• • • • • • • • • • • • • • • • • • •	REGUI		ORMATIO	N DISTRIBUTIO	3N S S	(RIDS	;),	×
ACCESSIO FACIL:5 AUTH.N CÛRTIS, RECIP, EISENHU	NBR:8311070 0-387 Susqueh 0-388 Susqueh AME AU N.W. Pen NAME RE T,D.G. Div	331 Di anna Stea anna Stea THOR AFF ansylvania CIPIENT vision of	DC.DATE: am Elect am Elect LLIATION Power AFFILIAT Licensi	83/11/04 NG ric Station, ric Station, & Light Co. ION ng	Unit 1, Unit 2,	: YES Pennsy Pennsy	iva iva	DOCKET # 05000387 05000388
SUBJECT Distrib Title:	: Forwards re Based on Ge Rept will b INPO-NUTAC UTION CODE: B Licensing Sub	sponse to neric Imp responses 0035 CO mittal; 1	Generi Generi Gicatio to ref S. Sel PIES REC Anticipa	c Ltr 83-28, ns of Salem A lect BWR Owne <i>SYPT</i> EIVED:LTR L ted Transiént	"Requir ATŴS Eve ens Grou ENCL ts Witho	ed Acti nts." p or SIZE: ut Scra	ons 5 M	<u>9</u> Twsy
NOTES:1	cy NMSS/FCAF/ cy NMSS/FCAF/	PM. LPDI PM. LPDI	2cys. 2cys.					05000387 05000388
	RECIPIENT ID CODE/NAM NRR LB2 BC	CO 16 LT 05	PIES FR ENCL	RECIPIEN ID CODE/N PERCH,R.	NT NAME 01	COPIE LTTR E 1	S NCL 1	
INTERNAL:	ELD/HDS4 Nrr/dhfs dep	Y08	L 0	NRR THADAN NRR/DL DIN	NI, A13 R	1	1	
	NRR/DSI/ADCF NRR/DSI/CPB NRR/DST/GIB	9506 07 09		NRR/DSI/AR NRR/DSI/IC REG FILE	B SB 10 04	1 1 1	1. 1 1.	,

3 3

NOTES:

ŗ,

ь

.

TOTAL NUMBER OF COPIES REQUIRED: LTTR 25 ENCL 24

14

e.

•

P

Pennsylvania Power & Light Company

Two North Ninth Street • Allentown, PA 18101 • 215 / 770-5151

Norman W. Curtis Vice President-Engineering & Construction-Nuclear 215/770-7501

NOV 0 4 1983

Mr. Darrell G. Eisenhut, Director Division of Licensing U.S. Nuclear Regulatory Commission Washington, D.C. 20555

SUSQUEHANNA STEAM ELECTRIC STATION RESPONSE TO GENERIC LETTER 83-28 ER 100450/100508 FILE 841-2 PLA-1827

Docket Nos. 50-387 50-388

Dear Mr. Eisenhut:

The attached report is in response to Generic Letter 83-28, Required Actions Based on Generic Implications of Salem ATWS Events. Our previous letter, PLA-1815 (September 6, 1983), identified several areas that will be addressed generically by either the BWR Owners Group or the INPO-NUTAC. The attached report will be revised to reference those efforts when they are complete.

We are available to meet with you and your staff to discuss our response and our planned changes.

Very truly yours,

N. W. Curtis Vice President-Engineering & Construction-Nuclear

Attachment

B311070331 B31104 PDR ADDCK 05000387 PD, 200 C, 10 PDR

cc: R. L. Perch - USNRC G. Rhoads - USNRC

AFFIDAVIT

COMMONWEALTH OF PENNSYLVANIA) : : COUNTY OF LEHIGH)

SS

I, NORMAN W. CURTIS, being duly sworn according to law, state that I am Vice President, Engineering & Construction-Nuclear of Pennsylvania Power & Light Company and that the facts set forth on the attached response by Applicants to Generic Letter 83-28 are true and correct to the best of my knowledge, information and belief.

Vice President, Engineering & Construction-Nuclear

Sworn to and subscribed before me this H day of November, 1983

MARTHA C. BARTO, Notary Public Allentown, Lehigh County, Pa. My Commission Expires Jan. 13, 1986

Pennsylvania Power & Light Company

Susquehanna Steam Electric Station Units 1 & 2

Response to Generic Letter 83-28 November 6, 1984

> Docket # 50-387 Control # 8311070331 Date 83/11/04_of Document: R'C''' 500 T Sile

REGULATORY DOCKET ENE COPY

1.1 Program Description and Procedure

PP&L has developed a systematic program for ensuring that unscheduled reactor scrams are thoroughly evaluated. This program is implemented by plant procedures.

PP&L's Nuclear Safety Assessment Group (NSAG) recently completed an independent review of the scrams to date at SSES. NSAG attempted to determine if each trip was analyzed in sufficient detail to justify the conclusion that the reactor could be safely restarted. NSAG concluded that in each case the decision to restart the reactor was justified . That is, sufficient facts were in hand and sufficient analysis had been done to ensure safety.

The following respond to the respective requirements of Generic Letter 83-28 section 1. Susquehanna SES is in full compliance with the NRC position and no changes are planned.

1.1.1. The general criterion for determining the acceptability for restart is:

The plant shall be able to be restarted and operated safely.

To implement this general criterion, we impose the following specific criteria:

- a) The trip parameter that scrammed the reactor shall be determined.
- b) The system or component that is the source of the abnormality causing the trip shall be determined and corrective actions accomplished, as required:
 - 1) If the suspect system or component is safety-related, the cause of the malfunction shall be identified and corrective actions completed prior to restart.
 - 2) If the suspect system or component is not safety-related, the plant may be restarted if it is confirmed that the plant is within technical specifications.
- c) . The correct functioning of safety-related systems and components during the event shall be verified by:
 - 1) Verifying the proper sequence of safety-related system/component actuation from detection/initiation to shutdown.

- 2) Comparing the event information with known or expected behavior.
- 1.1.2. The responsibilities and authorities of personnel who will perform the review and analysis of these events are as follows:
 - a) The Superintendent of Plant or Duty Manager is responsible for authorizing the Shift Supervisor to re-start the plant following a scram.
 - b) Section Heads are responsible for resolving items identified in the post scram critiques. They shall ensure resolution of items which are identified as "required for unit startup" are dispositioned prior to Duty Manager authorization of a plant startup.
 - c) The Shift Technical Advisor is responsible to provide post scram data and preliminary evaluations of plant performance including whether equipment functioned as designed.
 - d) The Supervisor, Scram Investigations is responsible for supervising and coordinating the investigation and immediate corrective actions following reactor scrams.
 - e) The Senior Compliance Engineer is responsible to verify appropriate notifications were made within the designated times based on appropriate incident classification by on shift personnel.
- 1.1.3. The necessary qualifications and training for the responsible personnel are:
 - a) Superintendent of Plant required to meet the criteria of section 4 of ANSI/ANS-3.1-1978 for Plant Manager.
 - b) Duty Manager required to meet the criteria of section 4.2 of ANSI/ANS-3.1-1978 for managers.
 - c) Section Heads- Senior Plant Staff personnel who as a minimum, meet the requirements of ANS-3.1-1978 for their respective positions.
 - d) STA Minimum qualifications:
 - B.S. or equivalent in Engineering or Related Sciences.
 - Four years power plant experience of which three or more are nuclear power plant experience.

- Meet requirements for personnel whose duties require the use of self-contained respirators
- Ability to meet requirements for access to vital areas of Susquehanna SES.
- Ability to successfully complete the required training and certification which includes:
 - STA Systems Training consisting of lectures, quizzes and examinations covering system design bases, flow paths, components, and instrumentation and controls.
 - STA Science consisting of reactor theory, thermodynamics, heat transfer, fluid flow, BWR chemistry, reactor plant materials, radiation protection, electrical science, and instrumentation.
 - STA Simulator consisting of technical specifications, operating procedures, emergency procedures, and transient analysis.
 - Mitigating core damage training.
 - Emergency response team training
 - Management Training consisting of problem analysis, decision making, and communication.
- e) Supervisor, Scram Investigations These are senior plant staff personnel who as a minimum, meet the requirements of ANS 3.1-1978 for their respective positions and is appointed by the plant superintendent.
- f) Senior Compliance Engineer Required to meet the criteria similar to Section 4.4 of ANS-3.1-1978.
- 1.1.4. The normal sources of plant information necessary to conduct the review and analysis are the General Electric Transient Analysis and Recording System (GETARS), the plant process computer, and chart recorders located in the control room and throughout the plant. Section 1.2 "Post-Trip Review-Data and Information Capability" contains the detailed capabilities of these sources.
- 1.1.5. When applicable, the plant performance is evaluated against the transients in the FSAR. In addition, the Post Transient/Reactor Scram Evaluation procedure has a safety systems actuations and

performance table which is used to compare actual to expected plant behavior.

1.1.6. Plant Operating Review Committee meetings are conducted to review all scrams from critical and recommend startup to the Plant Superintendent. A technical Section instruction, SCRAM Report Data Collection, provides guidelines for the proper retrieval of data for analysis and evaluation. This data is stored in the Document Control Center as part of the permanent plant records.

1.2 Data and Information Capability

Safety-related systems provide actions necessary to assure safe shutdown, to protect the integrity of radioactive material barriers, and/or to prevent the release of radioactive material in excess of allowable dose limits (SSES FSAR 7.1.1a.3.1). Recording, recalling and displaying data to permit diagnosing the causes of reactor shutdowns and for ascertaining the functioning of safety-related equipment are clearly not safety-related functions. Acquiring and storing this data is necessary for the proper and efficient operation of a nuclear power plant. As such, SSES is equipped with systems which allow for the acquisition, processing, recording and display of data for timely diagnosis and correction of conditions rendering the plant inoperable. These systems are more than adequate to perform the functions for which they were intended.

The following respond to the respective requirements of generic letter 83-28 section 1.2.

1.2.1. Capability for assessing sequence of events

The primary mechanism for assessing the sequence of events prior to and during an unscheduled reactor shutdown is the plant computer. An overview of the SSES plant computer is in FSAR Section 7.7.1.7. The computer is equipped to produce two post-trip review logs and a sequence of events log (SOE). Taken together, these logs allow for the detailed assessment of the sequence of events just prior to and during an unplanned reactor shutdown.

The plant computer is programmed to produce both a nuclear steam supply system (NSSS) post-trip review log and a balance of plant (BOP) post-trip review log. The NSSS post-trip review log is automatically activated five minutes after a scram. It provides a log of 24 NSSS data point values (listed in Attachment 1) collected at 5 second intervals for the 5 minute period before and after a scram event. The log is printed on the logging line printer using the format shown in Attachment 2.

The BOP post-trip review log is similar to that for the NSSS except that 48 BOP data points are monitored and logged (see Attachment 3). The log provides the data collected at 15-second intervals for the 30 minutes prior to and following a trip. The log is either automatically initiated 30 minutes after the trip or can be demanded by the operator and is typed on the logging line printer using the same format as in Attachment 2.

The SOE log provides a chronological listing of major events occurring during plant operations. Upon detection of a status change of any of the preselected sequential events contacts, the

SOE log initiates. As soon as 64 contact changes have been sensed or 30 seconds have elapsed since the first detected change, the log begins printing on the log line printer in the Control Room. The log continues until all contact changes have been printed including any changes sensed subsequent to log initiation. The system has the capability of establishing an order of occurrence between state changes with a resolution of 4 milliseconds. Attachment 4 is the list of parameters which are inputs to the SOE log and Attachment 5 is an example of the output format.

All three logs produce hard copy records which are retained in the SSES Records Management System.

The plant computer is powered from an uninterruptable non-1E power supply backed up by an engineered safeguard supply (FSAR 8.3.1.8).

An alternative mechanism for assessing the sequence of events in case of a loss of the computer is to take data from the strip chart recorders in the control room and in the plant (see next section) and supplement this data with operation observations.

1.2.2. Capability for assessing the time history of analog variables needed to determine the cause of unscheduled reactor shutdowns, and the functioning of safety-related equipment

The primary mechanisms for assessing the time history of analog variables at SSES are the historical recording capability of the plant computer system, control room strip chart recorders and the General Electric Transient Analysis and Recording System (GETARS).

The plant computer has a historical recording function which records certain preselected changes in input signals from both NSSS and BOP systems. Changes to the software which controls what data is placed in historical records is under plant administrative control. Data is temporarily stored on a drum and transferred to magnetic tape for permanent retention each time the assigned drum area is filled. Data may later be retrieved from the magnetic tape and analyzed. Attachment 6 is an example output.

Strip chart recorders in the control room can be used to assess the functioning of safety-related equipment. With few exceptions, these recorders run at 1 inch per hour. Strip charts provide a continuous indication of analog parameters.

GETARS is composed of a mini-computer, magnetic tape unit, magnetic disk drive unit and a printing/plotting station that are integrated by software. The system is capable of handling inputs from more than five hundred channels. These channels may then be monitored and/or recorded.

The channels that are selected for recording are placed in what is called a "work file" created by utilizing system software. The number of points in this file and the frequency of scanning is a balance between the scanning rate of the equipment, the storage capability of the equipment, the desired discrimination time between scans and the desired time following an event that is desired. At the present time we scan approximately 300 channels once every 6.67 milliseconds (see Attachment 8 for a listing of these points).

The recording is triggered by selected points exceeding a predetermined set point. The triggers presently in use are shown in Attachment 9. On triggering, the items selected to be in the work file are recorded for a predetermined time prior to the trigger until the recording capability is filled. This recording time period is dependent on the number of channels in the work file and the selected scan rate.

The information that is stored is in both digital and analog form depending on the specific parameter. These may be plotted at a later time to aid in accident/transient analysis.

GETARS is powered from an uninterruptable non-lE power source that is capable of being powered from the plant diesel generators. This is considered a highly reliable source of power.

Attachment 7 is a list of parameters developed for this response which are required to determine if safety-related systems functioned properly to meet the criteria of 1.1.1 above. Many more parameters, identified in the attachments, are monitored and recorded at SSES than are required to determine the acceptability for restart. However, during development of Attachment 7 we identified approximately 40 parameters, not currently known to be available in the necessary form, which would be useful for post-trip review. We are continuing to evaluate these parameters and will include the results of that evaluation when this report is revised to include the results of the BWR Owners Group program (see section 2.1).

One additional point should be made with regard to ascertaining the proper functioning of safety-related equipment by post-trip reviews. SSES, as do all licensed reactors subject to technical

1.2.3. Other data and information provided to assess the cause of unscheduled reactor shutdowns

Other data and information available to assess the cause of unscheduled reactor shutdowns include: plant instrumentation associated with nonsafety-related systems; data obtained from analysis of samples; data from further engineering analysis; and, in extreme cases, information from disassembly and examination of equipment. Together, all of the above information allows us to determine the ultimate cause for rendering the plant inoperable.

1.2.4. <u>Schedule for any planned changes to existing data and</u> information capability

> The results of the evaluation of Attachment 7 parameters referred to in 1.2.2 above will be included in a revision to this report which will be submitted by February 29, 1984.

2.1 Reactor Trip System Components

Equipment Classification

All reactor trip system components are identified as safety-related on documents, procedures and information handling systems used in the plant to control safety-related activities, including maintenance, work orders, and parts replacement. No changes are planned.

Vendor Interface

The Susquehanna SES reactor protection (trip) system was supplied by the General Electric Company. General Electric is still under contract to PP&L for the completion of Unit 2. This contract provides for current vendor information through contract termination.

As identified in our letter PLA-1815, the BWR Owners Group is undertaking an effort to address continuing maintenance of vendor information generically. Additional information will be submitted when the BWROG program is available.

Also, PP&L has an existing Industry Events Review Program (IERP) to review relevant industry information and experience for impact on SSES. This program is described in section 2.2.2.

2.2 Programs for All Safety-Related Components

2.2.1. Equipment Classification

PP&L has a comprehensive program for ensuring that safety-related systems, components and structures are classified and maintained as such. The PP&L program is implemented through a thorough set of procedures containing the necessary ingredients to assure that safety-related quality is maintained throughout the life of SSES. The procedures define the method of determining the classification of equipment, and requirements for design, modification, procurement, maintenance, handling, storing, and testing safety-related equipment.

SAFETY RELATED is a generic term applied to:

- 1. Those systems, structures, and components that meet one or more of the following requirements:
 - (a) Maintain the integrity of the Reactor Coolant System. pressure boundary.
 - (b) Assure the capability to prevent or mitigate the consequences of accidents that could cause the release of radioactivity in excess of 10CFR100 limits.

، ،

•

*

.

- (c) Preclude failures which could cause or increase the severity of postulated accidents or could cause undue risk to the health and safety of the public due to the release of radioactive material.
- (d) Provide for safe reactor shutdown and immediate or long term post accident control.
- 2. Those activities that affect the systems, structures and components discussed in Item 1 above such as their design, procurement, construction, operation, refueling, maintenance, modification and testing.

PP&L maintains a controlled "Q-list" identifying systems, structures and components which have been designated as safety-related. The content of this list is based on Table 3.2.2 of the FSAR. The SSES Q-list does not include every safety-related component of every safety-related system. However, as discussed below, the PP&L procedures for determining unlisted component and part quality are very conservative. As such, this system complies fully with the intent of NRC's . position.

The Q-list is one of PP&L's Quality Consideration Lists (QCL). Quality systems, components and structures are defined as those which appear on any of the QCL. The QCL are controlled documents which take precedence over other lists or documents as the source of quality classification. Development and updating of the QCL are the responsibility of the Nuclear Plant Engineering group. The initial QCL and requests for changes thereto are required to be reviewed by quality assurance.

PP&L procedures for modifications, engineering, maintenance, procurement and material control require a determination if the activity affects a quality system, component or structure. For procurement of spare parts, parts used in safety-related (Q-listed) assemblies or systems are classified as either Q1, Q2, Q1E, Q2E or N as defined below:

"Q1" Items - A sub-classification of "Q" - These items are considered essential to the safe operation of the plant and are designed and fabricated in accordance with a QA program approved by PP&L that is consistent with the pertinent provisions of 10CFR50, Appendix B, National Standards or Codes, as appropriate, and other requirements set forth in the purchase order. The supplier shall provide, as a minimum, documentation for all specified requirements and a certificate of compliance certifying that all Q1 items comply with the purchase order requirements in order for the parts to be considered acceptable.

"Q2" Items - A sub-classification of "Q" - These items are considered essential to the safe operation of the plant and may be obtained commercially as catalog/off-the-shelf items (i.e., they do not require unique or special engineering specifications; or they are manufactured to national standards or by processes generally automated or highly repetitive; or there is little chance for error during manfacture to affect their safety-related characteristics; or they may be obtained commercially in accordance with Article IWA-7000 of the ASME Code). The manufacturer of Q2 items need not have a QA program meeting the requirements of 10CFR50, Appendix B, but should have the usual processes or quality controls normally associated with the production of like items.

"QLE" - A sub-classification of "Q" - These Class 1E items are classified as Q1 items and are essential to emergency reactor shutdown, containment isolation, reactor core cooling, and containment and reactor heat removal, or otherwise essential in preventing significant release of radioactive material to the environment and are environmentally qualified in accordance with the requirements of NUREG 0588, Category I, and IEEE-323-74 as identified by SSES "Environmental Qualification Report for Class 1E Equipment." The supplier shall provide, as a minimum, the documentation and certificate of compliance consistent with all Q1 items. In addition, for items classified as 1E, the supplier will be required to submit:

- 1. An Environmental Qualification Test Plan including test set-up, test procedures, and acceptance criteria for at least one of each type of part.
- 2. An Environmental Test Report, with data, that demonstrates parts qualification in accordance with the Environmental Qualification Test Plan.

"Q2E" Items - A sub-classification of "Q" - These Class 1E items are classified Q2 items and are essential to emergency reactor shutdown, containment isolation, reactor core cooling, and containment and reactor heat removal or otherwise essential in preventing significant release of radioactive material to the environment and are environmentally qualified in accordance with the requirements of NUREG 0588, Category I, and IEEE-323-74 as identified by SSES "Environmental Qualification Report for Class 1E Equipment." As a minimum, the documentation required of the supplier will consist of a certificate of compliance and:

1. An Environmental Qualification Test Plan, including test set-up, test procedures and acceptance criteria for at least one of each type of part.

2. An Environmental Test Report, with data, that demonstrates parts qualification in accordance with the Environmental Qualification Test Plan.

"N" Items - Those items not within the scope of the PP&L QA program.

Attachment 10 shows the logic followed to classify these parts.

Upon receipt of quality parts, PP&L material control procedures require that acceptance be documented and that the part be clearly identified by means of a color coded tag. The tag remains with the part through handling, storage and installation.

For other than procurement of spare parts, parts or components of safety-related systems are all considered safety-related.

All corrective maintenance and implementation of modifications on all plant structures, systems and components is controlled by a work authorization system. Before physical work is initiated, the work authorization system requires that the work group foreman classify the work authorization as quality or not and ASME code related or not. The work activity classification is conservatively based on the system, structure and major equipment level, rather than on the classification of individual components. This is an important and deliberate feature of the system for classifying work activities intended to assure that work activities which may affect safety-related systems, structures, or equipment are appropriately conducted and controlled even though the objective of the work activity may be maintenance, repair, replacement, etc. of a non-safety component.

The PP&L operational Quality Assurance Program (FSAR 17.2) applies to all safety-related SSES structures, systems, components and activites. This program provides the necessary management controls, including periodic reviews and audits, to verify that covered procedures are followed. The procedures for preparation, validation and routine utilization of the information handling systems described, including the QCL, are subject to the controls of the PP&L Operational Quality Assurance Program.

Demonstration that appropriate design verification and qualification testing is specified for procurement of safety-related components requires consideration of the status of the component being procured. For procurement of the types of safety-related components acquired during construction,

demonstration is provided by the Equipment Qualification Document Files which have been audited by the NRC and found acceptable (NUREG-0776, Supplement 3, p3-7).

Design verification and qualification testing is not required for procurement of replacement parts and components identical to or equivalent to items already qualified.

For procurement of replacement parts/components for which an alternative to an identical or equivalent is selected, appropriate design verification and qualification testing is required. Procurement specifications for such equipment include design control requirements which comply with ANSI N.45.2.11-1974, including generation and approval of inputs and verification by independent review.

Attachment 11 is taken from a specification for new containment structure electrical cable penetrations prepared by our architect engineer. This specification includes requirements for qualification to harsh environmental conditions and appropriate qualification testing. To date, PP&L has not had occasion to directly procure equipment requiring environmental qualification for a harsh environment.

As an example of a direct PP&L procurement, attachment 12 is taken from a procurement specification for an additional diesel generator. This specification includes designation of mild environment conditions appropriate for this component and requires a certification of compliance. Also, dynamic load qualification requirements are included in this example.

With respect to the equipment classification program in use at SSES for structures, systems and components important to safety, we are participating in the Utility Safety Classification Group and are seeking a generic resolution to the staff's concern in this regard through the efforts of this Group. We do not agree that plant structures and components important to safety constitute a broader class than the safety related set. We nevertheless believe that non safety related plant structures, systems and components have been designed, and are maintained, in a manner commensurate with their importance to the safety and operation of the plant.

The procedures and specifications described above form a system which controls activities affecting safety-related components and which complies with NRC's position. No changes are planned in this area.

2.2.2. Vendor Interface

PP&L has an existing Industry Events Review Program to review relevant industry information and experience for impact on SSES. This program provides for the periodic review of:

- INPO Significant Operating Experience Reports (SOER).
- General Electric Service Information Letters (SIL) and Technical Information Letters (TIL).
- INPO Significant Event Reports (SER)
- SSES Incident and Event Reports
- Other industry information such as Atomic Energy Clearing House, EPRI Reports, NSAC Reports, IE Info Notices, etc.

The implementation of the action items identified by this program incorporates the lessons learned from industry experience in PP&L practices.

The original set of SSES Installation and Operating Manuals (IOM's) were obtained and reviewed in accordance with administrative and engineering procedures implementing the A/E's Quality Assurance Program which was reviewed and approved by PP&L and subject to audits and management reviews. Revisions to the IOM's were controlled by these same procedures up to the time of turnover of control to PP&L.

New ICM's, or revisions to ICM's are directed to the Document Control Center (DCC) at SSES. DCC does a preliminary administrative review.

A technical review is also performed by individuals which meet the following requirements:

- a. Have a minimum of five (5) years experience in the appropriate discipline, e.g., Instrumentation and Controls, Chemistry and Radiochemistry, Radiation Protection, Electrical Equipment, and Mechanical Equipment.
- b. One of the five years shall be nuclear power plant experience in the appropriate discipline.
- c. Two of the five years should be related technical training.
- d. A maximum of four of the five years may be fulfilled by related technical or academic training.

After a review is conducted to determine that the IOM is appropriate for the applicable equipment and approved by the technical reviewer's supervision, the IOM or IOM revision is issued, as follows:

DCC logs review as complete and files original review sheet.

Appropriate number of copies of the IOM Review Form are made.

A copy of the review form shall be inserted in front of the applicable ICM(s). This certifies the revision, manual or correction as approved.

DCC makes the appropriate controlled distribution.

DCC updates the Index of Approved ICM's by entering the appropriate manual identification and date of approval into the index.

IOM's are controlled documents and may be changed by issuing a properly reviewed and approved Drawing Change Notice.

As identified in our letter PLA-1815, a Nuclear Utility Task Action Committee (NUTAC) has been formed under the auspices of INPO to address this issue generically. Additional information will be submitted when the NUTAC program is available.

3.1 Reactor Trip System Components

3.1.1 A review was made of test and maintenance procedures and Technical Specifications to assure that post-maintenance operability testing of safety related components in the reactor trip system is performed as required to demonstrate the equipment is capable of performing its safety function. No problems were identified.

> A Maintenance Planners Guide was developed to provide clarification for the planners in assuring that all post-maintenance testing required by Technical Specifications is identified. In addition to the testing required by Tech Specs, the maintenance work groups are responsible for recommending operational testing on the Equipment Release Form (ERF) for a particular job. In many cases this testing is fulfilled by performing the applicable surveillance test for a system or component.

Shift supervision makes the final determination on the operational testing required to restore the system or component to operable status. We conclude that this system complies with NRC's position and plan no changes in this area.

- 3.1.2 Appropriate vendor and engineering recommendations have been incorporated in SSES test and maintenance procedures and Tech Specs for the reactor trip system. The process for ensuring that recommendations are incorporated is the same as for all other safety-related components described in section 3.2.2.
- 3.1.3 To date, we have identified no instances where post-maintenance testing required by Tech Specs degrades rather than enhances safety. However, we intend to continue to pursue this subject as addressed under item 3.2.3.
- 3.2 All Other Safety Related Components
 - 3.2.1 A review of the SSES test and maintenance procedures and Technical Specifications has been completed. SSES procedures require post-maintenance functional testing and a review for and performance of appropriate operability testing for safety-related components. The required testing demonstrates that the equipment is capable of performing its safety functions before being returned to service.

Based on our review, we are in full compliance with the NRC position. No changes are planned.

3.2.2 Appropriate vendor and engineering recommendations have been reviewed for incorporation into SSES test and maintenance

3.0

Section 3 - Post-Maintenance Testing

procedures and Tech Specs for all safety-related equipment. Incorporation is accomplished by appropriate handling of vendor supplied Installation and Operating Manual (IOM) information and vendor bulletins such as described in section 2.2 above.

The plant work authorization system includes identification of required instructions and procedures in planning of work activities. Each work authorization includes instructions written specifically for it. Appropriate portions of IOM's are incorporated verbatim, paraphrased, or by reference as appropriate. The work authorization is subject to review and approval before use.

3.2.3 To date, we have identified no instances where post-maintenance testing required by Technical Specifications degrades rather than enhances safety. However, we share a BWR industry wide concern that the current frequency of surveillance tests required by some technical specifications may degrade rather than enhance safety. We have joined with other industry members in the formation of a Technical Specification Review Committee as part of the BWR Owners Group. We intend to pursue the revision of tech spec requirements which may be shown to degrade safety through this committee.

> One example of a tech spec requirement that has the potential to degrade rather than enhance safety is the LCO Action Statements for tech spec 3.8.1, AC Power Systems. The Action Statements require the operable diesels to be started within 2-4 hours of entering the LCO's and once per 8 hours thereafter. The continual starting and shutting down of the diesels has a potential to reduce their reliability by continually subjecting them to transient conditions. We offer this only as an example. We will pursue justified revisions to tech spec requirements through the BWR Owners Group.

Section 4 - Reactor Trip System Reliability Improvements

4.1 Vendor Related Modification

Not applicable to SSES

4.2 Preventive Maintenance and Surveillance Program for Reactor Trip Breakers

Not applicable to SSES

4.3 <u>Automatic Actuation of Shunt Trip Attachment for Westinghouse and B&W</u> <u>Plants</u>

Not applicable to SSES

4.4. Improvements in Maintenance and Test Procedures for B&W Plants

Not applicable to SSES

4.5 System Functional Testing

The SSES reactor trip (reactor protection) system includes the motor-generator power supplies, sensors, relays, bypass circuitry, and switches that cause rapid insertion of control rods (scram) to shutdown the reactor (FSAR 7.2.1.1.1). SSES Tech Specs (NUREG 0931) 4.3.1.1, 4.3.1.2 and 4.3.1.3 require periodic functional tests of each instrumentation channel, functional tests of the logic system and demonstration of the system response time respectively. Testing of the system response time includes de-energization of the scram pilot valves. Taken together, these tech specs require, and SSES performs, on-line functional testing of the reactor trip system, including independent testing of the diverse trip features.

On-line functional testing of the backup scram valves is currently not performed at SSES. As identified in our letter, PLA-1815, the BWR Owners Group will address this issue and the review of tech spec intervals generically. Additional information will be submitted when the Owners Group program is available.

.

.

1.1

.

NSSS Post-trip Review Log Data Points ¥

.

Data Point	Description .
MAP03	Contnm. Press. A LOCA Range
NFL01	Rx. Narrow Range Lv1. A
NFLO4	Rx. Upset Range Lv1.
NARO1	Mn. Steam Line Rad. A
NAR05	Offgas Pretreat Rad. A
NFP02	Rx. Press. Wide Range
NM501	APRM Flux Pwr. Lvl. A Chan.
NM503	APRM Flux Pwr. Lvl. C Chan.
NM505	APRM Flux Pwr. Lvl. E Chan.
NN101	SRM A Log Count Rate
NN103	SRM C Log Count Rate
NN109	IRM A Flux, Reading
NN111	IRM C Flux Reading
NN113	IRM E Flux Reading
NN115	IRM G Flux Reading
NFF08	Mn. Turb. Steam Flow
NFF05	FW Flow A
NFF06	FW Flow B
NFF07	FW Flow C
NFF01	Rx. Steam Flow A
NFF02	Rx. Steam Flow B
NFF03	Rx. Steam Flow C
NFFO4	Rx. Steam Flow D
NLT01	Rx. Bottom Head Drn. Temp.

DATE HO/DY/YR TIME 10:30:10

UNIT X. PAGE XX OF XX

HSS POST TRIP REVIEW LOG

PRE-TRIP DATA

руррала волости волого волого волого волого страна страна волого страна волого волого волого волого волого воло IR: SXXXX,XXA 10:20:10 SXXXX,XXA 10:20:15 10:20:20 10:20:25 10:20:30 PUST-TRIP' DATA

руровона странала с

SXXXX.XXA 10:25:10 10:25:15 - SXXXX,XXA 10:25:20 10:25:25 10:25:30

DATA RECORDED FOR 24 POINTS AT 5-SECOND INTERVALS FOR 5 MINUTES

HOTE: BOP Post Trip Review Log is same as HSS Log except, BOP log data is recorded for 48 points at 15 second intervals for 30 minutes before and 30 minutes after trip.

6

• •

Ś

BOP Post-trip Review Log Data Points

.

Data Point	Description	<u>Data Point</u>	Description
GNE02	Gen. Phase A-B Voltage	THV09	Gen. BRG. #9 Vibration
GNE03	Gen. Phase B-C Voltage	THV10	Gen. BRG. #10 Vibration
GNE04	Gen. Phase C-A Voltage	THV11	Alt. BRG. #11 Vibration .
GNJ01	Generator Power	THV12	Alt. BRG. #12 Vibration
GNU02	Gen. Reactive Power	TLP01	Turb. L-O Brg. HDR Press.
GNU03	Gen. Frequency	TLP02	Turb. L-O OPER Oil Press.
GST02	Gen. Stator Clg. Wtr. Out	TLP03	Turb. HYD Fluid Press.
TAP03	Turb. Seal Stm. Press.	TLT15	Turb L-O CLR. in Temp.
TCY01	Turb. CV Position	TLT16	Turb L-O CLR. DSCH. Temp.
TCY02	Turb. BYP. Vlv. Position	TNP01	Condenser A Press.
TEL01	MSEP A Drain Tank Level	TNP02	Condenser B Press.
TELO2	MSEP B Drain Tank Level	TNP03	Condenser C Press.
TETO7 -	LPT A Exhaust Hood Temp.	· YBB01	Sync. BKR. 230 KV Grid
TET08	LPT B Exhaust Hood Temp.	THX02	Turb. Diff. Expansion
TETO9	LPT C Exhaust Hood Temp.	THX03	Turb. Shell Expansion
THS01	Turbine Speed	THX04	Turb. Rotor Expansion
THV01	Turb. BRG. #1 Vibration	TNL01	Condenser Hotwell Level
THV02	Turb. BRG. #2 Vibration	FPT01	RFP A Discharge Temp.
THV03 .	Turb. BRG. #3 Vibration	FPT02	RFP B Discharge Temp.
THVO4	Turb. BRG. #4 Vibration	FPT03	RFP C Discharge Temp.
THV05	Turb. BRG. #5 Vibration	FTS01	RFPT A Speed
THV06	Turb. BRG. #6 Vibration	FTS02	RFPT B Speed
THV07	Turb. BRG. #7 Vibration	FTS03	RFPT C'Speed
THV08	Turb. BRG. #8 Vibration	GSC02	Gen. Stator CLG. CNVTY.

SEQUENCE OF EVENTS INPUTS

.

POINT IDENT	ENGLISH DESCRIPTION
CPZ03	COND PP A ABNORMAL TRIP
CPZ04	COND PP B ABNORMAL TRIP
CPZ05	COND PP C ABNORMAL TRIP
CPZ06	COND PP D ABNORMAL TRIP
EBZ01	T BUS 0A106-BUS 11A BKR
EBZ02	T BUS 0A106-BUS 11B BKR
EBZ10	BUS 10-T BUS 0A106 BKR
EBZ11	T BUS 0A106-0A107 BKR
EBZ20	BUS 20-T BUS 0A107 BKR
EBZ26	FDR TO SU BUS 10 UNDERVOLT
EBZ51	T BUS OA 107-BUS 2A BKR
EBZ52	TIE BUS 0A107-BUS 2B BKR
EBZ76	FDR TO BUS 20 UNDERVOLT
EKY01	SU XFMR 10-BUS 10 BKR
EKY02	SU XFMR 20-BUS 20 BKR
EKY07	AUX XFMR 11-BUS 11A BKR
EKY08	AUX XFMR 11-BUS 11B BKR
ETZ01	UNIT AUX XFMR DIFF
ETZ02	UNIT AUX XFMR GRD DIFF
ETZ03	UNIT AUX XFMR PHASE OC
ETZ04	UNIT AUX XFMR GRD OVOLT

SEQUENCE OF EVENTS INPUTS

POINT

IDENT	ENGLISH DESCRIPTION
FTI01	RFPT A MASTER TRIP
FT103	RFPT A VACUUM TRIP
FT104	. RFPT A ACT THR BRG WEAR
FT105	RFPT A INACT THR BRG
FT201	RFPT B MASTER TRIP
FT203	RFPT B VACUUM TRIP
FT204	RFPT B ACT THR BRG WEAR
FT205	RFPT B INACT THR BRG
FT301	RFPT C MASTER TRIP
FT303	RFPT C VACUUM TRIP
FT304	RFPT C ACT THR BRG WEAR
FT305	RFPT C INACT THR BRG
GEZ02	EXCITER DIFFERENTIAL
GNZ01	MAIN GEN DIFFERENTIAL
GNZ02	MAIN GEN NEUTRAL OVOLTS
GNZ03	MAIN GEN LOSS FIELD A
GNZ04	MAIN GEN UNDER FREQUENCY
GNZ05	UNIT PRI LOCKOUT A/C
GNZ07	GEN OUT OF STEP
GNZ08	MAIN GEN GRD OVERVOLTAGE
GNZ09	MAIN GEN NEUT OVOLT STRT

7

SEQUENCE OF EVENTS INPUTS

POINT

**

(L

R

	IDENT	ENGLISH DESCRIPTION
	GNZ10	UNIT DIFFERENTIAL
	GNZ11	MAIN GEN LOSS FIELD B
	GNZ12	UNIT BKUP LKOUT B-D
	GNZ15	MAIN GEN NEG SEQUENCE
	GNZ18	MAIN GEN VOLT/AERTZ
	GNZ20	MN GEN BKUP VOLT/HZ
	GNZ22	BKUP ANTI-MOTORING RELAY
ı	GNZ23	GEN SPAN PROTECTION A
	GNZ24	GEN SPAN PROTECTION B
	GNZ38	GEN LOAD UNBALANCE
	GNZ44	UNIT 1 SYNC BKR LO AIR PRS
	GNZ45	230 KV GEN BKR FAILURE
	GNZ46	OVERSPEED PROTEC TRIPPED
	GNZ47	PRIMARY ANTI-MOTOR RELAY
	GOZ01	GEN MN SEÀL OIL PUMP
	GOZ03	GEN EMERG SEAL OIL PP
	NMQ51	UPSC NEUT TRIP APRM A
	NMQ52	UPSC NEUT TRIP APRM B
	NMQ53	UPSC NEUT TRIP APRM C
	NMQ54	UPSC NEUT TRIP APRM D
	NMQ55	UPSC NEUT TRIP APRM E

SEQUENCE OF EVENTS INPUTS

POINT

IDENT	ENGLISH DESCRIPTION
NMQ56	UPSC NEUT TRIP APRM F
NMQ58 '	UPSC THERM TRIP APRM A
№1Q59	UPSC THERM TRIP APRM B
NMQ60	UPSC THERM TRIP APRM C
NMQ61	UPSC THERM TRIP APRM D
NMQ62	UPSC THERM TRIP APRM E
NMQ63	UPSC THERM TRIP APRM F
NNQ51	IRM UPSCL TRIP CHAN A
NNQ52	IRM UPSCL TRIP CHAN E
NNQ53	IRM UPSCL TRIP CHAN C
NNQ54	IRM UPSC TRIP CHAN G
NNQ55	IRM UPSC TRIP CHAN B
NNQ56	IRM UPSC TRIP CHAN F
NNQ57	IRM UPSC TRIP CHAN D
NNQ58	IRM UPSC TRIP CHAN H
NPQ51	DSCH VOL HI LVL TRIP A
NPQ52	DSCH VOL HI LVL TRIP B
NPQ53	DSCH VOL HI LVL TRIP A
NPQ54	DSCH VOL HI LVL TRIP B
NPQ55	MSIV NOT FL OPEN TRIP A1
NPQ56	MSIV NOT FL OPEN TRIP B1

SEQUENCE OF EVENTS INPUTS

POINT IDENT	ENGLISH DESCRIPTION
 NPO57	MSTV NOT FT. OPEN TRTP A2
NEQ57 ,	NOTA NOT THE OPEN METER P2
NPQ58	MSIV NOT FL OPEN TRIP B2
NPQ59	PRI CONIN TRIP A
NPQ60	PRI CONIN TRIP B
NPQ61	PRI CONIN TRIP A
NPQ62	PRI CONIN TRIP B
NPQ63	RPV HP TRIP A
NPQ64	RPV HP TRIP B
NQP65	RPV HP TRIP A
NPQ66	RPV HP TRIP B
NPQ67	RPV LOW WIR LVL TRIP A
NPQ68	RPV LOW WIR LVL TRIP B
NPQ69	RPV LOW WIR LVL TRIP A
NPQ70	RPV LOW WIR LVL TRIP B
NPQ71	MS LINE HI RAD TRIP A
NPQ72	MS LINE HI RAD TRIP B
NPQ73	MS LINE HI RAD TRIP A
NPQ74	MS LINE HI RAD TRIP B
NPQ75	NM SYS TRIP A
NPQ76	NM SYS TRIP B
NPQ77	NM SYS TRIP A

SEQUENCE OF EVENTS INPUTS

.

.

x

POINT IDENT	ENGLISH DESCRIPTION
NPQ78	NM SYS TRIP B
NPQ79	MAN SCRAM TRIP A.OR C
NPQ80	MAN SCRAM TRIP B OR D
NPQ81	AUTO SCRAM TRIP A.OR C
NPQ82	AUTO SCRAM TRIP B OR D
NPQ83	TURB STOP VLV CLS TRIP A
NPQ84	TURB STOP VLV CLS TRIP B
NPQ85	TURB STOP VLV CLS TRIP A
NPQ86	TURB STOP VLV CLS TRIP B
- NPQ87	TURB CV FAST CLS TRIP A
NPQ88	TURB CV FAST CLS TRIP B
NPQ89	TURB CV FAST CLS TRIP A
NPQ90	TURB CV FAST CLS TRIP B
NPQ91	RECIRC PUM TRIP SYS A TRIP 13
NPQ92	RECIRC PUM TRIP SYS A TRIP 13
TAZ94	VACUUM PUMP
TBZ02	TURB BYPASS VLV #1
TBZ04	. TURB BYPASS VLV #2
TBZ06	TURB BYPASS VLV #3 .
TBZ08	TURB BYPASS VLV #4
TBZ10	TURB BYPASS VLV #5

SEQUENCE OF EVENTS INPUTS

	POINT	
	IDENT	ENGLISH DESCRIPTION
	TCZ06	TURB CONTROL VALVE 1
	TCZ08	TURB CONTROL VALVE 2
	TCZ10	TURB CONTROL VALVE 3
	ŤCZ12 ,	TURB CONTROL VALVE 4
	TDZ01	TURB MASTER TRIP
	TDZ07	TURB OVERSPEED TRIP
۴	TDZ15	TURB BACKUP OSPD TRIP
	TDZ16	TURB EXH HOOD TEMP TRIP
	TDZ17	LOSS OF STATOR CLG TRIP
	TDZ18	TURB SHAFT PP DSCH PRESS
	TDZ19	TURB THR WEAR OR BRG OIL
	TDZ21	TURB EHC 125DC POWER
	IDZ22	TURB HYD PRESS LOW TRIP
	TDZ23	TURB VACUUM TRIP
	TDZ24	TURB MANUAL TRIP
	TDZ35	TURB VIBRATION TRIP
	TDZ36	TURB EHC SPD SIGNAL LOST
	TDZ40	TURB MSEP HIGH LVL TRIP
	TDZ51	TURB EHC POS VOLTS LOST
	TDZ52	TURB EHC NEG VOLTS LOST
	TDZ55	TURB QUILL SHAFT

P

SEQUENCE OF EVENTS INPUTS

POINT IDENT	ENGLISH DESCRIPTION
WEZ29	CIRC WIR PUMP A
WCZ30	ĊIRC WIR PUMP B
WCZ31	CIRC WIR PUMP C
WCZ32	CIRC WIR PUMP D
YTZO1	MN XFMR LEAD DIFF
YTZ02	MN XFMR A DIFF
YTZ03	MN XFMR A SUDDEN PRESS
YTZ04	MN XFMR B DIFF
YTZ05	MN XFMR B SUDDEN PRESS
YTZ07	SU XFMR 10 PRI LKOUT RLY
YTZ08	SU XFMR 10 PRI BKUP RLY
YTZ30	TRF 10 MTR OPER AIR BRKE
YTZ31	SU XFMR 10 HSGS 1R106
YTZ57	SU XFMR 20 PRI LKOUT RLY
YTZ58	SU XFMR 20 PRI BKUP RLY
YTZ80	TRF 20 MTR OPER AIR BRKE
YTZ81	SU XFMR 20 HSGS 2R106

<u>Attachment 5</u>

	,	SEGUENC	E OF EVENIS LUG	
	TIME	PT ID	NA XE	STATUS
	11:1ó:31.584	YTZO7	SU XFHR 10 PRI LKOUT RLY	STARTED
	11=16=31_650	EKYD1	SU XFMR 10-BUS 10 BKR	TRIPPED
	11:16:31-695	YTZDB	SU XFMR 10 PRI BKUP RLY	STARTED
	11:10:31.775	YTZJÌ	SU XFMR 10 HSGS 1R106	- CLOSED
	11:16:31.902	YTZ31	SU XFMR 10 HSGS 1R106	JPEN
	11:16:35.696	YTZ30	TRE 10 MTR GPER AIR BRKE	DPEN
	11:16:43.908	EBZ26	FOR TO SU BUS 10 UNDERVG	YES ·
Þ	11:16:43.975	EBZII	T BUS DA106-DA107 BKR	LTUSED
	11:16:44- 47	F8226	FDR TO SU BUS 10 UNDERVO	ND
	11:16:50.257	NMQ55	UPSC TRIP APRM CHAN E	YES
	11:16:50.258	NM 95 1	UPSC TRIP APRM CHAN A	YES
	11:16:50.259	NMQ53	UPSC TRIP APRM CHAN C	YES
	11:16:50.262	XPQ53	DSCH VOL HI LVL TRIP A	YES
	11:16:50.262	NPG79	HAN SCRAM TRIP A UR C	· YES
	11:16:50.262	NPG73	HS LINE HI RAD TRIP A	YES
	11:16:50.262	NP459	PRI CONTN TRIP A	YES
	11:10:50-263	NPQ51	DSCH VOL HI LVL TRIP A	YES
	11:16:50.263	NPQ67	RPV LOW WTR LVL TRIP A	YES
	11:16:50.263	NPQ61	PRI CONTN TRIP A	YES ·
	11:16:50.263	N P 455	HSIV NOT FL OPEN TRIP AI	NOT OPEN

UNIT I PAGE 1

0

r

ų.

96-24-33 11:16

UNIT 1, PAGE 1

• ÷ i

_6/14/83 13:39:12

HISTORICAL DATA RETRIEVAL AND REVIEW SERVICES (MAG TAPE 1

BETWEEN 9:45 DN 6/14/83 AND 10: 0 DN 6/14/83

ALARM ACTIVITY (CONTACT)

	TIME	POINT	ID POINT DESCRIPTION ST	ATUS VALUE	UNITS LAT EXC
	9:46:1·	NPQ05	AUTO SCRAM TRIP A DR C	οĸ	YES
	9=46=10	NPQO6	AUTO SCRAM TRIP B OR D	ūк	YES
	9:46:12	NPQ58	MSIV NOT FL OPEN TRIP B2	. םא	NUT BPEN
	ə=46=12	NP256	MSIV NOT FL OPEN TRIP BI	Ω Κ ⁻	. NOT OPEN
	9=46=14	NND 1D	PERIOD B NEGATIVE	ŪK	ХD
	9=46=14	'NND 11	PERIOD C NEGATIVE	ακ	ЯП
	7=46=16	TCZ12	TURB CONTROL VALVE 4	ĎК	CLOSED
	9=46:16	TCZ10	TURB CONTROL VALVE 3 '	ΩК .	CLJSED
•	9=46=16	TCZ08	TURB CONTROL VALVE 2	אם	· <u></u> ISED
	9=46=16	TCZO6	TURB CONTROL VALVE 1	OK	LLISED
	9=46=16	TDZ11	TURB CV COMMAND CLOSED	ΩK	Y E S
	9=46:18	MVZ33	HVAC DIV 2 COMMON SYSTEM	OK	' TR⇒LE
	9:46:18	TCD01	TURB CV #1 INTER POSN	ALM	NO
	7=46:18	TCD02.	TURB CV #2 INTER POSN	ALH	ND
	9=46=18	TCDŪ3	TURB CV #3 INTER POSN	ALM .	EP.
	9=46:18	TCD04	TURB CV #4 INTER POSN	ALM	, NG
	9:46:18	TDDO1	TURB TRIP/MODE SW RUN/SU	ALM	NG
	9:46:13	TAD03	SPE B STM EXH VLV/RUN/SU	ALM	ND
	9:46:12	T4005	SPE A STH EXH VLV/RUN/SU	ALS	ND
	9:46:2	FV 74	FWHTR IA SU VENT VLV 🔿	ALM	CLISED
	9=46=20	MVZ32	HVAC DIV 1 COMMON SYSTEM	DK	TRBLE .
	9=46=22	TEZ06	TURB STH LEAD 3 DRN VLV	ALM .	NOT CLAP
	9:46:22	CR901	CUND REJECT CV A INTER	ALM	ND .

SUSQUEHANNA STEAM ELECTRIC STATION SALEM ATWS EVENT NRC GL 83-28 RESPONSE - ATTACHMENT 7 1.2: Post-Trip Review Variable List

Explanation of column entries are as follows:

NAME: Description of variable or event

USE: <u>Principle</u> reason for recording. IE means to determined initiating event SSP means to analyze safety-related system performance.

SOURCES: Devices by which data is recorded, save and/or displayed.

G is GETARS

R is Recorder (Strip chart-part of plant instrumentation). #R indicates more than one (the#) such recorders exist.

S is Sequence of Events Log

LOG is the operations (manual) log.

Post Trip Log points are operator defined and therefore not listed here. The Post Trip Log allows for 24 NSSS and 48 BOP real or pseudo analog points. Additional data is also retrievable from the historical records processing function of the Plant Computer System.

•	NAME	USE	SOURCES
	REACTOR		
	Šoram Discharge Vol. Level	TR	ç
	Total Comm	TE	5 C
	Channel & Serem	TE	C S
•	Channel A Sciam	IC TF	' C C
	Channel B Scram		6,5
	Manual Scram		6,5
•	Total Isolation	IE TE	G
	Channel A Isolation	IE	G
	Channel B Isolation	IE	G
	SRM Signals (4)	IE	R
	IRM Signals (8)	IE	R,S
	APRM A	IE	G,R,S
	APRM B	IE	G,R,S
	APRM C	IE	G,R,S
	APRM D	IE	G,R,S
	APRM E	IE	G,R,S
	APRM F	IE	G,R,S
	LPRM A	IE	G
	LPRM B	IE	G
	LPRM C	IE	G
	LPRM D .	IE	G
	LPRM E	IE	G
	LPRM F	IE	G
	LPRM Group A	IE	G
	LPRM Group B	IE	G
	NM Svs Trip A	IE	S
	NM Sys Trin B	TE	s
	NM Sys Trip A	IE	s
	NM Sys Trin B	IE	S
	Flow Biased Rod Block Setpoint	TE	G
	Flow Blased Scram Setnoint	TE	Ģ
	Rx Vessel Shut Down Level	TE	R
	Rx Vessel Unset Level Alternate	TE	R
	Reactor Water Level Setnoint	TE	G
	Narrow Range Level $(0 - 60)$	TE	G.B
	linset (Wide) Range Level $(0 - 180)$	TE	G.R.S
	Low Range Level $(-150 \text{ to } 60)$	TE	G.B
	Bottom Drain Temperature	TE	G.R
	Narrow Range Pressure (850 - 1050)	TE	G.R
	Wide Range Pressure $(0-1200)$	TE	G.R.S
	Total Core Flow	TE	с, к,с
٠	A Recirculation Loop Flow	TE	o o
	B Recirculation Loop Flow	TE	Ğ
	A Recirculation Loop Tiow	TE	Ğ
	R Recirculation Loop Temperature	TE	Ğ
	A Recirculation Boop Temperature	TE	с С
	R Recirculation Pump Drive Flow	TE	с С
	A Recirculation Motor Congretor Set Speed	TE	с С
	R Recirculation Motor Congrator Set Speed	TF	c C
	A Recirculation (RPT) Breaker	TE	ů Č
	U VECTEGRACIAN (VLI) DIEGVET	است یک	~

a

. a,

ть 3

ľ

)

Ą

(Ì

5

PAGE 2 ATTACHMENT 7

.

	NAME	USE	SOURCES
	A Recirculation Trip #13 B Recirculation (RPT) Breaker B Recirculation Pump Trip #13	IE IE IE	S G S
	RCIC		
	Reactor Core Isolation Cooling Initiation Reactor Core Isolation Cooling Pump Flow RCIC Turbine Speed RCIC Pump Suction Pressure RCIC Pump Discharge Pressure RCIC Steam Supply Pressure RCIC Turbine Exhaust Pressure RCIC Steam Flow dp-A RCIC Steam Flow dp-B RCIC Trip Signal	SSP SSP SSP SSP SSP SSP SSP SSP SSP SSP	G G G G G G G G G G
•	RCIC Control Valve Position	SSP	G
	HPCI	552	G
	High Pressure Coolant Injection Initiation High Pressure Coolant Injection Pump Flow High Pressure Coolant Injection Turbine Speed HPCI Pump Discharge Pressure HPCI Steam Supply Pressure HPCI Turbine Exhaust Pressure HPCI Steam Flow dp-A HPCI Steam Flow dp-B HPCI Control Valve Position HPCI Vessel Injection Valve Position High Pressure Coolant Injection Contr.Output	SSP SSP SSP SSP SSP SSP SSP SSP SSP	G G G G G G G G G G
	RHR/LPCI		
	A Residual Heat Removal System Flow B Residual Heat Removal System Flow	SSP SSP	G,R G,R
	AUTO DEPRESSURIZATION/SAFETY RELIEF VALVES		
	ADS Initiation Relief Valve ABC Initiate Relief Valve GJKL Initiate Relief Valve DEHFP Initiate Relief Valve RSMN Initiate Relief Valve B Position Relief Valve D Position Relief Valve F Position	SSP SSP SSP SSP SSP SSP SSP SSP	G G G G G G G G
	Relief Valve H Position Relief Valve K Position	SSP SSP	G G
			-

.

.

¢

*

1

١

Ĵ

. بن

NAME	USE	. SOURCES
Relief Valve L Position	SSP	G
Relief Valve N Position	SSP	G
Relief Valve R Position ·	SSP	G
Relief Valve A Position	SSP	·G
Relief Valve C Position	SSP	G
Relief Valve E Position	SSP	G
Relief Valve G Position	SSP	Ğ
Relief Valve J Position	. SSP	Ğ
Relief Valve M Position	SSP	G
Relief Valve P Position	SSP	G
Relief Valve S Position	SSP	G
MAIN STM LINES		
MSIV Initiation Signal	SSP	S
A Inboard Main Steam Isolation Vlv Position	SSP	G
B Inboard Main Steam Isolation Vlv Position	SSP	G
C Inboard Main Steam Isolation Vlv Position	SSP	G
D Inboard Main Steam Isolation Vlv Position	SSP	G
A Outboard Main Steam Isolation Vlv Position	SSP	G
B Outboard Main Steam Isolation Vlv Position	SSP	G
C Outboard Main Steam Isolation Vlv Position	SSP	G
D Outboard Main Steam Isolation Vly Position	SSP	G
A Steam Line Flow	SSP	G
B Steam Line Flow	SSP	G
C Steam Line Flow	SSP	G
D Steam Line Flow	SSP	G
A Main Steam Line Pressure Near Relief Valves	SSP	G
B Main Steam Line Pressure Near Relief Valves	SSP	Ğ
C Main Steam Line Pressure Near Relief Valves	SSP	G
D Main Steam Line Pressure Near Relief Valves	SSP	Ğ
Main Stm. Line Tunnel Temp	IE	R
Main Stm. Line Tunnel Delta Temp	IE	R
Main Stm. Line Radiation	TE	R
Main Stm. Line A HI Rad.	TE	S
Main Stm. Line B HI Rad.	IE	s
Main Stm. Line C HI Rad.	IE	S
Main Stm. Line D HI Rad.	IE	S
TURBINE/GENERATOR		
First Stage Shell Press	IE	R
Main Stop Valve A Trip	IE	S`
Main Stop Valve B Trip	IE	s
Main Stop Valve C Trip	IE	S
Main Stop Valve D Trip	IE	۰ S
Main Control Valve A Trip	IE	S
Main Control Valve B Trip	IE	S
Main Control Valve C Trip	IE	S
Main Control Valve D Trip	IE	S
Generator Gross Megawatts Output	IE	G

,

D

.

i,

X,

ATTACHMENT 7 PAGE 4

÷

NAME '	- USE	SOURCES
Grid Frequency	IE	G,R
Grid Voltage	IE	G,R
Main Turbine Speed	IE	G
Main Turbine Trip (Note 5)	IE	G,S
Generator Breaker Open (Note 3)	IE	G
Control Valve #1 Position	IE	G,S
Control Valve #2 Position	IE	G,S
Control Valve #3 Position	IE	G,S
Control Valve #4 Position	·IE	G,S
Total Bypass Valve Position .	IE	G
FEEDWATER		
A Loop Feedwater Flow	IE	G,R
B Loop Feedwater Flow	IE	G,R
C Loop Feedwater Flow	IE	G,R
A Feedwater Line Temperature	IE	G,R
B Feedwater Line Temperature	IE	G,R
C Feedwater Line Temperature .	IE	G,R
A Condenser Vacuum	IE	G
B Condenser Vacuum	IE	G
C Condenser Vacuum	IE	۰G
Feedwater Pump Suction Header Pressure	IE	G,R
A Feedwater Pump Turbine Trip (Note 2)	IE	G,S
B Feedwater Pump Turbine Trip (Note 2)	IE	G,S
C Feedwater Pump Turbine Trip (Note 2)	IE	G,S
Startup Level Controller Output	IE	G
Feedwater Turbidity	IE	R
CONDENSATE		
CST Level	SSP	R
,CST Temp .	IE	LOG
CONTAINMENT		
Sup. Pool Temp	SSP	R
Sup. Pool Level	SSP	R
Drywell Temp	SSP	R
Drywell Pressure	SSP	G. 2R
Containment Area Rad. Monitor	SSP	R
Suppression Pool Activity	SSP	Note 1
Primary Containment Trip (4 Signals)	IE	S
STANDBY GAS TREATMENT		
SGTS Stack Monitor Flow	. SSP	R
SGTS Air Flow	SSP	R
Area Radiation Including .	SSP	R
Refueling Floor and Railroad Access Area		

.

.

۰.

ĸ

•

а. 4

٢.

Ø.

•

.

))**)**

C

,

n .

•

,,,,

٢,

ATTACHMENT 7 PAGE 5

* ·

4

14 4¹

.

•

NAME -	USE	SOURCES
Vent Stack Radiation including SGTS	SSP	R
STANDBY LIQUID CONTROL		
SBLC Flow (Tank Level & Time) SBLC Initiation	SSP SSP	LOG LOG
· · · · ·		

L

4

ı,

NOTES

- 1. Not required as function of time. Lab. Analysis of sample.
- 2. Seq. of Events has four separate trip initiation inputs per turbine.
- 3. See Seq.of Events Inputs list for twenty-five Generator/Electrical System trip initiation inputs.
- 4. All five bypass valves are input to seq. of Events log.
- 5. See Seq. of Events log for twenty-seven individual trip initiation event inputs.
- 6. Also see Seq. of Events log for various electrical system trip initiation event inputs.

ad/mej057i:del

GETARS SIGNAL LIST (TMS).

CH. A NAME UNITS DESCRI	PTION
, 1 SCRAM DIC TATAL SCRAM	
2 SCRMA DIG TUTHL SCRMA 2 SCRMA DIG CHANNEL 'A' SCRAM	
9 APRMB 2 APRM 'B'	
10 APRMC 2 APRM 1C1	
11 APRMD 2 APRM 'D'	
12 APRME % APRM 'E'	
13 APRME % APRM 'F'	•
14 LPRMA % LPRM 'A'	•
15 LPRMB % LPRM 'B'	
16 LPRMC X LPRM 'C'	
17 LPRMD % LPRM 'D'	
18 LPRME % LPRM 'E'	
19 LPRMF % LPRM 'F'	
20 LPRM1 % LPRM GROUP 'A'	
21 LPRM2 % LPRM GROUP 'B'	
22 HFLX1 % HEAT FLUX #1	
23 HFLX2 % HEAT FLUX +2	
24 FBRBS X FLOW BIASED ROD BLOCK SETP	POINT
25 FBSCM # FLOW BIASED SCRAM SETPOINT	-
26 TCFLO MLBH TOTAL CORE FLOW	
27 CPDP PSID CORE PLATE DIFFERENTIAL PR	RESSURE
28 RSLFA MLBH 'A' RECIRCULATION LOOP FLO	
29 RSLFB MLBH 'B' RECIRCULATION LOOP FLO	
30 RSLTA DEGF 'A' RECIRCULATION LOOP IEM	
31 RSLTB DEGF 'B' RECTREULATION LOUP TE	
32 RSDFA KGPM 'A' RECIRCULATION PURP DRI	
33 RSDFB KGPM 'B' RELIRCULHTION PUMP DKI	TEPENTIAL PRESSURE
34 KSDPH PSID 'H' KELIKLULHIIUN PUR DIE	FERENTIAL PRESSURE
35 KSUMB PSID B RELIKUULHIIUN PUNP DI	NEDATOD SET SPEED
	NEDATOD CET CDEED
	CHERATOR SET SPEED
35 KOIRO A IMOTER RECIRCOLATION CONTR	
	TIIT
40 MGSCOA X 'A' M/G SET CONTROLLER OUT	ТИЧТ
40 MGSCOA % 'A' M/G SET CONTROLLER OUT 41 MGSCOB % 'B' M/G SET CONTROLLER OUT 42 MGMOD % 'A' M/G SET M/O STOTION OU	FPUT FPUT ITPUIT
40 MGSCOA % 'A' M/G SET CONTROLLER OUT 41 MGSCOB % 'B' M/G SET CONTROLLER OUT 42 MGMAA % 'A' M/G SET M/A STATION OU 43 MGMAB % 'B' M/G SET M/A STATION OU	IPUT IPUT JTPUT ITPUT
40 MGSCOA % 'A' M/G SET CONTROLLER OUT 41 MGSCOB % 'B' M/G SET CONTROLLER OUT 42 MGMAA % 'A' M/G SET M/A STATION OU 43 MGMAB % 'B' M/G SET M/A STATION OU 44 MGSTA % 'A' M/G SET SCOOP TUBE POS	ΓΡυΤ ΓΡυΤ JTΡυΤ JTΡυΤ STTION
40 MGSCOA * 'A' M/G SET CONTROLLER OUT 41 MGSCOB * 'B' M/G SET CONTROLLER OUT 42 MGMAA * 'A' M/G SET M/A STATION OU 43 MGMAB * 'B' M/G SET M/A STATION OU 44 MGSTA * 'A' M/G SET SCOOP TUBE POS 45 MGSTB * 'B' M/G SET SCOOP TUBE POS	ГРИТ ГРИТ ЈТРИТ ЈТРИТ 5 I Т I ON 5 I Т I ON

.

:

L

ATTACHMENT 8 Page 1 of 7

			<u> </u>
41	RPT-B	DIB	'B' RECIRCULATION (RPT) BREAKER
48	MGFBA	DIG	'A' RECIRC. MOTOR-GENERATOR SET DRIVE / FIELD BKR
49	MGF88	DIG	'B' RECIRC. MOTOR-GENERATOR SET DRIVE / FIELD BKR
50	Mgv-a	VOLT	'A' RECIRCULATION MOTOR-GENERATOR SET VOLTAGE
51	MGV-B	VOLT	'B' RECIRCULATION MOTOR-GENERATOR SET VOLTAGE
-52	RCICI	DIG	REACTOR CORE ISOLATION COOLING INITIATION
53	RCFLO	GPM	REACTOR CORE ISOLATION COOLING PUMP FLOW
54	RCTSP	RPM	RCIC TURBINE SPEED
55	RCPSP	PSIG	REACTOR CORE ISOLATION COOLING SUCTION PRESSURE
56	RCPDP	PSIG	RCIC PUMP DISCHARGE PRESSURE
57	RCTIP	PSIG	RCIC STEAM SUPPLY PRESSURE
58	RCTEP	PSIG	RCIC TURBINE EXHAUST PRESSURE
59	RCETA	INCH	RCIC STEAM FLOW DELTA - P "A"
60	RCETB	INCH	RCIC STEAM FLOW DELIA - P "B"
61	RCVSA	*	RCIC STEAM ADMISSIUN VALVE PUSITION
62	RCVTT	*	REIC TRIP / THRUTTLE VALVE PUSTTION
63	REVEU	*	RETE CUNTRUL VALVE PUSTITION
64	RUVVI	*	RUID VESSEL INJELTION VHLVE PUSITION
65	RUFUU	*	REACTOR LORE ISULATION LOULING CONTROLLER OUTPUT
66	REPSE	%	RUIL SULTION PRESSURE CONTROLLER OUTFOR
67 C0	RLEGM	<i>%</i>	REIL TURBINE EGN OUTPUT
68	KUKGS	Ä DIC	HICH PRESENCE CONTANT IN SECTION INITIATION
20	HPCII		HIGH FRESSURE COULANT INJECTION INTERTION
70	HPFLU	6PM DDM	HIGH PRESSURE COULANT INJECTION TUPPINE SPEED
71	LOODD	REIT	HIGH FRESSURE COULANT INJECTION TORDINE, SPEED
77		PEIC	HELL FUR DISCHAGE FRESSURE
73		P316	UDOL TUDDING GYUANGT DDECCUDE
74		7516 1000	UPOI OTEAM ELOU DELTA - P MAN
75		тысн	HPCI STEAM FLAU DELTA - P "R"
77	HPVSG	*	HPCI STEAM ADMISSION VALVE POSITION
78	HPVST	~ %	HPCI STOP VALVE POSITION
79 .	HEALU	2	HPCI CONTROL VALVE POSITION
80	HPW/I	2	HPCI VESSEL INJECTION VALVE POSITION
81	HPCO	2	HIGH PRESSURE COOL ANT INJECTION CONTROLLER OUTPUT
82	HPEGM	*	HPCI TURBINE EGM OUTPUT
83	HPRGS	2	HPCI RAMP GENERATOR / SIGNAL CONVERTOR OUTPUT
84	RHF-A	KGPM	'A' RESIDUAL HEAT REMOVAL SYSTEM FLOW
85	RHF-B	KGPM	'B' RESIDUAL HEAT REMOVAL SYSTEM FLOW
86	SULFA	KGPM	'A' RHR SYSTEM SERVICE WATER FLOW
87	SULFB	KGPM	' 'B' RHR SYSTEM SERVICE WATER FLOW
88	RHP-A	PSIG	'A' RESIDUAL HEAT REMOVAL H× PRESSURE
89	RHP-B	PSIG	'B' RESIDUAL HEAT REMOVAL H× PRESSURE
90	RHPCA	%	'A' RHR Hx PRESSURE CONTROLLER OUTPUT
91	RHPCB	%	'B' RHR Hx PRESSURE CONTROLLER OUTPUT
92	RHL-A	%	'A' RESIDUAL HEAT REMOVAL H× LEVEL
93	RHL-B	*	'B' RESIDUAL HEAT REMOVAL H× LEVEL
94	Rhlca	%	'A' RHR HX LEVEL CONTROLLER OUTPUT
95	RHLCB	%	. 'B' RHR Hx LEVEL CONTROLLER OUTPUT
96	Misma	*	STEAM FLOW / FEED FLOW MISMATCH
97	MSFLO	MLBH	TOTAL STEAM FLOW
98	FWFLO	MLBH	TOTAL FEEDWATER FLOW
99	FWLFA	MLBH	'A' LOOP FEEDWATER FLOW
100		MIRH	'R' LOOP FEEDLIGTER FLOLI

ATTACHMENT 8 Page 2 of 7

1	FWLFC	MLBH .	'C' LOOP FEEDWATER FLOW
10.	FULTA	DEGF	'A' FEEDWATER LINE TEMPERATURE
103	FULTB	DEGF	'B' FEEDWATER LINE TEMPERATURE
104	FULTC	DEGF	C' FEEDWATER LINE TEMPERATURE
105	FUPFA	GPM	'A' FEEDWATER PUMP FLOW '
106	FLIPFB	GPM	'B' FEEDWATER PUMP FLOW
107	FLIPFC	GPM	C' FEEDWATER PUMP FLOW
108	FLIPDA	PSIG	A' FFEDWATER PUMP DISCHARGE PRESSURE
109	FLIPDB	PSIG	'B' FEEDWATER PUMP DISCHARGE PRESSURE
110	FUPDC	PSIG	C' FFEDWATER PUMP DISCHARGE PRESSURE
111	VAC-A	INCH	A' CONDENSER VACUUM
112	VAC-8	INCH	'B' CONDENSER VACIUM
113	V9C-C	INCH	CC CONDENSER VACUUM
114	C6076	PSIC	CONDENSATE PUMP DISCHARGE HEADER PRESSURE
114	ELIDEO	PEIC	ECONDENSATE POINT PISCHARGE NEMPER PRESSURE
110	EINEI	F310	
110		~ •	FEEDWHICK SINKIUF VHLVE FUSILIUN FEEDWHICK SINKIUF VHLVE FUSILIUN
117	FUYCH	<i>7</i> ,	FEEDWHIER FLUW CUNIKOL VALVE A FOSITION
118	FWVLB	%	FEEDWHIER FLUW CONTROL VALVE OF FUSITION
119	FUVUU	7 5 5 5 5	FEEDWHIER FLUW CUNIKUL VHLVE C FUSITION
120	FUISH	RPM DDM	TH' FEEDWHIER PUMP TURBINE SPEED
121	FUISB	RPM	B' FEEDWHIER FURP TURBINE SPEED
122	FUISC	RPM	C' FEEDWATER PUMP TURBINE SPEED
123	FWIRP	ÐIG	ALL FEEDWATER PUMP TURBINE TRIP
124	FWTRA	DIG	'A' FEEDWATER PUMP TURBINE TRIP
125	FUTRB	DIG	'B' FEEDWATER PUMP TURBINE TRIP
126	FWTRC	DIG	C' FEEDWATER PUMP TURBINE TRIP
127	FWCVA	*	'A' FEEDWATER PUMP TURBINE CONTROL VALVE POSITION
128	FWCVB	*	'B' FEEDWATER PUMP TURBINE CONTROL VALVE POSITION
129	FWCVC	%	'C' FEEDWATER PUMP TURBINE CONTROL VALVE POSITION
130	FUSCO	*	STARTUP LEVEL CONTROLLER OUTPUT
131	FWMCO	x	FEEDWATER MASTER CONTROLLER OUTPUT
132	Fwmaa	×	'A' FEEDWATER TURBINE BIAS M / A STATION OUTPUT
134	Fwmab	×	'B' FEEDWATER TURBINE BIAS M / A STATION OUTPUT
134	FWMAC	*	'C' FEEDWATER TURBINE BIAS M ∕ A STATION OUTPUT
135	FWFGA	*	'A' FEEDWATER TURBINE FUNCTION GENERATOR OUTPUT
136	FWFGB	%	'B' FEEDWATER TURBINE FUNCTION GENERATOR OUTPUT
137	FWFGC	x	'C' FEEDWATER TURBINE FUNCTION GENERATOR OUTPUT
138	Fumpa	%	'A' FEEDWATER PUMP MINIMUM FLOW CONTROLLER OUTPUT
139	FWMF8	*	'B' FEEDWATER PUMP MINIMUM FLOW CONTROLLER OUTPUT
140	FWMFC	×	'C' FEEDWATER PUMP MINIMUM FLOW CONTROLLER OUTPUT
141	WLSET	INCH	REACTOR WATER LEVEL SETPOINT
142	NRWL	INCH	NARROW RANGE LEVEL (0 - 60)
143	URUL	INCH	WIDE LEVEL (0 - 180)
144	LRUL	INCH	LOW RANGE LEVEL (-150 TO 60)
145	MSTA	DIG	'A' INBOARD MAIN STEAM ISOLATION VALVE POSITION
146	MSIB	DIG	'B' INBOARD MAIN STEAM ISOLATION VALVE POSITION
147	MSIC	DIG	C' INBOARD MAIN STEAM ISOLATION VALVE POSITION
148	MSID	DIG	'D' INBOARD MAIN STEAM ISOLATION VALVE POSITION
149	MSNA	DIG	A' NUTBOARD MAIN STEAM ISOLATION VALVE POSITION
150	MSUB	D10	'B' NUTBOARD MAIN STEAM ISOLATION VALVE POSITION
151	MSUL	D10	10 OUTBOARD MAIN STEAM ISOLATION VALVE POSITION
152	MGUD	חזכ	IN ANTRACED MAIN STEAM ISOLATION VALVE POSITION
157		MIRH	'O' STEOM I INE FLOU
154	MCIED		P CTEAM I THE ELOW
194	INCLU	i Lon	D DIGNILLING FLOW

ŕ

ATTACHMENT 8 Page 3 of 7

С,

.

×

,

×

•

.

.

1465	ansled	MIQU	DY STEAM I INE ELOU
157	ANGI		ANG INITIATIAN
150	CDVII		DELICE VALVE ADD INITIATE
159	CDVID		
160	CDV17		DELTER VALVE BURE INITIATE
161	SEVIA		DELTEE VALVE DENEF INITIATE
162	COUPR	5000	
163	SRVPD	SVDC	
164	SRVPF	SVDC	RELIEF VALVE 'F' POSITION
165	SRVPH	SYDC	RELIEF VALVE 'H' POSITION
166	SRVPK	5VDC	RELIEF VALVE 'K' POSITION
167	SRVPL	5VDC	RELIEF VALVE 'L' POSITION
168	SRVPN	5VDC	RELIEF VALVE 'N' POSITION
169	SRVPR	5VDC	RELIEF VALVE 'R' POSITION
170	SRVPA	5VDC	RELIEF VALVE 'A' POSITION
171	SRVPC	5VDC	RELIEF VALVE 'C' POSITION
172	SRVPE	5VDC	RELIEF VALVE 'E' POSITION
173	SRVPG	5VDC	RELIEF VALVE 'G' POSITION
174	SRVPJ	5VDC	RELIEF VALVE 'J' POSITION
175	SRVPM	5YDC	RELIEF VALVE 'M' POSITION
176	SRVPP	5VDC	RELIEF VALVE 'P' POSITION
177	SRVPS	5VDC	RELIEF VALVE 'S' POSITION
178	MWE	MWE	GENERATOR GROSS MEGAWATTS OUTPUT
179	GFREQ	HZ	GRID FREQUENCY
180	GVOLT	KΥ	GRID VOLTAGE
181	MTSPD	RPM	MAIN TURBINE SPEED
182	TBSF	MLBH	TURBINE STEAM FLOW
183	MTT	DIG	MAIN TURBINE TRIP
184	MGB	DIG	GENERATOR BREAKER OPEN
185	PLUNB	DIG	POWER / LOAD UNBALANCE
186	LDSET	*	LOAD SET
187	TPSET	%	TRANSIENT PRESSURE SETPOINT
188	FRU	~	PRESSURE REGULATOR OUTPUT
189	CVAU	<i>%</i>	
190	PRSPH	PSIG	AP PRESSURE REGULATUR SETPOINT
191	PRSPB	P516	B' PRESSURE REGULATOR SETUTINI
192		P316	A PRESSURE REGULATUR SENSED PRESSURE
122		P516	TOTAL CONTROL VALUE DOCITION
105		~ •/	CONTROL VALVE AL ROCITION
195	CAL 1	(4 */	CONTROL VALVE 42 POSITION
197	CVP2 CVP3	(* */	CONTROL VALVE #2 POSITION
198	CVP2	~ *	CONTROL VALVE +3 TOSTTION
199	SVPI	* */	
200	SVP2	~ %	
201	SVP3	2	STOP VALVE #2 POSITION
202	SVP4	*	STOP VALVE #4 POSITION
203	BPVT	*	TATAL BYPASS VALVE PASITIAN
204	BPVP1	%	#1 BYPASS VALVE POSITION
205	BPVP2	*	#2 BYPASS VALVE POSITION
206	BHDT	DEGF	BOTTOM DRAIN TEMPERATURE
207	DWP	PSIA	DRYWELL PRESSURE
208	NRDP	PSIG	NARROW RANGE PRESSURE (850 - 1050)

01

ATTACHMENT 8 Page 4 of 7

ż.

						•	
2	WRDP	PSIG	WIDE RANGE PRESSURE (0 - 1200)	21	1	4	30
2	ICBUS .	DIG	#1C BUS POWER	12	1	6	20
211	1DBUS	DIG	#1D BUS POWER	13	1	6	31
212	1EBUS	DIG	#1E BUS POWER	14	1	, 6	32
213	1FBUS	ÐIG	\$1F BUS POWER	15	1	7	1
214	EVENT	DIG	EVENT MARKER	1	1	7	18
215	MSLPA	PSIG	'A' MAIN STEAM LINE PRESSURE NEAR RELIEF VALVES	193	1	4	5
216	MSLPB	PSIG	'B' MAIN STEAM LINE PRESSURE NEAR RELIEF VALVES	194	1	4	6
217	MSLPC	PSIG	'C' MAIN STEAM LINE PRESSURE NEAR RELIEF VALVES	195	1	4	7
218	MSLPD	PSIG	'D' MAIN STEAM LINE PRESSURE NEAR RELIEF VALVES	196	1	4	8

;

.

×

بر

}

.

SCRAM TIMING SIGNALS.

СН.	+ NAME	UNITS			SUB-C	HAIINELS				IK SB L	NK PORT	
						_		•				
407	,	Snama ODD	Chann	*l	# 2	#3	\$ 4					
403		Spare CRD		e1 07	70 07	40.07	14.07			, ,	` つ	
484	LR102	D164	CKD. 2	34-03,	38-63,	42-03,	14-07.		1:) 1	2	
403	2	Snare CPD	Chann	alc								
400	, .	opare cho	Chaim	CT2								
401		DIC4	CDD12	26-11	30-11	34-11	38-11		17	r` 1	6	-
489	CRD07	DIG4		42-11.	46-11.	50-11.	6-15.		13	- 	7	
498)					,						
491	l	Spare CRD	Chann	els								
492	2	-					-	2 te			-	
493	G CRD11	DIG4	CRD'S	2-19,	6-19,	10-19,	14-19.		13	31	11	
494	CRD12	DIG4	CRD'S	18-19,	22-19,	26-19,	30-19.	•	13	5 1	12	
495	5 CRD13	DIG4	CRD'S	34-19,	38-19,	42-19,	46-19.		13	<u> </u>	13	
496												
497												
498	3	Spare CRD	Chann	ale								
495 500	,	opure one	Ghunn	515								
501					۵				•			•
502	2 CRD20	DIG4		26-27	30-27	34-27	38-27.		13	3 1	20	
503	GRD21	DIG4	CRD'S	42-27	46-27	50-27	54-27.		13	3 1	21	
504	4							• 14	1			
505	5	Spare CRD	Channe	els .								
506	5			•			-					
507	7							•				
508	3 CRD26	DIG4	CRD'S	2-35,	6-35,	10-35,	14-35.		-14	4 1	1	
509	erd27	DIG4	CRD'S	18-35,	22-35,	26-35,	30-35.		14	4 1	2	-
510) ÇRD28	DIG4	CRD'S	.34-35,	38-35,	42-35,	46-35.	r	14	4 1	3	•

ATTACHMENT 8 Page 6 of 7

w. .

. • \cdot `

·

.

•

															-
0539	5	CRD29	DIG4	CRD'S	50-35,	54-35,	58-35,	2-39.		14	i	4.			
0540 0541	513	7						•	.						
0542	514		Spare CR	D Chann	lels				•					=	-
0543	515												*		•
Ø544	516	CRD34	DIG4	CRD1S	10-43	14-43	18-43	22-43		14	1	q			-
9545	517	CRD35	DIC4	2100	26-43	30-43	34-43	78-47		14	1	10			
0545	518	CRUZE		CPN'S	42-43	46-43	50-47	54-43		14	1 .	11			
00-10 0547	519	010000	2104		42 43,	40 40,	JU 43,	JJ.		17	, 1	••			
0548	520												1		
0040 0549	521		Spare CR	D Chann	lels	•									
0550	522														
8551	522	CDD/1	DICA	CDD/C	10-51	22-51	26-51	70-51		14	1	16			
0552	524	CRD41	<i>D</i> 104	CRD 3	10-517	22-JI7	20-317	30-31.		14		10			•
055Z	525										•		•		
055J	526			I											•
0555	527		spare CR	D Chann	lets										
0555	520														
0557	520														
0331	520														
00008	338														
8008	J 31														

ATTACHMENT 8 Page 7 of 7

.

L

Attachment 9 - SSES Unit 1 GETARS Points Presently Used to Trigger Recording

ś

Ï

Channel .	Description
1	Total Scram .
4.	Manual Scram
46	A Recirc RPT Breaker
47	B Recirc RPT Breaker
183	Safety Relief Valve "S" Position
214	Narrow Range Reactor Vessel Pressure

ITEM CLASSIFICATION LOGIC FOR PARTS OF ASSEMBLIES

ATTACHMENT 10

- 1. Commercial Grade Item An item that:
 - a. is not subject to design or specification requirements unique to facilities/ activities licensed by the NRC.
 - b. is used in applications in addition to facilities licensed by the NRC.
 - c. is listed in a manufacturer's or distributor's published product description, e.g.: catalog.
- 2. Critical Non-pressure Boundary parts are non-pressure retaining parts or appurtenances whose failure would compromise the proper operation of an active engineered safety component.

> ATTACHMENT 11 .Page 1 of 7

CONDITIONS OF SERVICE

- 6.1 Elevation
- ... The Cable Penetrations will be installed indoors between elevations of approximately 707 to 712 feet above sea level.
- 6.2 Service

Each electrical penetration assembly shall be suitable for installation into a containment structure penetration nozzle which is part of the containment structure.

6.3 Design Life '

The assemblies shall have a minimum design life of 40 years. At the end of 40 year life, they shall be capable of meeting the requirements for normal and emergency operation in accordance with the following sections.

6.4 Normal Environment - (For Penetrations No. 2W104E and 2W100H)

The <u>outboard</u> end of Cable Penetrations will be subject to the following conditions during normal, continuous operation.

a.	Pressure	0.375" wg
ь.	Ambient temperature	115°F (maximum continuous) 60°F (minimum)
c.	Relative Humidity	10% to 90%
d.	Radiation dose (Gamma)	0.100 Rads per hour (ave- rage) 3.5 x 10 ⁴ rads over 40 years

The inboard end of the Cable Penetrations will be subject to the following conditions during normal, continues operation. (The values inside bracket are for wetwell penetrations. The other values are for drywell penetrations.)

,a.	Pressure	0.1 to + 1.5 psig (0.1 to + 1.5 psig).
b.	Ambient Temperature	150°F Max. Cont.
c.	Relative Humidity	20% to 90% (100% continuous)
d.	Radiation dose (Gamma)	4 rads per hour (0.1 rads per hour) Average 1.1 x 10^6 rads (3.5x 10^4 rads) over 40 years

> ATTACHMENT 11 Page 2 of 7

The above data is without margins. Margins shall be added for qualifications as required by IEEE Std. 323-1974 per NUREG-0588 Category I.

6.5 Emergency Environment - (For Penetrations No. 2W104E and 2W100H)

The outboard end of the cable penetrations will be subject to the following conditions during abnormal condition:

a.	Pressure	2.2 psig				
ь.	Temperature	300°F 0-60 seconds 130°F 60-seconds-100 days				
с.	Relative Humidity	100% 1-12 Hrs. 90% 12 Hrs - 100 days				
d.	Radiation dose (Gamma)	8.3 x 10 ⁵ rads per hour (average) 1.7 x 10 ⁷ rads (TID)				
e.	Radiation dose (Beta)	5.0 x 10 ³ rads per hour (average) 1.1 x 10 ⁶ rads (TID).				

TID shown in (d) and (e) includes normal 40 years dose plus accident dose.

All Cable Penetrations shall maintain their pressure seal and all electrical circuits shall remain operable when the interior ends of the penetrations are subject to the following emergency conditions at 100% relative humidity: (The values inside brackets are for wetwell penetrations. The other values are for drywell penetrations.)

a. First 45 seconds

Pressure

44 psig (29 psig)

Temperature

340°F (130°F)

The time of rise from normal to the above temperature and pressure will be within 10 seconds.

b. Next 3 hours

Pressure

Temperature

c.

Pressure		35 psig (30 psig)
Temperature	;	340°F (200°F)
Next 3 hours		•

35 psig (30 psig)

320°F (210°F)

> ATTACHMENT 11 Page 3 of 7

Next 18 hours đ.

Pressure

20 psig (15 psig)

250°F (210°F)

Temperature

Next 99 days e.

Pressure

Temperature ·

10 psig (10 psig)

200°F (200°F-next 120 hrs., 140°F-120 hrs.-99 days)

Radiation Dose (Gamma) 1.6 x 10⁷ Rads/hr.(1.9x10⁶ Rads/hr)(average) f. 7.1 x 10^7 Rads(2.7x10⁷ Rads)(TID)

Radiation Dose (Beta) 2.3 x 10^8 Rads/hr.(2.3x1 0^8 Rads/hr)(average) q. 1.9×10^9 Rads (1.9x10⁹ Rads) (TID)

All above data is without margins. The margins shall be added for qualification as required by IEEE Std. 323-1974 per [NUREG-0588, Category I. TID shown in (f) and (g) includes 40 year dose plus accident dose.

6.6 Design Data

The cable penetrations shall be suited for the following conditions:

- a) Radiation Streaming along axis of cable 15-100 mr/hr. penetration
- b) External differential pressure (drywell
- to interior of the terminal boxes) 5 psig c) Containment internel design pressure of 53 psig Seller shall qualify cable pometrations to 62 psig in order to metch 4 rating of existing cable pometrations. 7.0 SEISMIC AND HYDRODYNAMIC REQUIREMENTS

- 7.1 The Cable Penetrations shall meet the requirements of Specification 8856-G-22, "General Project Requirements for Design Assessment and Qualification of Seismic Category I Equipment and Equipment Supports for Seismic and Hydrodynamic Loads". In addition, the cable penetrations shall be in compliance with IEEE Standard No. 344, "Recommended Practice for Seismic Qualification of Class I Electric Equipment for Nuclear Power Generating Stations."
- 7.2 During and after all DBE's penetrations must maintain pressure seal integrity. In addition, the penetrations indicated in Table I, Note 1.2 (see Material Requisition) must remain functional.

P126/1-14

> ATTACHMENT 11 Page 4 of 7

0. FINISH

- 10.1 Surface preparation, prime coat application, shop priming system, material, dry film thickness, inspection and tests shall meet requirements of Specification 8856-G-4 "General Project Requirements for Shop Priming of Mechanical and Electrical Equipment".
- 10.2 All machined surfaces of carbon steel which will not be welded upon shall be temporarily protected against oxidation during shipment and storage by liberal application of a grease coating conforming to Military Specification MIL-C-16173, Grade I: "Corrosion Preventive Compound, Solvent Cutback, Cold-Application".
- 10.3 All machined surfaces of carbon steel to be welded, and all carbon steel surfaces within 2 inches of field welds shall be protected, against corrosion during shipment and storage by a coat of DE-OX Aluminate or Buyer approved equal, which can readily be removed prior to field welding.
- 10.4 Seller shall not finish paint the equipment.
- 10.5 'Deleted.
- 10.6 The cable penetration design shall permit field cleaning, priming and painting in those areas that will require it after field welding.

11.0 DEFECTIVE MATERIAL

Warranty and limitation of liability shall be as stated in the Purchase Order.

12.0 QUALITY ASSURANCE

12.1 The Cable Penetrations listed in the Material Requisition shall perform critical <u>safety related</u> functions in a nuclear power plant and will require a high level of quality control and documentation of design and manufacture. For this equipment the Seller shall maintain a Quality Assurance Program which complies with Specification 8856-G-9, "General Project Requirements for Quality Assurance on Purchase Orders for 'Q' Designated items, and the requirements of the applicable specifications.

The Seller shall furnish the documentation as specified below and on forms G-321-C and 8856-QA1, in accordance with the applicable requirements of Specification 8856-G-9.

> ATTACHMENT 11 Page 5 of 7

- 12.2 Each Cable Penetration shall be qualified by analysis and successful use under similar conditions or by actual test to demonstrate its ability to perform its function under normal and emergency conditions of service as defined in Section 6.0 of this Specification. Compliance ...with the following requirements shall be documented section by section.
 A general statement of conformance will not be sufficient. The analysis and testing program shall meet or exceed the requirements contained in:
 - 12.2.1 IEEE No. 323-1974, "Qualifying Class I Electric Equipment for Nuclear Power Generating Stations," per NUREG-0588 Category I.
 - 12.2.2 IEEE Standard 317, "Electrical Penetration Assemblies in Containment Structures for Nuclear Power Generating Stations," and as required in specification paragraph 13.1.

12.2.3 (DELETED)

- 12.3 Intentionally left blank.
- 12.4 Intentionally left blank.
- 12.5 Intentionally left blank.
- 12.6 Written documentation and/or certified test results shall be submitted verifying that the Cable Penetrations meet the following:
 - 12.6.1 Factory Production Tests as required in specification paragraph 13.2.
 - 12.6.2 Materials Manufacturer's or Materials Supplier's Certified Material Test Reports and/or Certificates of Compliance and ASME Design Reports as required in specification paragraph 13.4.
 - 12.6.3 Non-destructive Test Results as required in Specification paragraph 13.5.2
- 12.7 Evidence of compliance to seismic requirements test procedures and test reports shall be furnished in accordance with specification paragraph 7.0 Seismic Requirements.
- 12.8 Certificate of compliance and test reports, indicating that the cable penetration has been qualified to the Section 12.2 requirements, shall be submitted.
- 12.9 Before the penetration is placed in service, copies of the appropriate Certificate Holder's Data Report shall be filled in by the owner with the Commonwealth of Pennsylvania which is the enforcement authority.

ATTACHMENT 11 Page 6 of 7

13.0 TESTS AND TEST REPORTS

13.1 Design Qualification

The prototype testing shall be met by one of the two following methods or a combination thereof:

- <u>Method I:</u> Prior testing of prototypes of like design which in the judgement of the Purchaser are adequate to meet the requirements state herein. The buyer will use, as one basis for judgement, the IEEE Std No. 323, the guidance in NUREG-0588, Cat. I and IEEE Std No. 317, IEEE Std. No. 344 and Specification 8856-G-22.
- <u>Method II</u>: Prototype testing performed after award of a purchase order on individual cable penetrations of the types, sizes and conductor groupings as specified herein.

If the Bidder proposes to qualify the cable penetration by Method I, he shall submit tests he has performed and adequately documented and which specific types of assemblies he believes are qualified under Method I above.

Documentation shall include complete description of the prototype cable penetrations, date and place of tests, test procedures, results and copies of certified test reports. Method I will be acceptable only if the prototype assemblies are clearly and unquestionably representative of the actual product supplied to the Buyer.

In the event the Buyer judges that Method I. above is inadequate to properly qualify individual assemblies or all assemblies, it will be necessary that prototype testing under Method II be performed.

13.1.1 Prototype Tests

Prototype tests, if required, shall be performed on a prototype assembly of each type as defined in section 8.1 and each rating as defined in section 8.2. These tests shall be performed in accordance with section 6.0, "Conditions of Service", and section 8.0 "Type and Rating" of this Specification.

Existing qualification test data may be used to broaden the coverage of a particular test when it can be shown that the existing test data are valid for the penetration assembly being supplied.

- 13.1.2 The Seller shall submit documentation showing that each of the materials used in the fabricated Cable Penetration, including bushings, pigtails and/or connectors, is capable of withstanding the radiation environment described in Section 6.0, "Conditions of Service" without compromising its ability to remain operational.
- 13.1.3 It shall be demonstrated by test (using an equivalent sand, gravel or concrete mix) that the nozzle-concrete interface temperature will not exceed 150°F at any point under the most adverse conditions of normal operation stated in section 9.1.5 while all conductors carry rated current. This demonstration need only be applied to the low voltage or medium voltage assemblies with the largest calculated

> ATTACHMENT 11 Page 7 of 7

- 13.1.4 After the tests it shall also be demonstrated that these circuits identified in Table I as required to operate in an emergency will remain functional and the remainder maintain leaktight integrity.
- 13.1.5 No Cable Penetration that has been subjected to the above prototype tests will be accepted for installation at the jobsite. However, the header plate may be reused if it meets the quality assurance requirements.
- 13.1.6 At the Buyer's option all of the prototype tests may be witnessed. The Buyer shall be notified 30 days in advance of the testing. Certified test reports are required for each cable penetration tested.

13.2 Factory Production Tests (Non-Destructive)

Production tests shall be performed on each penetration assembly prior to shipment as per Section 7 of IEEE 317. At least two months Before tests are to be performed, the Seller shall submit a written description of the tests and of the test procedures.

In addition to meeting the requirements of IEEE 317, the following supplementary requirements shall also apply:

- 13.2.1 Each assembly shall be proof tested across pressure barrier seals with 50 psig Helium to verify structural integrity, for field test. Pneumatic testing per Para 7.2 of IEEE-317 shall meet the requirements of ASME Sci. NE 6320
- 13.2.2 The leakage rate of each penetration assembly shall be determined and shall not exceed 1 x 10^{-6} std cc of Helium per second.
- 13.2.3 After the routine leak rate tests each cable or conductor and associated connectors, except coaxial and triaxial conductors and connectors, in all cable penetrations shall be tested per and shall meet the requirements of NEMA/ICEA Standards of Voltage Tests after Installation except that the cables need not be immersed in water if the type of construction shall be tested against every other conductor and also tested to the metallic end plates. Coaxial and triaxial cable conductors and connectors chall be given a test at manufacturer's maximum rated voltage between center wire and inner, or first, -shield for a period of one minute...
- 13.2.4 Coaxial and triaxial cables and connectors shall receive a dieletric withstand voltage test. The dielectric withstand test shall be at the manufacturer's maximum rated voltage between conductors and between conductors and inner, or first, shield for a period of one minute.

P126/3-1

ATTACHMENT 12 Page 1 of 2_{M-1082} Revision 1 Largest motor HP to be started 2000 HP (1640 amps at 0.18 pf during starting) Elevation at site 676 ft 5.2.2 Design Environmental Conditions 72°/104°F a) Temperature - Engine off (Min/Max). Ъ) Temperature - Engine Running: 120°F Max. At Generator 160°F At Engine c) Outside Air Temperature Dry-bulb air temperature, minimum/maximum -19°F/105°F Wet-bulb air temperature, minimum/maximum -13°F/82°F d) Pressure Atmosphere 1.8 x 10² Rads Radiation - Integrated Dose e) 902/52 £) Relative Humidity, Max/Min Vendor shall supply a certificate of compliance for the g) listed environment conditions. 5.2.3 Cooling Water Available a) Cooling water for the heat exchangers will be raw water from the spray pond receiving approximately 100 gpm of warm circulating water for deicing purposes. Supply pressure 130 psig Max. Max. Temperature 95°F Min. Temperature 33°F The cooling water will have the following analysis: Max. Average Calcium as Ca 121 ppm 240 ррш 35.5 ppm 81 ppm Magnesium as Mg Sodium as Na 9.8 ppm 34 ppm

ATTACHMENT 12 Page 2 of 2

M-1082 Revision 1

1

5.2.4 Diesel Generator Building

The diesel generator unit will be housed in a reinforced concrete, Class I structure. The unit is completely enclosed in its own concrete and missile protected cell. The unit is also protected against other natural hazards such as tornadoes, floods, lightning, rain, ice or snow.

- 5.2.5 Seismic Requirements:
 - a) The diesel generator system is a Seismic Category I and safety related system. The diesel generator with auxiliary systems and supports shall be designed to function through and after five (5) Operational Basis Earthquake followed by a Safe Shutdown Earthquake (SSE) and shall meet the requirements of the General Specification for Design Assessment and Qualification of Seismic Category I Equipment and Equipment Supports for Seismic & Hydrodynamic Loads, G-1024. Use of the Seller's standard more stringent seismic qualification procedure for control devices may be substituted if the procedure is reviewed and approved by Buyer prior to testing.
 - b) The Seller shall design and submit seismic calculations for each diesel generator, control panels, control devices and all other accessories as required either in accordance with the attached General Specification G-1024, or to the pertinent manufacturer's procedures providing such procedures have prior approval by the Buyer.
 - c) The Seller shall also state the maximum allowable loads for the Seller's equipment nozzle interfacing with Buyer's supplied components or piping.

5.3 PERFORMANCE REQUIREMENTS:

5.3.1

The diesel generator will be installed as a backup to the four existing diesel generators, which are used in the event of loss of all normal sources of power. Upon loss of power the diesel generators shall start automatically and attain full operating voltage and rated frequency within ten seconds. Each diesel generator feeds an independent 4.16 kV bus arrangement for each reactor unit (2 units). Diesel-generator voltage setpoint control will be set by the Buyer to produce a full operating voltage within the range of 4160 volts plus or minus 5% as permitted by NEMA MG1-22.47 to suit plant operating conditions.

5.3.2

The diesel engine shall be capable of starting from cold. Reliability of automatic start and operation is of utmost importance and shall be of prime consideration in the design of the equipment.