVØ783	11.7
3.	3.65E-06	OPE210	RVØ783	5.5
₫.	3.65E-Ø6	OPE205	RVØ783	5.5
3.	3.65E-Ø6	0PE108	RVØ783	5.5
3.	3.65E-06	OPE107	RVØ783	5.5

RANK	UNAVAILABILITY	BASIC EVENT	CONTRIBUTION
1.	3.45E-Ø3	RVØ783	99.1
2.	5.00E-03	PS8C	27.8
3.	2.14E-Ø3	MCVØ736A	11.7
3.	2.14E-Ø3	MCVØ737A	11.7
З.	2.14E-Ø3	MCK0726	11.7
3.	2.14E-Ø3	MP8C	11.7
3.	1.00E-03	OPE210	5.5
3.	1.00E-03	OPE205	5.5
3.	1.00E-03	0PE108	5.5
3.	1.00E-03	0PE107	5.5

GENERIC DATA

DOMINANT CONTRIBUTORS TO CONDITIONAL UNAVAILABILITY

LOSS OF MAIN FEEDWATER AND LOSS OF OFFSITE POWER

RANK	UNAVAILABILITY	CUT	SETS		CONTRIBUTION
1.	1.12E-Ø4	EAC1D	RVØ783		58.5
2.	1.83E-05	FSBC	RVØ783		9.6
3.	7.81E-06	MCVØ736A	RVØ783		4.1
З.	7.81E-Ø6	MCVØ737A	RVØ783		4.1
3.	7.81E-06	MCKØ726	RVØ783		4.1
3.	7.81E-06	MF'8C	RVØ783		4.1
4.	3.45E-06	0PE210	RV0783		1.9
4.	3.65E-Ø6	0PE205	RVØ783		1.9
4.	3.65E-Ø6	OPE108	RVØ783		1 7
4.	3.65E-Ø6	OPE107	RVØ783	·	1.9
5.	2.00E-06	EAC1C	EAC1D	MCKØ743	1.0
5.	2.ØØE-Ø6	EACIC	EAC1D	MP8B	1.0
5.	2.00E-06	EAC1C	EAC1D	MPCV521A	1.0

RANK	UNAVAILABILITY	BASIC EVENT		CONTRIBUTION
1.	3.65E-Ø3	RVØ783		93.Ø
2.	3.06E-02	EAC1D		64.2
3.	5.00E-03	P'58C		10.5
4.	3.06E-02	EACIC	4	5.8
5.	2.14E-Ø3	MCVØ736A		4.1
5.	2.14E-Ø3	MCVØ737A		4.1
5.	2.14E-Ø3	MCKØ726		4.1
5.	2.14E-Ø3	MPBC		4.1
6.	1.00E-03	OPE210		1.9
6.	1.00E-03	OPE205		1.7
6.	1.00E-03	0FE1Ø8		1.9
6.	1.00E-03	0PE107		1.9
7.	2.14E-Ø3	MCKØ743		1.4
7.	2.14E-Ø3	MP8B		1.4
7.	2.14E-Ø3	MPCV521A		1.4

GENERIC DATA

DOMINANT CONTRIBUTORS TO CONDITIONAL UNAVAILABILITY

LOSS OF MAIN FEEDWATER AND LOSS OF ALL ALTERNATING CURRENT

RANK	UNAVAILABILITY	CUT	SETS	CONTRIBUTION
1.	3.65E-Ø3	RVØ783		27.2
2.	2.14E-Ø3	MCKØ743		15.8
3.	2.14E-Ø3	MP8B		15.8
3.	2.14E-Ø3	MPCV521A		15.8
4.	1.00E-03	PS8B	· .	7.4
4.	1.00E-03	OPE102		7.4
4.	1.00E-03	OPE101		7.4
5.	1.00E-04	GVØ742		Ø.7
5.	1.00E-04	CKØ743		Ø.7
5.	1.00E-04	GVØ132		0.7
6.	6.53E-Ø5	GOVERNOR		Ø.5
6.	1.00E-05	PCVØ521A		0.1
				,

RANK	UNAVAILABILITY	BASIC EVENT	CONTRIBUTION
1.	3.65E-Ø3	RVØ783	27.2
2.	2.14E-Ø3	MCK0743	15.8
3.	2.14E-Ø3	MP8B	15.8
Ξ.	2.14E-03	MPCV521A	15.8
4.	1.00E-03	PS8B	7.4
4.	1.00E-03	0PE102	7.4
4.	1.00E-03	OPE101	7.4
5.	1.00E-04	GVØ742	0.7
5.	1.00E-04	CKØ743	Ø.7
5.	1.00E-04	GVØ132	0.7
. 6.	6.53E-05	GOVERNOR	0.5
6.	1.00E-05	PCV0521A	Ø. 1

PLANT SPECIFIC DATA

DOMINANT HARDWARE CUT SETS AND BASIC EVENTS

LOSS OF MAIN FEEDWATER

RANK	UNAVAILABILITY	CUT	SETS		CONTRIBUTION
1.	6.75E-06	P'S8A	PS8B	PS8C	46.5
2.	2.55E-06	F'SBC	RVØ783		17.6
З.	2.10E-06	AFAS	OPE1	PS8B	14.5
4.	7.00E-07	AFAS	OPE1	OPE2	4.8
5.	1.94E-07	CVØ727	CVØ749	PS8C	1.3
6.	1.53E-07	CKØ741	P'S8B	PS8C	1.1
6.	1.538-07	CKØ726	P'S8A	PS8B	1 . 1
6.	1.53E-07	CKØ725	PS8A	PS8B	1.1
7.	1.51E-07	CVØ749	M00798	PS8C	1.0
7.	1.51E-07	CVØ749	M00743	PS8C	1.0
7.	1.51E-07	CVØ727	MD0760	PS8C	1.0
7.	1.51E-07	CVØ727	M00753	PS8C	1.0

RANK	UNAVAILABILITY	BASIC EVENT	CONTRIBUTION
1.	1.50E-02	FSBC	76.3
2.	3.00E-02	FS8B	65.2
3.	1.50E-02	PS8A	50.4
4.	7.00E-03	AFAS	19.5
4.	1.00E-03	OFEI	19.5
5.	1.70E-04	RV0783	18.7
6.	1.00E-03	OFE2	4.8
7.	3.60E-03	CVØ727	3.5
7.	3.60E-03	CVØ749	J. 5
8.	2.80E-03	M00798	2.8
8.	2.80E-03	MD0760	2.8
8.	2.80E-03	MDØ753	2.8
8.	2.80E-03	M00743	2.8
9.	3.40E-04	CKØ725	1.5
9.	3.4ØE-04	CKØ726	1.5
10.	3.40E-04	CK0741	1 1

FLANT SPECIFIC DATA

DOMINANT HARDWARE CUT SETS AND BASIC EVENTS

LOSS OF MAIN FEEDWATER AND LOSS OF OFFSITE POWER

RANK	UNAVAILABILITY	CUT	SETS		CONTRIBUTION
1.	2.41E-05	EAC1C	EAC1D	PS8B	32.8
2.	1.54E-Ø5	EAC1C	PS8B	FS8C	21.0
3.	1.06E-05	EAC1D	PS8A	PS8B	14.4
4.	6.75E-Ø6	PSBA	PS8B	PSBC	9.2
5.	4.00E-06	EAC1D ·	RVØ783		5.5
4.	2.55E-Ø6	PSBC	RVØ783		3.5
16.	2.10E-06	AFAS	OPE1	PS8B	2.9
13.	7.00E-07	AFAS	OPE1	OPE2	1.0
•					

RANK	UNAVAILABILITY	BASIC EVENT	CONTRIBUTION
1.	3.00E-02	FS8B	83.0
2.	2.35E-02	EAC1D	57.4
3.	3.43E-02	EAC1C	56.5
4.	1.50E-02	PS8C	36.6
5.	1.50E-02	FS8A	24.8
6.	1.70E-04	RVØ783	9.1
7.	7.00E-03	AFAS	3.9
8.	1.00E-03	OFE 1	Š.9
· 9.	1.00E-03	OPE2	1.0

PLANT SPECIFIC DATA

DOMINANT HARDWARE CUT SETS AND BASIC EVENTS

LOSS OF MAIN FEEDWATER AND LOSS OF ALL ALTERNATING CURRENT

RANK	UNAVAILABILITY	CUT	SETS	CONTRIBUTION
1.	3.00E-02	PS8B		96.5
2.	3.40E-04	CKØ743	•	1.1
3.	1.70E-04	RVØ783		0.5
4.	1.10E-04	CVØ522A	CVØ522B	0.4
5.	1.00E-04	PCVØ521A		0.3
5.	8.70E-05	GVØ742		0.3
5.	8.70E-05	GVØ132		0.3
6.	6.53E-05	GOVERNOR		0.2

RANK	UNAVAILABILITY	BASIC EVENT	CONTRIBUTION
1.	3.00E-02	PS8B	96.5
2.	3.40E-04	CK0743	1.1
3.	1.70E-04	RVØ783	0.5
4.	1.10E-04	CVØ522A	Ø.4
4.	1.00E-02	CVØ522B	0.4
5.	1.00E-04	PCVØ521A	0.3
5.	8.70E-05	GVØ742	0.3
5.	8.70E-05	GV0132	Q . 3
6.	6.53E-05	GOVERNOR	0.2

PLANT SPECIFIC DATA

DOMINANT CONTRIBUTORS TO CONDITIONAL UNAVAILABILITY

		LUSS OF MAIN	I FEEDWAIEK		
RANK	UNAVAILABILITY	CUT S	CTC		CONTRIBUTION
1.	6.75E-06	PS8A	PS8B	PS8C	23.8
2.	2.55E-06	PS8C	· RVØ783	1000	20.0 7.0
• د يت	2.10E-06	AFAS	OPE1	PS8B	7.4
4.	9.63E-07	MCV0737A	PS8Á	PS8B	3.4
4. 4.	9.63E-07	MCV0736A	PS8A		3.4 3.4
4.	9.63E-07	MCK0741	PS8B	PS8B PS8C	3.4
4.	9.63E-07	MCKØ726		FS8B	
5.	8.78E-07	MP8B	PS8A		3.4 3.1
•			PS8A	PS8C	
6. 	7.00E-07	AFAS	OPE1	OPE2	2.5
7.	4.82E-07	MPCV521A	PS8A	PS8C	1.7
7.	4.82E-07	MCKØ743	PS8A ·	PS8C	1.7
8.	4.50E-07	OPE210	PS8A	PS8B	1.7
8.	4.50E-07	0PE205	PS8A	PS8B	1.7
8.	4.50E-07	OPE108	PS8A	PS8B	1.7
8.	4.50E-07	OPE107	PS8A	PS8B	1.7
8.	4.50E-07	OFE102	FS8B	PS8C	1.7
8.	4.50E-07	OPE101	PS8B	PS8C	1.7
9.	3.64E-07	MCV0737A	RVØ783		1.3
9.	3.64E-07	MCVØ736A	RVØ783		1.3
9.	3.64E-07	MCKØ726	RVØ783		1.3
29.	2.73E-07	AFAS	MP8B	OFE1	1.0
RANK	UNAVAILABILITY		EVENT		CONTRIBUTION
1.	3.00E-02	PS80			57.8
2.	1.50E-02	PS8A			57.7
3.	1.50E-02	PS8E			51.6
4.	1.70E-04	RVØ7			16.1
5.	7.00E-03	AFAS			12.6
5.	1.00E-03	OP'E1			12.6
6.	2.14E-Ø3		1736A		5.5
6.	2.14E-03		1737A		5.5
6.	2.14E-03	MCKZ			5.5
7.	3.90E-03	MP/8E			4.3
8.	2.14E-Ø3	MCKO			3.6
8.	3.20E-04	CVØ7			3.6
8.	3.20E-04	CVØ7	49		5.6
5.	2.80E-03	M0Ø7	98		2.6
9.	2.80E-03	M007	60		2.6
9.	2.80E-03	M007	53		2.6
9.	2.80E-03	M0Ø7	43		2.6
10.	1.00E-03	OPEZ	:10		2.4
10.	1.00E-03	OPE2	05		2.4
10.	1.00E-03	OPE1	08		2.4
10.	1.00E-03	OPE1	07		2.4
11.	2.14E-03		'521A		2.3
11.	2.14E-03	MCKZ			2.3
12.	1.00E-03	OPE1			1.6
12.	1.00E-03	OPE1	Ø1		1.6

LOSS OF MAIN FEEDWATER

A-11

PLANT SPECIFIC DATA

DOMINANT CONTRIBUTORS TO CONDITIONAL UNAVAILABILITY

LOSS OF MAIN FEEDWATER AND LOSS OF OFFSITE POWER

RANK	UNAVAILABILITY	СИТ	SETS		CONTRIBUTION
1.	2.41E-05	EACIC	EAC1D	PS8B	19.9
2.	1.54E-Ø5	EACIC	PS8B	PS8C	12.7
3.	1.06E-05	EAC1D	PS8A	PS8B	8.8
4.	6.75E-06	P'S8A	PS8B	PS8C	5.6
5.	4.00E-06	EAC1D	RVØ783		3.3
6.	3.14E-06	EAC1C	EAC1D	MP8B	2.6
7.	2.55E-06	PS8C	RV0783		2.1
8.	2.20E-06	EAC1C	MCV0737A	PS8B	1.8
8.	2.20E-06	EAC1C	MCVØ736A	PS8B	1.8
8.	2.20E-06	EAC1C	MCKØ726	PS8B	1.8
9.	2.10E-06	AFAS	OPE1	PS8B	1.7
9.	2.01E-06	EAC1C	MF'8B	PS8C	1.7
10.	1.72E-Ø6	EAC1C	EAC1D	MPCV521A	1.4
10.	1.72E-06	EACIC	EAC1D	MCK0743	1.4
11.	1.51E-06	EAC1D	MCK0741	PS8B	1.2
12.	1.37E-06	EAC1D	MF8B	PS8A	1.1
13.	1.10E-06	EAC1C	MPCV521A	PS8C	1.0
13.	1.10E-06	EAC1C	MCK0743	PS8C	1.0
13.	1.Ø3E-06	EAC1C	OPE21Ø	PS8B	1.0 (0.8)
13.	1.Ø3E-06	EAC1C	0PE205	PS8B	1.0
13.	1.Ø3E-06	EAC1C	OFE108	PS8B	1.0
13.	1.Ø3E-06	EAC1C	0PE107	PS8B	1.0

RANK UNAVAIL 1. 3.008 2. 3.428 3. 2.358 4. 1.508 5. 1.508 6. 1.708 7. 3.908 8. 2.148 9. 2.148 9. 2.148 9. 2.148 9. 2.148 10. 7.008 10. 1.008 11. 2.148 12. 1.008 13. 1.008	E-02 EAC10 E-02 EAC110 E-02 PS80 E-02 PS80 E-02 PS80 E-03 MP88 E-03 MP078 E-03 MCK07 E-03 MCV07 E-03 MCV07 E-03 MCV07 E-03 MCV07 E-03 MCV07 E-03 MCK07 E-03 OPE1 E-03 OPE10 E-03 OPE10 E-03 OPE10 E-03 OPE10 E-03 OPE10	8.7 1.1 4.2 33 7.0 6.5 521A 3.6 43 3.6 343 3.6 35A 3.2 37A 3.2 37A 3.2 241 2.9 241 2.1 04 1.6 05 1.4
	E-03 OPE20 E-03 OPE10	1.4 8 1.4

A-12

PLANT SPECIFIC DATA

DOMINANT CONTRIBUTORS TO CONDITIONAL UNAVAILABILITY

LOSS OF MAIN FEEDWATER AND LOSS OF ALL ALTERNATING CURRENT

RANK	UNAVAILABILITY	CUT	SETS	CONTRIBUTION
1.	3.00E-02	PS8B		72.4
2.	3.90E-03	MP8B		9.4
З.	2.14E-03	MPCV521A		5.2
З.	2.14E-03	MCK0743		5.2
4.	1.00E-03	OPE102		2.4
4.	1.00E-03	OFE1Ø1		2.4
5.	5.00E-04	PCVØ521A		1.2
6.	3.20E-04	CKØ743		0.8
7.	1.70E-04	RVØ783		Ø . 4
8.	1.10E-04	CVØ522A	CVØ522B	0.3
9.	8.14E-Ø5	GVØ742		0.2
9.	8.14E-05	GVØ132		0.2
10.	6.53E-Ø5	GOVERNOR		0.2

RANK	UNAVAILABILITY	BASIC EVENT	CONTRIBUTION
1 .	3.00E-02	PS8B	72.4
2.	3.90E-03	MP8B	9.4
3.	2.14E-Ø3	MPCV521A	5.2
3.	2.14E-03	MCK0743	5.2
4.	1.00E-03	OPE102	2.4
4.	1.00E-03	0PE101	2.4
5.	5.00E-04	PCV0521A	1.2
6.	3.20E-04	CKØ743	0.8
7.	1.70E-04	RVØ783	0.4
7.	1.1ØE-Ø4	CVØ522A	Ø.4
7.	1.10E-04	CVØ522B	0.4
8.	8.14E-Ø5	GVØ742	0.2
8.	8.14E-Ø5	GVØ132	0.2
9.	. 53E−05	GOVERNOR	. Ø.2

APPENDIX B

MSLB AFW MODEL CUTSETS

IC0286-0001K-NL01

AFW3 P = 5.0E-03

The following cutsets are independent to AFW

i.	2.40E-03.	AUX3IT	2	See indep transfer description
3.	5.00E-04	AFVOT		Op fail to incr flow to good SG

The following cutsets are associated with makeup to the condensate storage tank

4. 3.89E-04 P221IT XXV713MA 5. 3.89E-04 P221IT XXV712MA 6. 2.88E-04 P221IT XXV107MB 7. 5.64E-05 P221IT XXV717MA 8. 4.28E-05 P00L00P XXV712MA 9. 4.28E-05 P00L00P XXV713MA 10. 3.16E-05 F00L00P XXV107MB 11. 1.96E-05 ED611MG P00L00P 12. 1.28E-05 P221IT X0990-020T 13. 1.19E-05 ED61100 P00L00P 14. 6.18E-06 P00L00P XXV171MA Loss of power to auto makeup 16. 4.28E-06 ED611ME P00L00P _valve and alt makeup supply 17. 4.13E-06 P205DIT P00L00P _valve and alt makeup supply 17. 4.13E-06 P221IT XLS5201MC _ 19. 2.15E-06 P221IT XLV712MA 20. 2.10E-06 PTRSU1-2MT XLV713MA 21. 2.10E-06 PTRSU1-2MT XLV713MA 23. 1.	2.	5.63E-04	CONDTKIT		Condensate makeup indep failures
6. 2.88E-04 P221IT XXV107MB 7. 5.64E-05 P221IT XXV17MA 8. 4.28E-05 PODLOOP XXV712MA 9. 4.28E-05 PODLOOP XXV107MB 10. 3.16E-05 PODLOOP XXV107MB 11. 1.96E-05 ED611M6 PODLOOP 12. 1.28E-05 P221IT X0090-020T 13. 1.19E-05 ED61100 PO0LOOP 14. 6.18E-06 PO0LOOP XXV171MA Loss of power to auto makeup 16. 4.28E-06 ED611ME PO0LOOP	4.	3.89E-04	P221IT	XXV713MA	1
7. 5.64E-05 P221IT XXV171MA 8. 4.28E-05 PODLOOP XXV712MA 9. 4.28E-05 PODLOOP XXV171MA 10. 3.16E-05 PODLOOP XXV107MB 11. 1.96E-05 EDG11MG PODLOOP 12. 1.28E-05 P221IT X0090-020T 13. 1.19E-05 EDG1100 PODLOOP 14. 6.18E-06 PODLOOP XXV171MA Loss of power to auto makeup 16. 4.28E-06 EDG11ME PODLOOP	5.	3.89E-04	P221IT	XXV712MA	
8. 4.28E-05 POOLOOP XXV712MA 9. 4.28E-05 POOLOOP XXV713MA 10. 3.16E-05 POOLOOP XXV107MB 11. 1.96E-05 EDG11MG POOLOOP 12. 1.28E-05 P221IT X0090-020T 13. 1.19E-05 EDG1100 POOLOOP 14. 6.18E-06 POOLOOP XXV171MA Loss of power to auto makeup 16. 4.28E-06 EDG11ME POOLOOP	6.	2.88E-04	P221IT	XXV107MB	
9. 4.28E-05 PO0LOOP XXV713MA 10. 3.16E-05 PO0LOOP XXV107MB 11. 1.96E-05 ED611M6 PO0LOOP 12. 1.28E-05 P221IT X0090-020T 13. 1.19E-05 ED61100 PO0LOOP 14. 6.18E-06 PO0LOOP XXV171MA Loss of power to auto makeup 16. 4.28E-06 ED611ME PO0LOOP	7.	5.64E-05	P2211T	XXV171MA	
10. 3.16E-05 FOOLOOP XXV107MB 11. 1.96E-05 EDG11MG FOOLOOP 12. 1.28E-05 F221IT X0090-020T 13. 1.19E-05 EDG1100 FOOLOOP 14. 6.18E-06 FOOLOOP XXV171MA Loss of power to auto makeup 16. 4.28E-06 EDG11ME FOOLOOP	8.	4.28E-05	POOLOOP	XXV712MA	
11. 1.96E-05 EDG11MG PO0LODP 12. 1.28E-05 P221IT X0090-020T 13. 1.19E-05 EDG1100 PO0LOOP 14. 6.18E-06 PO0LOOP XXV171MA Loss of power to auto makeup 16. 4.28E-06 EDG11ME PO0LOOP	9.	4.28E-05	POOLOOP	XXV713MA	
12. 1.28E-05 P221IT X0090-020T 13. 1.19E-05 EDG1100 P00L00P 14. 6.18E-06 P00L00P XXV171MA Loss of power to auto makeup 16. 4.28E-06 EDG11ME P00L00P valve and alt makeup supply 17. 4.13E-06 P205DIT P00L00P failures 18. 3.13E-06 P221IT XLS5201MC failures 19. 2.15E-06 P221IT PCBB#105MA 20. 20. 2.10E-06 PTRSU1-2MT XXV712MA 21. 21. 2.10E-06 PTRSU1-2MT XXV713MA 23. 23. 1.66E-06 P410IT XXV712MA 25. 25. 1.56E-06 PTRSU1-2MT XXV107MB 26. 1.40E-06 P00L00P X0090-020T	10.	3.16E-05	POOLDOP	XXV107MB	
13. 1.19E-05 EDG1100 PO0LOOP 14. 6.18E-06 PO0LOOP XXV171MA Loss of power to auto makeup 16. 4.28E-06 EDG11ME PO0LOOP valve and alt makeup supply 17. 4.13E-06 P205DIT FO0LOOP valve and alt makeup supply 17. 4.13E-06 P205DIT FO0LOOP valve and alt makeup supply 18. 3.13E-06 P221IT XLS5201MC valve and alt makeup supply 19. 2.15E-06 P221IT PCBB#105MA 20. 2.10E-06 PTRSU1-2MT XXV712MA 21. 2.10E-06 PTRSU1-2MT XXV713MA 23. 1.66E-06 P410IT XXV713MA 24. 1.66E-06 P410IT XXV712MA 25. 1.56E-06 PTRSU1-2MT XXV107MB 26. 1.40E-06 PO0LOOP X0090-020T	11.	1.96E-05	EDG11MG	POOLOOP	
14. 6.18E-06 POOLOOP XXV171MA Loss of power to auto makeup 16. 4.28E-06 EDG11ME POOLOOP _valve and alt makeup supply 17. 4.13E-06 P205DIT POOLOOP _valve and alt makeup supply 17. 4.13E-06 P205DIT POOLOOP failures 18. 3.13E-06 P221IT XLS5201MC failures 19. 2.15E-06 P221IT PCBB#105MA failures 20. 2.10E-06 PTRSU1-2MT XXV712MA failures 21. 2.10E-06 PTRSU1-2MT XXV713MA failures 23. 1.66E-06 P410IT XXV713MA failures 24. 1.66E-06 P410IT XXV712MA failures 25. 1.56E-06 PTRSU1-2MT XXV107MB failures 26. 1.40E-06 PODLOOP X0090-020T failures	12.	1.28E-05	P221IT	X0090-020T	
16. 4.28E-06 EDG11ME POOLOOP _valve and alt makeup supply 17. 4.13E-06 P205DIT POOLOOP failures 18. 3.13E-06 P221IT XLS5201MC failures 19. 2.15E-06 P221IT PCBB#105MA failures 20. 2.10E-06 PTRSU1-2MT XXV712MA failures 21. 2.10E-06 PTRSU1-2MT XXV713MA failures 23. 1.66E-06 P410IT XXV713MA failures 24. 1.66E-06 P410IT XXV712MA failures 25. 1.56E-06 PTRSU1-2MT XXV107MB failures 26. 1.40E-06 PODLOOP X0090-020T failures	13.	1.19E-05	EDG1100	POOLOOP	
16. 4.28E-06 EDG11ME POOLOOP _valve and alt makeup supply 17. 4.13E-06 P205DIT POOLOOP failures 18. 3.13E-06 P221IT XLS5201MC failures 19. 2.15E-06 P221IT PCBB#105MA failures 20. 2.10E-06 PTRSU1-2MT XXV712MA failures 21. 2.10E-06 PTRSU1-2MT XXV713MA failures 23. 1.66E-06 P410IT XXV713MA failures 24. 1.66E-06 P410IT XXV712MA failures 25. 1.56E-06 PTRSU1-2MT XXV107MB failures 26. 1.40E-06 PODLOOP X0090-020T failures	14.	6.18E-06	POOLOOP	XXV171MA	Loss of power to auto makeup
17. 4.13E-06 P205DIT F00L00P failures 18. 3.13E-06 P221IT XLS5201MC failures 19. 2.15E-06 P221IT PCBB#105MA failures 20. 2.10E-06 PTRSU1-2MT XXV712MA failures 21. 2.10E-06 PTRSU1-2MT XXV713MA failures 23. 1.66E-06 P410IT XXV713MA failures 24. 1.66E-06 P410IT XXV712MA failures 25. 1.56E-06 PTRSU1-2MT XXV107MB failures 26. 1.40E-06 PODLODP X0090-02DT failures	16.	4.28E-06	EDG11ME	POOLOOP	· · · · · · · · · · · · · · · · · · ·
19. 2.15E-06 P221IT PCBB#105MA 20. 2.10E-06 PTRSU1-2MT XXV712MA 21. 2.10E-06 PTRSU1-2MT XXV713MA 23. 1.66E-06 P410IT XXV713MA 24. 1.66E-06 P410IT XXV712MA 25. 1.56E-06 PTRSU1-2MT XXV107MB 26. 1.40E-06 PODLDDP X0090-02DT	17.	4.13E-06	P205DIT	POOLOOP	
20. 2.10E-06 PTRSU1-2MT XXV712MA 21. 2.10E-06 PTRSU1-2MT XXV713MA 23. 1.66E-06 P410IT XXV713MA 24. 1.66E-06 P410IT XXV712MA 25. 1.56E-06 PTRSU1-2MT XXV107MB 26. 1.40E-06 PODLDDP X0090-02DT	18.	3.13E-06	P221IT	XLS5201MC	
21. 2.10E-06 PTRSU1-2MT XXV713MA 23. 1.66E-06 P410IT XXV713MA 24. 1.66E-06 P410IT XXV712MA 25. 1.56E-06 PTRSU1-2MT XXV107MB 26. 1.40E-06 PODLOOP X0090-020T	19.	2.15E-06	P221IT	PCBB#105MA	
23. 1.66E-06 P410IT XXV713MA 24. 1.66E-06 P410IT XXV712MA 25. 1.56E-06 PTRSU1-2MT XXV107MB 26. 1.40E-06 PODLDOP X0090-02DT	20.	2.10E-06	PTRSU1-2MT	XXV712MA	
24. 1.66E-06 P410IT XXV712MA 25. 1.56E-06 PTRSU1-2MT XXV107MB 26. 1.40E-06 PODLDDP X0090-02DT	21.	2.10E-06	PTRSU1-2MT	XXV713MA	
25. 1.56E-06 PTRSU1-2MT XXV107MB 26. 1.40E-06 PODLODP X0090-02DT	23.	1.66E-96	P410IT	XXV713MA	
26. 1.40E-06 POOLOOP X0090-020T	24.	1.66E-06	P410IT	XXV712MA	
	25.	1.56E-06	PTRSU1-2MT	XXV107MB	
29. 1.22E-06 P410IT XXV107MB	26.	1.40E-06	POOLOOP	X0090-020T	
	Ź9.	1.22E-06	P410IT	XXV107MB	

The following cutsets are associated with random failures of combinations of pumps and flow control valves

15.	5.32E-06	APM8CME	PCBB#105MALoss	of	Bus	íC	and	Pump C
22.	2.03E-06	PCBB#105MA	PCBB#209MB					
27.	1.28E-06	AAV0749MA	PCBB#203MA Loss	a f	Bus	1 D	and	Trains A&B
28.	1.28E-06	AAVØ737AMA	PCBB#105MA. Loss	of	Bus	1 C	and	Train C

AUX3IT -- INDEPENDENT MODULE

The following cutsets are common cause failures derived using generic industry data

1.	1.00E-03	APM8ME2CC	Pumps fail to start
3.	2.50E-04	ASGFCV8CC	Flow controller malfunction
4.	8.10E-05	ATFFCV8CC	Flow transmitter failure
6.	4.80E-05	AAVFCV4CC	Flow control valve failure
16.	1.30E-05	APM8MG2CC	Pumps fail to run

AUX3IT Continued

The following cutset is spurious FOGG isolation

2. 3.80E-04 ASSLMBMT

The following cutsets are loss of both flow paths or one flow path with pump failure(s) in the remaining train

F	5 405 DE	A 41187 4 0 M A		
5.	5.40E-05	AAVØ749MA	APMBCME	
7.	3.90E-05	AMV0760MD	APM8CME	
8.	3.90E-05	AMVØ753MD	APMBCME	
9.	2.40E-05	AFC0749MT	APM8CME	
11.	2.05E-05	AAVØ749MA	PCBB#209MB	
13.	1.48E-05	AMV0753MD	PCBB#209MB	
14.	1.48E-05	AMVØ760MD	PCBB#209MB	
15,.	1.30E-05	AAVØ737AMA	AAV0749MA	
18.	9.36E-06	AAVØ749MA	APM8CMG	
19.	9.36E-06	AAVØ737AMA	AMVØ760MD	
20.	9.36E-06	AAVØ749MA	AMVØ754MD	
21.	9.36E-06	AAVØ749MA	AMV0759MD	
22.	9.36E-06	AAVØ737AMA	AMV0753MD	
23.	9.12E-06	AFC0749MT	PCBB#209MB	
25.	6.76E-06	AMVØ753MD	AMV0759MD	
26.	6.76E-06	AMVØ759MD	AMVØ760MD	
27.	6.76E-06	AMVØ760MD	APM8CMG	
28.	6.76E-06	AMV0753MD	AMVØ754MD	
29.	6.76E-06	AMVØ753MD	APM8CMG	
30.	6.76E-06	AMVØ754MD	AMVØ760MD	•
32.	5.76E-06	AAVØ749MA	AFCØ737AMT	
33.	5.76E-06	AAVØ737AMA	AFC0749MT	
37.	4.80E-06	ACV0729MA	APM8CME	
38.	4.16E-06	AFC0737AMT	AMVØ753MD	
39.	4.16E-06	AFC0749MT	APMBCMG	
40.	4.16E-06	AFC0737AMT	AMVØ760MD	
41.	4.16E-06	AFC0749MT	AMVØ759MD	
42.	4.16E-06	AFC0749MT	AMV0754MD	
46.	2.56E-06	AFC0737AMT	AFC0749MT	
49.	2.40E-06	AIP0749MT	APM8CME	
51.	1.82E-06	ACVØ729MA	PCBB#209MB	
53.	1.62E-06	AAV0737AMA	APMBAME	APM8BME
54.	1.50E-06	APM8CME	ARE3P8ABMA	
55.	1.43E-06	AFEØ749MK	APM8CME	
58.	1.17E-06	AMVØ759MD	APMBAME	APM8BME
60.	1.17E-06	AMV0754MD	APMBAME	APM8BME
61.	1.15E-06	AAVØ749MA	ACV0704MA	
62.	1.15E-06	AAV0749MA	ACV0725MA	
63.	1.15E-06	AAV0749MA	ACV0726MA'	
64.	1.15E-06	AAVØ737AMA	ACV0729MA	

B-2

AUX3IT Continued

The following cutsets represent pump suction flow diversion

10.	3.00E-05	APM8CME	AXV505MC		
17.	1.14E-05	AXV505MC	PCBB#209MB		
24.	7.20E-06	AAV0737AMA	AXV505MC	Y-strainer at suction	
34.	5.20E-06	AMVØ759MD	AXV505MC	of pumps A & B	
35.	5.20E-06	APM8CMG	AXV505MC		
36.	5.20E-06	AMVØ754MD	AXV505MC		
45.	3.20E-06	AFC0737AMT	AXV505MC		

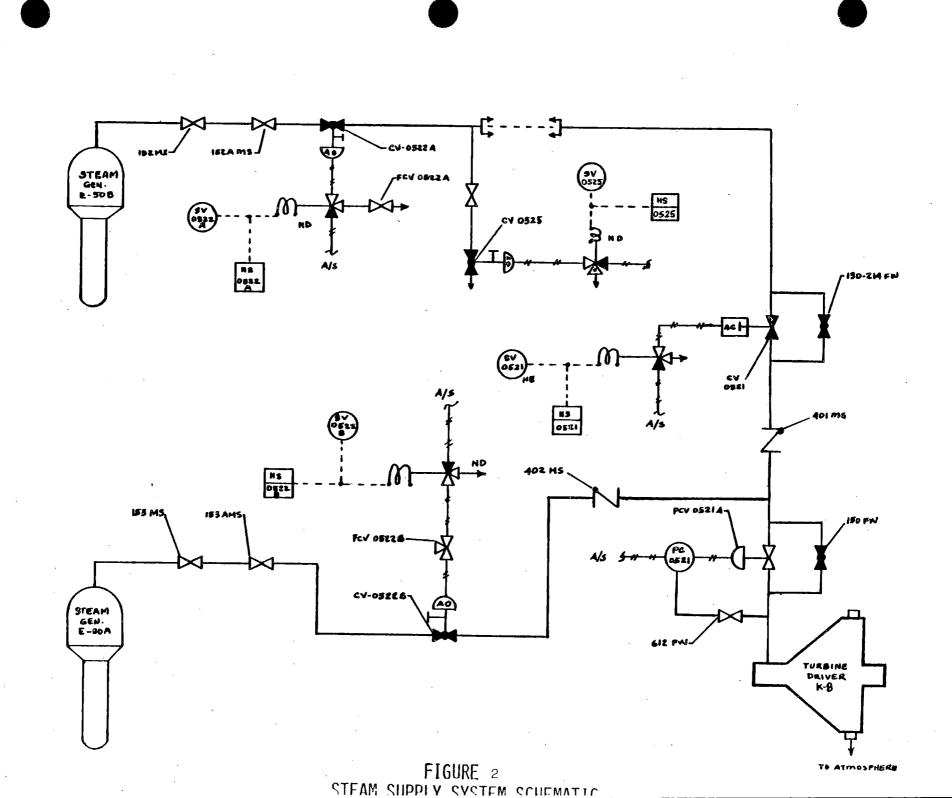
The following cutsets result from human error (instrument calibration)

12.	1.60E-05	INSTRABCOH	Flow control calibration
52.	1.65E-06	APM8CME	INSTRUABOH
.43.	3.90E-06	APSP8ACOH	APM8BMESuction pressure calibration
57.	1.30E-06	APSPBACOH	ATBKBMG

The following cutsets are random pump failures

31.	6.75E-Ø6	APMBAME	APM8BME	APMBCME
44.	2.56E-06	APMBAME	APM8BME	PCBB#209MB
47.	2.56E-06	APM8BME	APM8CME	PCBB#104MB
48.	2.40E-06	APM8CME	ARV0783MC	
50.	2.25E-06	APMBAME	APM8CME	ATBKBM6
56.	1.17E-06	APMBAME	APM8BME	APM8CMG
59.	1.17E-06	APM8AMG	APM8BME	APM8CME

B-3


APPENDIX C

FIGURES AND DRAWINGS

IC0286-0001K-NL01

FIGURE 1 NEWS SCHEMATIC COMPONENT LADELED

Man Pias RV-0165 PROTECTION RELIEP 955T216 VALVE Line l Line 3 25-8771FW 29-0772 90 218-0741 14-0740FW CV-074 H0-0753 140-0760 CH-07210-PUMP GATE GATE GATE CHECK CONTRAL BALATION LACLATION CHECK P-M VALVE VALVE VALVE VALVE VALVE VALVE VALVE VALVE STRANS Loop 2 Loop 3 611. 8-60A 14-271FW 25-132 FW 818-0748 1-0741PM CV-0711 NO-0741 He-0195 -----PUMP GATE GATE CHECK CONTRO HILATION GATE ISOLATION -P-50 VALVE VALVE MV-270PM VALVE VALVE VALVE WILFE WLVE VALVE GATE -Line 2 -Line 4 VALVE CAT Loop 1 133-PV -Line 6 FROM GATE STAVICE VALVE C+0797A 10-0164 10-0753 CLEMAN WATER -MALATIN BOLATION CONTEN Cut (A, VALVE VALVE WALVE WINE CE OTLE PAR 14-751 Fw1 CK-0726 R.S H-75 27-13 STEMA PUMP CHECK. GATE 684. CHICK GATE P-SC VALVE VALVE E-508 VALNE VALVE -Line 5 CH-OTELA 140-0745 10-7155 62-01000J MOLATIC. OHECK

CONTROL

VALVE

NILATION

FALVE

-Line 7

TALVE

TALVE

Train Al: Loop 2 + Loop 3 + RV0783 + Line 3 Train A2: Line 5 + Line 6 Train Bl: Loop 2 + Loop 3 + RV0783 + Line 4 Train B2: Line 5 + Line 7

FIGURE 3

Line 8 153 MS STEAM 155 AMS CV-05228 402 MS PCV-0521A GEN. PRESSURE GATE GATE CONTROL CHECK E-50A CONTROL VALVE VALVE VALVE VALVE VALVE K-B PUMP TURBINE Loop 4 Loop 5 P-88 DRIVER 180-214 FW 150 FW GLOBE GLOBE VALVE VALVE 152 MS 152 AMS CV-0522 A 401 MS STEAM GEN.

FIGURE 4 STEAM SUPPLY SYSTEM RELIABILITY BLOCK DIAGRAM

CV-0521

CONTROL VALVE

GATE

VALVE

E-508

GATE

VALVE

CONTROL

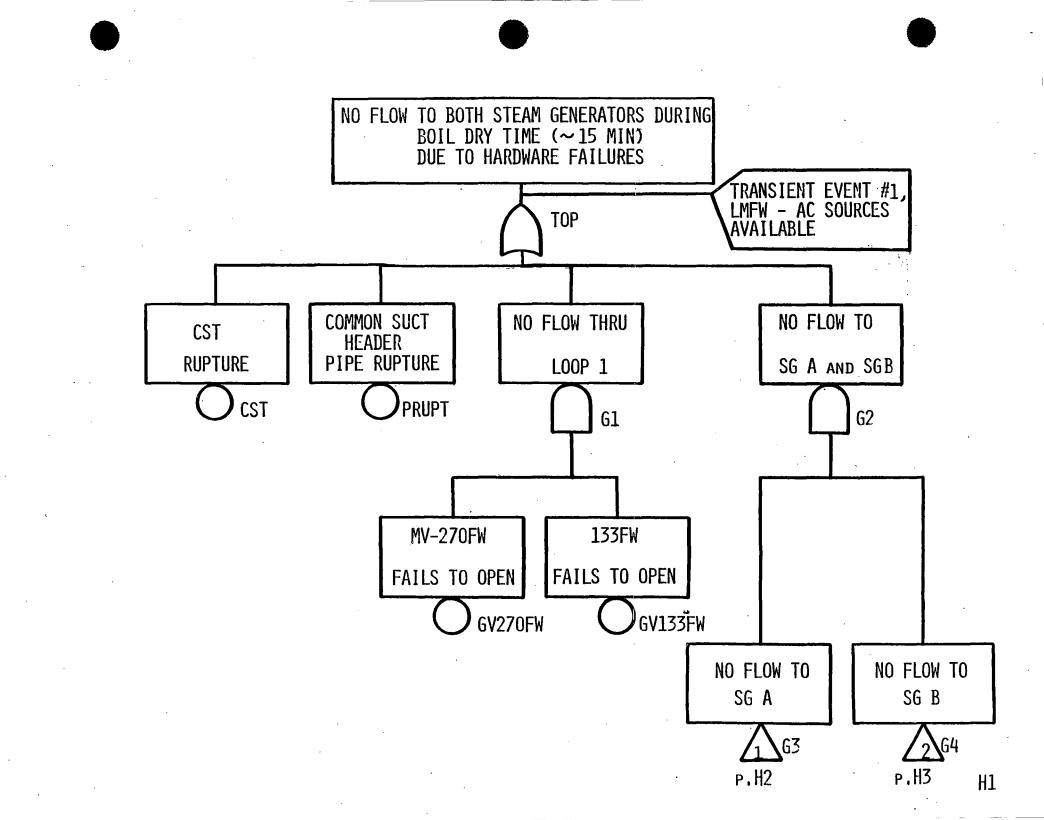
VALVE

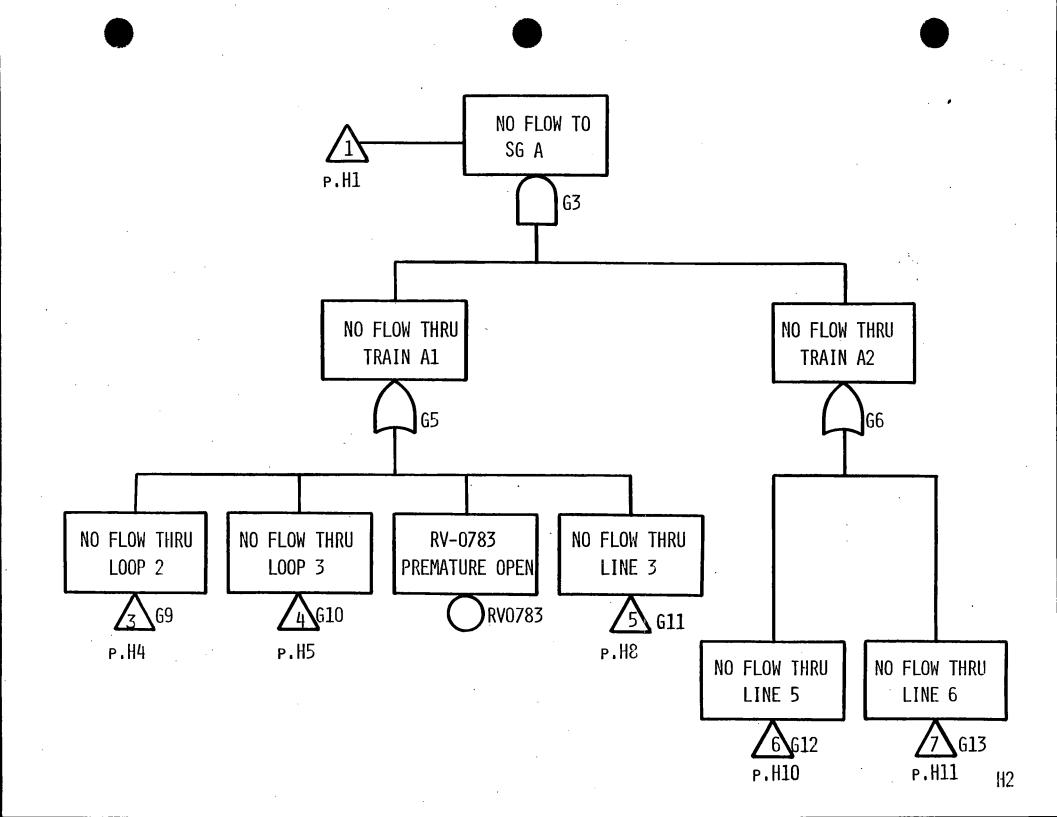
~Line 9 ·

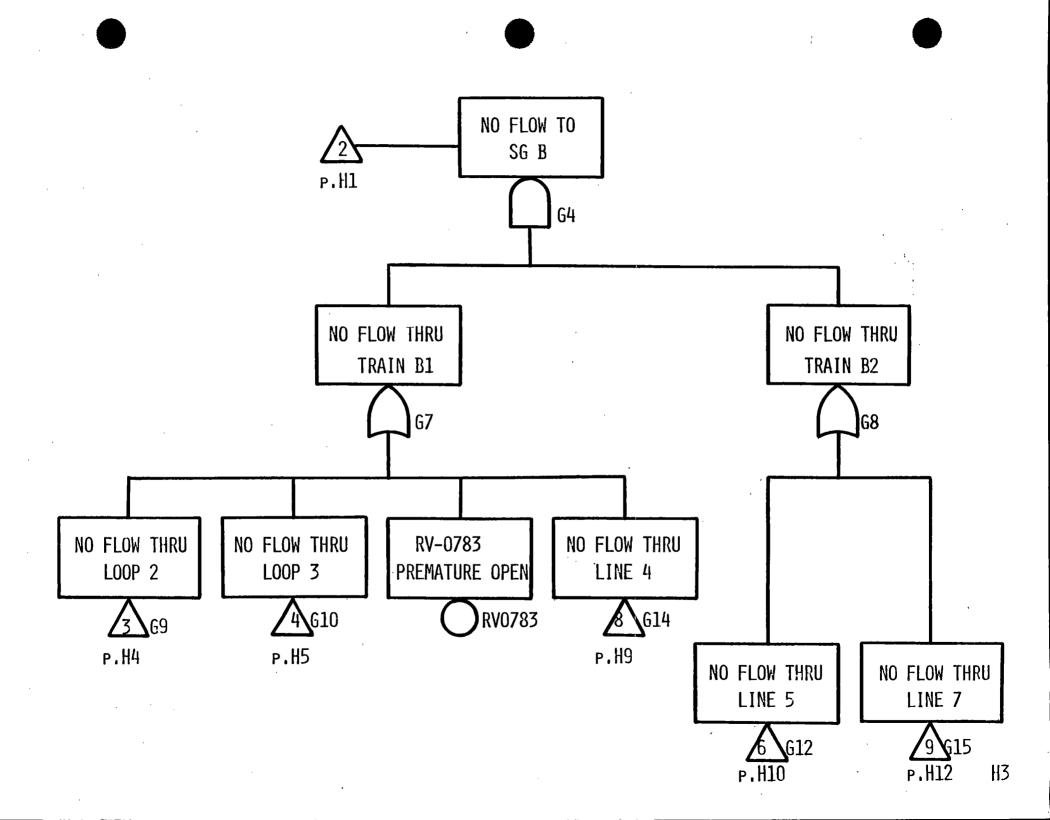
CHECK

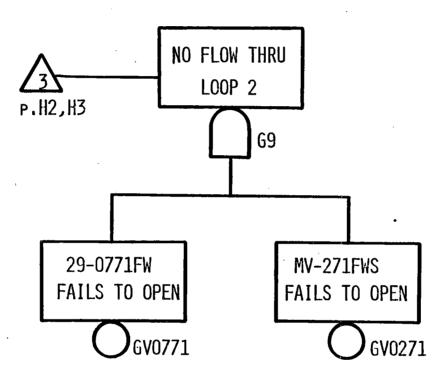
VALVE

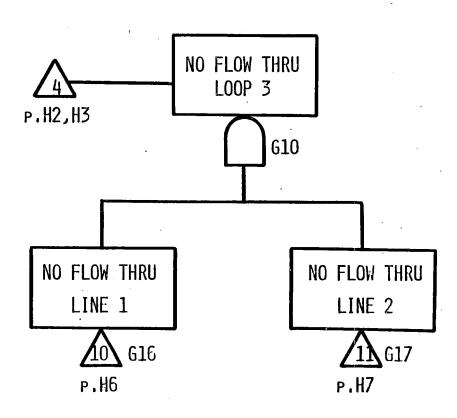
APPENDIX D

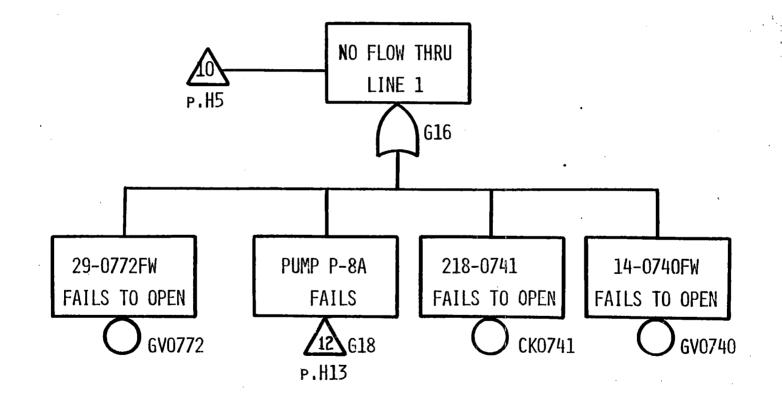

HARDWARE FAULT TREE


IC0286-0001K-NL01

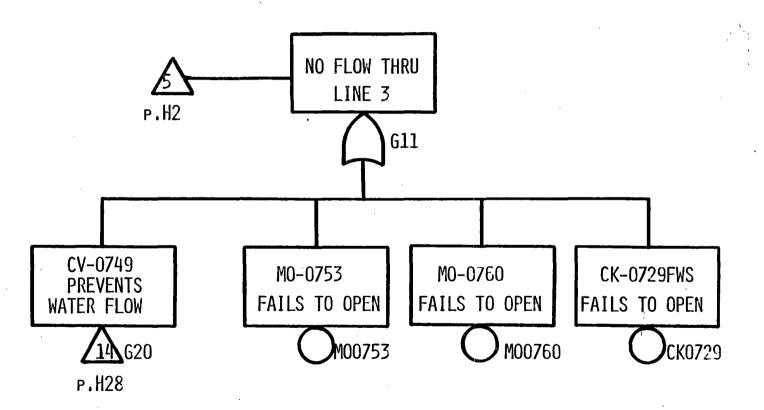

100		0E-0	•	2	<u></u>			
TOP	OR	2	2	61 01/270511	G2	CST	PRUPT	
51	AND -	0	2	6V270FW	GV133FW			
52	AND	2	0	63	G4			
33	AND	2.	0	65	66			
34	AND	2	0	G7	68			
65	OR	3	1	69	610	611	RVØ783	
36	OR	2 3	Ø	G12	613			
57 .	OR	3	1	69	610	G14	RVØ783	
38	OR	2	Ø	612	615			
59	AND	0	2	6VØ771	GVØ271			
510	AND	2	0.	G16	G17			
511	OR	1	3	620	M00753	M00760	CK0729	
312	OR	1	4	G22	CK0725	GV0751	CK0726	GV0752
31 3	ÛR	1	3	623	M00754	M00759	CK0704	
314	OR	1	3	G21	MD0743	MD0798	CK0728	
615	OR	1	3	G24	M00748	MD0755	CK0703	
516	OR	1	3	618	GV0772	CK0741	GV0740	
G17	OR	1	3	619	GV0132	CK0743	6V0742	·
G18	OR ·	1	3	625	PSBA	EACIC	EACY10	
519	OR	1	1	628	PSBB	CHOIC	ENCITO	
520	OR	1	1	628	CV0749			
			-					
521	OR	1	1.	647	CV0727	E 4 D 4 D	-	
322	OR	1	3	G44	PS8C	EACID	EACY20	
323	OR	1	1	657	CV0737A			
524	OR	1	1	652	CV0736A			
525	AND	1	1	G26 ·	AFAS			
626	OR	. 0	3	HS104CS	OPE1	EDC1		`
528	OR	2	1	629	6301	GOVERNOR		
329	AND	2	0	632	633			
632	OR	1	3	636	CK402MS	GV153AMS	6V153MS	
333	OR	3	3	637	G38	G65	CK401MS	GV152AMS
	1		GV152MS					
336	OR	1	2	642	CV05228	EACY10		
637	AND	2	0	639	6371			•
538	OR	1	1	640	CV0522A			
539	OR	0	6	OPE1	CV0521	SVØ521	HSØ521	EDC2
	1		EACY10	0121	0,0021	576521	1136321	
640	AND	1	1	641	OPE2	•		
	OR		6			COUREDOA		0054
641		0		AIR1	SVØ522A	FCV0522A	HSØ522A	OPE1
	1	~	EDCI		0100			
642	AND	2	8	6421	G422			
643	OR	1	5	6431	SV0522B	FCV0522B	HS0522B	OPE1
	1		EDC1	· .				
344	AND .	2	0	6441	645			
G45	OR	0	3.	HS209CS	OPE1	EDC2		
647	AND	0	2	OPE1	FT0727A			
352	AND	. 0	2	OPE1	FT0736A			
657	AND	0	2	OPE1	FT0737A			
662	AND	8	2	BPE1	FT0749A			
665	AND	1	1	666	WATER			
366	OR	1	1	667	GV714FW			
		-				•		
667	OR	1	1	668	CV0525			

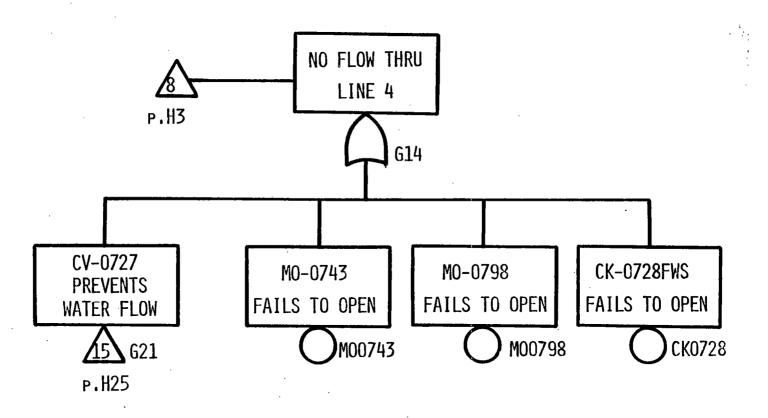

D - 1

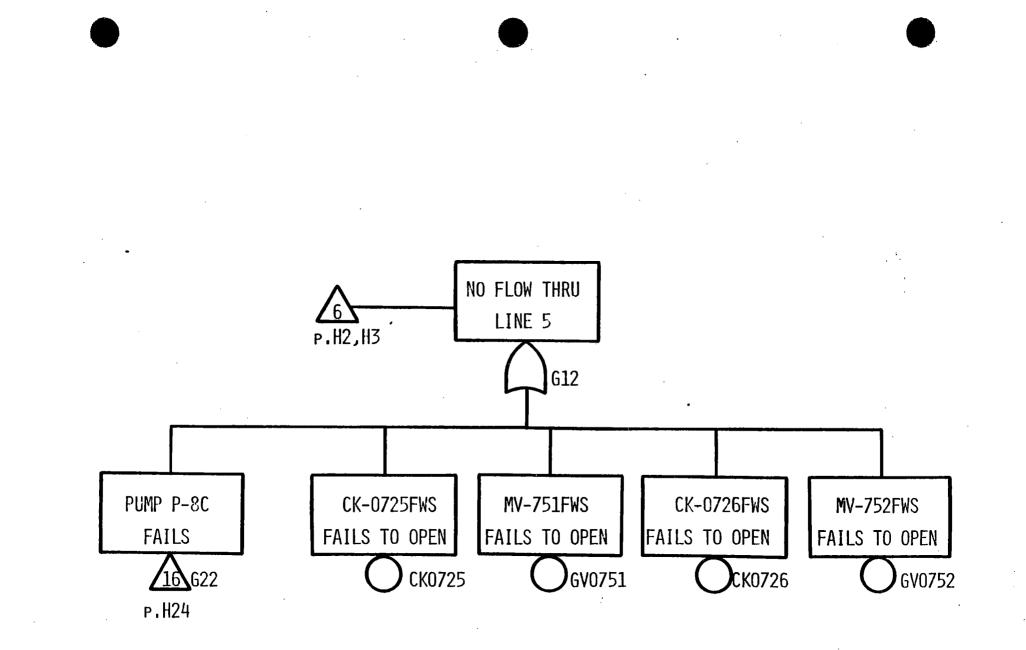

669	OR	0	5	AIR3	SV0525	HS0525	OPE1	EDC1
6301	ÛŔ	1	1	6302	PCV0521A			
6302	AND	8	2	NITROGEN	AIR4			
6371	OR	0	2	GV0214	OPE3			
6421	AND	1	1	643	OPE2			
6422	OR	1	1	G423	EDC1			
6423	0R	1	1	6424	AFAS			•
6424	OR	2	1	6425	G426	EACY20		-
6425	AND	0	2	FT0736H	FT0736AH		•	
6426	AND	Ø	2	FT0737H	FT0737AH			•
6431	AND	Ø	2	NITROGEN	AIR2			
6441	OR	1	1	6442	AFAS			
6442	ÖR	2	1	G443	6444	EACY10		
6443	AND	0	2	FT0727H	FT0727AH			
6444	AND	0	2	FT0749H	FT0749AH	-		
END								

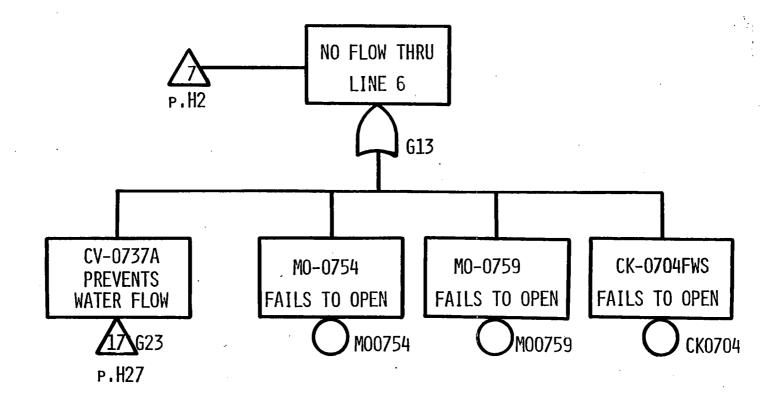


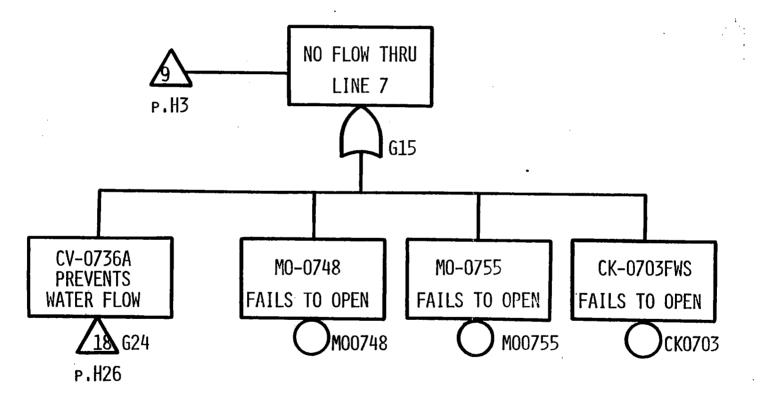


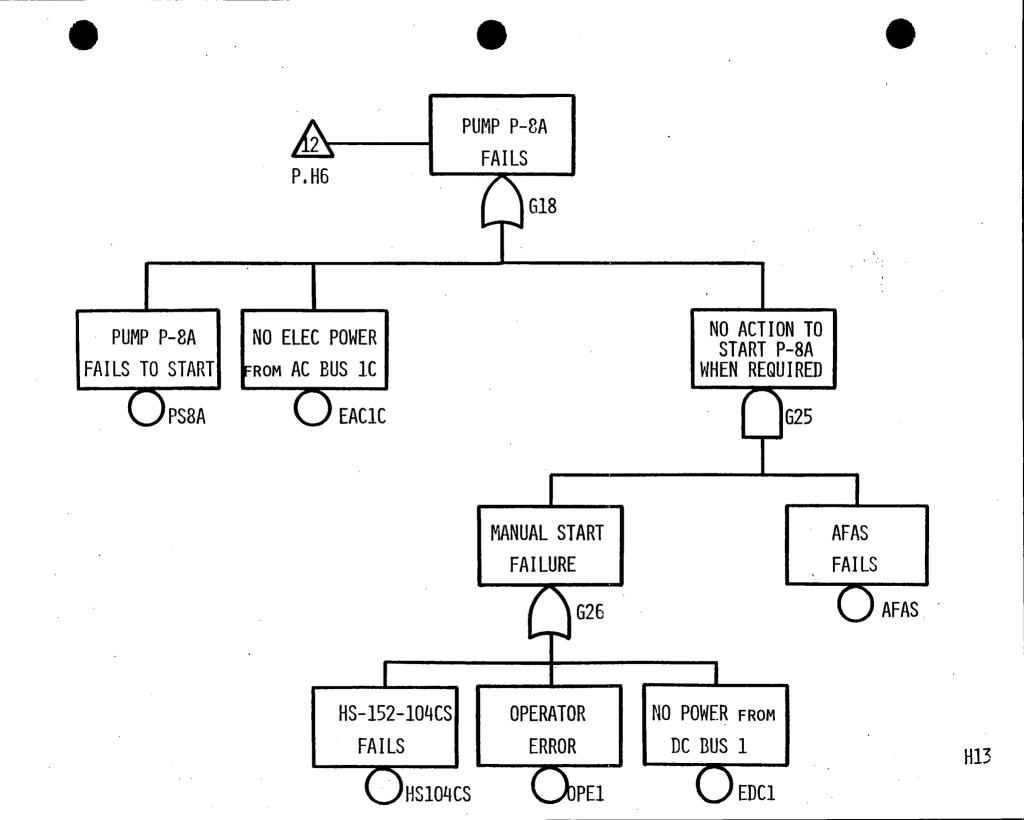


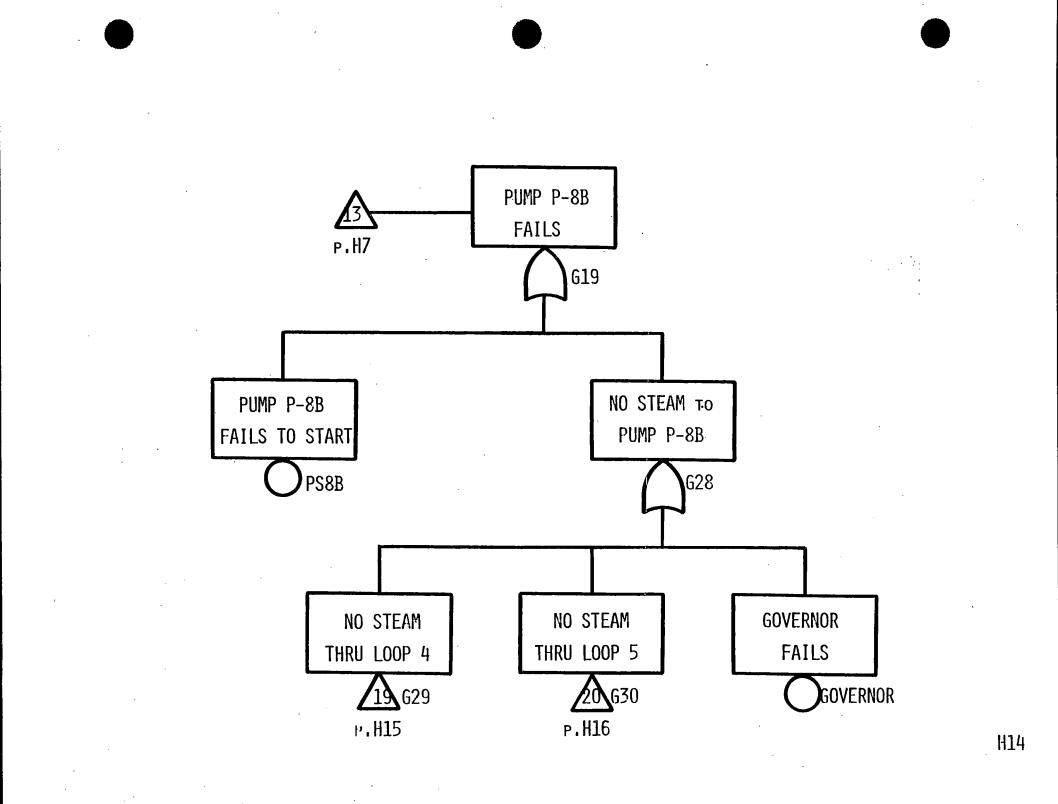


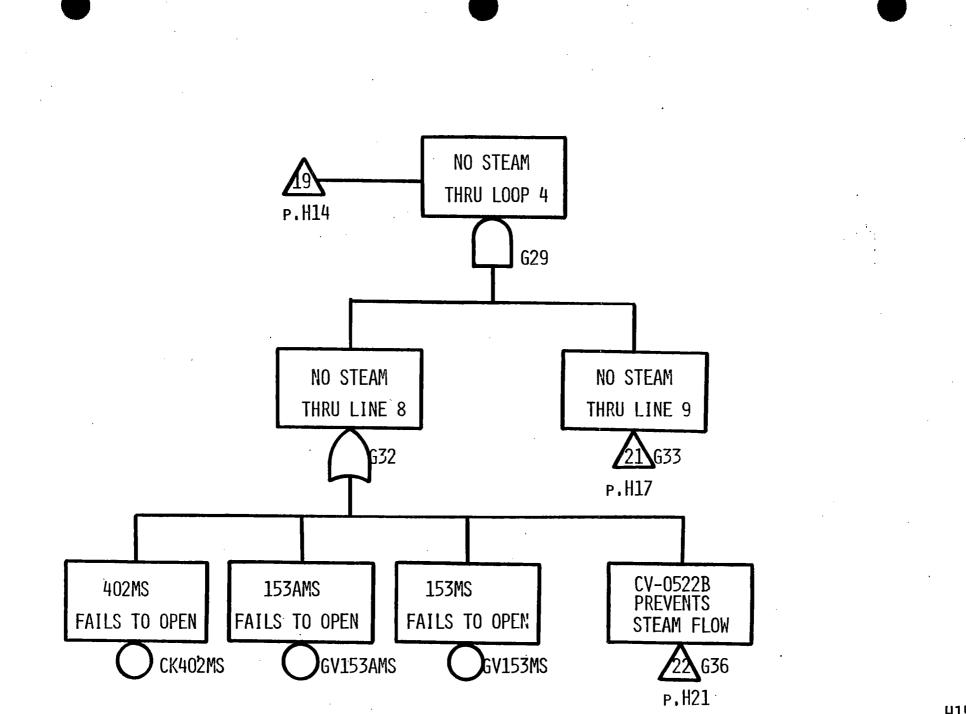


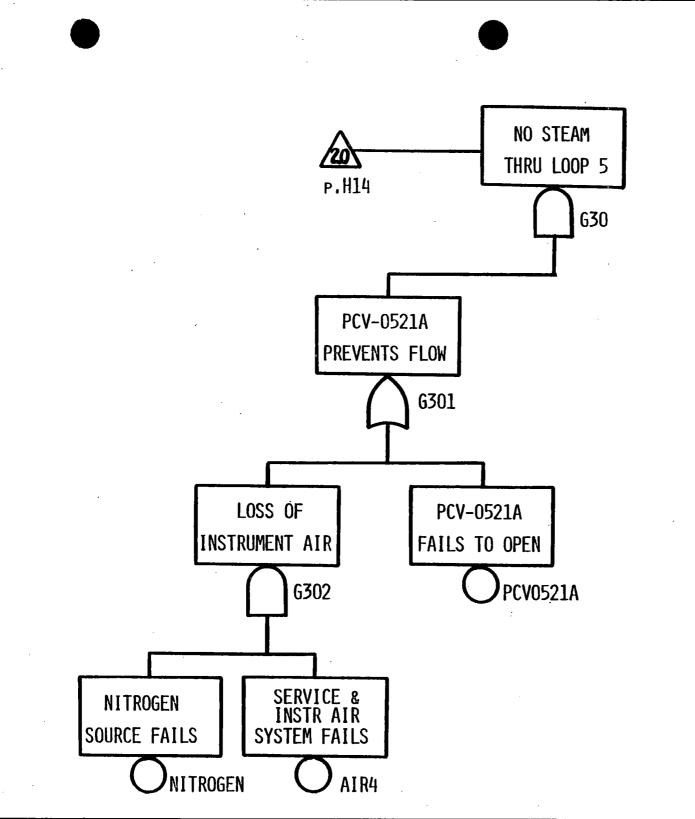


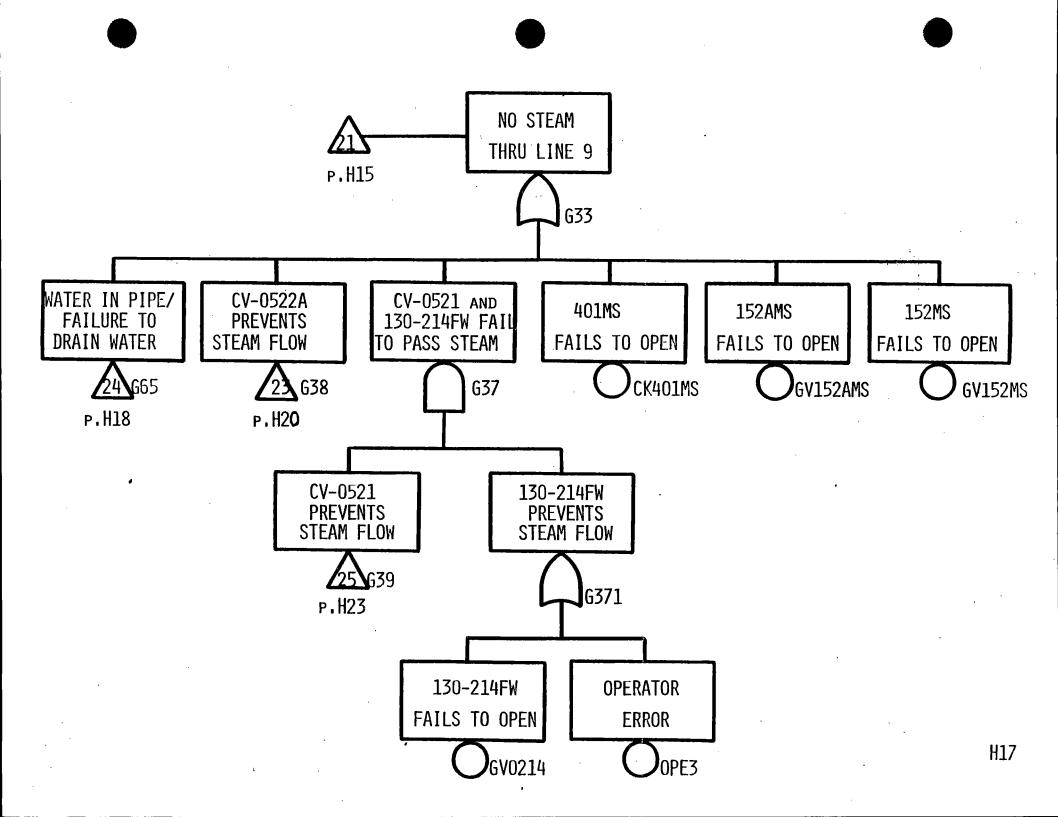


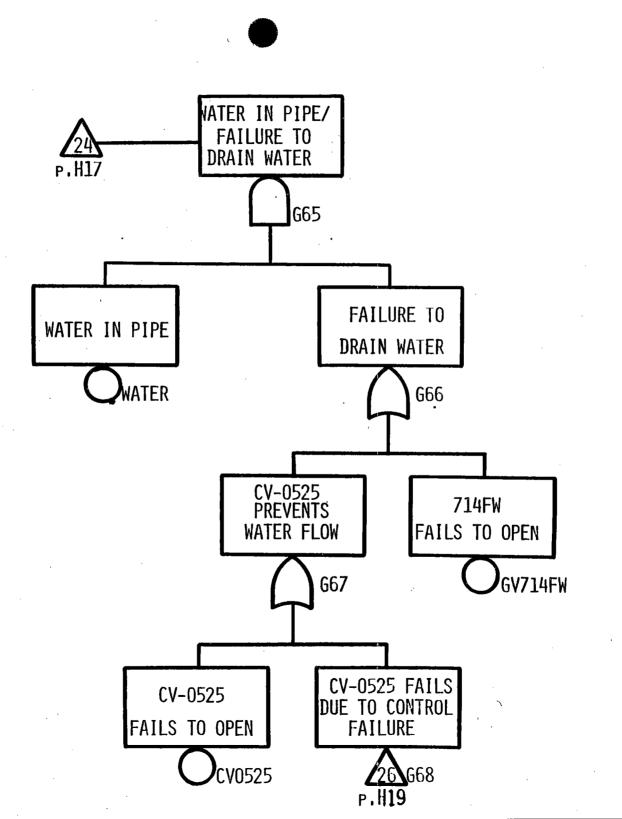


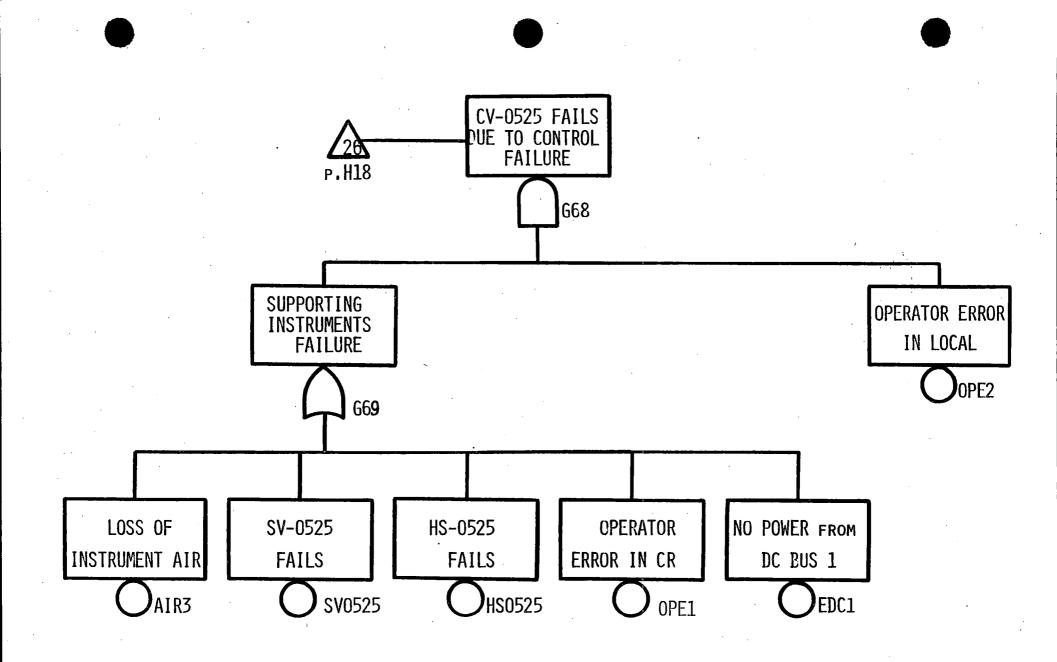


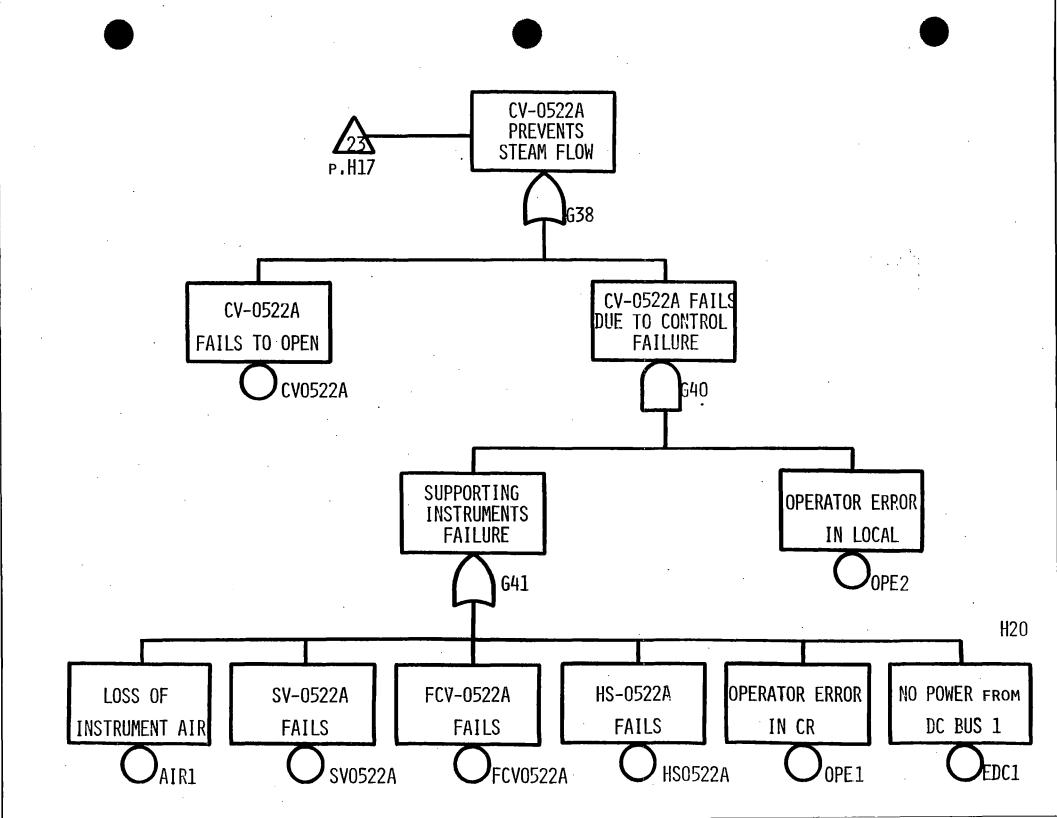


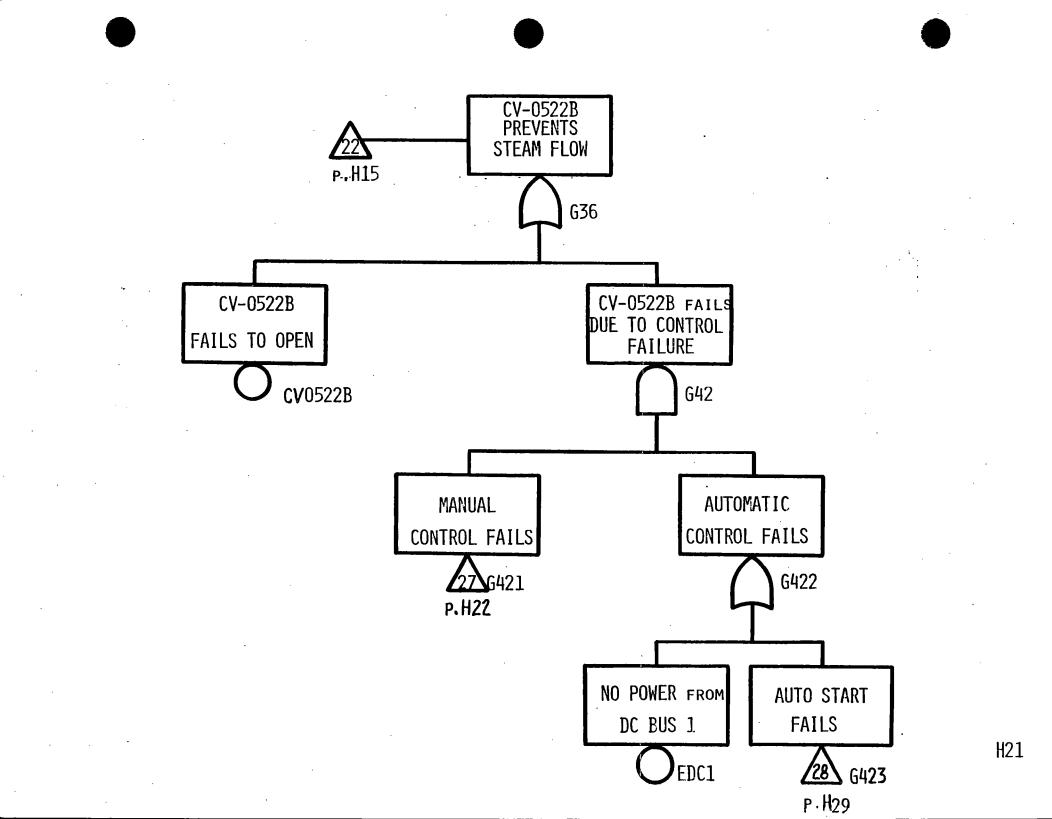


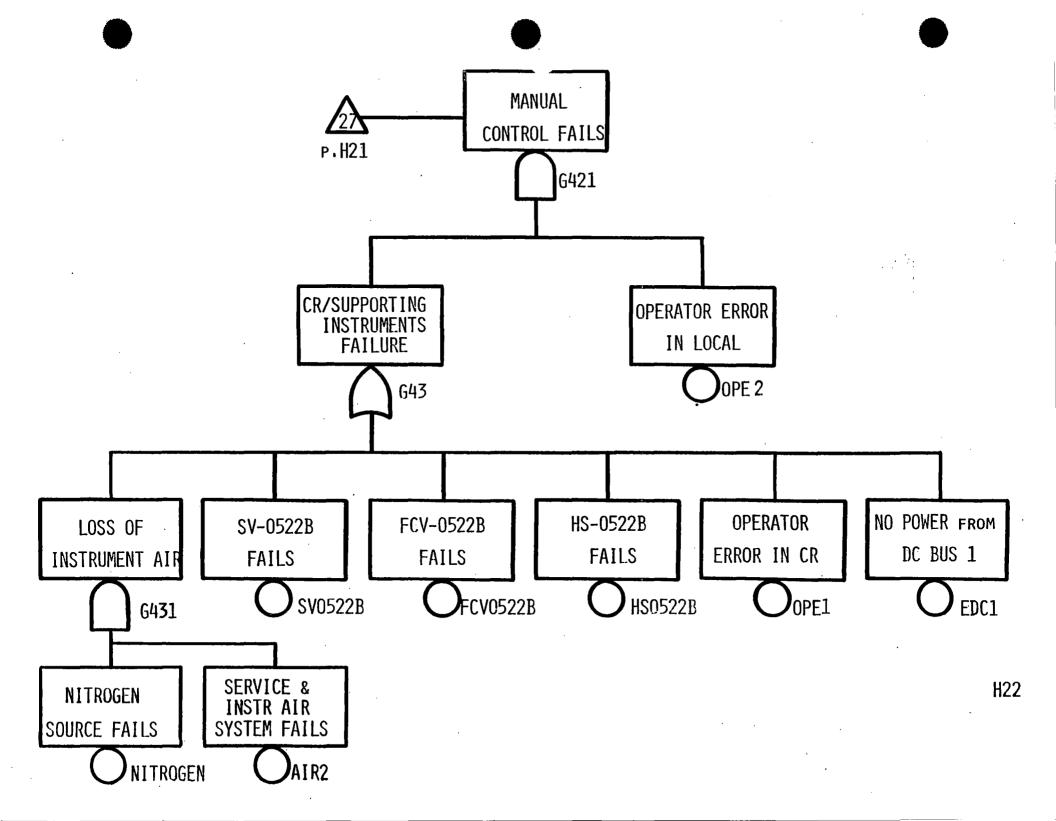


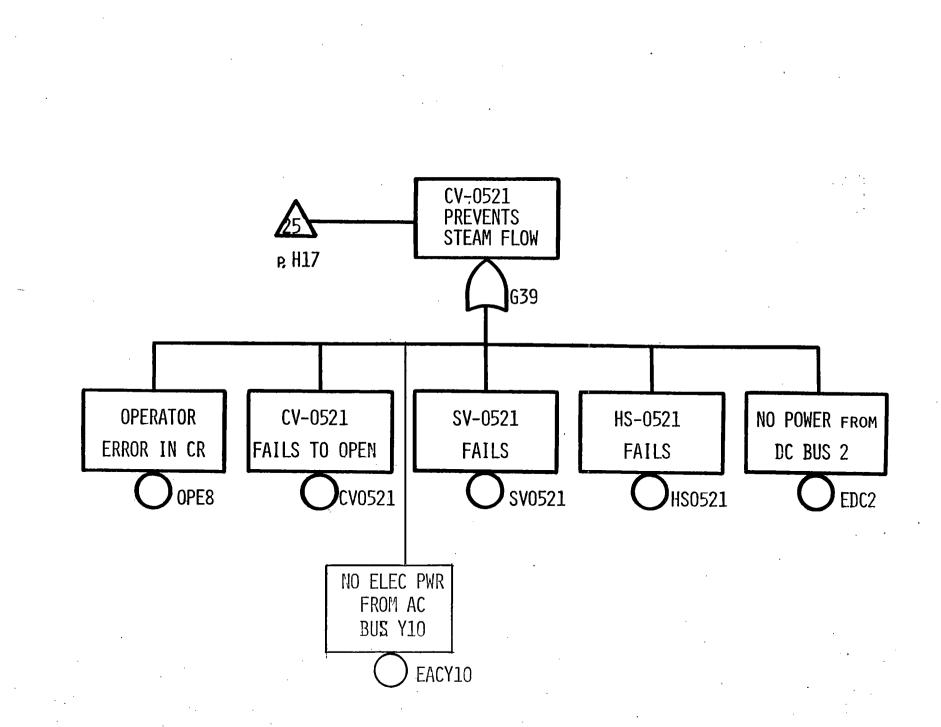


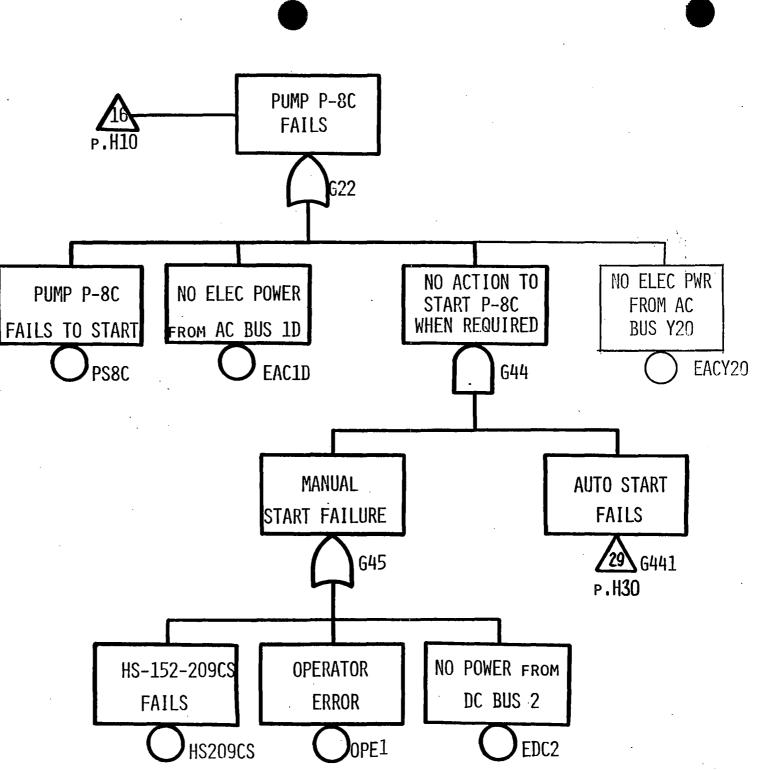


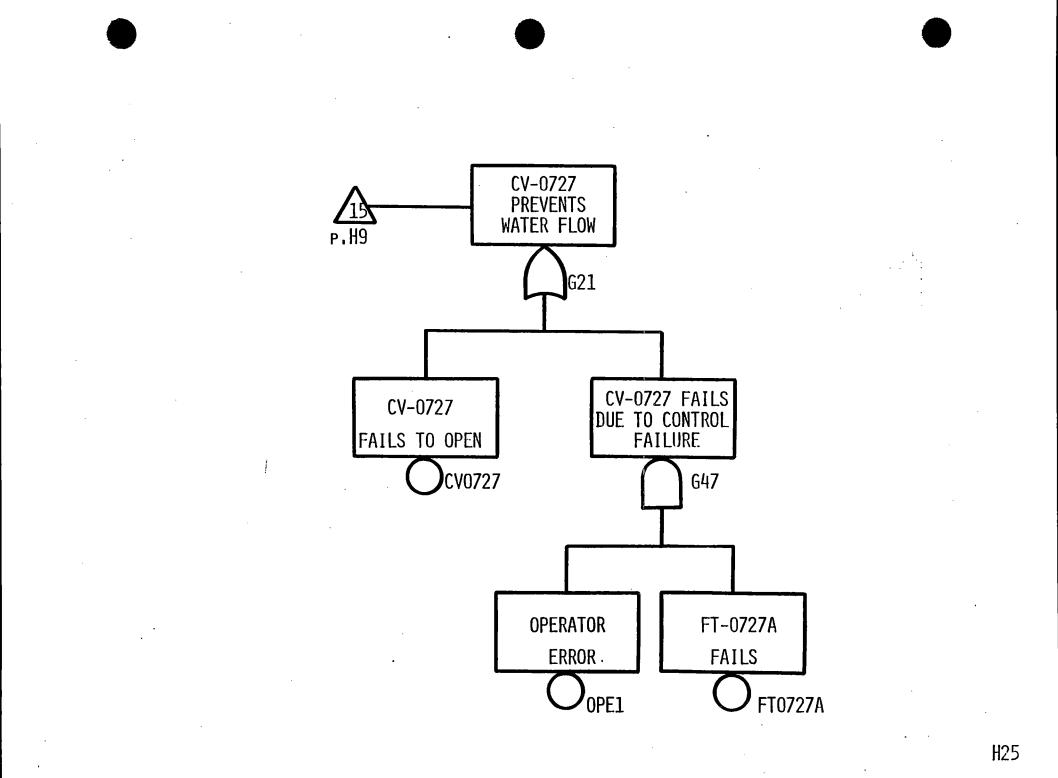


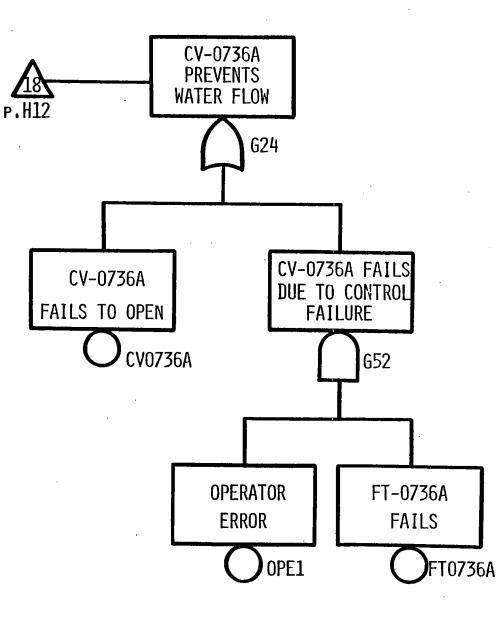


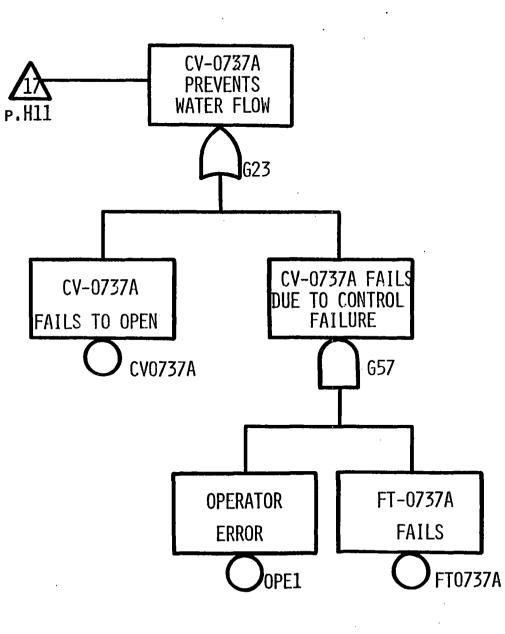


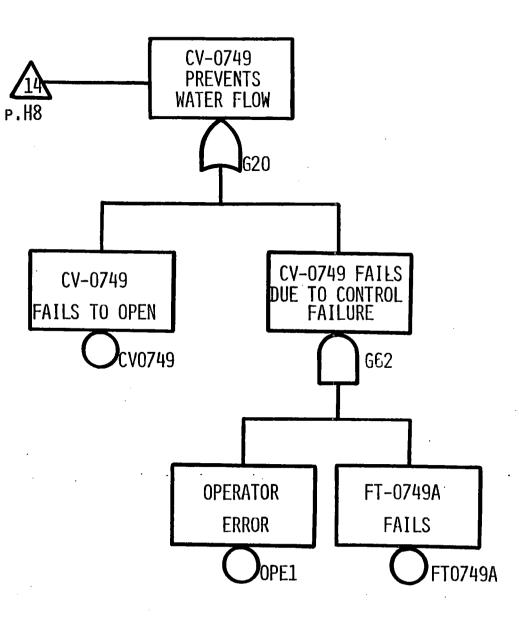


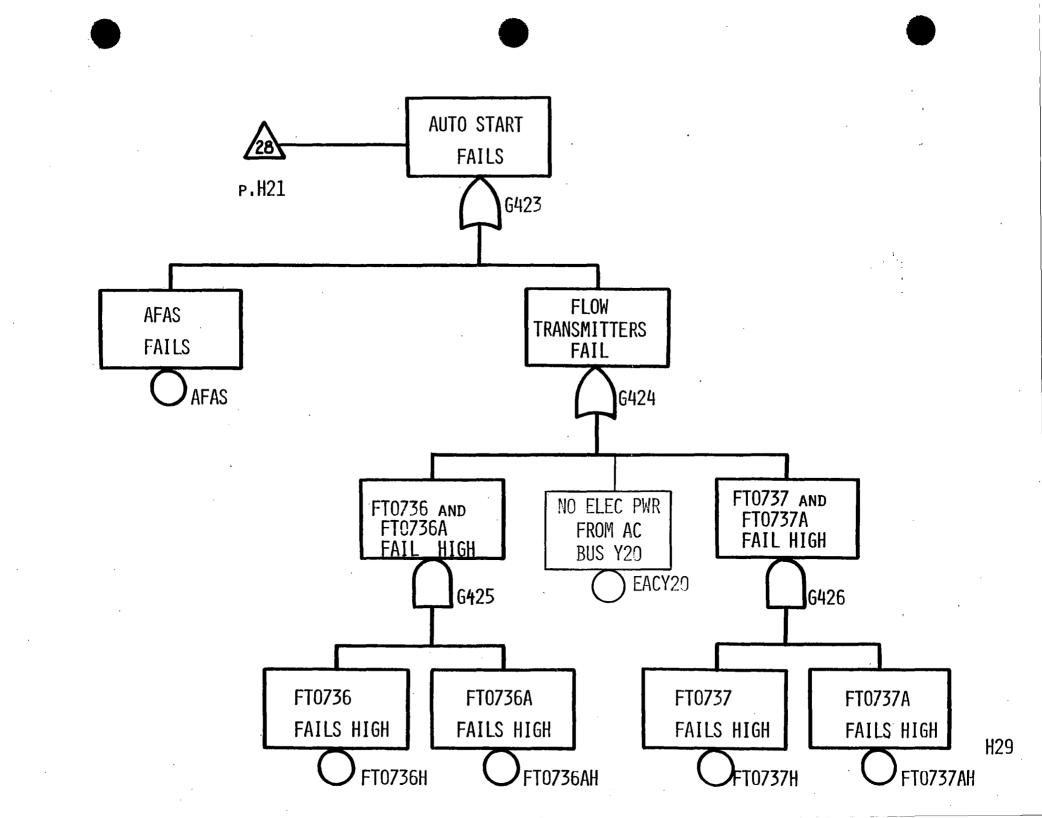


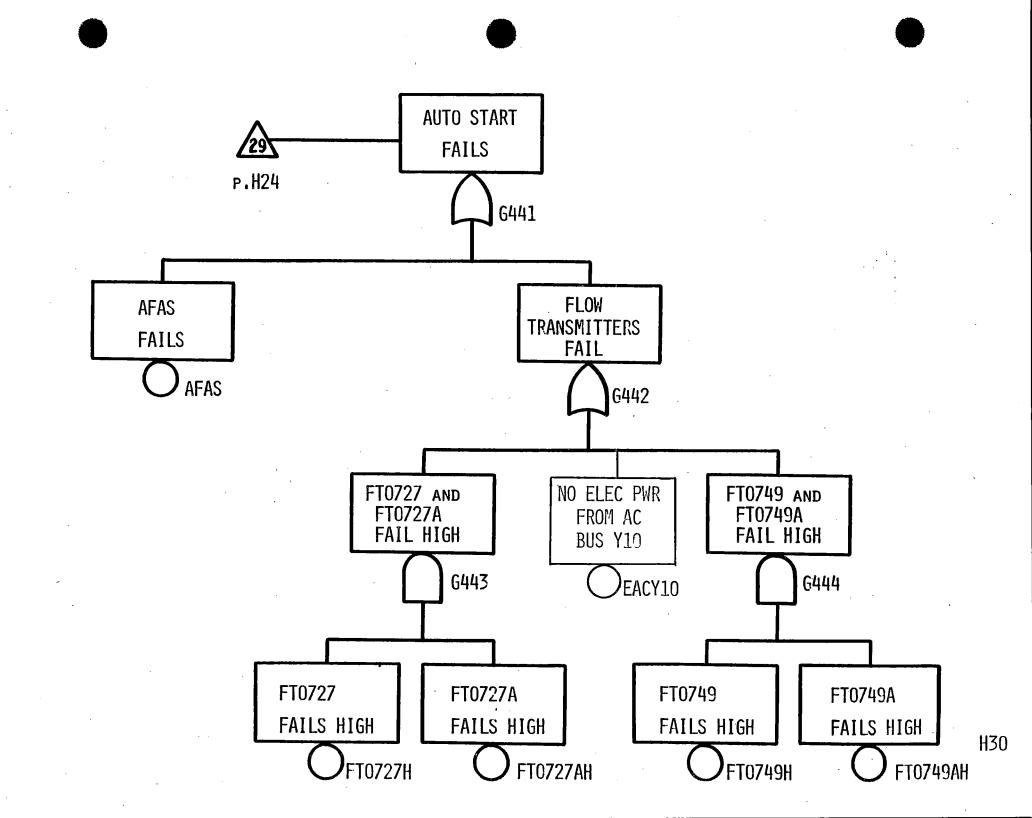












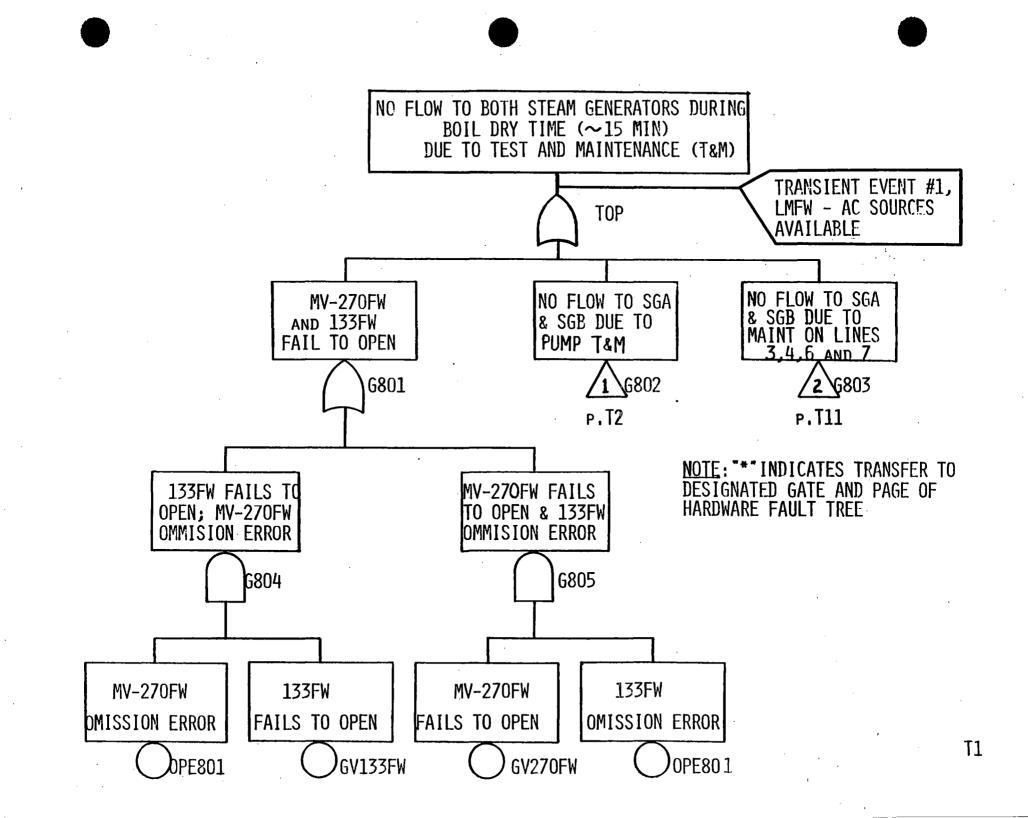
APPENDIX E

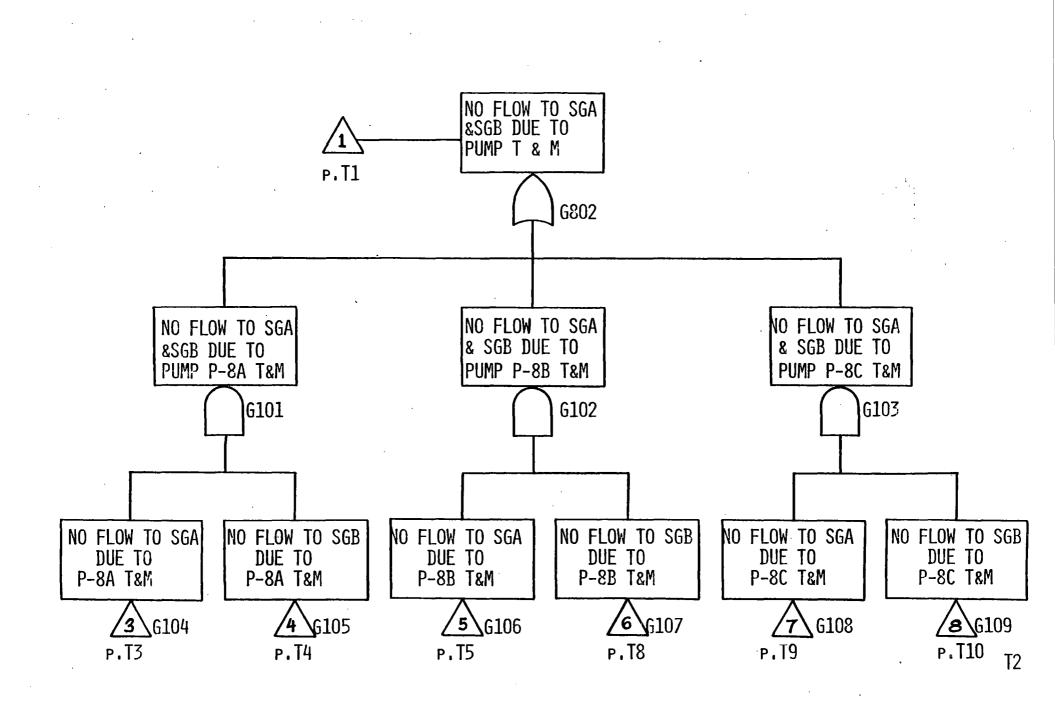
TEST AND MAINTENANCE FAULT TREE

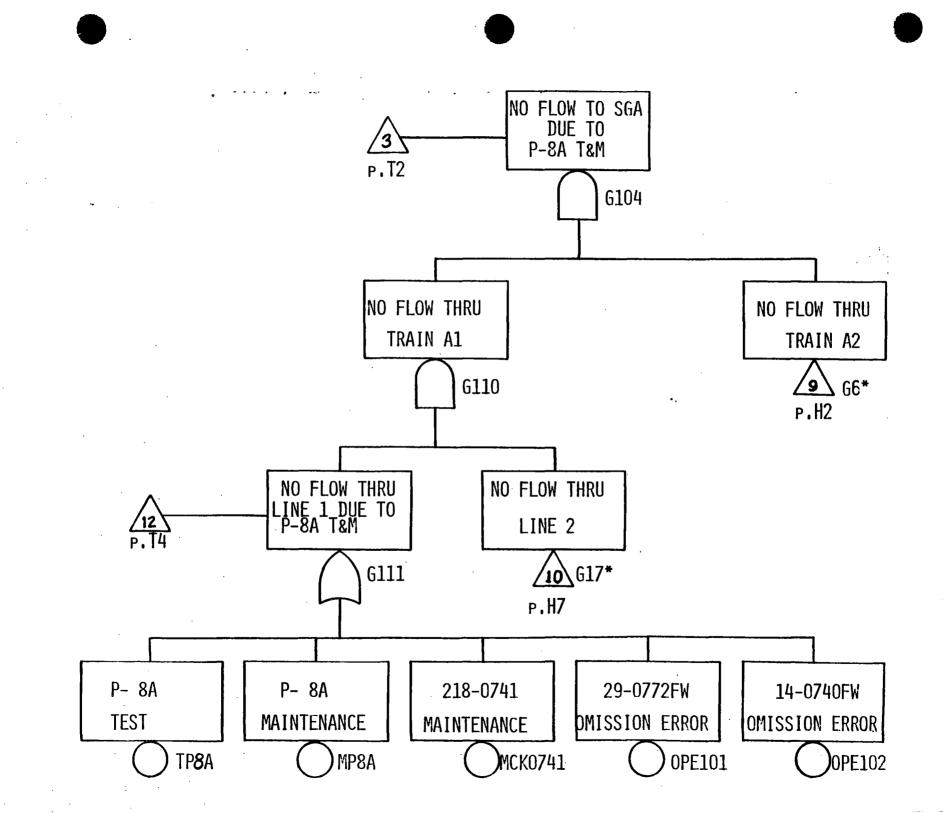
IC0286-0001K-NL01

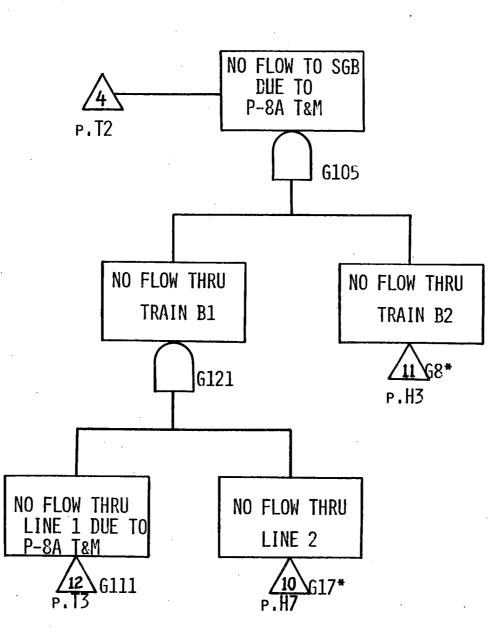
	AFW SYSTEM	FW SYSTEM RELIABILITY - TEST & MAINTENANCE 1.0E-08 1 2								
	TOP	OR	3	°0 -	6801	6802	6803			
	6801	OR	2		6804	6805	0000			
	6802			0			0107			
		OR	3	0	G101	G102	6103	0004		
	6803	OR	4	0	G206	6208	G2Ø3	6204		
	6804	AND	0	2	OPE801	GV133FW				
	6805	AND	Ø	2 *	OPE801	GV270FW				
	G1Ø1	AND	2	Ø	610/4	G105				
	6102	AND	2	Ø	6106	6107				
	G103	AND	2	0	G108	6109				
	6104	AND	2	0	6110	66				
	6105	AND	2	Ø	6121	68				
	6106	AND	2	0	6112	66				
•	G107	AND	2	0	G122	68				
	6108	AND	2	0	6119	65				
	6109	AND	2	0	G119	67				
	6110	AND	2	Ø	G111	617				
	6111	0R	0	5	TPBA	MPBA	MCK0741	0PE101	0PE102	
	6112	AND	2	Ø	6113	616		0.2101		
	6113	OR	1	5	6114	TP8B	MF8B	MCK0743	OPE103	
			T	OPE104	0114	11 0 0	11.05	11610773	01 61 60	
			2		P115	D11/	MOCHEDIA			
	6114	0R AND	2	1	G115	6116	MPCV521A			
	6115	AND	2	0	6117	632 877				
	6116	AND	2	Ø	6118	633				
	6117	OR	0	4	MCK401MS	MCV0521	OPE105	MCV0522A		
	6118	OR	Ø	3	MCK402MS	MCV0522B	OPE106			
	6119	OR	0	5	TP8C	MP8C	MCK0726	OFE107	OPE108	
	G203	OR	2	0	6209	62112				
	G204	OR	2	Ø	G211	6212				
	6206	AND	2	0	6217	64				
	G2Ø8	AND	2	0	6223	63				
	6209	AND	2	0	6225	6239				
	G210	AND	2	Ø	G228	G 4				
	6211	AND	2	Ø	6230	6231			·	
	G212	AND	2	2	6233	63				
	6217	AND	2	0	G218	. 66				
	6218	DR	ø	2	MM00753	0PE202				
	6223	AND	2	Ø	6224	68				
	6224	OR	ø	2	MM00743	OPE204				
	6225	AND	2	2	6227	65				
	G227	OR	0	2	MCV0737A	0PE205				
	6228	AND	2	0	6229	65				
	6229	OR	0	2	MM00754	0PE206				
	6230	AND	2	0 .	6232	65				
	6231	AND	2	0	6232	67			•	
	6232	OR	0	2	MCV0736A	OPE210				
	6233	AND	2	Ø	G234	G7				
	6234	OR	Ø	2	MM00746	OPE207				
	G239	AND	2	0	G227	67				
	G3	AND	2	Ø	65	66				
	G4	AND	2	Ø	67	68	•			
	65	0R	3	1	G 9	G10	611	RVØ783		
	66	OR	2	0	612	G13				
	67	OR	3	1	69	610	614	RVØ783		
								•		

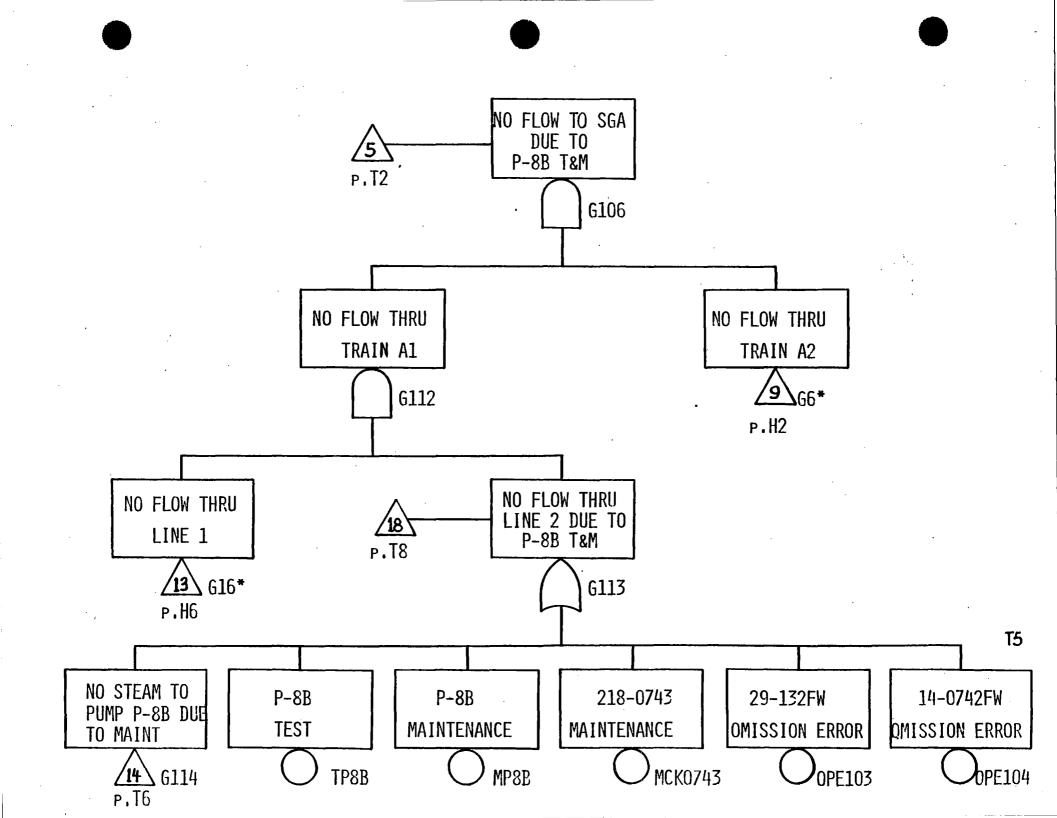
E-1

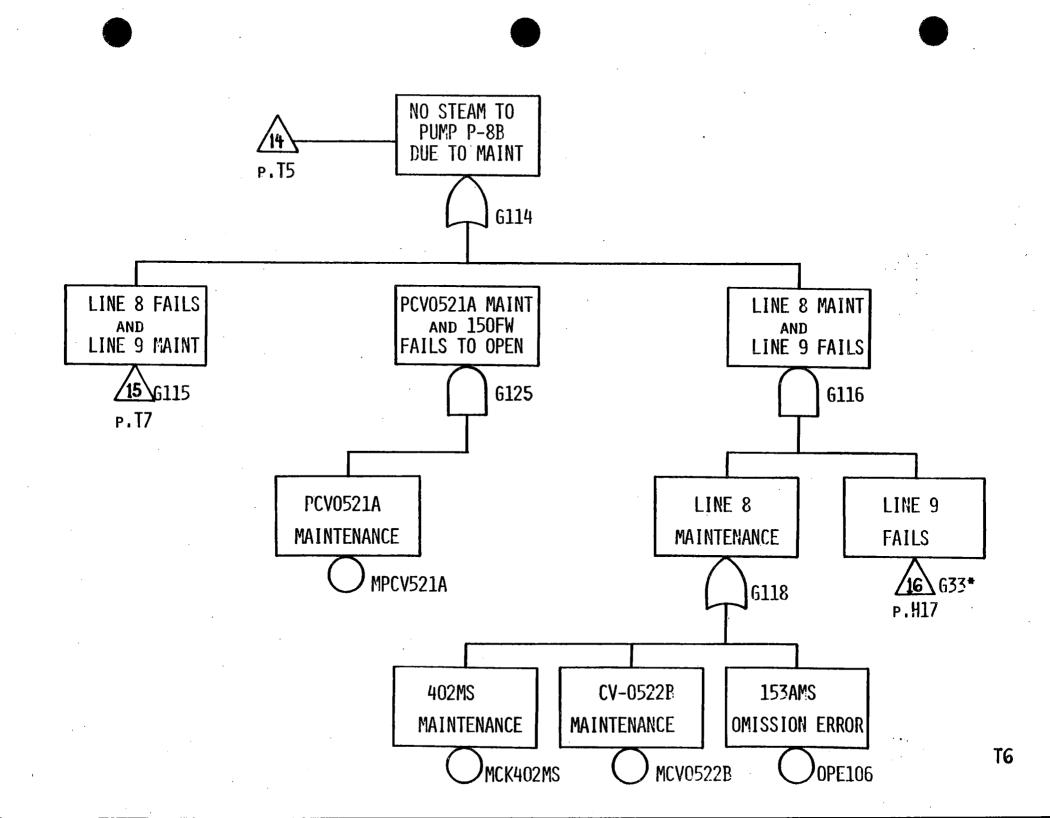

APPENDIX E

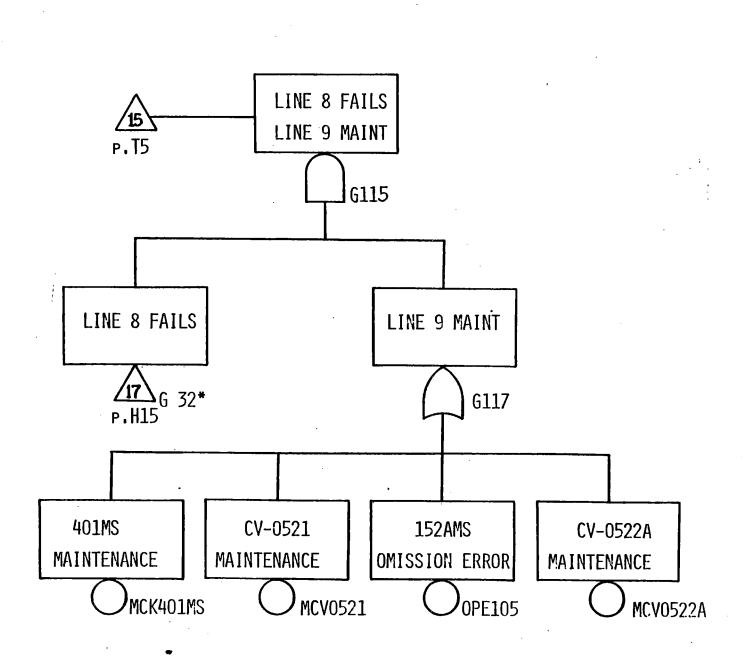

C D	00	-	a	C1.0	54F			
68 69	DR AND	2 Ø	90 2	G12 6VØ771	G15 GVØ271			
610	AND	2	0	616	G17			
611	DR	1	3	620	MDØ753	MD0760	CKØ729	
612	OR	1	4	G22	CK0725	6VØ751	CK0726	GV0752
613	0R	1	3	623	M00754	MO0759	CK0728 CK0704	670/32
G14	OR	1	3	623 621	M00743	M00798	CK0728	
615	OR	i	3.	624	M00743	M00755	CK0703	
616	OR	1	3	618	GV0772	CK0741	GV0740	
617	OR	1	3	619	GVØ132	CK0743	GVØ742	
618	OR	1	3	G25	PSBA	'EAC1C	EACY10	
619	OR	1	1	G28	PS8B	LHUIG	CHUILO	
620	OR	1	1	662	CV0749			
621	OR	1	1	647	CV0727			
622	OR	1	3	644	FS8C	EAC1D	EACY20	
G23	0R	1	1	657	CV0737A	211010	2110120	
624	OR	1	1	652	CV0736A			
625	AND	1	1	626	AFAS			
G26	OR	Ô	3	HS104CS	OPE1	EDC1		
628	OR	2	1	G29	6301	GOVERNOR		
G29	AND	2	Ø	632	633	OUVERNOR		
632	OR	1	3	636	CK402MS	GV153AMS	GV153MS	
633	OR	3	3	637	G38	665	CK401MS	GV152AMS
000	1	Ċ.	GV152MS	0.07	000	003	GRADING	OVIJZANJ
636	ŌR	1	2	642	CV0522B	EACY10		
637	AND	2	ē	639	6371	CHOILD		
638	OR	1	1	640	CV0522A			
639	OR	2	6	OPEI	CV0521	SVØ521	HS0521	EDC2
007	1		EACY10	0, 1, 1	646621	040021	1100021	6062
640	AND	1	1	G41	OPE2			
G41	DR	ø	6	AIR1	SV0522A	FCV0522A	H90522A	OPE1
0.12	1 `	•	EDC1		UVUULLII	101002211	110002211	0121
642	AND	2	0	G421	6422			
643	OR	ī	5	6431	SV0522B	FCV0522B	HS0522B	OPE1
0.0	1	•	EDC1	0.01	DIDDLLD	/0/00222	HOUDLED	01 2 1
644	AND	2	0	6441	G45			
G45	OR	ø	3	H5209CS	OPE1	EDC2		
647	AND	ø	2	OPE1		2001		
652	AND	ø	2	OFE1	FT0736A			
657	AND	0	2	OPEI	FT0737A			
662	AND	ē	2	OPE1	FT0749A			
665	AND	1	1	666	WATER			
666	OR	1	1	G67	GV714FW			
667	OR	i	1	668	CV0525			
668	AND	1	1	669	OPE2			
669	OR	0	5	AIR3	SV0525	HSØ525	OPEI	EDCi
6381	OR	1	1	6302	PCV0521A		0. 2 -	
6302	AND	ø	2	NITROGEN	AIR4			
6371	OR	ø	2	GVØ214	OPE3			
6421	AND	1	1	643	OFE2		-	
G422	OR	1	1	6423	EDC1			
6423	OR	1	1	6424	AFAS			
6424	OR	2	1	6425	G426	EACY20		
6425	AND	2	2	FT0736H	FT0736AH			
6426	AND	Ø	2	FT0737H	FT0737AH			

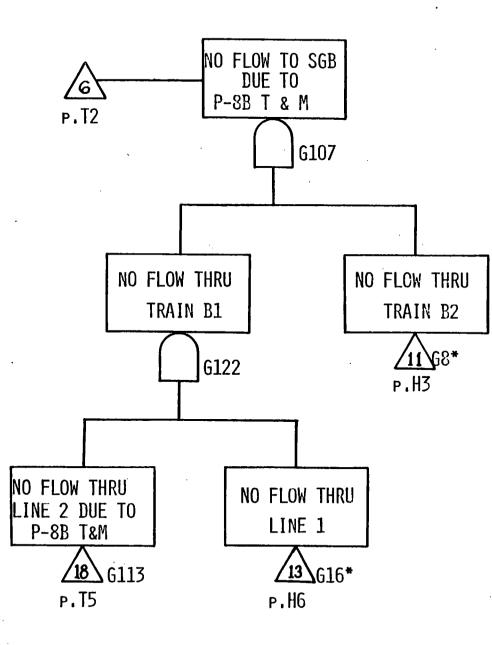

E-2

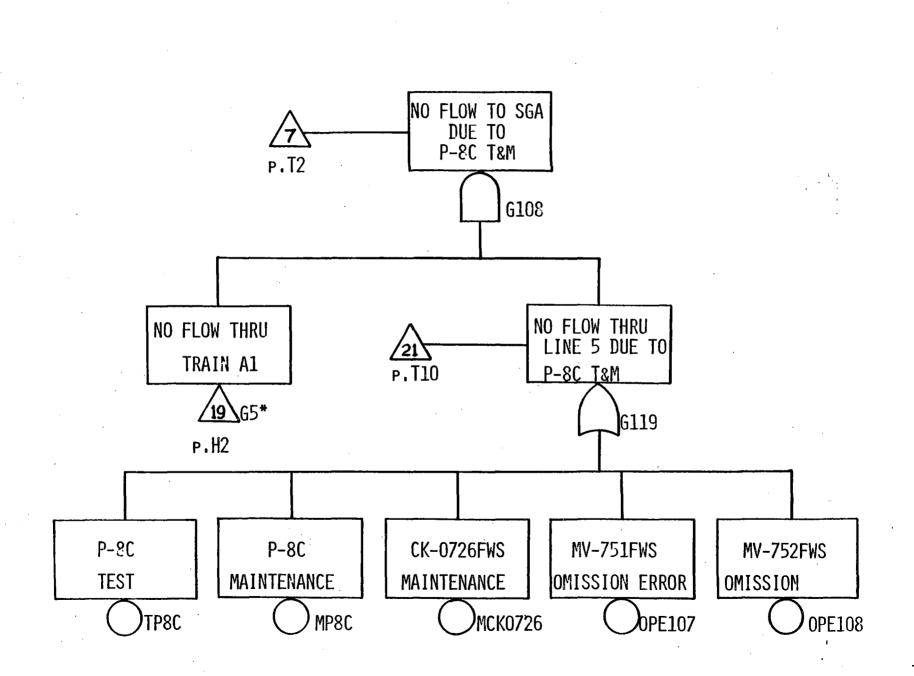

G431	AND	0	2	NITROGEN	AIR2	
6441	OR	1	1	6442	AFAS	
6442	OR	2	1	6443	6444	EACY10
6443	AND	Ø	2	FT0727H	FT0727AH	
G444	AND	Ø	2	FT0/749H	FTØ749AH	
END			•			

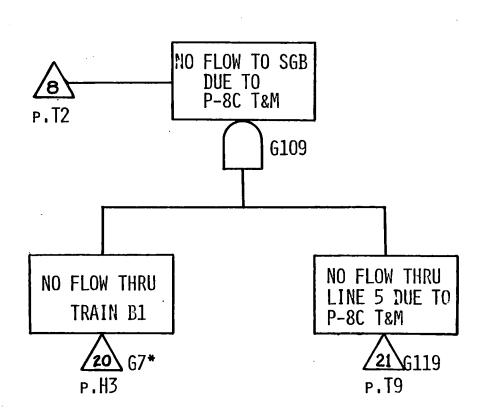

E-3

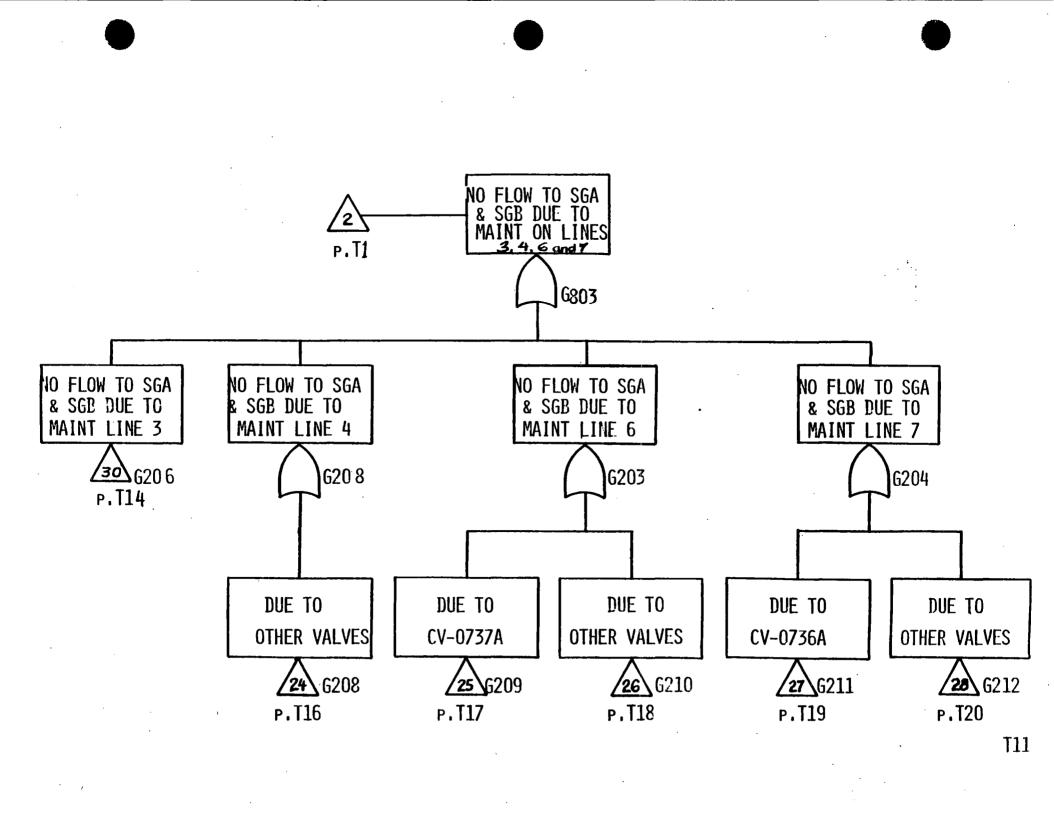


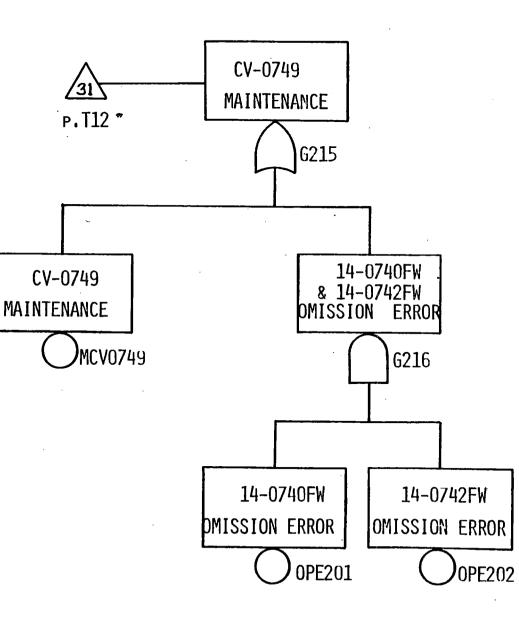


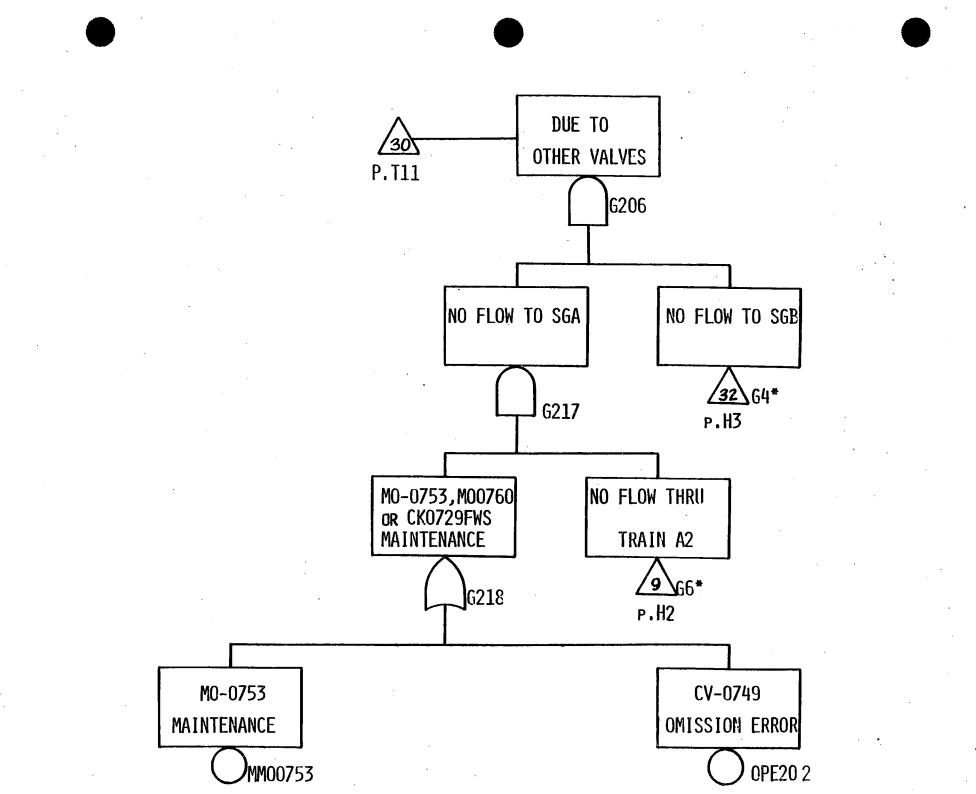






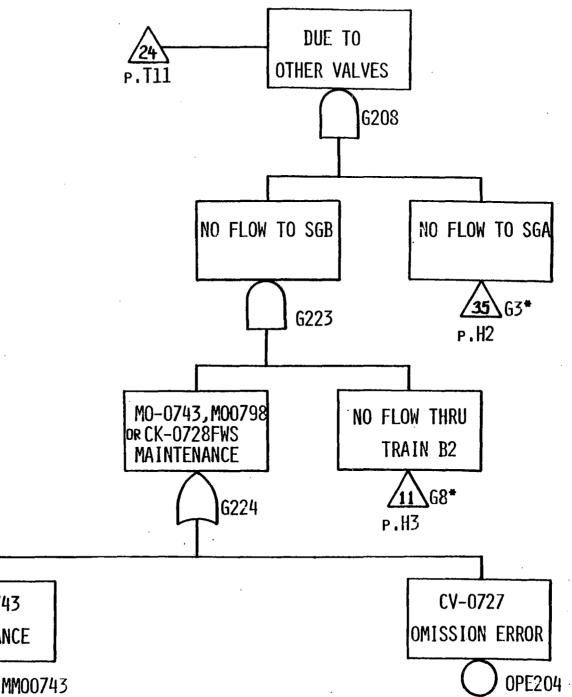


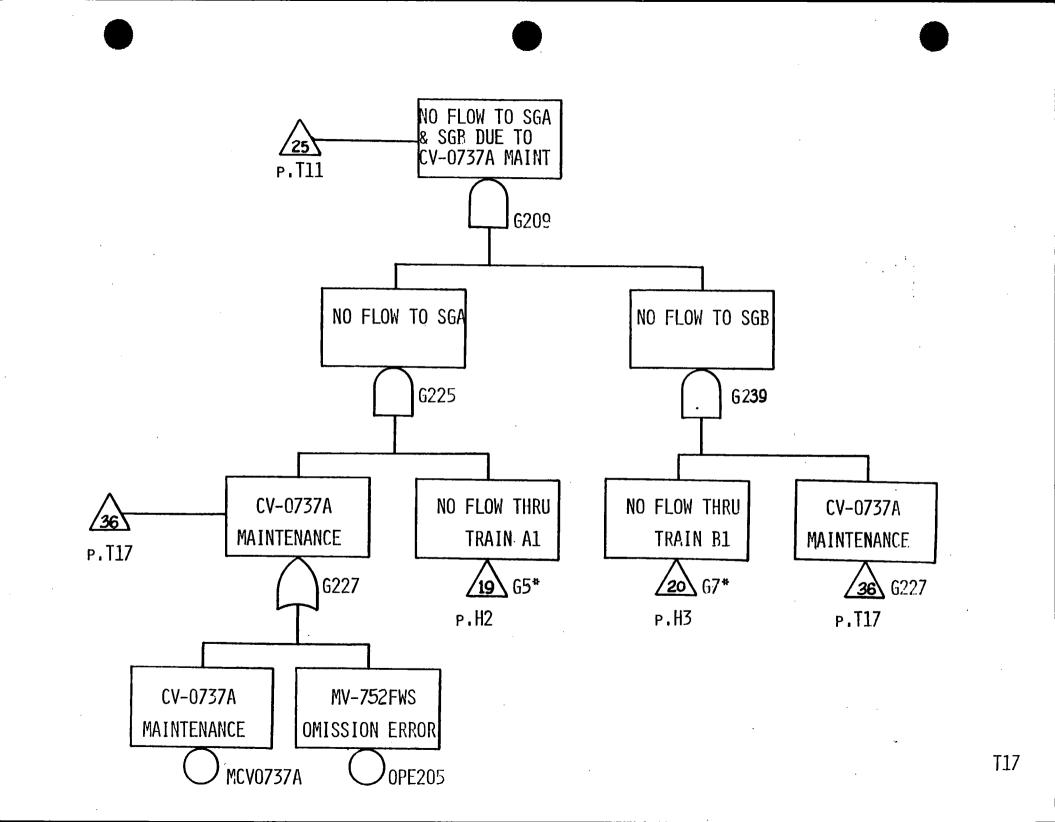




THIS PAGE INTENTIONALLY BLANK

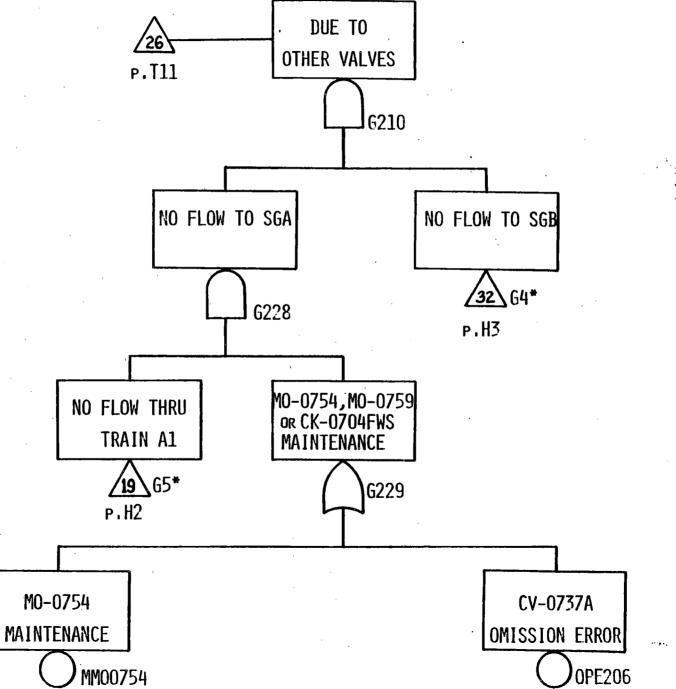
.

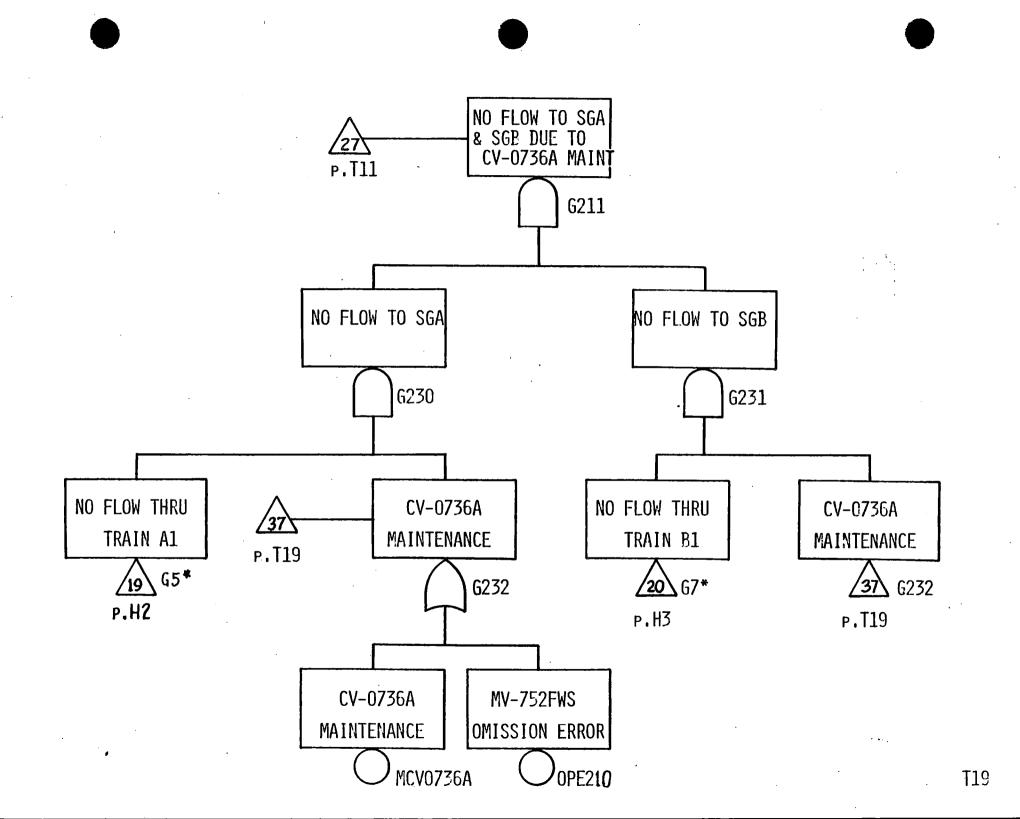


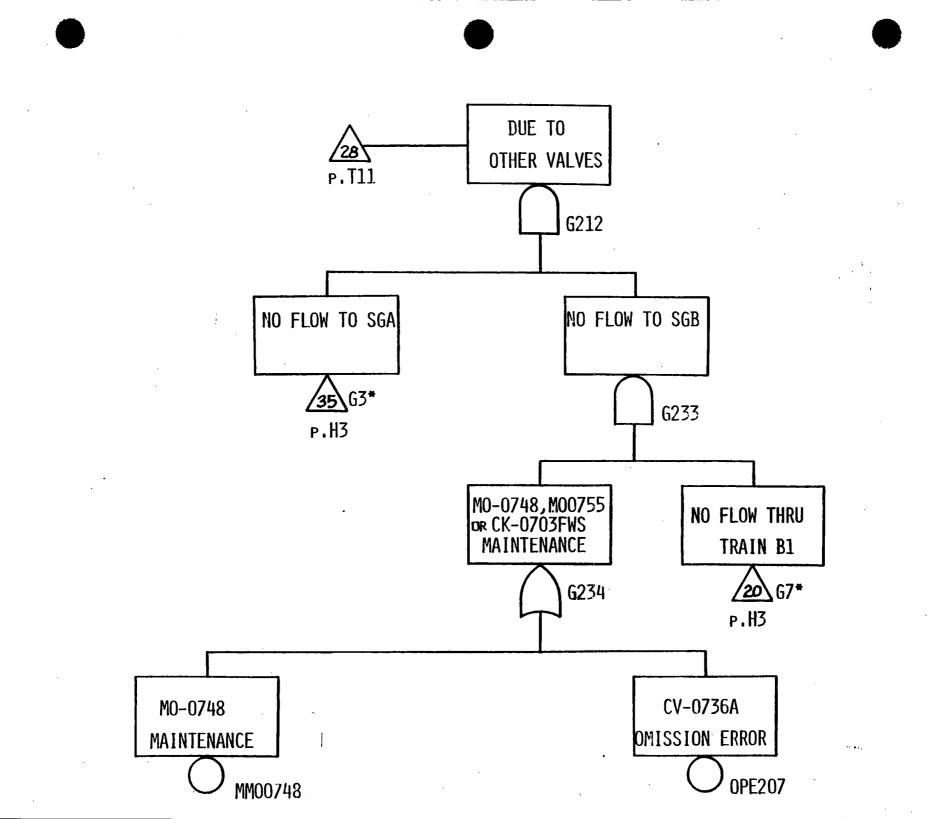


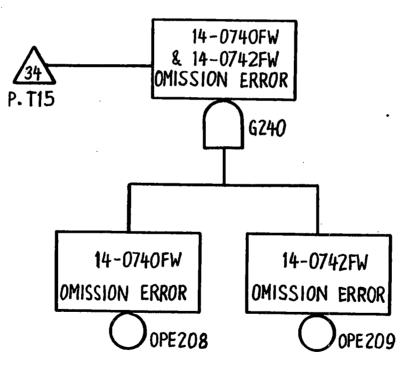
THIS PAGE INTENTIONALLY BLANK

MO-0743


MAINTENANCE







T18

T20

T21

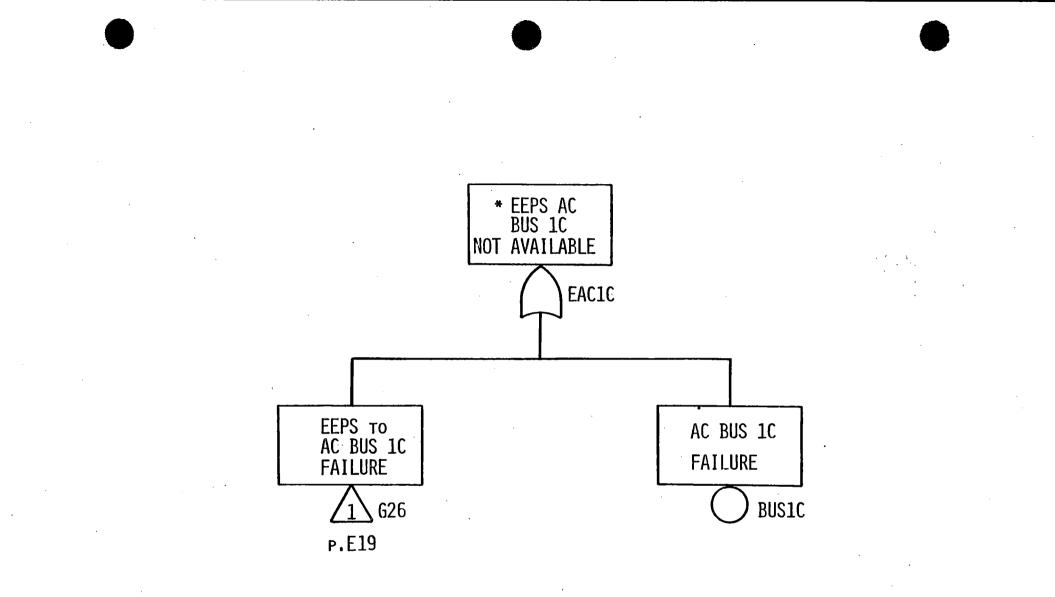
APPENDIX F

ELECTRICAL FAULT TREES

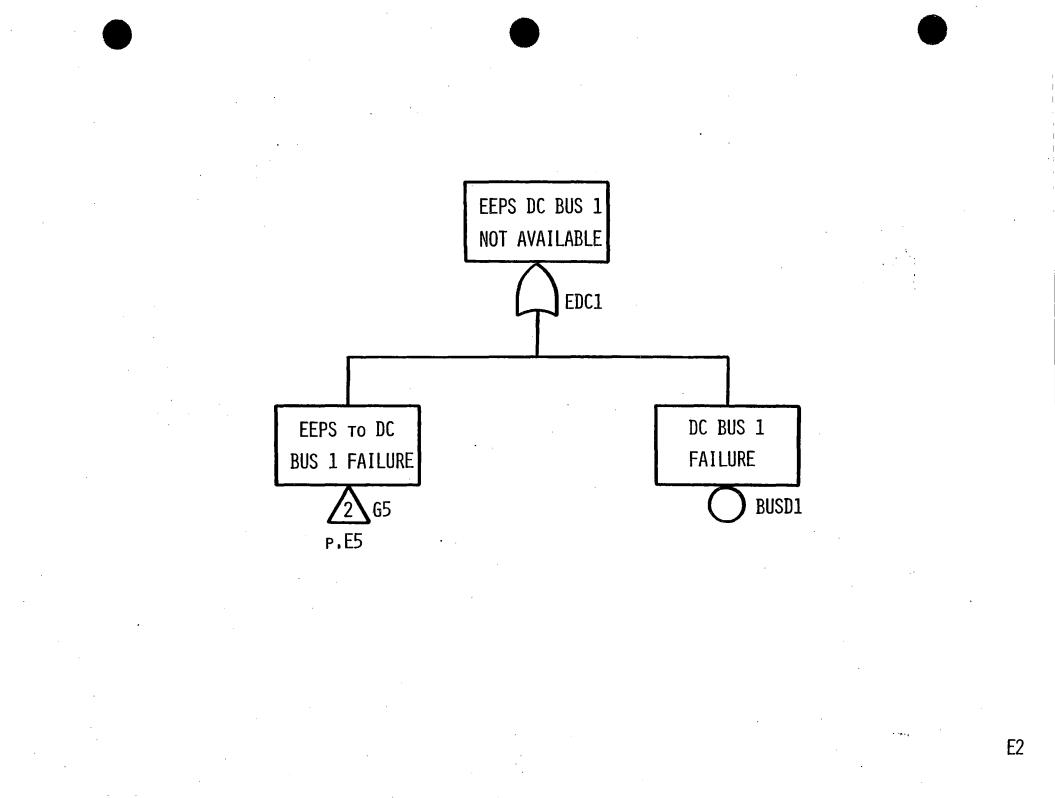
IC0286-0001K-NL01

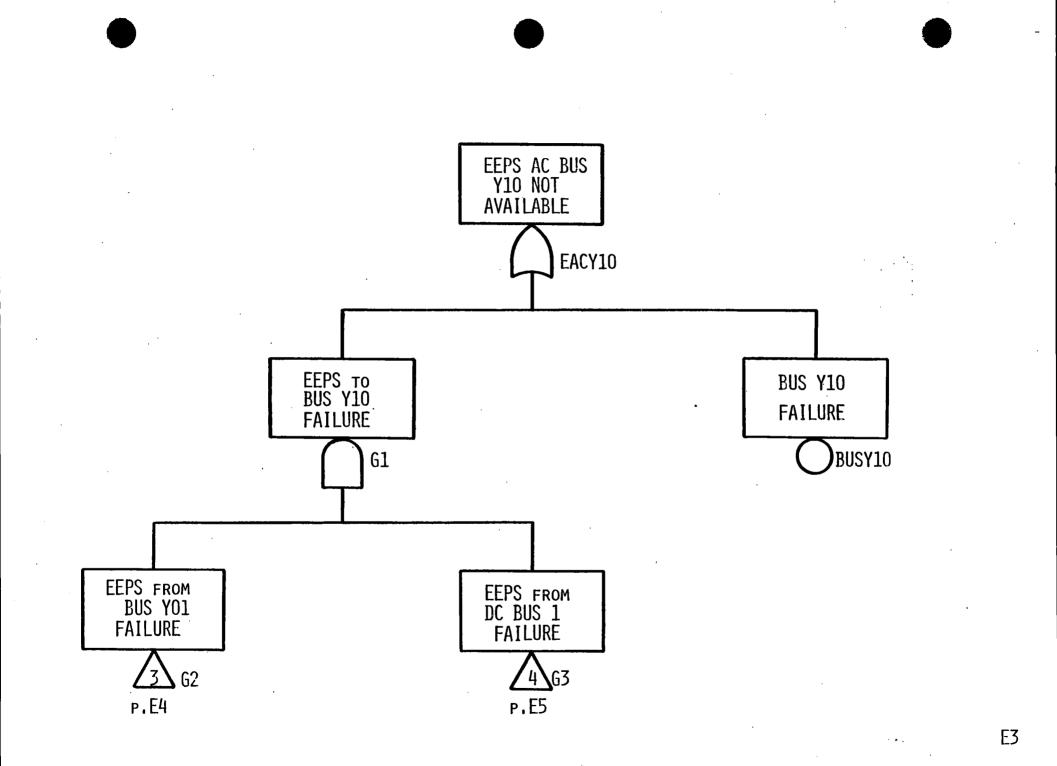
AFW RELIABILITY - E	ELECTRICAL	BUS 1C
---------------------	------------	--------

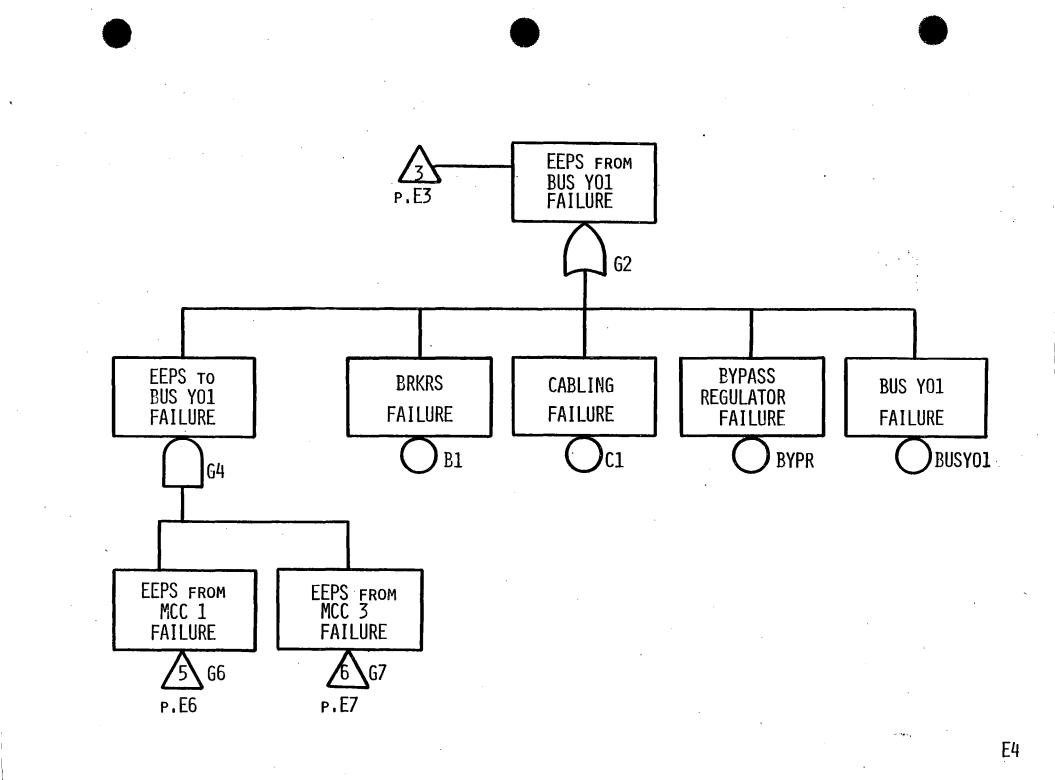
EACIC	OR	1	1	626	BUSIC		
626	AND	2	Ø	631	633		
631	OR	Ø	4	818	C16	DG1-15	DG1-1R
G33	0R	Ø	4	B20	C18	STUT1-2	OPRT
END							

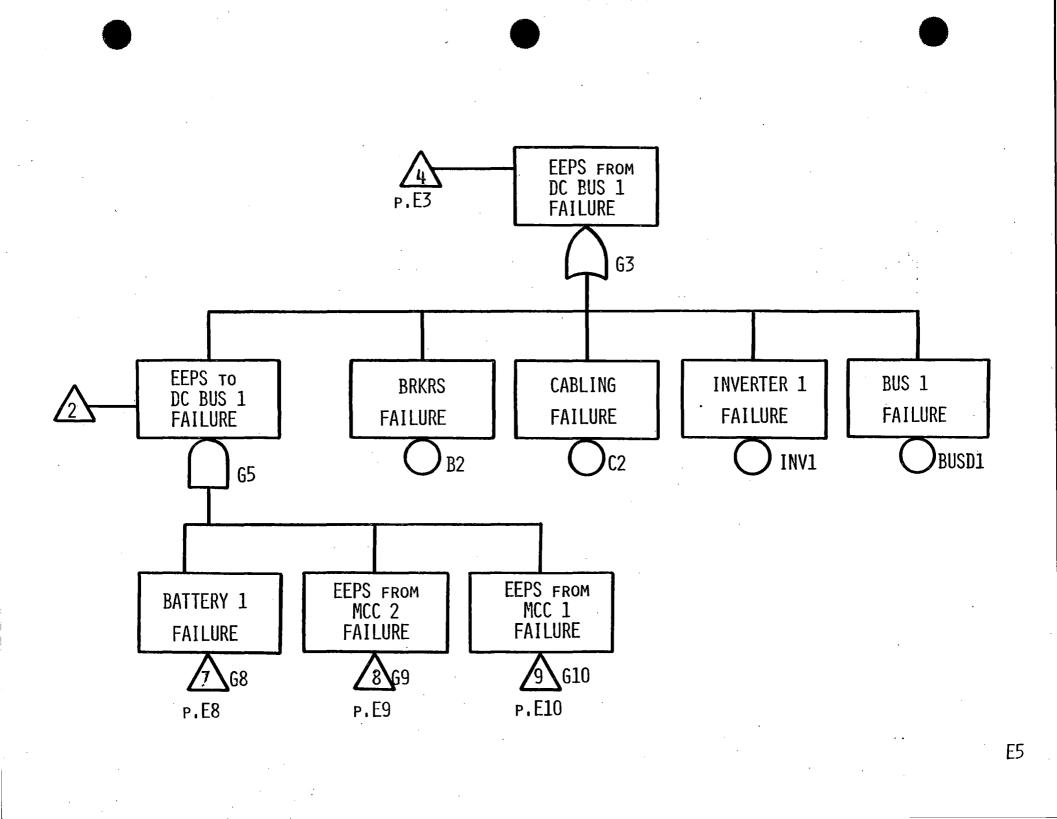

AFW RELIABILITY - ELECTRICAL BUS Y10

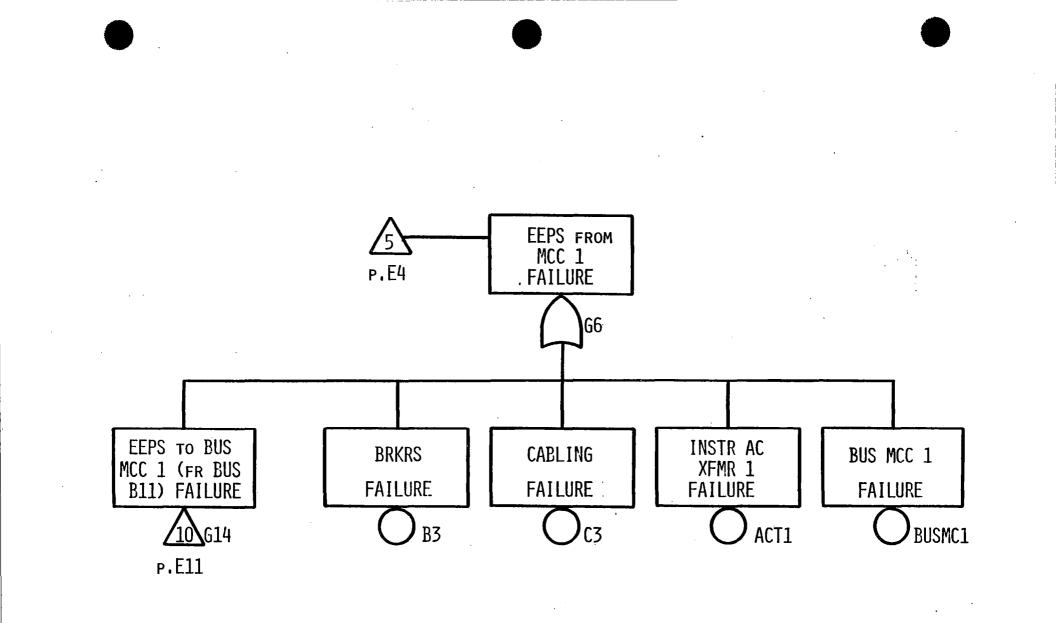
EACY10	0R	1	1	G 1	BUSY10			
61	AND	2	Ø	62	63			
62	OR	1	4	64	Bi	C1	BYPR	BUSYØ1
63	OR	1	4	65	82	C2	INV1	BUSD1
G 4	AND	2	0	66	G7			
65	AND	3	Ø	68	69	610		
66	OR	1	4	G14	B3	C3	ACTI	BUSMC1
67	0R	1	4	611	B4	C 4	ACT2	BUSMC3
6 <u>8</u>	OR	1	3	612	B5	65	BATTI	
69	OR	i	3	613	B6	63	BUSMC2	
G1Ø	OR	1	3	G14	B7	C7	BUSMC1	
G11	OR	1	2	615	88	C8	,	
G12	AND	Ø	3	CH1	CH3	BD		
G13	OR	1	3	616	B9	C9	BUSB12	
614	OR	1	3	617	B1Ø	C10	BUSB11	
615	OR	1	1	618	BUSB13			
616	AND	2	Ø	619	620			
G17	AND	2	Ø	621	622			
G18	AND	2	Ø	G181	623			
619	OR	1	4	624	B12	Ci2	STAP12	BUSID
620	OR	1	3	622	B11	C11	BUSB11	
621	0R	1	3	619	Bli	C11	BUSB12	
G22	0R	1	4	626	B14	C14	STAP11	BUSIC
623	0 R	1	2	627	BUSB14	B15		
624	AND	2	Ø	628	630			
626	AND	2	0	631	633			
G27	OR	1	4	634	B16	C13	STAP14	BUSIE
628	OR	Ø	4	B17	C15	DG1-25	D61-2R	
630	OR	0	4	B22	C22	STUT1-2	OPRT	
631	OR	0	4	B18	C16	DG1-15	DG1-1R	
633	OR	6	4	820	C18	STUT1-2	OPRT	
634	OR	0	4	B24	C21	STUT1-2	OPRT	
G181	OR	1	4	626	B181	C181	STAP13	BUSIC
END								

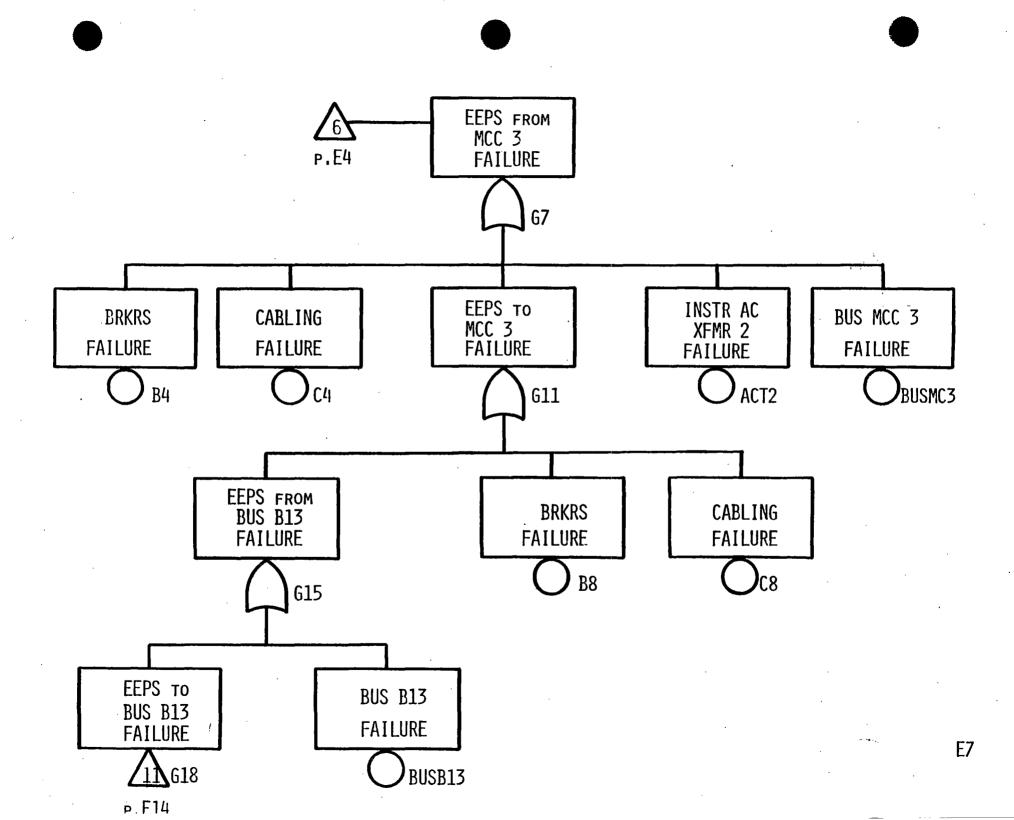

EDC1 65 68 69 610 612 613	DR AND OR OR OR AND OR	1 3 1 1 0 1	1 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	65 68 612 613 614 CH1 616	BUSD1 G9 B5 B6 B7 CH3 B9	G10 C5 C6 C7 BD C9	BATT1 BUSMC2 BUSMC1 BUSB12	
614 616 617 617 620	OR AND AND OR OR	1 2 2 1 1	3 0 4 3	617 619 621 624 622	B10 620 622 B12 B11	C10 C12 C11	BUSB11 STAP12 BUSB11	BUS1D
621 622 624 626 628 630 631 633 END	OR OR AND AND OR OR OR OR	1 2 0 0 0	3 4 20 4 4 4 4	619 626 631 817 822 818 820	B11 B14 G30 G33 C15 C22 C16 C18	C11 C14 DG1-2S STUT1-2 DG1-1S STUT1-2	BUSB12 STAP11 DG1-2R OPRT DG1-1R OPRT	BUS1C

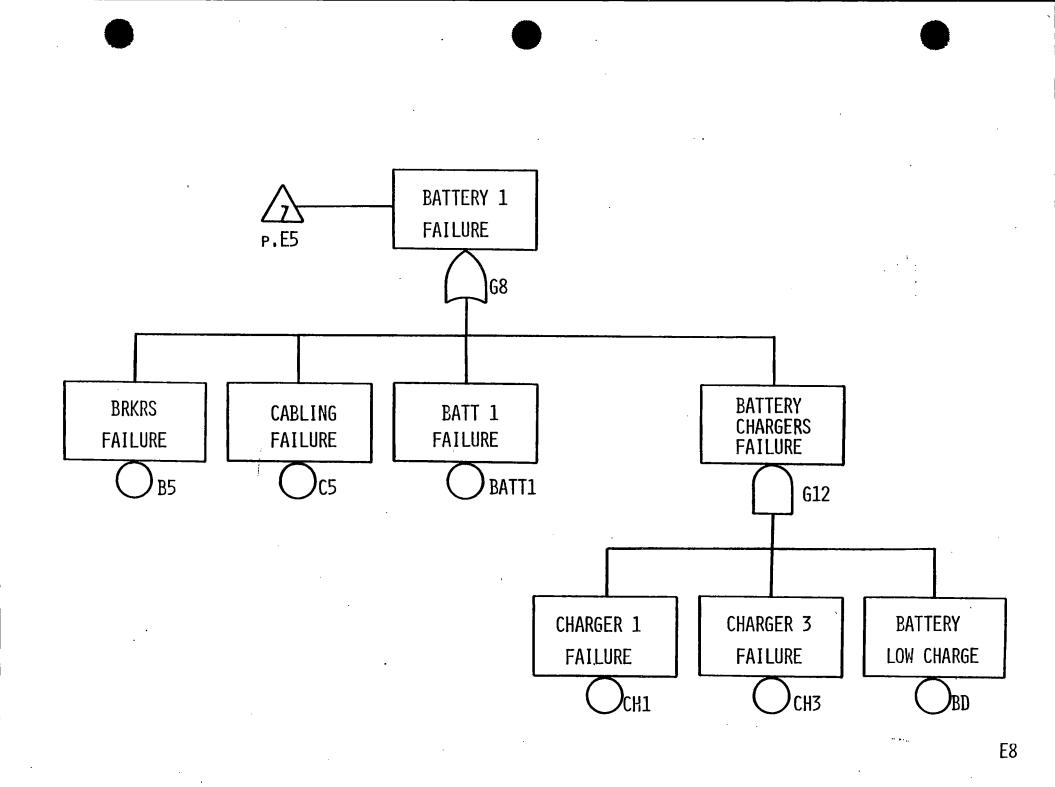

F-2

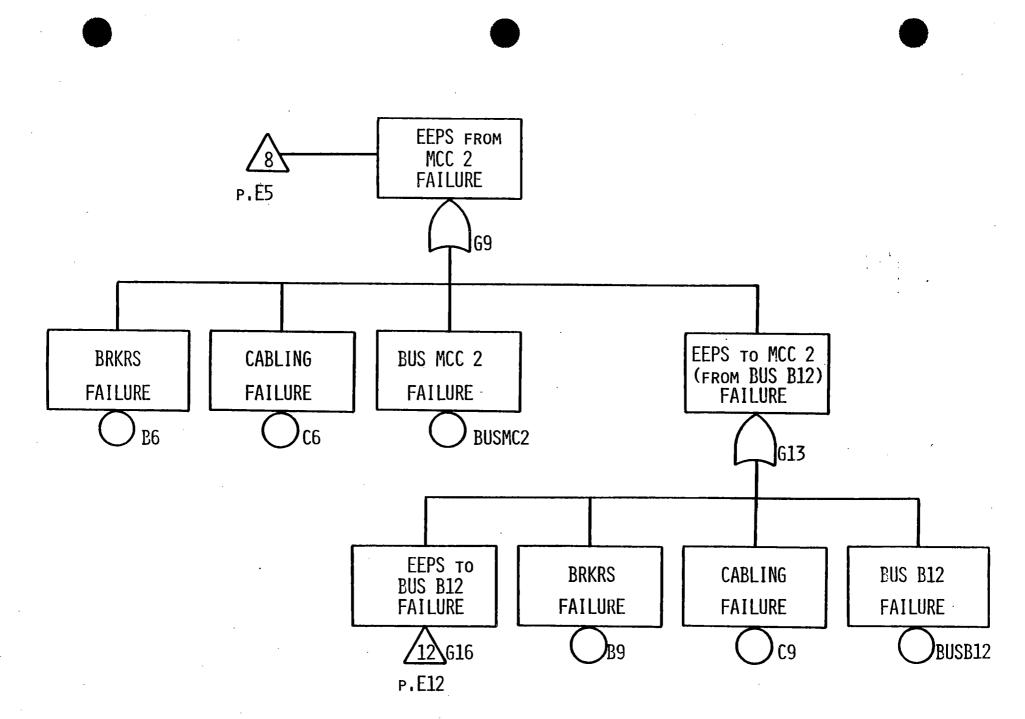

AFW RELIABILITY - ELECTRICAL DC BUS 1

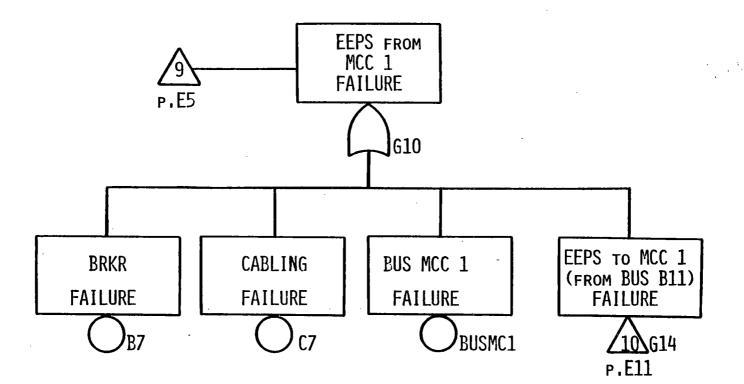


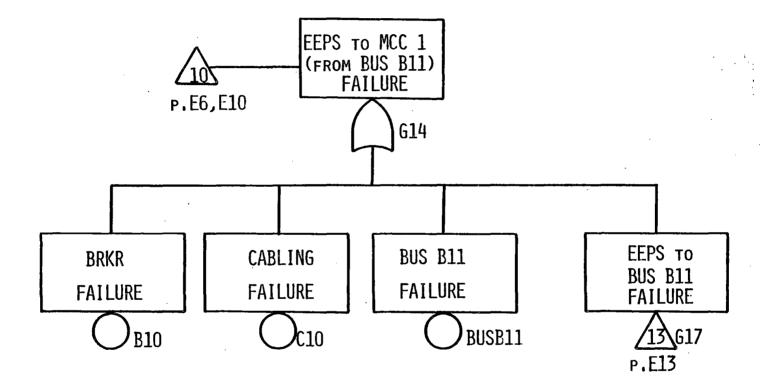

* EEPS = ESSENTIAL ELECTRICAL POWER SUPPLY

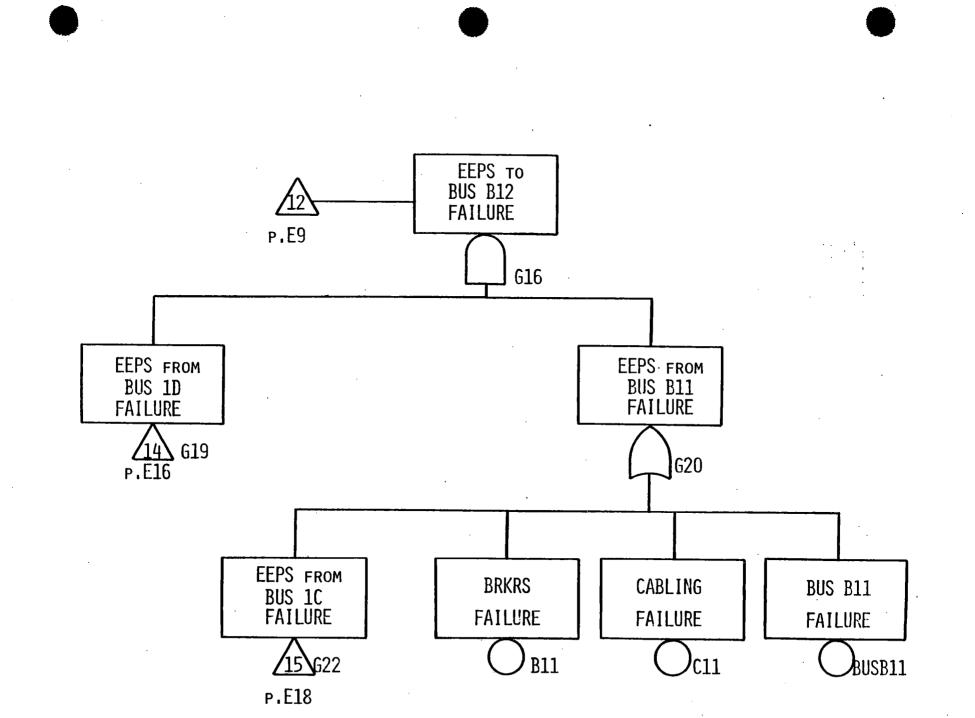


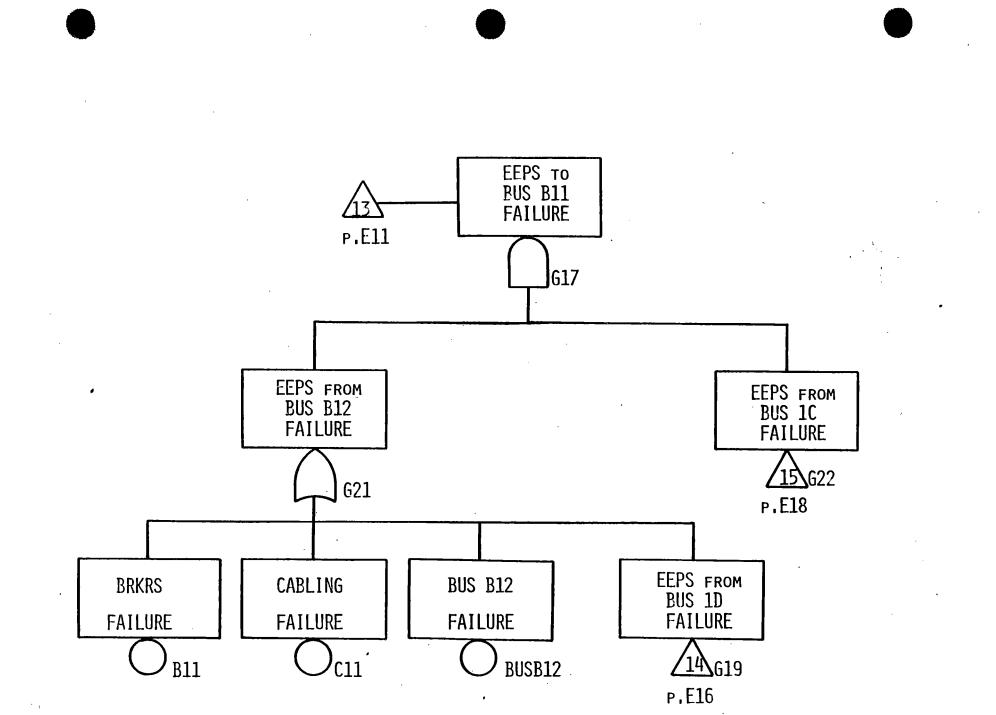


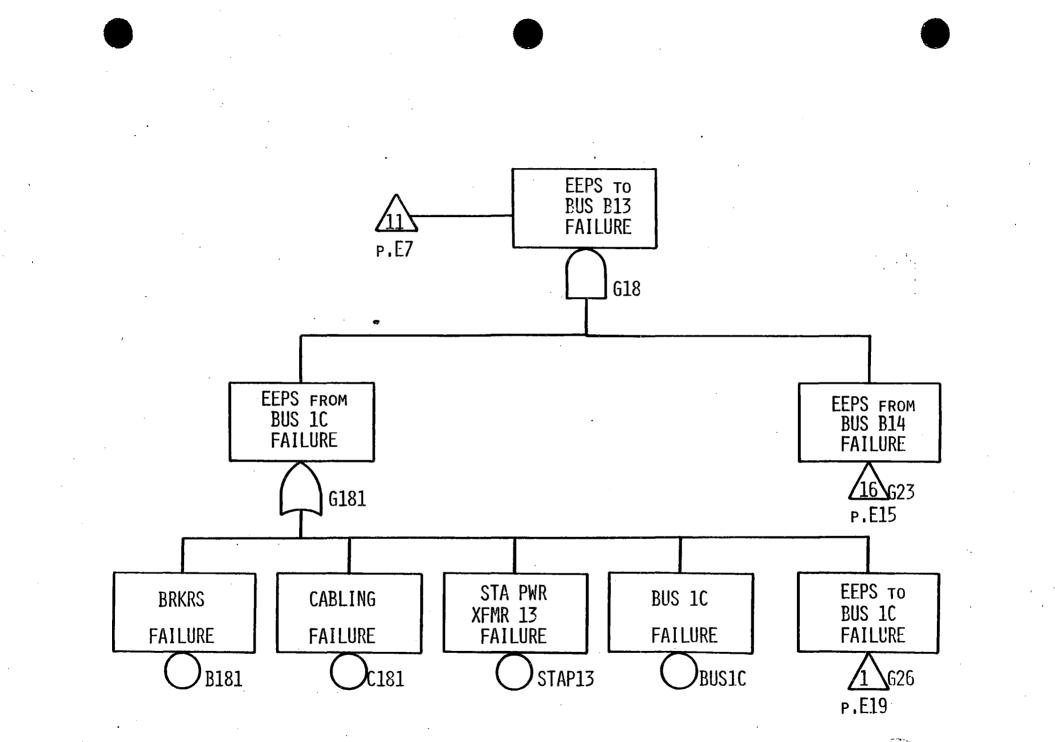


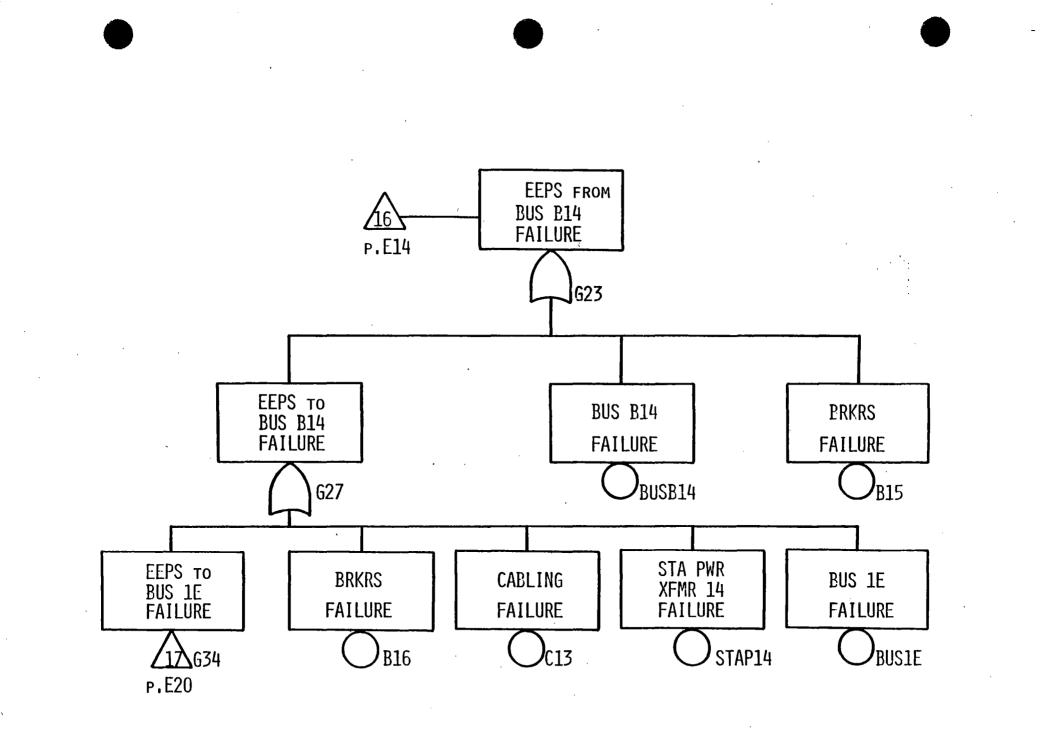



·

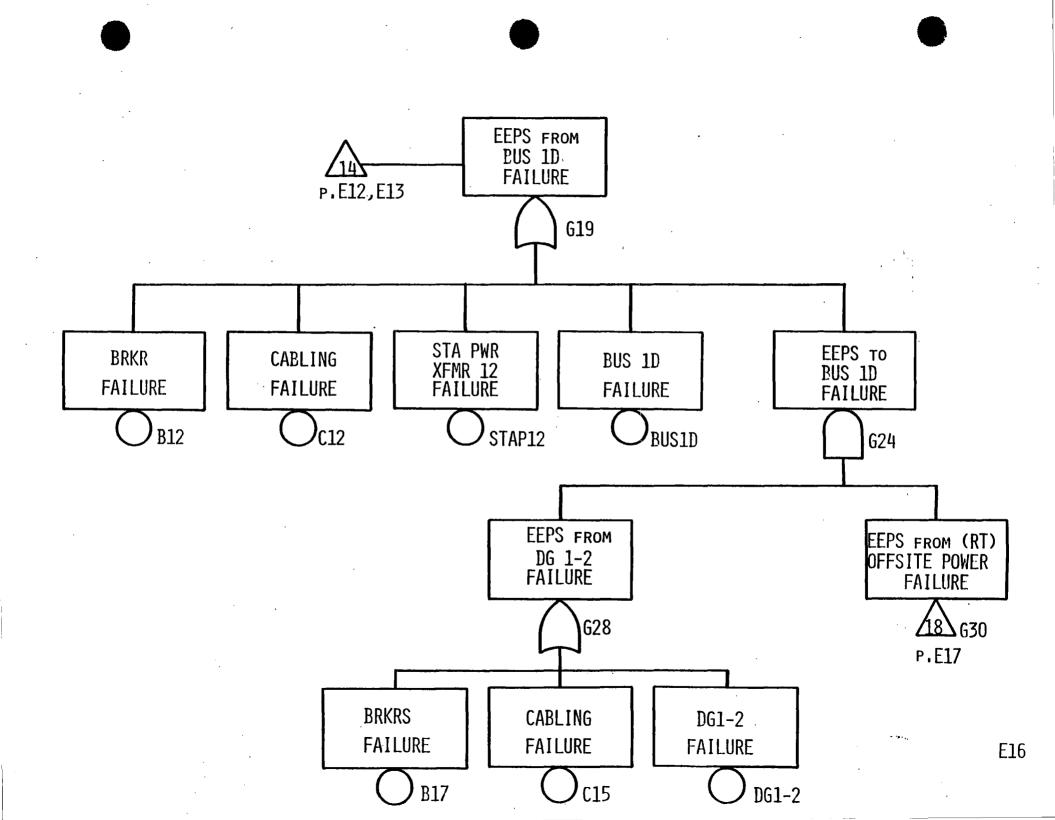


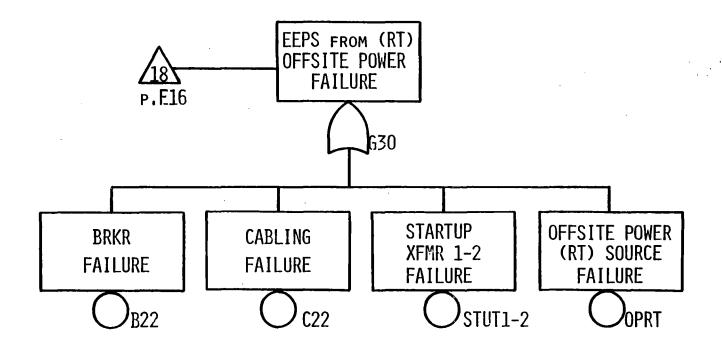


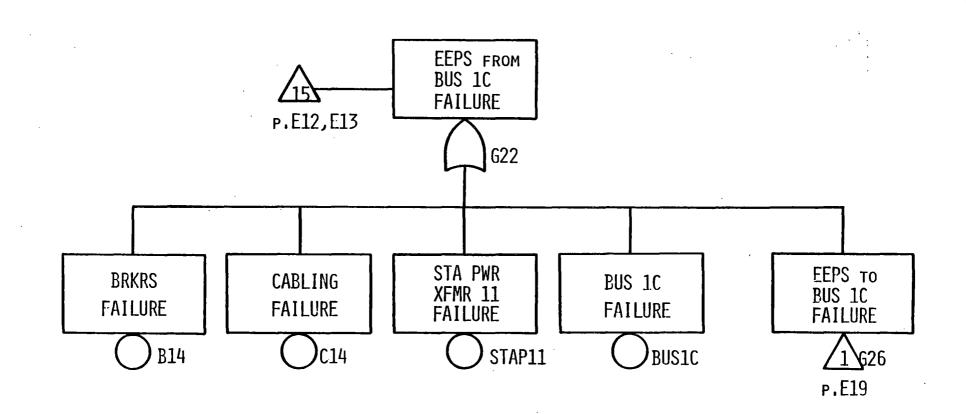


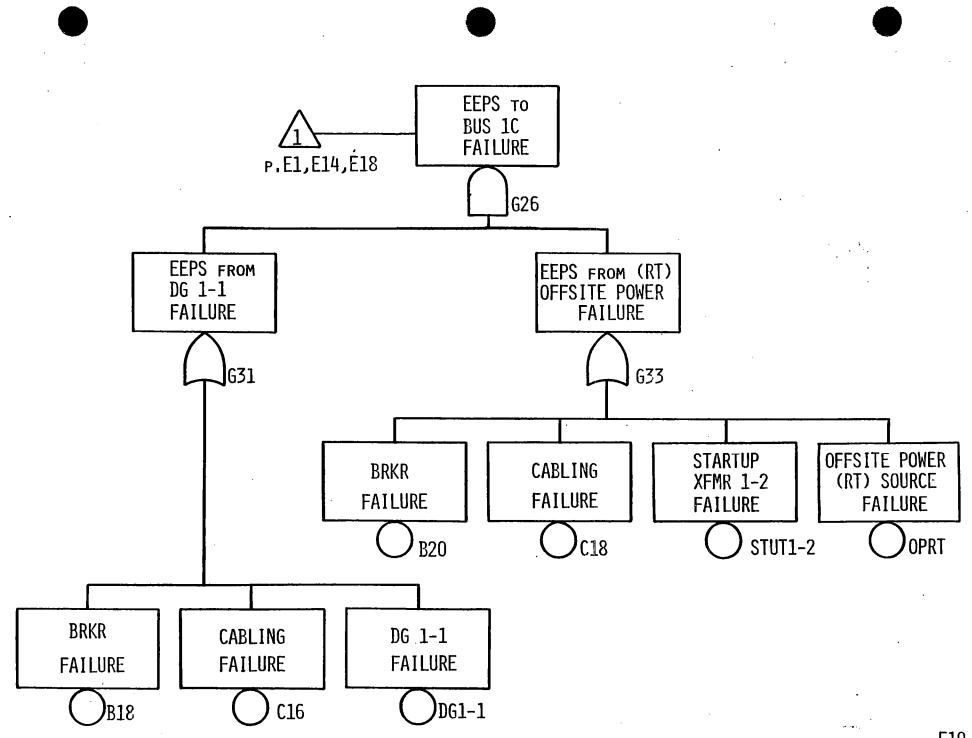


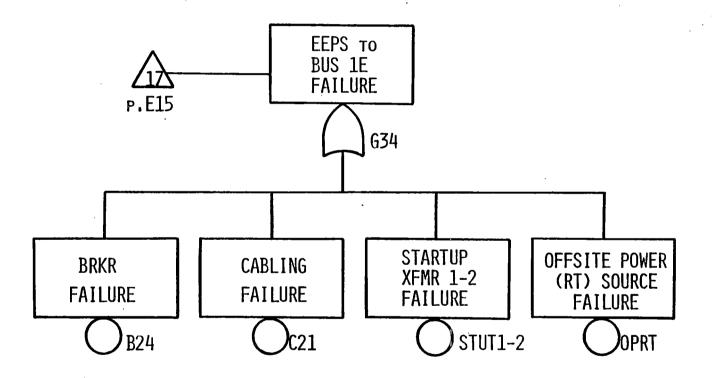
11 (BA)




E.13




- . .



· • •

DATA

IC0286-0001K-NL01

FAILURE OF AFW SYSTEM COMPONENTS USING PLANT SPECIFIC DATA

COMP ID	PROBABILITY	DESCRIPTION
	•	
AFAS	7.00E-03	AFW actuation signal fails
AIR1	1.52E-Ø3	Loss of instrument air on CV-0522A
AIR2	1.52E-03	
AIR3	1.52E-03	Loss of instrument air on CV-0525
AIR4	1.52E-03	Loss of instrument air (from air system) on PCV-0521A
CK401MS	1.00E-04	Check valve 401MS fails to open
CK402MS	1.00E-04	Check valve 402MS fails to open
CK0703	1.00E-04	Check valve CK-0703 FWS fails to open
CK0704	1.00E-04	Check valve CK-0704 FWS fails to open
CKØ725	1.00E-04	Check valve CK-0725 FWS fails to open
CK0726	1.00E-04	Check valve CK-0726 FWS fails to open
CKØ728	1.00E-04	Check valve CK-0728 FWS fails to open
CK0729	1.00E-04	Check valve CK-0729 FWS fails to open
CK0741	1.00E-04	Check valve CK-0741 FWS fails to open
CK0743	1.00E-04	Check valve CK-0743 FWS fails to open
CV0521	4.00E-04	Control valve CV-0521 fails to open
CV0522A	4.00E-04	Control valve CV-0522A fails to open
CVØ522B		Control valve CV-05228 fails to open
CV0525	4.00E-04	Control valve CV-0525 fails to open
CV0727	4.00E-04	Control valve CV-0727 fails to open
CV0736A		Control valve CV-0736A fails to open
CV0737A		Control valve CV-0737A fails to open
CV0749		Control valve CV-0749 fails to open
EACIC	9.40E-05	No power from ac bus 10 CASE I, TABLE 2-2
EACID	7.40E-05	No power from ac bus 1D CASE I, TABLE 2-2
EACY10	6.52E-05	No power from ac bus Y10 CASE I, TABLE 2-2
EACY20	6.52E-05	No power from ac bus Y20 CASE I, TABLE 2-2
EDC1	6.39E-05	No power from dc bus 1 CASE I, TABLE 2-2
EDC2	6.39E-05	No power from dc bus 1 CASE I, TABLE 2-2
	1.00E-05	Flow control valve FCV-0522A fails to open
	1.002-05	Flow control valve FCV-05228 fails to open
FT0727A		Flow transmitter FT-0727A fails
FT0736A		
	2.17E-03	
FT0749A		
	2.17E-03	
FT0727AH		Flow transmitter FT-0727 fails Flow transmitter FT-0727A fails high
FT0736H	2.17E-03 2.17E-03	
		Flow transmitter FT-0736 fails high
FT0736AH		Flow transmitter FT-0736A fails high
FT0737H	2.17E-03	Flow transmitter FT-0737 fails high
FT0737AH		Flow transmitter FT-0737A fails high
FT0749H	2.17E-03	Flow transmitter FT-0749 fails high
FTØ749AH		Flow transmitter FT-0749A fails high
GOVERNOR		Turbine governor K-8 fails
GV0132	1.00E-04	Gate valve 29-132FW fails to open
6V0271	1.00E-04	Gate valve MV-271FWS fails to open
GV0740	1.00E-04	Gate valve 14-0740FW fails to open
GV0742	1.00E-04	Gate valve 14-0742FW fails to open
GV0751	1.00E-04	Gate valve MV-751FWS fails to open
GVØ752	1.00E-04	Gate valve MV-752FWS fails to open
GVØ771	1.00E-04	Gate valve 29-0771FW fails to open

GVØ772	1.00E-04	Gate valve 29-0772FW fails to open
GV133FW	1.00E-04	Gate valve 133FW fails to open
GV152MS	1.00E-04	Gate valve 152MS fails to open
GV152AMS	1.00E-04	Gate valve 152AMS fails to open
GV153MS		Gate valve 153MS fails to open
GV153AMS		Gate valve 153AMS fails to open
GV270FW		Gate valve MV-270FW fails to open
6V714FW	1.00E-04	Gate valve 714FW fails to open
GVØ214	1.00E-04	Gate valve 130-214FW fails to open
HSØ521	3.00E-04	Hand switch HS-0521 fails
	3.00E-04	Hand switch HS-0522A fails
HSØ522B	3.00E-04	Hand switch HS-0522B fails
HS0525	3.00E-04	Hand switch HS-0525 fails
HS104CS	3.00E-04	Hand switch HS-104CS fails
HS209CS		Hand switch HS-209CS fails
MCK401MS		Maintenance on check valve 401MS
MCK402MS		Maintenance on check valve 402MS
MCK0726		Maintenance on check valve CK-0726FWS
MCKØ741		Maintenance on check valve 218-0741
MCK0743		Maintenance on check valve 218-0743
MCV0521		Maintenance on control valve CV-0521
MCV0522A		Maintenance on control valve CV-0522A
MCV05228		Maintenance on control valve CV-05ssB
MCV0736A		Maintenance on control valve CV-0736A
MCV0737A		Maintenance on control valve CV-0737A
MM00743		Maintenance on motor-operated valve MO-0743
MM00748		Maintenance on motor-operated valve MO-0748
MM00753		Maintenance on motor-operated valve MO-0753
MM00754		Maintenance on motor-operated valve MO~0760
MPCV521A		Maintenance on pressure control valve PCV-0521A
MP8A	2.14E-03	Maintenance on pump P8A
MP8B	2.14E-03	Maintenance on pump PBB
MP8C	2.14E-03	Maintenance on pump P8C
ND0743	1.00E-04	Motor-operated valve MO-0743 fails to open
MCØ748	1.00E-04	Motor-operated valve MO-0748 fails to open
	1.00E-04	Motor-operated valve MO-0753 fails to open
M00754	1.00E-04	Motor-operated valve MO-0754 fails to open
M00755	1.00E-04	Motor-operated valve MO-0755 fails to open
M00759	1.00E-04	Motor-operated valve MO-0759 fails to open
M00760	1.00E-04	Motor-operated valve MO-0760 fails to open
M00798	1.00E-04	Motor-operated valve MO-0798 fails to open
NITROGEN	1.52E-03	Loss of pressure from nitrogen source
OPEI	1.00E-03	Operator error
OFE101	1.00E-03	Operator error
0PE102	1.00E-03	Operator error
OPE103	1.00E-03	Operator error
OPE104	1.00E-03	Operator error
OFE105	1.00E-03	Operator error
OPE106	1.00E-03	Operator error
OPE107	1.00E-03	Operator error
0PE108	1.00E-03	Operator error
DPE2	1.00E-03	Operator error
OPE3	1.00E-03	Operator error
OPE202	1.00E-03	Operator error
OPE204	1.00E-03	Operator error

6-2

0PE205	1.00E-03	Operator error
0PE206	1.00E-03	Operator error
OFE207	1.00E-03	Operator error
0PE210	1.00E-03	Operator error
OPE801	1.00E-03	Operator error
PCV0521A	1.00E-05	Pressure control valve PCV-0521A fails to open
PS8A	5.00E-03	Electric pump PBA fails to start
PSBB	1.00E-03	Turbine-driven pump P8B fails to start
PS8C	5.00E-03	Electric pump PBC fails to start
RVØ783	3.65E-03	Relief valve RV-0783 premature open
SVØ521	1.00E-03	Solenoid valve SV0521 fails
SVØ522A	1.00E-03	Solenoid valve SV0522A fails
SVØ522B	1.00E-03	Solenoid valve SV0522B fails
SVØ525	1.00E-03	Solenoid valve SV0525 fails
WATER	1.00E-03	Water in steam pipe

FAILURE OF AFW SYSTEM COMPONENTS USING PLANT SPECIFIC DATA

COMP ID PROBABILITY DESCRIPTION

AFAS	7.00E-03	AFW actuation signal fails
AIR1	1.52E-03	Loss of instrument air on CV-0522A
AIR2	1.52E-Ø3	Loss of instrument air (from air system) on CV-0522B
AIR3	1.52E-03	Loss of instrument air on CV-0525
AIR4		Loss of instrument air (from air system) on PCV-0521A
CK401MS	9.50E-04	Check valve 401MS fails to open
CK402MS	3.20E-04	Check valve 402MS fails to open
CK0703	3.20E-04	Check valve CK-0703 FWS fails to open
CK0704	3.20E-04	Check valve CK-0704 FWS fails to open
CKØ725	3.20E-04	Check valve CK-0725 FWS fails to open
CK0726	3.20E-04	Check valve CK-0726 FWS fails to open
CK0728	3.20E-04	Check valve CK-0728 FWS fails to open
CKØ729	3.20E-04	Check valve CK-0729 FWS fails to open
CKØ741	3.20E-04	Check valve CK-0741 FWS fails to open
CKØ743	3.20E-04	Check valve CK-0743 FWS fails to open
CVØ521	8.00E-03	Control valve CV-0521 fails to open
CVØ522A	1.10E-02	Control valve CV-0522A fails to open
CV0522B	3.60E-03	Control valve CV-0522B fails to open
CV0525	1.10E-02	Control valve CV-0525 fails to open
CVØ727	3.60E-03	Control valve CV-0727 fails to open
CV0736A	3.60E-03	Control valve CV-0736A fails to open
CVØ737A	3.60E-03	Control valve CV-0737A fails to open
	3.60E-03	Control valve CV-0749 fails to open
EACIC		No power from ac bus 10 CASE I, TABLE 2-2
EACID		No power from ac bus 1D CASE I, TABLE 2-2
EACY10		No power from ac bus Y10 CASE I, TABLE 2-2
EACY20		No power from ac bus Y20 CASE I, TABLE 2-2
EDC1		No power from dc bus i CASE I, TABLE 2-2
	3.128-05	No power from dc bus 1 CASE I, TABLE 2-2
FCV0522A	5.50E-04	Flow control valve FCV-0522A fails to open
FCV0522B		Flow control valve FCV-05228 fails to open
FT0727A		Flow transmitter FT-0727A fails
FT0736A	1.40E-04	Flow transmitter FT-0736A fails
FT0737A	1.40E-04	Flow transmitter FT-0737A fails
FTØ749A	1.40E-04	Flow transmitter FT-0749A fails
FT0727H	2.17E-03	Flow transmitter FT-0727 fails
FT0727AH	2.17E-03	Flow transmitter FT-0727A fails high
FT0736H		Flow transmitter FT-0736 fails high
FT0736AH	2.17E-03	Flow transmitter FT-0736A fails high
FT0737H	2.17E-03	Flow transmitter FT-0737 fails high
FT0737AH	2.17E-03	Flow transmitter FT-0737A fails high
FT0749H	2.17E-03	Flow transmitter FT-0749 fails high
FT0749AH	2.17E-03	Flow transmitter FT-0749A fails high
GOVERNOR	6.53E-05	Turbine governor K-8 fails
GVØ132	8.14E-05	Gate valve 29-132FW fails to open
6V0271	8.14E-05	Gate valve MV-271FWS fails to open
GV0740	8.14E-05	Gate valve 14-0740FW fails to open
GVØ742	8.14E-05	Gate valve 14-0742FW fails to open
GV0751	8.14E-05	Gate valve MV-751FWS fails to open
GV0752	8.14E-05	Gate valve MV-752FWS fails to open
GVØ771	8.14E-05	Gate valve 29-0771FW fails to open
040/11	OFTAF AND	DULE AUTAE TY-MINIEM LATIP IN MHAN

	8.14E-05	
	8.14E-05	
	8.14E-05	
	8.14E-05	Gate valve 152AMS fails to open
	8.14E-05	Gate valve 153MS fails to open
	8.14E-05	Gate valve 153AMS fails to open
	8.14E-05	Gate valve MV-270FW fails to open
GV714FW	8.14E-05	Gate valve 714F₩ fails to open
GVØ214	6.70E-03	Gate valve 130-214FW fails to open
HS0521	3.00E-05	Hand switch HS-0521 fails
HS0522A		Hand switch HS-0522A fails
HSØ522B		Hand switch HS-0522B fails
HS0525		Hand switch HS-0525 fails
HS104CS		Hand switch HS-104CS fails
HS209CS		Hand switch HS-209CS fails
	2.14E-03	Maintenance on check valve 401MS
. –	2.14E-03	Maintenance on check valve 402MS
MCK0726		Maintenance on check valve CK-0726FWS
	2.14E-03	Maintenance on check valve 218-0741
MCK0743		Maintenance on check valve 218-0743
	2.14E-03	Maintenance on control valve CV-0521
	2.14E-03	Maintenance on control valve CV-0522A
	2.14E-03	Maintenance on control valve CV-05ssB
	2.14E-03	Maintenance on control valve CV-0736A
MLV0/3/8	2.14E-03	Maintenance on control valve CV-0737A
MM00743	2.14E-03	Maintenance on motor-operated valve MO-0743
MM00748		Maintenance on motor-operated valve MO-0748
MM00733	2.14E-03	Maintenance on motor-operated valve MO-0753
MM00754	2.14E-03	Maintenance on motor-operated valve MO-0760 Maintenance on pressure control valve PCV-0521A
		- maintenance on neessille control valve PLV-wavie
MPCV521A		
MPBA	2.30E-04	Maintenance on pump PBA
MPBA MPBB	2.30E-04 3.90E-03	Maintenance on pump P8A Maintenance on pump P8B
MPBA MPBB MPBC	2.30E-04 3.90E-03 2.70E-04	Maintenance on pump P8A Maintenance on pump P8B Maintenance on pump P8C
MP8A MP8B MP8C MD0743	2.30E-04 3.90E-03 2.70E-04 2.80E-03	Maintenance on pump P8A Maintenance on pump P8B Maintenance on pump P8C Motor-operated valve M0-0743 fails to open
MPBA MPBB MPBC MD0743 MD0748	2.30E-04 3.90E-03 2.70E-04 2.80E-03 2.80E-03	Maintenance on pump P8A Maintenance on pump P8B Maintenance on pump P8C Motor-operated valve M0-0743 fails to open Motor-operated valve M0-0748 fails to open
MPBA MPBB MP8C M00743 M00748 M00753	2.30E-04 3.90E-03 2.70E-04 2.80E-03 2.80E-03 2.80E-03 2.80E-03	Maintenance on pump P8A Maintenance on pump P8B Maintenance on pump P8C Motor-operated valve M0-0743 fails to open Motor-operated valve M0-0748 fails to open Motor-operated valve M0-0753 fails to open
MPBA MP8C MD0743 M00748 M00753 M00754	2.30E-04 3.90E-03 2.70E-04 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03	Maintenance on pump P8A Maintenance on pump P8B Maintenance on pump P8C Motor-operated valve M0-0743 fails to open Motor-operated valve M0-0753 fails to open Motor-operated valve M0-0754 fails to open
MPBA MPBB MD0743 M00748 M00753 M00754 M00755	2.30E-04 3.90E-03 2.70E-04 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03	Maintenance on pump P8A Maintenance on pump P8B Maintenance on pump P8C Motor-operated valve M0-0743 fails to open Motor-operated valve M0-0754 fails to open Motor-operated valve M0-0753 fails to open Motor-operated valve M0-0755 fails to open
MPBA MPBB MD0743 MO0748 MO0753 MO0753 MO0755 MO0759	2.30E-04 3.90E-03 2.70E-04 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03	Maintenance on pump P8A Maintenance on pump P8B Maintenance on pump P8C Motor-operated valve M0-0743 fails to open Motor-operated valve M0-0753 fails to open Motor-operated valve M0-0753 fails to open Motor-operated valve M0-0755 fails to open Motor-operated valve M0-0755 fails to open Motor-operated valve M0-0759 fails to open
MP8A MP8B MD0743 M00748 M00753 M00754 M00755 M00759 M00760	2.30E-04 3.90E-03 2.70E-04 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03	Maintenance on pump P8A Maintenance on pump P8B Maintenance on pump P8C Motor-operated valve M0-0743 fails to open Motor-operated valve M0-0753 fails to open Motor-operated valve M0-0753 fails to open Motor-operated valve M0-0755 fails to open Motor-operated valve M0-0755 fails to open Motor-operated valve M0-0759 fails to open Motor-operated valve M0-0760 fails to open
MP8A MP8B MD0743 M00748 M00753 M00754 M00755 M00759 M00760 M00798	2.30E-04 3.90E-03 2.70E-04 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03	Maintenance on pump P8A Maintenance on pump P8B Maintenance on pump P8C Motor-operated valve M0-0743 fails to open Motor-operated valve M0-0753 fails to open Motor-operated valve M0-0754 fails to open Motor-operated valve M0-0755 fails to open Motor-operated valve M0-0759 fails to open Motor-operated valve M0-0759 fails to open Motor-operated valve M0-0759 fails to open Motor-operated valve M0-0760 fails to open Motor-operated valve M0-0798 fails to open
MPBA MPBB MD0743 M00748 M00753 M00754 M00755 M00759 M00760 M00798 NITROGEN	2.30E-04 3.90E-03 2.70E-04 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 1.52E-03	Maintenance on pump P8A Maintenance on pump P8B Maintenance on pump P8C Motor-operated valve M0-0743 fails to open Motor-operated valve M0-0753 fails to open Motor-operated valve M0-0754 fails to open Motor-operated valve M0-0755 fails to open Motor-operated valve M0-0759 fails to open Motor-operated valve M0-0759 fails to open Motor-operated valve M0-0759 fails to open Motor-operated valve M0-0760 fails to open Motor-operated valve M0-0798 fails to open Loss of pressure from nitrogen source
MPBA MPBE MD0743 MO0748 MO0753 MO0754 MO0755 MO0759 MO0760 MO0798 NITROGEN OPE1	2.30E-04 3.90E-03 2.70E-04 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 1.52E-03 1.52E-03	Maintenance on pump P8A Maintenance on pump P8B Maintenance on pump P8C Motor-operated valve M0-0743 fails to open Motor-operated valve M0-0753 fails to open Motor-operated valve M0-0754 fails to open Motor-operated valve M0-0755 fails to open Motor-operated valve M0-0759 fails to open Motor-operated valve M0-0759 fails to open Motor-operated valve M0-0760 fails to open Motor-operated valve M0-0798 fails to open Loss of pressure from nitrogen source Operator error
MPBA MP8C MD0743 MO0748 MO0753 MO0754 MO0755 MO0759 MO0759 MO0760 MO0798 NITROGEN OPE1 OPE101	2.30E-04 3.90E-03 2.70E-04 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 1.52E-03 1.52E-03 1.00E-02	Maintenance on pump P8A Maintenance on pump P8B Maintenance on pump P8C Motor-operated valve M0-0743 fails to open Motor-operated valve M0-0753 fails to open Motor-operated valve M0-0753 fails to open Motor-operated valve M0-0755 fails to open Motor-operated valve M0-0759 fails to open Motor-operated valve M0-0759 fails to open Motor-operated valve M0-0760 fails to open Motor-operated valve M0-0798 fails to open Loss of pressure from nitrogen source Operator error
MP8A MP8B MP8C M00743 M00748 M00753 M00754 M00755 M00759 M00760 M00798 NITROGEN OPE1 OPE101 OPE101	2.30E-04 3.90E-03 2.70E-04 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 1.52E-03 1.52E-03 1.52E-02 1.00E-02 1.00E-02	Maintenance on pump P8A Maintenance on pump P8B Maintenance on pump P8C Motor-operated valve M0-0743 fails to open Motor-operated valve M0-0753 fails to open Motor-operated valve M0-0753 fails to open Motor-operated valve M0-0755 fails to open Motor-operated valve M0-0759 fails to open Motor-operated valve M0-0759 fails to open Motor-operated valve M0-0760 fails to open Motor-operated valve M0-0778 fails to open Motor-operated valve M0-0778 fails to open Motor-operated valve M0-0778 fails to open Loss of pressure from nitrogen source Operator error Operator error
MP8A MP8B MP8C M00743 M00753 M00754 M00755 M00759 M00759 M00759 M00759 M00759 M00759 M00759 M00759 M00759 M00798 NITROGEN OPE101 OPE102 OPE103	2.30E-04 3.90E-03 2.70E-04 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 1.52E-03 1.52E-03 1.00E-02 1.00E-02 1.00E-02	Maintenance on pump P8A Maintenance on pump P8B Maintenance on pump P8C Motor-operated valve M0-0743 fails to open Motor-operated valve M0-0753 fails to open Motor-operated valve M0-0753 fails to open Motor-operated valve M0-0755 fails to open Motor-operated valve M0-0759 fails to open Motor-operated valve M0-0759 fails to open Motor-operated valve M0-0760 fails to open Motor-operated valve M0-0798 fails to open Loss of pressure from nitrogen source Operator error Operator error Operator error
MP8A MP8B MP8C M00743 M00753 M00754 M00755 M00759 M000759 M000759 M00759 M00759 M00759 M00759 M00759 M00759	2.30E-04 3.90E-03 2.70E-04 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 1.52E-03 1.52E-03 1.00E-02 1.00E-02 1.00E-03 1.00E-03	Maintenance on pump P8A Maintenance on pump P8B Maintenance on pump P8C Motor-operated valve M0-0743 fails to open Motor-operated valve M0-0753 fails to open Motor-operated valve M0-0754 fails to open Motor-operated valve M0-0755 fails to open Motor-operated valve M0-0759 fails to open Motor-operated valve M0-0759 fails to open Motor-operated valve M0-0760 fails to open Motor-operated valve M0-0798 fails to open Loss of pressure from nitrogen source Operator error Operator error Operator error Operator error
MP8A MP8B MP8C M00743 M00753 M00754 M00755 M00759 M00759 M00760 M00798 NITROGEN OPE10 OPE101 OPE102 OPE103 OPE104 OPE105	2.30E-04 3.90E-03 2.70E-04 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 1.52E-03 1.52E-03 1.00E-02 1.00E-02 1.00E-03 1.00E-03 1.00E-03	Maintenance on pump P8A Maintenance on pump P8B Maintenance on pump P8C Motor-operated valve M0-0743 fails to open Motor-operated valve M0-0753 fails to open Motor-operated valve M0-0754 fails to open Motor-operated valve M0-0755 fails to open Motor-operated valve M0-0759 fails to open Motor-operated valve M0-0759 fails to open Motor-operated valve M0-0760 fails to open Motor-operated valve M0-0778 fails to open Motor-operated valve M0-0778 fails to open Deprator error Operator error Operator error Operator error Operator error Operator error
MP8A MP8B MP8C M00743 M00753 M00754 M00755 M00759 M00759 M00759 M00760 M00798 NITROGEN OPE1 OPE101 OPE102 OPE103 OPE104 OPE105 OPE106	2.30E-04 3.90E-03 2.70E-04 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 1.52E-03 1.52E-03 1.00E-02 1.00E-02 1.00E-03 1.00E-03 1.00E-03 1.00E-03	Maintenance on pump P8A Maintenance on pump P8B Maintenance on pump P8C Motor-operated valve M0-0743 fails to open Motor-operated valve M0-0753 fails to open Motor-operated valve M0-0754 fails to open Motor-operated valve M0-0755 fails to open Motor-operated valve M0-0759 fails to open Motor-operated valve M0-0759 fails to open Motor-operated valve M0-0760 fails to open Motor-operated valve M0-0778 fails to open Motor-operated valve M0-0778 fails to open Deperator error Operator error Operator error Operator error Operator error Operator error Operator error
MP8A MP8B MP8C M00743 M00753 M00754 M00755 M00759 M00759 M00760 M00798 NITROGEN OPE1 OPE101 OPE102 OPE103 OPE104 OPE105 OPE106 OPE107	2.30E-04 3.90E-03 2.70E-04 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 1.52E-03 1.52E-03 1.00E-02 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03	Maintenance on pump P8A Maintenance on pump P8B Maintenance on pump P8C Motor-operated valve M0-0743 fails to open Motor-operated valve M0-0753 fails to open Motor-operated valve M0-0754 fails to open Motor-operated valve M0-0755 fails to open Motor-operated valve M0-0759 fails to open Motor-operated valve M0-0759 fails to open Motor-operated valve M0-0778 fails to open Motor-operated valve M0-0778 fails to open Motor-operated valve M0-0778 fails to open Deperator error Operator error Operator error Operator error Operator error Operator error Operator error Operator error Operator error Operator error
MP8A MP8E MP8C M00743 M00753 M00754 M00755 M00759 M00760 M00760 M00798 NITROGEN OPE1 OPE101 OPE101 OPE102 OPE104 OPE105 OPE106 OPE108	2.30E-04 3.90E-03 2.70E-04 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 1.52E-03 1.52E-03 1.00E-02 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03	Maintenance on pump P8A Maintenance on pump P8B Maintenance on pump P8C Motor-operated valve M0-0743 fails to open Motor-operated valve M0-0753 fails to open Motor-operated valve M0-0754 fails to open Motor-operated valve M0-0755 fails to open Motor-operated valve M0-0759 fails to open Motor-operated valve M0-0759 fails to open Motor-operated valve M0-0778 fails to open Motor-operated valve M0-0778 fails to open Motor-operated valve M0-0798 fails to open Loss of pressure from nitrogen source Operator error Operator error
MP8A MP8E MP8C M00743 M00748 M00753 M00754 M00755 M00759 M00755 M00759 M00755 M00759 M00755 M00759 M00755 M00759 M00755 M00759 D15 M00759 M000759 M00759 M00759 M00759 M00759 M00759 M00759 M00759 M00759 M00	2.30E-04 3.90E-03 2.70E-04 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 1.52E-03 1.52E-03 1.00E-02 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03	Maintenance on pump P8A Maintenance on pump P8B Maintenance on pump P8C Motor-operated valve M0-0743 fails to open Motor-operated valve M0-0753 fails to open Motor-operated valve M0-0755 fails to open Motor-operated valve M0-0755 fails to open Motor-operated valve M0-0759 fails to open Motor-operated valve M0-0760 fails to open Motor-operated valve M0-0778 fails to open Motor-operated valve M0-0778 fails to open Loss of pressure from nitrogen source Operator error Operator error
MP8A MP8B MP8C M00743 M00748 M00753 M00754 M00755 M00759 M00755 M00759 D15 0 2000 000 000 000 000 000 000 000 000	2.30E-04 3.90E-03 2.70E-04 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 1.52E-03 1.52E-03 1.00E-02 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03	Maintenance on pump P8A Maintenance on pump P8B Maintenance on pump P8C Motor-operated valve M0-0743 fails to open Motor-operated valve M0-0753 fails to open Motor-operated valve M0-0754 fails to open Motor-operated valve M0-0755 fails to open Motor-operated valve M0-0759 fails to open Motor-operated valve M0-0759 fails to open Motor-operated valve M0-0760 fails to open Motor-operated valve M0-0798 fails to open Motor-operated valve M0-0798 fails to open Loss of pressure from nitrogen source Operator error Operator error
MP8A MP8E MP8C M00743 M00748 M00753 M00754 M00755 M00759 M00755 M00759 M00755 M00759 M00755 M00759 M00755 M00759 M00755 M00759 D15 M00759 M000759 M00759 M00759 M00759 M00759 M00759 M00759 M00759 M00759 M00	2.30E-04 3.90E-03 2.70E-04 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 2.80E-03 1.52E-03 1.52E-03 1.00E-02 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03	Maintenance on pump P8A Maintenance on pump P8B Maintenance on pump P8C Motor-operated valve M0-0743 fails to open Motor-operated valve M0-0753 fails to open Motor-operated valve M0-0755 fails to open Motor-operated valve M0-0755 fails to open Motor-operated valve M0-0759 fails to open Motor-operated valve M0-0759 fails to open Motor-operated valve M0-0778 fails to open Motor-operated valve M0-0778 fails to open Loss of pressure from nitrogen source Operator error Operator error

0PE205	1.00E-03	Operator error
0PE206	1.00E-03	Bperator error
OPE207	1.00E-03	Operator error
OPE210	1.00E-03	Operator error
OPE801	1.00E-03	Operator error
PCV0521A	5.00E-04	Pressure control valve PCV-0521A fails to open
PSBA	1.50E-02	Electric pump P8A fails to start
PSBB	3.00E-02	Turbine-driven pump P8B fails to start
PS8C	1.50E-02	Electric pump P8C fails to start
RV0783	1.70E-04	Relief valve RV-0783 premature open
SVØ521	1.00E-03	Solenoid valve SV0521 fails
SVØ522A	1.00E-03	Solenoid valve SV0522A fails
SV0522B	1.00E-03	Solenoid valve SV0522B fails
SV0525	1.00E-03	Solenoid valve SV0525 fails
WATER	1.00E-03	Water in steam pipe

FAILURE OF ELECTRICAL EQUIPMENT USING GENERIC DATA

			
COMP ID	PROBABILITY		
ACT1			Instr AC Transf 1 fails to function
ACT2	1.79E-04	4.91E-07	Instr AC Transf 2 fails to function
Bi	5.15E-05	4.70E-08	1/3 Breakers from bypass regulator to bus
			Y10 ftc
B2	3.43E-05	4.70E-08	DC breaker ftc or
			AC breaker ftc
B3	1.72E-05		Breaker 52-145 ftc
B4	1.72E-05		Breaker 52-356 ftc
B5			DC Breaker ftc
BJ B6			Breaker 52-285 ftc
B7			Breaker 52-146 ftc
B8			Breaker 52-1301 ftc
89	1.72E-05		
B10		4.70E-08	
B11	3.43E-05	4.70E-08	Breaker 52-1118 or breaker 52-1217 ftc
B12	3.43E-05	4.70E-08	Breaker 52-1202 ftc or
		4.70E-08	Breaker 152-201 ftc
B14	3.43E-05	4.70E-08	Breaker 52-1102 ftc or
	,		Breaker 152-115 ftc
B15	1.72E-05		Breaker 52-1310 ftc
B16		4.70E-08	
210	0.700 00		Breaker 152-304 ftc
D 1 7	1 70F 0F		
B17			Breaker 152-213 (DG1-2 output) ftc
B18			Breaker 152-107 (DG1-1 output) ftc
B20			Breaker 152-106 ftc
B22	1.72E-05	4.70E-08	Breaker 152-202 ftc
B24	1.72E-05	4.70E-08	Breaker 152-303 ftc
B181	3.43E-05	4.70E-08	Breaker 52-1302 ftc or
		4.70E-08	Breaker 252-110 ftc
BD	1.05E-03	2.88E-06	DC battery 1 degraded
BATT1	1.06E-03	2.90E-06	DC battery i fails
BUSIC	6.39E-05	1.75E-07	
BUSID		1.75E-07	
BUSIE		1.75E-07	
BUSB11			Bus 11 fails
BUSB12		1.75E-07	
BUSB13			Bus 13 fails
BUSB14	6.39E-05	1.75E-07	
BUSMC1	6.39E-05	1.75E-07	
BUSMC2	6.39E-05	1.75E-07	MCC 2 fails
BUSMC3	6.39E-05	1.75E-07	MCC 3 fails
BUSYØ1	6.39E-05	1.75E-07	Bus Y01 fails
BUSY10	6.39E-05	1.75E-07	Bus Y10 fails
BUSD1	6.39E-05	1.75E-07	
BYPR	8.40E-04	2.305-06	Bypass regulator fails
Ci	5.18E-04	1.42E-Ø6	Cable fails
C2	5.18E-04		Cable fails
63	5.18E-04	1.42E-06	Cable fails
C4	5.18E-04	1.42E-06	
C5	5.18E-04	1.42E-06	
C6			
	5.18E-04		Cable fails
C7	5.18E-04	1.42E-06	Cable fails

1			
C8	5.18E-04 1	.42E-06	Cable fails
C9	5.18E-04 1.	.42E-06	Cable fails
C10	5.18E-04 1	42E-06	Cable fails
C11	5.18E-04 1.	.42E-06	Cable fails
C12	5.18E-04 1	.42E-06	Cable fails
C13	5.18E-04 1.	.42E-06	Cable fails
C14	5.18E-04 1	42E-06	Cable fails
C15	5.18E-04 1.	.42E-06	Cable fails
C16	5.18E-04 1	.42E-06	Cable fails
C17	5.18E-04 1.	.42E-06	Cable fails
C18	5.18E-04 1	.42E-06	Cable fails
C19	5.18E-04 i.	.42E-06	Cable fails
C20	5.18E-04 1	.42E-06	Cable fails
C21	5.18E-04 1.	.42E-06	Cable fails
C22	5.18E-04 1	.42E-06	Cable fails
C181	5.18E-04 1.	.42E-06	Cable fails
CH1	4.42E-03 1	.21E-05	Charger fails
CH3	4.42E-03 1.	21E-05	Charger fails
DG1-1S	3.00E-02		DG fails to start
DG1-2S	3.00E-02		DG fails to start
	8.40E-04 2	.30E-06	
OPRT	1.198-04 3.	.26E-07	Loss of offsite power
STAP11		.96E-07	Station power transformer fails
STAP12	2.18E-04 5.	96E-07	Station power transformer fails
STAP13	2.18E-04 5	.96E-07	· · · ·
STAP14		96E-07	Station power transformer fails
		.81E-07	Start-up transformer fails

G-8

FAILURE OF ELECTRICAL EQUIPMENT USING PLANT SPECIFIC DATA

		~	
	PROBABILITY		
ACT1	2.08E-05		Instr AC Transf 1 fails to function - Bhrs
ACT2	2.08E-05	2.60E-06	Instr AC Transf 2 fails to function - Bhrs
B1	3.84E-06	1.602-0/	1/3 Breakers from bypass regulator to bus
			Y10 ftrc - Bhrs
B2	4.24E-06		
		1.60E-07	
B3	1.28E-06		
B4	1.28E-06		
85 D	2.96E-06		
B6	1.28E-06		
B7	1.28E-06		
B8	1.28E-06		
89		1.60E-07	
B10	1.28E-06		
B11	2.56E-06		
B12	1.33E-05		
			Breaker 152-201 ftrc - Bhrs
B14	1.33E-05	1.60E-07	
			Breaker 152-115 ftrc - 8hrs
B15			Breaker 52-1310 ftrc - 8hrs
B16	1.33E-05		Breaker 52-1402 ftrc - 8hrs or
			Breaker 152-304 ftrc - 8hrs
B17	2.15E-02	5.70E-05	Breaker 152-213 (DG1-2 output) ftc or ftrc
			DI=370hrs, MT=8hrs
BiB	6.01E-03	1.60E-05	Breaker 152-107 (DG1-1 output) ftc or ftrc
			DI=370hrs, MT=8hrs (p-1.6E-05)
B20	1.20E-05	1.50E-06	Breaker 152-106 ftrc - 8hrs
B22	1.20E-05	1.50E-06	Breaker 152-202 ftrc - 8hrs
B24	1.20E-05	1.50E-06	Breaker 152-303 ftrc - 8hrs
B181	1.33E-05	1.60E-07	Breaker 52-1302 ftrc - Bhrs or
		1.50E-06	Breaker 252-110 ftrc - 8hrs
ВD	9.62E-04	2.60E-06	DC battery 1 degraded – SBD, DI=370hrs
BATT1	2.086-05	2.60E-06	DC battery 1 fails - 8hrs
BUSIC	6.40E-06	8.00E-07	Bus 1C fails - Bhrs
BUSID	6.40E-06	8.00E-07	Bus 1D fails - 8hrs
BUSIE	6.40E-06	8.00E-07	Bus 1E fails - 8hrs
BUSB11	1.36E-06	1.70E-07	Bus 11 fails - 8hrs
BUSB12	1.36E-06	1.70E-07	
BUSB13	1.36E-06	1.70E-07	
BUSB14	1.36E-06	1.70E-07	Bus 14 fails - 8hrs
BUSMC1	1.36E-Ø6	1.70E-07	MCC 1 fails - Bhrs
BUSMC2	1.36E-06	1.70E-07	MCC 2 fails - 8hrs
BUSMC3	1.36E-06	1.70E-07	MCC 3 fails - Bhrs
BUSYØ1	1.04E-05	1.30E-06	Bus Y01 fails - Bhrs
BUSY10	1.04E-05	1.30E-06	Bus Y10 fails - 8hrs
BUSD1	3.12E-05	3.90E-06	DC Bus 1 fails - Shrs
BYPR	4.16E-05	5.20E-06	Bypass regulator fails - 8hrs
C1	6.00E-05	7.50E-06	
C2	6.00E-05	7.50E-06	
03	6.00E-05	7.50E-06	
C 4	6.00E-05		Cable fails - Bhrs
C5	6.00E-05	7.50E-06	Cable fails - Bhrs

6-9

C6	6.00E-05	7.50E-06	Cable fails - 8hrs
C7	6.00E-05	7.50E-06	Cable fails - 8hrs
C8	6.00E-05	7.50E-06	Cable fails - Bhrs
C 9	6.00E-05	7.50E-06	Cable fails - Shrs
C10	6.00E-05	7.50E-06	Cable fails - 8hrs
C11	6.00E-05	7.50E-06	Cable fails - Bhrs
C12	6.00E-05	7.50E-06	Cable fails - 8hrs
C13	6.00E-05	7.50E-06	Cable fails - 8hrs
C14	6.00E-05		Cable fails - 8hrs
C15			Cable fails - Bhrs
C16	6.00E-05	7.50E-06	Cable fails - 8hrs
C17	6.00E-05	7.50E-06	Cable fails - 8hrs
C18	6.00E-05	7.50E-06	Cable fails - Bhrs
C19	6.00E-05	7.50E-06	Cable fails - Bhrs
C20	6.00E-05	7.50E-06	Cable fails - Bhrs
C21	6.00E-05	7.50E-06	Cable fails - 8hrs
C22	6.00E-05	7.50E-06	Cable fails - Bhrs
C181	6.00E-05	7.50E-06	Cable fails - Bhrs
CHI	1.04E-05	1.30E-06	Charger fails - Bhrs
CH3	1.04E-05	1.30E-06	Charger fails - 8hrs
DG1-1S	6.10E-03	6.10E-03	DG fails to start - SBD
DG1-1R	2.24E-02	2.80E-03	DG fails to run - 8hrs
DG1-25	8.10E-03	8.10E-03	DG fails to start - SBD
DG1-2R	9.60E-03	1.20E-03	DG fails to run - 8hrs
INV 1	3.12E-05	3.90E-06	Inverter 1 fails - 8hrs
OPRT	5.36E-04	6.70E-05	Loss of offsite power - 8hrs
STAP11	4.00E-06	5.00E-07	Station power transformer fails - 8hrs
STAP12	4.00E-06	5.00E-07	Station power transformer fails - 8hrs
STAP13	4.00E-06	5.00E-07	Station power transformer fails - 8hrs
STAP14	4.00E-06		Station power transformer fails - Bhrs
STUT1-2	2.64E-05	3.30E-06	Start-up transformer fails - 8hrs

COMPONENT FAILURE RATE DATA CALCULATION

The following presents some calculations of component failure rate data for the AFW system unavailability estimate.

1.0 TEST AND MAINTENANCE

1.1 Pump test = 1.92E-03 (Reference 2)

 Image: Optimized state
 Image: Optized state
 Image: Optized state</th

1.2 Pump maintenance = 2.14E-03 (Reference 2)

 $\begin{array}{l} 0 &= (0.22) (hrs/maint) = (0.22) (7) \\ \text{Maint} & 720 & 720 \end{array}$

1.3 Valve maintenance = 2.14E-03 (Reference 2)

 $\begin{array}{l} @ = (0.22) (hrs/maint) = (0.22) (7) \\ \text{Maint} & 720 \\ \end{array} = 2.14E-03 \\ \end{array}$

2.0 OPERATOR ERROR

2.1 Maintenance error = 1.00E-03 (Reference 3)

The failure probability if the maintainer fails to restore a value after this work is finished is 1.00E-02, and the checker's failure probability is (1.00E-02)(10) = 1.00E-01. Hence, the estimated error by the maintainer restoring manual values is (1.00E-02)(1.00E-01) = 1.00E-03.

2.2 Operator error in control room (or local) = 1.00E-03
 (Reference 2)

Estimated failure probability for a "dedicated" operator to actuate AFW and possible backup actuation of AFW in 15 minutes actuation time needed is 1.00E-03.

3.0 HARDWARE

3.1 Valve (check, gate) fails to open = 1.00E-04 (Reference 4)

3.2 Control valve fails to open = 4.00E-04

Q = fails to operate + failure to remain open (plug)

= 3.00E-04 + 1,00E-04 = 4.00E-04 (Reference 4)

3.3 Relief valve premature open = 3.65E-03

Relief valve premature open failure rate $\lambda = 1.00E-05/hr$ (Reference 4)

By monthly testing:

 $0 = \lambda \cdot 730/2 = (1.00E - 05)(365) = 3.65E - 03$

- 3.4 AFW actuation signal fails = 7.00E-03 (Reference 2)
- 3.5 Loss of instrument air = 1.52E-03

Failure rate λ = 4.17E-06/hr (using compressor's failure rate (Reference 1, p 120)

Using monthly testing:

 $Q = \lambda \cdot 730/2 = 4.17E - 06(365) = 1.52E - 03$

3.6 Flow transmitter failure = 2.17E-03

Failure rate $\lambda = 5.95E-06/hr$ (Reference 1, p 432)

Using monthly testing:

Q = (5.95E-06) 730/2 = 2.17E-03

- 3.7 Hand switch failure = 3.00E-04 (Reference 4)
- 3.8 Pressure (flow) control valve fails to open = 1.00E-05 By using relief valve fails to open data (Reference 4)

3.9 Governor failure = 6.53E-05

Failure rate λ = 1.70E-07/hr

MTTR γ = 19.13 hr (Reference 7)

 $\Omega = \lambda \tau + \lambda \cdot 730/2 = 6.53E-05$ (using monthly testing)

3.10 Electrically driven pump fails to start = 5.00E-03

Q = mechanical components + control circuit (with monthly

testing) = 1.00E-03 + 4.00E-03 = 5.00E-03 (Reference 2)

3.11 Turbine driven pump fails to start = 1.00E-03 (Reference 2)

3.12 Solenoid valve failure = 1.00E-03 (Reference 4)

3.13 Pipe rupture, condensate storage tank rupture = 4.80E-08

The pipe rupture (>3") failure rate is 1.00E-10/hr per foot (Reference 4). It was estimated that there were 20 feet of pipe length from the condensate storage tank to the double suction header and the average repair time was 24 hrs.

Q = (20)(1.00E-010)(24) = 4.80E-08/demand

6-12

3.14 Motor-operated valve (N.O.) fails to open (plugging)

= 1.00E-04 (Reference 2)

3.15 Water in pipe = 1.00E-03

By judgement, the estimated probability that there is sufficient condensed water in the steam pipe is 1.00E-03. It is noted that the top event unavailability will not be affected if 1.0 is used for that estimated probability.