REGULA RY INFORMATION DISTRIBUTIC SYSTEM (RIDS)

,

1

t the second

.

2

ACCESSION NBR: 8712310150 FACIL: 50-259 Browns Ferry 50-260 Browns Ferry 50-296 Browns Ferry AUTH. NAME GRIDLEY, R. L. RECIP. NAME RECIPIE	Nuclear Powe Nuclear Powe Nuclear Powe AFFILIATION e Valley Auth	r Station, Unit 1 r Station, Unit 2 r Station, Unit 3 ority	, Tennessee , Tennessee	05000259 05000260
GRACE, J. N. Region 2	, Ofc of the	Director		
SUBJECT: "Environ Radioac W/860422 ltr.				
DISTRIBUTION CODE: IE48D TITLE: 50.36a(a)(2) Semia	COPIES RECEI nnual Effluen	VED:LTR <u> </u> ENCL <u></u> t Release Reports	<u> </u> size: <u>6</u>	4
NOTES: G. Zech 3 cy. 1 cy.		r, Axelrad, S. Richar	rdson	05000259
B. D. Liaw, K. Barr, Don G. Zech 3 cy. 1 cy.	ea to: Ebnete	r, Axelrad, S. Richar	rdson,	05000260
B. D. Liaw, K. Barr, Don G. Zech 3 cy. 1 cy. B. D. Liaw, K. Barr, Don	ea to: Ebnete	r, Axelrad, S. Richar	rdson,	05000296
ID CODE/NAME	LTTR ENCL	RECIPIENT ID CODE/NAME	LTTR ENCL	

	JAMERSON, C GEARS, G	1 1	0 1	PD STANG, J	5 1	5 1	
INTERNAL:	ACRS AEOD/DSP/TPAB NRR/DEST/PSB NRR/PMAS/ILRB RGN2 FILE 02	1 1 1 1	1 1 1 1	AEOD/DOA ARM TECH ADV NRR/DREP/RPB REG FILE 01 RGN2/DRSS/EPRPB	1 1 4 1 1	1 1 4 1 1	
EXTERNAL:	BNL TICHLER, JOS NRC PDR	1 1	1 1	LPDR	1	1	
NOTES:		10	10				

TOTAL NUMBER OF COPIES REQUIRED: LTTR 34 ENCL 33

**

i de la constante de la consta

TENNESSEE VALLEY AUTHORITY

5N 157B Lookout Place

April 22, 1986

U.S. Nuclear Regulatory Commission Region II ATTN: Dr. J. Nelson Grace, Regional Administrator 101 Marietta Street, NW, Suite 2900 Atlanta, Georgia 30323

Dear Dr. Grace:

BROWNS FERRY NUCLEAR PLANT UNITS 1, 2, AND 3 - ENVIRONMENTAL RADIOACTIVITY LEVELS - ANNUAL REPORT - 1985

Enclosed is a copy of the subject report prepared by the Tennessee Valley Authority pertaining to environmental monitoring at the Browns Ferry Nuclear Plant. This monitoring program is specifically responsive to the recommendations and requests of the U.S. Fish and Wildlife Service. We understand that NRC-NRR will transmit five copies of the report to the Secretary of the Interior.

Very truly yours,

TENNESSEE VALLEY AUTHORITY

R. L. Gridley, Director Nuclear Safety and Licensing

Enclosure

cc: Director of Nuclear Reactor Regulation (Enclosure: 20) Attn: Mr. R. M. Bernero, Director Division of BWR Licensing U.S. Nuclear Regulatory Commission Washington, D.C. 20555

. . .

· -

.

•

• ' -(1 =)

ŧ,

•

ENVIRONMENTAL RADIOACTIVITY LEVELS BROWNS FERRY NUCLEAR PLANT ANNUAL REPORT - 1985 TVA/NUC SVS/RH

8712310150 851231 PDR ADOCK 05000259 R PDR

April 1986

1

£

•

• • • • •

•

P

·

CONTENTS

Ĉ

List of Figures	List of Tables	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	iii
Atmospheric Monitoring1Terrestrial Monitoring2Reservoir Monitoring4Quality Control.5Data Analysis.5	List of Figures	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	iv
Terrestrial Monitoring2Reservoir Monitoring4Quality Control.5Data Analysis.5																										
Reservoir Monitoring	Atmospheric Monitoring	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	11
Quality Control	Terrestrial Monitoring	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	23
Data Analysis	Reservoir Monitoring .	•	•	٠	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	43
	Quality Control	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	57
Conclusions	Data Analysis	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	, •	•	•	•	•	•	57
	Conclusions	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	58

ii

LIST OF TABLES

ç

Table	1	-	Environmental Radioactivity Sampling Schedule
Table	2	-	Atmospheric and Terrestrial Monitoring Station
			Locations - Browns Ferry Nuclear Plant 4
Table	3	•	Detection Capabilities for Environmental Sample
	_		Analysis
Table	4	-	Results Obtained in Interlaboratory Comparison
			Program
Table	5	-	Maximum Permissible Concentrations for
			Nonoccupational Exposure
Table	6	-	Radioactivity in Air Filter
Table	7	-	Radioactivity in Rainwater 15
			Radioactivity in Heavy Particle Fallout
Table	9	-	Radioactivity in Charcoal Filters
Table	10	-	Radioactivity in Milk
			Radioactivity in Vegetation
			Radioactivity in Soil
Table	13	-	Radioactivity in Well Water
Table	14	-	Radioactivity in Public Water Supply 30
Table	15	-	Environmental Gamma Radiation Levels
Table	16	-	Radioactivity in Cabbage
Table	17	-	Radioactivity in Corn
			Radioactivity in Green Beans
Table	19	-	Radioactivity in Apples
Table	20	-	Radioactivity in Potatoes
Table	21	-	Radioactivity in Beef
			Radioactivity in Tomatoes
			Sampling Schedule - Reservoir Monitoring
Table	24	-	Radioactivity in Surface Water
Table	25	~	Radioactivity in White Crappie (Flesh)
Table	26	-	Radioactivity in Smallmouth Buffalo (Flesh)
Table	27	-	Radioactivity in Smallmouth Buffalo (Whole)
Table	28	-	Radioactivity in Sediment
			Radioactivity in Plankton
			Radioactivity in Clam Flesh
Table	31	-	Radioactivity in Clam Shell

LIST OF FIGURES

ź

11 4

1

A

Figure l	- Tennessee Valley Region
Figure 2	- Atmospheric and Terrestrial Monitoring Network
Figure 3	- Local Monitoring Stations
Figure 4	- TLD Locations, BFN
Figure 5	- Annual Average Gross Beta Activity in Air Filters, Browns Ferry Nuclear Plant
Figure 6	- Annual Average Gross Beta Activity in Drinking Water, Browns Ferry Nuclear Plant
Figure 7	- Direct Radiation Levels, BFN
Figure 8	- Direct Radiation Levels, BFN (4-Quarter Moving Average) 40
Figure 9	- Direct Radiation Levels, WBN
Figure 10	- Direct Radiation Levels, WBN (4-Quarter Moving Average) 41
Figure 11	- Reservoir Monitoring Network
Figure 12	- Annual Average Gross Beta Activity in Surface Water 55

ENVIRONMENTAL RADIOACTIVITY LEVELS

BROWNS FERRY NUCLEAR PLANT

ANNUAL REPORT

1985

Introduction

The Browns Ferry Nuclear Plant (BFN), operated by the Tennessee Valley Authority, is located on a site owned by TVA containing 840 acres of land in Limestone County, Alabama, bounded on the west and south by Wheeler Reservoir (see figure 1). The site is 10 miles southwest of Athens, Alabama, and 10 miles northwest of Decatur, Alabama. The plant consists of three boiling water reactors; each unit is rated at 3,293 MWt and 1,098 MWe. Unit 1 achieved criticality on August 17, 1973, and began commercial operation on August 1, 1974. Unit 2 began commercial operation on March 1, 1975. However, a fire in the cable trays on March 22, 1975, forced the shutdown of both reactors. Units 1 and 2 resumed operation and Unit 3 began testing in August 1976. Unit 3 began commercial operation in January 1977. The plant has been shutdown since March 1985.

The preoperational environmental radiological monitoring program established a baseline of data on the distribution of natural and manmade radioactivity in the environment near the plant site. However, seasonal, yearly, and random variations in the data were observed. In order to determine the potential increases in environmental . radioactivity levels caused by the plant, comparisons were made between data for indicator stations (those near the plant) and control stations (those remote from the plant) in conjunction with comparisons with preoperational data.

Radiological Health (Office of Nuclear Power) and the Office of Natural Resources and Economic Development carried out the sampling program outlined in tables 1 and 23. Sampling locations are shown in figures 2, 3, 4, and 11, and table 2 describes the locations of the atmospheric and terrestrial monitoring stations. All the radiochemical and instrumental analyses were conducted in TVA's Western Area Radiological Laboratory (WARL) located in Muscle Shoals, Alabama. Alpha and beta analyses were performed on Beckman Low Beta II, low background proportional counter or a Tennelec LB-5100. Nuclear Data (ND) Model 6700 system, in conjunction with germanium detection systems, were used to analyze the samples for specific gamma-emitting radionuclides. Specific analysis for iodine-131 in charcoal filters was performed using NaI(T1) well detector systems attached to single channel analyzers. A TVA fabricated beta-gamma coincidence counting system was utilized for the determination of iodine-131 concentrations in milk. Analysis for low-energy beta emitters such as tritium was performed using Packard Tri-Carb Model 3255 and 4000 series liquid scintillation systems.

Data were entered in computer storage for processing specific to the analysis conducted. The data obtained by germanium detectors were resolved by the appropriate analyzer software and the software program routine HYPERMET.

The detection capabilities for environmental sample analyses given as the nominal lower limits of detection (LLD) are listed in table 3. All photopeaks found in germanium spectra were identified and quantified. Many of the isotopes identified by germanium spectral analysis are naturally occurring or naturally produced radioisotopes, such as ⁷Be, ⁴⁰K, ²¹²Bi, ²¹⁴Bi, ²¹²Pb, ²¹⁴Pb, ²²⁶Ra, etc. LLDs for radionuclides identified by Ge(Li) analysis were calculated for each analysis and nominal values are listed in table 3B. In the instance where an LLD has not been established, an LLD value of zero was assumed. A notation in a table of "______values <LLD" for an isotope with no established LLD does not imply a value less than 0; rather it indicates that the isotope was not identified in that specific group of samples. For each sample type, only the radionuclides for which values greater than the LLD were reported are listed in the data tables.

TVA's WARL participates in the Environmental Radioactivity Laboratory Intercomparison Studies Program conducted by EPA-Las Vegas. This program provides periodic cross-checks on samples of the type and radionuclide composition normally analyzed in an environmental radiological monitoring program. Routine sample handling and analysis procedures were employed in the evaluation of these samples. The results received during calendar year 1985 are shown in table 4. The ±3ớ limits based on one measurement were divided by the square root of 3 to correct for triplicate determinations.

Table 1			
ENVIRONMENTAL RADIOACTIVITY	SAMPLING	SCHEDULE	. •

ς

×

.

Station Location	Air Filter	Charcoal Filter	Rain- 1 Vater	feavy Particle Fallout	Soil V	legetation	Hilk	River Water	Well H Water	ublic . Water	Aquatic and Sedia	Life	Foods	
Muscle Shoals	Υ.	¥	н	н		н				н.			10001	
Lawrenceburg	W	¥	н	н	A	н			-					
Rogersville	¥	¥	н	н	٨	н							-	
Athens	¥	¥	н	н	A	н								
Decatur	¥	¥	н	н	A	н		ę		н			•	
Courtland	V -	¥	н	н	A	н						•		4
Site 1 (N)	¥	W	н	н	A	н							ła.	
Site 2 (NNE)	¥	W	н	'n	A.	н								
Site 3 (ENE)	¥	W	ъ	н	A	н								
Site 4 (NNW)	¥	w •	н	н	A	н								
Site 5 (WSW)	¥	¥	н	н	A	н				*				
Farm B	٠	÷				Я,	W					Ŧ		
Farm Bo*						н	w					4 i		
Farm P**						н	W	1						
Farm L						н	¥		н					
Farm E						<u> </u>								
Farm W						н								
Control Farms						н	W						A	
Onsite Well									н					
Wheeler Dam									h	ห			ł	
Elk River								н		•				
Tennessee River								н			S			
Champion Paper Co.										н	ų		4	
Various Local Farms													A	

W - Weekly H - Monthly (every 4 weeks) Q - Quarterly S - Semiannually A - Annually * Sampling commenced November 1985 **Discontinued operation October 1985

Atmospheric and Terrestrial Monitoring Station Locations Browns Ferry Nuclear Plant

Sample Station		oximate Distance and rection from Plant	i.
LM-1 BF, North	1.0 Mile	(1.6 kilometers)	N
LM-2 BF, North-Northeast	0.9 Mile	(1.4 kilometers)	NNE
LM-3 BF, East-Northeast	1.0 Mile	(1.4 kilometers)	ENE
LM-4 BF, North-Northwest	1.7 Mile	s (2.7 kilometers)	NNW
LM-5 BF, West-Southwest	2.5 Mile	s (4.0 kilometers)	WŚW
PM-1 BF, Rogersville, AL	13.8 Mile	s (22.2 kilometers)	NW
PM-2 BF, Athens, AL	10.9 Mile	s (17.5 kilometers)	NE
PM-3 BF, Decatur (Trinity), AL	8.2 Mile	s (13.2 kilometers)	SSE
PM-4 BF, Couriland, AL	10.5 Mile	s (16.9 kilometers)	WŚW
RM-1 BF, Muscle Shoals, AL (Control),	32.0 Mile	s (51.5 kilometers)	i W
RM-2 BF, Lawrenceburg, TN (Control)	40.5 Mile	s (65.2 kilometers)	NNW
Farm Bn*	4.75 Mile	s (7.6 kilometers)	N
Farm B	7.0 Miles	(11.3 kilometers)	NW
Farm L	5.0 Miles	(7.0 kilometers)	NE
Farm P**	8.8 Miles	(14.1 kilometers)	E
Farm' E	6.1 Miles	(9.8 kilometers)	NE
Farm W	6.9 Miles	(11.0 kilometers)	NE
Farm N (Control)	27.0 Miles	(43.4 kilometers)	NW
Farm J (Control)	40.0 Miles	(64.4 kilometers)	NNW
Farm C (Control)	32.0 Miles	(51.5 kilometers)	N
Farm Ca (Control)	32.0 Miles	(51.5 kilometers)	W
Farm Cb (Control)	22.5 Miles	(36.2 kilometers)	E
Farm M (Control)	22.5 Miles	(36.2 kilometers)	ENE

¢

* Sampling commenced November 1985 **Discontinued operations October 1985

DETECTION CAPABILITIES FOR ENVIRONMENTAL SAMPLE ANALYSIS

A. Specific Analyses

NOMINAL LOWER LIMIT OF DETECTION (LLD)*

	Air Particulates pCi/m ³	Charcoal pCi/m ³	Fallout mCi/Km ²	Water pCi/l	Vegetation and Grain pCi/g, Dry	Soil and Sediment pCI/g, Dry	Fish, Clam Flesh, Plankton, pCi/g, Dry_	Clam Shells pCi/g, Dry_	Foods, Meat, Poultry, pCi/Kgm, Wet	Milk pCi/l
Gross α Gross β H-3	0.005 0.01		0.05	2 2 330	0.05 0.20	0.35 0.70	0.1 0.1	0.7 0.7	25	~ F
1-131 Sr-89 Sr-90	0.005 0.001	0.01		10 2	0.25 0.05	1.5 0.15	0.5 0.1	5.0 1.0	40 8	0.5 10 2

* All LLD values for isotopic separations are calculated by the method developed by Pasternack and Harley as described in HASL-300. Factors such as sample size, decay time, chemical yield, and counting efficiency may vary for a given sample; these variations may change the LLD value for the given sample. The assumption is made that all samples are analyzed within one week of the collection date. Conversion factors: 1 pCi = 3.7 x 10⁻² Bq; 1 mCi = 3.7 x 10⁷ Bq.

Ś

DETECTION CAPABILITIES FOR ENVIRONMENTAL SAMPLE ANALYSIS

B. Gamma Analyses

NOMINAL LOWER LIMIT OF DETECTION (LLD) '

1	Air particulates <u>pCi/m³ Ge(Li)*</u>	Water and milk <u>pCi/1</u> <u>Ge(Li)</u>	Vegetation and grain <u>pCI/g, dry</u> . <u>Ge(Li)</u>	Soll and sediment <u>pCi/g, dry</u> <u>Ge(Li)</u>	Fish <u>pCi/g, dry</u> <u>Ge(Li)</u>	Clam flesh and plankton <u>pCi/g, dry</u> <u>Ge(Li)</u>	Clam shells pCi/g, dry <u>Ge(Li)</u>	Foods, (tomatoes potatoes, etc.) <u>pCI/Kg, wet</u> <u>Ge(LI)</u>	Meat and poultry <u>pCi/Kg, wet</u> <u>Ge(Li)</u>
Ce-144	0.02	33 44	0.22	0.06	0.06	0.35	0.06	33 44	40
Cr-51	0.03	44	0.47	0.10	0.10	0.56	0.10	44	90
I-131	0.01	8	0.09	0.02	0.02	0.07	0.02	8	20
Ru-106	0.03	30	0.51	0.11	0.11	0.74	0.11	40	90
Cs-134	0.01	5	0.33	0.08	0.07	0.48	0:08	26	40
Cs-137	0.01	5	0.06	0.02	0.02	0.08	0.02	5	15
Zr-95	0.01	10	0.11	0.03	0.03	0.15	0.03	10	20
Nb-95	0.01	5	0.05	0.01	0.01	0.07	0.01	5	15 *
Co-58	0.01	5	0.05	0.01	0.01	0.07	· 0.01	5	15
Mn-54	0.01	5	0.05	0.01	0.01	0.08	0.01	. 5	15
Zn-65	0.01	9	0.11	0.02	0.02	0.17	0.02	9	20
Co-60	0.01	Š	0.06	0.01	0.01	0.08	0.01	5	15
Fe-59		5			0.10				
Ba-140	0.02	25	0.34	0.07	0.07	0.30	0.07	25 [°]	50
La-140	0.01	7	0.08	0.02	0.02	0.10	0.02	7	15

* The Ge(Li) LLD values are calculated by the method developed by Pasternack and Harley as described in HASL-300. These LLD values are expected to vary depending on the activities of the components in the samples. These figures do not represent the LLD values achievable on given samples. Water is counted in either a 0.5-L or 3.5-L Marinelli beaker. Solid samples, such as soil, sediment, and clam shells, are counted in a 0.5-L Marinelli beaker as dry weight. The average dry weight is 400-500 grams. Air filters and very small volume samples are counted in petri dishes centered on the detector endcap. The counting system consists of a ND-6700 multichannel analyzer and germanium detector having an efficiency of 20 percent. The counting time is normally 4-15 hours. All spectral analyses are performed using the software program HYPERMET.₂The assumption is made that all samples are analyzed within one week of the collection date. Conversion factor: 1 pCi = 3.7 x 10² Bq.

RESULTS OBTAINED IN INTERLABCEATORY COMPARISON PROGRAM

	Gross A	lpha	Gross Be	eta	Strontiur	n-90	Cesium-1	37
<u>Date</u>	EPA value · (±3σ)	TVA Avg.	EPA value (±3σ)	TVA Avg.	EPA value (±3σ)	TVA Avg.	EPA value (± 3 σ)	TVA Avg.
11/84	15±9	15	52±9	61	21±3	21	10±9	10
3/85	10 <u>+9</u>	11	36±9	40	15±3	16	6±9	6
8/85	13±9	12	44±9	45	18±3	16	8±9	9

A. Air Filter (pCi/Filter)

B. Tritium in Urine (pCi/l)

Date	EPA value (±3σ)	TVA Avg.
4/85	3056±622	2687
7/85	2444±610	2280

C. Radiochemical Analysis of Water (pCi/L)

	Gross Al		Gross Be		Strontium		Stronium		Tritiu		lodine-1	
Date	EPA value (±3 ₀)	TVA Avg.	EPA value (±3σ)	TVA Avg.	EPA value (±3σ)	TVA Avg.	EPA value (±3σ)	TVA Avg.	EPA value (±3ơ)	TVA Avg.	EPA value (±3ơ)	TVA Avg
4/84 ^a 1/85	5±9	4	15±9	19	23±9 3±9	22 10 ^b	26±3 30±3	26 29				•
2/85		-	رخر،	.,	2-2	10	5025	-2	3796±634	3817		
3/85 4/85	6±9	6	15±9	17					3559±630	3347	7.5±1.4	7.3
4/85 4/85 ^c		1. ž	72±9	69	10±9	9 49 ^d	15±3	16			-	
5/85 6/85	12±9	9	11±9	14	39±9	49°	15±3	13	2416±608	2257		
7/85	11±9	12	8±9	11		,			4480±776	4127	33 ±10	29 🤟
8/85 9/85	8±9	8	8±9	12	20±9	26	7±3	5	1001//0	7127	J): ±10	29 🗸
10/85	₹.	•	~/			-•	7-5	-	1974±598	1880		

Table 4 (Continued)

RESULTS OBTAINED IN INTERLABORATORY COMPARISON PROGRAM (Continued)

Date	<u>Chromium</u> EPA value (±3ơ)	TVA Avg.	Cobalt EPA value (±3ơ)	-60 TVA <u>Avg</u> .	Zinc EPA valu (±3ơ)		<u>Ruthenlum</u> EPA value (±3σ)	-106 TVA Avg.	Cesium-1 EPA value (±30)	34 TVA Avg.	Cesium EPA valu (±30)	
4/84 ^a 2/85 4/85 ^c	48±9	45	30±9 20±9 15±9	30 20 16	55±5	53	25±9	40 ^b	30±9 35±9 15±9	27 32 15	26±9 25±9 12±9	27 25 13
6/85 10/85	^{44±9} 21±9	40 _ь 40 ^ь	14±9 20±9	14 21	47±9 19±9	48 20	62±9 20±9	53 25	35±9 20±9	34 18	20±9 20±9	19 20
E. Food (pCi/Kg, Wet Weight)												
Déba	EPA val		EPA	trontiu value :30)	TVA	lodine EPA value (±3σ)	TVA	Ces EPA va (±3σ	•	Ē	Potassium- EPA value (±30)	TVA
<u>Date</u> 1/85	<u>(±3</u> 3) 34±9	<u>Avg</u> 37 34		5±3	<u>Avg.</u> 37 ^f 34 ^f	<u>35±10</u>	<u>Avg.</u> 33 36	 29±9	28		1382±208	<u>Avg.</u> 1270
7/85	33±9	34	26	5±3		35±10	36	29±9	31	1	1514±132	1567
F. Milk (pCi/2)												
	Stron EPA val	tlum-89 ue TVA		value	n-90 TVA	lodine EPA value		Ces EPA va	ium-137 lue TVA	ī -	Potassium- EPA value	-40 ⁹ TVA
Date	$(\pm 3\sigma)$			-3σ)	Avg.	<u>(±3σ)</u>	Avg.	<u>(±3σ</u>		-		<u>Avg.</u>
3/85 6/85	11±9	13	1	l±3	11	9±1.6 11±10	11 ^h 11	11±9	12	1	1525±132	1680 ⁱ

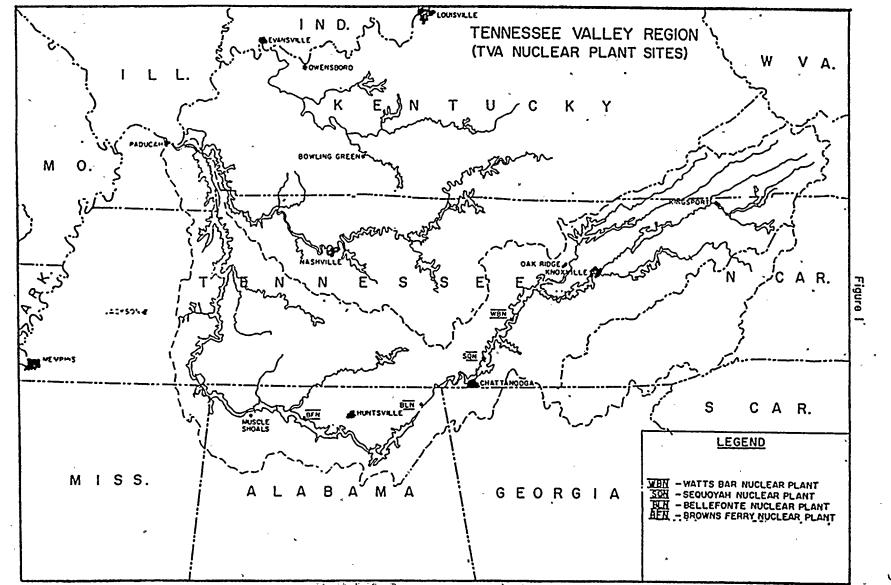
D. Gamma-Spectral Analysis of Water (pCi/2)

a. Laboratory performance evaluation study. Results received from EPA ir April 1985.

b. Below LLD.

c. Labortory performance evaluation study.

d. The analysis was reviewed. Cause for high results could not be identified.


e. Values reported as mg K/kg.

f. Possible error due to nonhomogeneity of sample. EPA used dog food containing bone meal in the preparation of the food cross-check.

g. Values reported as mg K/ℓ .

h. Results were investigated. No source of error was determined.

:. High bias on result due to broadening of the peak used for identifying K-40. The low abundance and low councing efficiency for the 1460 Kev line inflated the small positive bias caused by temperature variations. ω

. .

.

.

Atmospheric Monitoring

The atmospheric monitoring network is divided into three groups. Four local air monitors are located on or adjacent to the plant site in the general areas of greatest wind frequéncy. One additional station is located at the point of maximum predicted offsite concentration of radionuclides based on preoperational meteorological data (see figures 3 and 4). Four perimeter air monitors are located in communities out to about 13 miles from the plant, and two remote air monitors are located at distances out to 45 miles. These monitoring stations are shown in figure 2. The remote monitors are used as control or baseline stations. At each local monitor, air is continuously pulled through a Hollingsworth and Voss LB5211 glass fiber particulate filter at a flow rate of about 3 ft^3/min . At perimeter and remote monitors the system has been modified so that air is continuously pulled through a 1-7/8 diameter glass fiber particulate filter at a flow rate of about 2 ft^3/min . In series with, but downstream of, the particulate filter is a charcoal filter used to collect iodine. Each monitor has a collection tray and storage container to obtain rainwater on a continuous basis and a horizontal platform that is covered with gummed acetate to catch and hold heavy particle fallout. Thermoluminescent dosimeters are used to record gamma radiation levels at each remote and perimeter station.

Each of the local air monitors is fitted with a GM tube that continuously scans the particulate filter. The disintegration rate of the atmospheric radioactivity is continuously recorded at each station and radiotelemetered into the plant.

Air Filters

Air filters are collected weekly and analyzed for gross beta activity. Adequate time is allowed for decay of radon daughters between collection and analysis of samples. This time is typically three days. The samples are composited monthly for analysis of specific gammaemitting radionuclides and quarterly for ⁸⁹Sr and ⁹⁰Sr analysis. The results are combined for each station to obtain an annual average. These data are presented in table 6. During this reporting period, two samples were not obtained because of equipment malfunction, two samples were damaged beyond use, one sample was destroyed during analysis, and one sample was lost during sample change.

The annual averages of the gross beta activity in the air particulate filters at the indicator stations (local and perimeter monitors) and at the control stations (remote monitors) for the years 1968-1985 are presented in figure 5. Increased levels due to fallout from atmospheric nuclear weapons testing are evident, especially in 1969, 1970, 1971, 1977, 1978, and 1981. These patterns are consistent with data from monitoring programs conducted by TVA at nonoperating nuclear power plant construction sites. Table 5 presents the maximum permissible concentrations (MPC) specified in 10 CFR 20 for nonoccupational exposure.

Rainwater

Rainwater is collected monthly and a 3.5-liter sample analyzed for specific gamma-emitting radioisotopes and tritium. The results are shown in table 7. During this reporting period, four samples were not available due to insufficient rainfall and three samples were not collected due to human error.

Fallout

The gummed acetate that is used to collect heavy particle fallout is changed monthly. The samples are ashed and counted for gross beta activity. The results are given in table 8.

Charcoal Filters

Charcoal filters are collected and analyzed for radioiodine. The filter is counted in a single channel analyzer system. The results are shown in table 9. During this reporting period, five samples were not taken because of equipment malfunction or filter damage and one sample was destroyed during analysis.

MAXIMUM PERMISSIBLE CONCENTRATIONS

FOR NONOCCUPATIONAL EXPOSURE

· · · · ·	ME	
x	In Water _pCi/1*	In Air pCi/m ³ *
Alpha ·	30	-
Nonvolatile beta	3,000	100
Tritium	3,000,000	200,000
^{1 3 7} Cs	20,000	500
103,106 _{Ru}	10,000	200
¹⁴⁴ Ce	10,000	200
⁹⁵ Zr- ⁹⁵ Nb	60,000	1,000
¹⁴⁰ Ba- ¹⁴⁰ La	20,000	1,000
131 _I	300	÷ 100
^{6 5} Zn	100,000	2,000
⁵ "Mn	100,000	1,000
⁶⁰ Co	30,000	300
⁸⁹ Sr	3,000	300
⁹⁰ Sr	300	30
⁵¹ Cr	2,000,000	80,000
¹³⁴ Cs	9,000	400
⁵⁸ Co	90,000	2,000
	*	

*1 pCi = 3.7×10^{-2} Bq.

TABLE 6

RADIOACTIVITY IN AIR FILTER

PCI/M(3) - 0.037 BQ/H(3)

LOCAT	NAME OF FACI Tion of facili	LITY_BBONNS_EEBRY	ALABAMA	DOCKET N Reportin	050-259,260,298 g period_1985	
	LOWER LIMIT OF Detection (LLD) _SEE_NQIE_1	INDICATOR LOCATIONS	LOCATION_WITH_HIG NAME Distance and dired	HESI_ANNUAL_HEAN Mean (F) Ction Range See_NQTE_2	LOCATIONS MEAN (F) Range Locations	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
:0SS ALPHA 52 :0SS BETA 566 \MHA (GELI) 143	5.00E-03 1.00E-02		DECATUR, AL	2.13E-02(50/ 52) 1.18E-02 - 3.69E-02	6.73E-03(1/ 52) 6.73E-03 - 6.73E-03 2.09E-02(103/ 10+) 1.10E-02 - 3.64E-02	Y
(-40	NOT ESTAB	1.51E-02(43/ 117) 4.40E-03 - 3.53E-02		2.42E-02(7/ 13) 9.90E-03 - 3.26E-02	8.125-03(11/ 26) 1.705-03 - 1.435-02	-
31-214	2.006-02	2.42E-02(2/ 117) 2.16E-02 - 2.68E-02	LM3 BF NORTHEAST		26 VALUES <lld< td=""><td></td></lld<>	
51-212	NOT ESTAB	1.47E-02(1/ 117) 1.47E-02 - 1.47E-02	LM3 SF NORTHEAST	1.47E-02(1/ 13) 1.47E-02 - 1.47E-02	25 VALUES <lld< td=""><td></td></lld<>	
>8-214	2.008-02	2.72E-02(2/ 117) 2.36E-02 - 3.08E-02	LM3 BF NORTHEAST		26 VALUES <lld< td=""><td></td></lld<>	
°8-212	NOT ESTAB	3.16E-04(19/ 117) 1.00E-04 - 1.00E-03	1.0 MILE ENE	5.00E-04 - 5.00E-04	3.005-04(3/ 25) 2.005-04 - 5.005-04	•
3E-7	5.00E-02	8.59E-02(94/ 117) 5.60E-02 - 1.65E-01	8.2 MILES SSE	5.76E-02 - 1.34E-01	1.01E-01(22/ 20) 0.31E-02 - 1.43E-01	
TL-208	NOT ESTAB	1.30E-04(5/ 117) 1.00E-04 - 2.00E-04	13.8 MILES NW	2.00E-04(1/ 13) 2.00E-04 - 2.00E-04	4.00E-04(2/ 26) 1.00E-04 - 7.00E-04	
40-228	NOT- ESTAB	2.72E-03(12/ 117) 7.00E-04 - 7.50E-03	ATHENS, AL 10.9 Miles Ne	5.00E-03(1/ 13) 5.00E-03 - 5.00E-03	9.5CE-04(2/ 26) 9.00E-04 - 1.9GE-63	
R 89. 44	5.00E-03	36 VALUES <lld ANALYSIS PERFORMED</lld 			8 VALUES <lld< td=""><td></td></lld<>	
<u>R</u> 90 44	1.00E-03	36 VALUES <lld ANALYSIS PERFORMED</lld 		- 1	& VALUES <lld< td=""><td></td></lld<>	

VOTE: 1. NOMINAL LOWER LIMIT OF DETECTION (LLD) AS DESCRIBED IN TABLE 3. VOTE: 2. MEAN AND RANGE BASED UPON DETECTABLE MEASUREMENTS ONLY. FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F).

TABLE 7

RADIOACTIVITY IN RAINWATER

PCI/L - 0.037 82/L

LOCAT	NAME OF FACI Ion of Facili	LITY_BROWNS_EEBEY	ALABAMA	DOCKET NO Reporting)	
TYPE AND TOTAL NUMBER OF ANALYSIS Performed	DETECTION (LLD)	ALL INDICATOR LOCATIONS MEAN (F) RANGE SEE_NQIE_2	NAME DISTANCE AND DIRECTI	MEAN (F) Ion Range	CONTROL LOCATIONS MEAN (F) RANGE LISEE_NOIE_2	NUMBER OF Nonroutine Reported Measurements
GAMMA (GELI) 136		-				
* x-40	NOT ESTAB	20.64(16/ 112) 4.02 - 65.94	ATHENS, AL 10.9 Miles Ne	35.62(2/ 12) 5.30 - 65.94	2.18(+ 2/ 24) 0.69 - 3.67	
31-214	NOT ESTAD	5.92(59/ 112) 0.36 - 29.38	LMS BF DAVIS F 2.5 Miles WSW	9.13(6/ 13) 9.95 - 29.38	6.60(12/ 24) 0.04 - 20.32	
PB-214	NOT ESTAB		LM5 BF DAVIS F	9.10(3/ 13) 1.68 - 21.05	5.58(4/ 24) 0.61 - 7.94	
P3-212	NOT ESTAB	1.70(29/ 112) 0.01 - 6.05	LNS OF DAVIS F	2.83(4/ 13) 0.43 - 0.05	2.39(7/ 24) 0.05 - 5.97	
35-7	NOT ESTAB	58.12(24/ 112)	LM1 SF NORTHWEST	78.56(6/ 13)	54.56(8/ 24)	
TRITIUM	530.00	24.09 - 197.70 112 VALUES <lld< td=""><td></td><td>37.82 - 197.75</td><td>31.22 - 106.66 24 values <lld< td=""><td></td></lld<></td></lld<>		37.82 - 197.75	31.22 - 106.66 24 values <lld< td=""><td></td></lld<>	
136		ANALYSIS PERFORMED		•		

NOTE: 1. NOMINAL LOWER LIMIT OF DETECTION (LLD) AS DESCRIBED IN TABLE 3.

NOTE: 2. MEAN AND RANGE BASED UPON DETECTABLE MEASUREMENTS ONLY. FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F).

TABLE 8"

RADIOACTIVITY IN HEAVY PARTICLE FALLOUT

MCI/KM(2) - 37000000.00 BQ/KM(2)

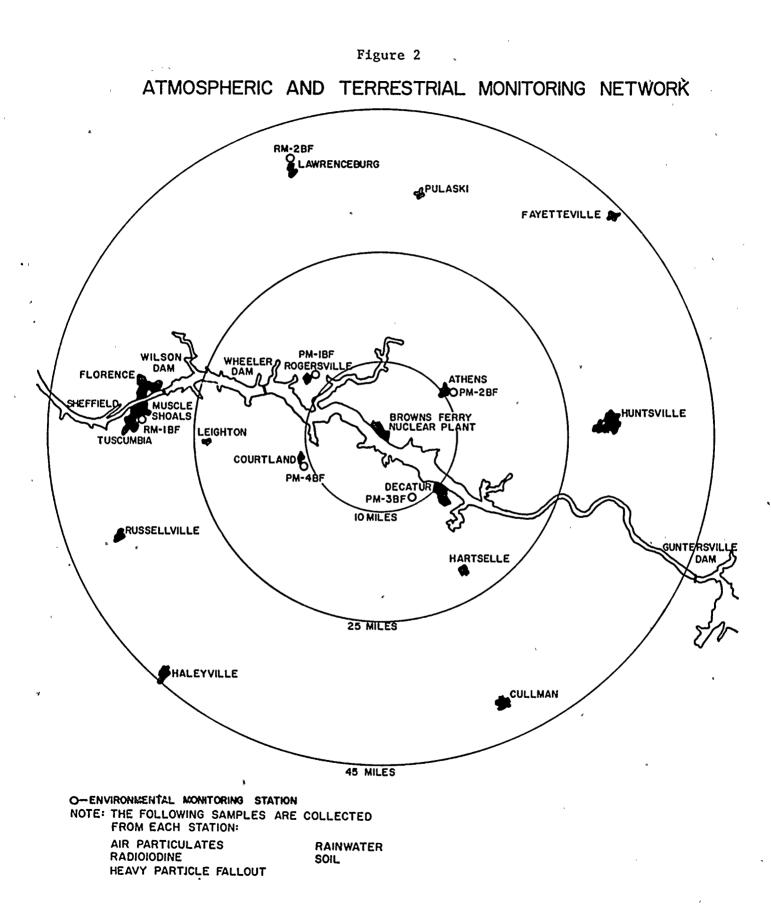
LOCAT	NAME OF FACI Ion of facili	LITY_BROWNS_EEBBY TY_LIMESIONE			NO50-259/260/296 NG PERIOD_1985	
TYPE AND Fotal Number of Analysis Performed	LOWER LIMIT OF DETECTION (LLD) _SEE_NQIE_1	ALL INDICATOR LOCATIONS MEAN (F) RANGE SEE NOTE 2	LECATION WITH HIGHESI. NAME DISTANCE AND DIRECTION	MEAN (F)	CONTROL LOCATIONS MEAN (F) RANGE SEE NOTE 2	NUMBER OF Nonroutine Reported Measurements
ROSS BETA	0.05	0.06 - 0.88	LM4 BF TRAILER P 1.7 MILES NNW	0.31(13/ 13) 0.06 - 0.88	9.11(25/ 26)	*****

NOTE: 1. NOMINAL LOWER LIMIT OF DETECTION (LLD) AS DESCRIBED IN TASLE 3. NOTE: 2. MEAN AND RANGE BASED UPON DETECTABLE MEASUREMENTS ONLY. FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F).

TABLE 9

RADIOACTIVITY IN CHARCOAL FILTERS

PCI/M(3) - 0.037 BQ/M(3)


LOCAT		LITY_BROWNS_EEBBY			252/260/226	
TYPE AND Total Number Of Analysis Performed	LOWER LIMIT OF Detection (LLD)	ALL INDICATOR LOCATIONS - MEAN (F) Range	LOCATION_BITH_HIGHEST_AN NAME DISTANCE AND DIRECTION	MEAN (F) RANGE	CONTROL LOCATIONS MEAN (F) Range	NUMBER OF Nonroutine Reported Measurements
IODINE-131 506	_SEE_NQIE_1 0.01	SEE NOIE 2 0.02(63/ 462) 0.01 - 0.13	LM1 BF NORTHWEST 0	<u>SEE_UQIE_2</u> .02(12/ 52) 0.01 - 0.13*	0.01(15/ 104) 0.01 - 0.02	*

NOTE: 1. NOMINAL LOWER LIMIT OF DETECTION (LLD) AS DESCRIBED IN TABLE 3.

NOTE: 2. MEAN AND RANGE BASED UPON DETECTABLE MEASUREMENTS ONLY. FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTMESES (F).

* This value is inflated because of radon interference.

.

LOCAL MONITORING STATIONS 19

BROWNS FERRY NUCLEAR PLANT

LTRATE 2

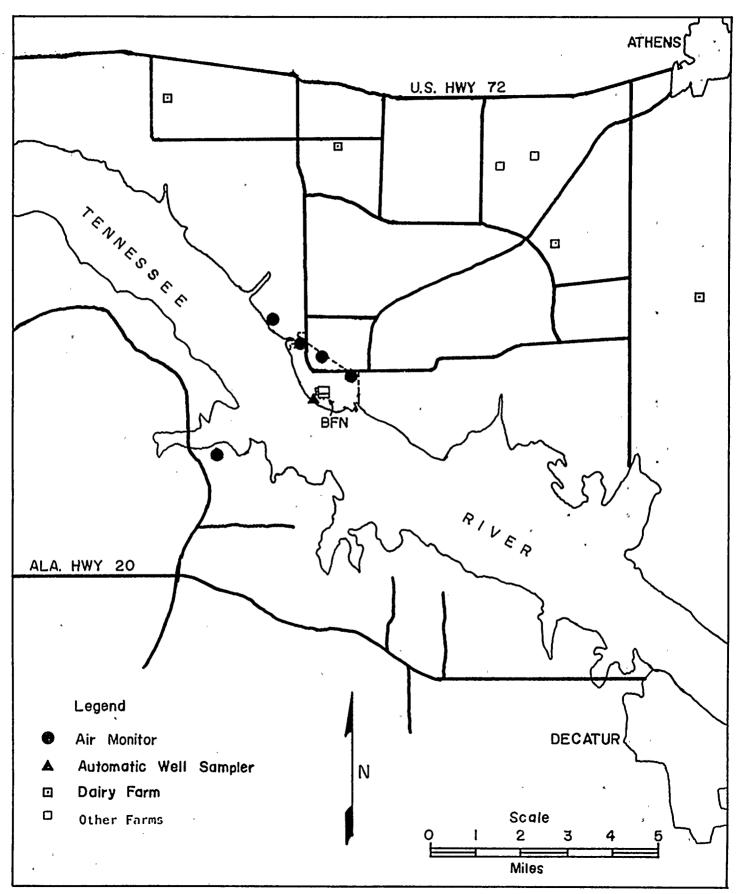
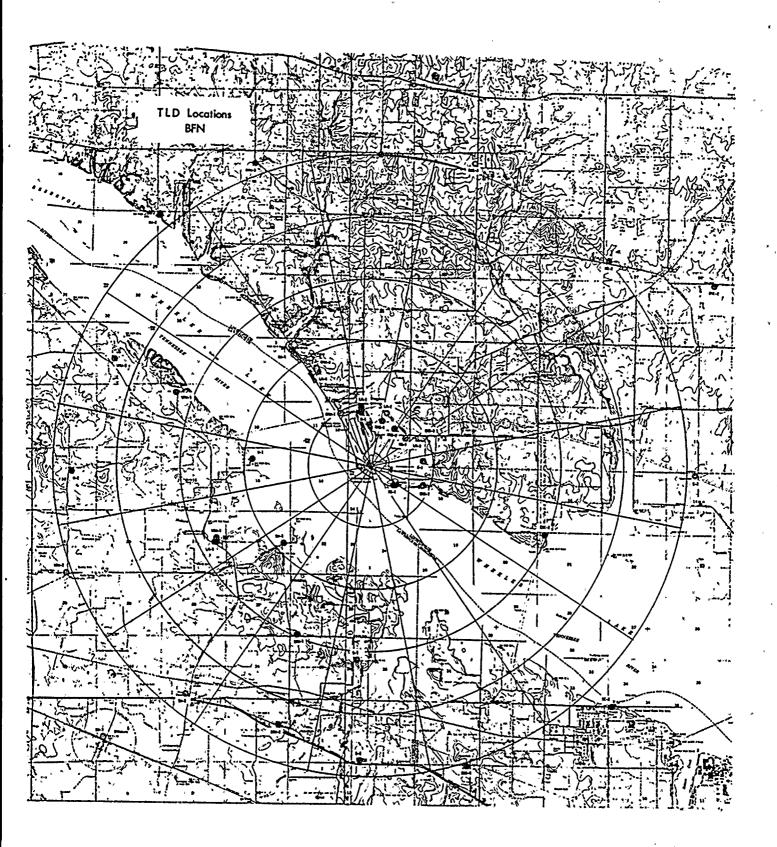
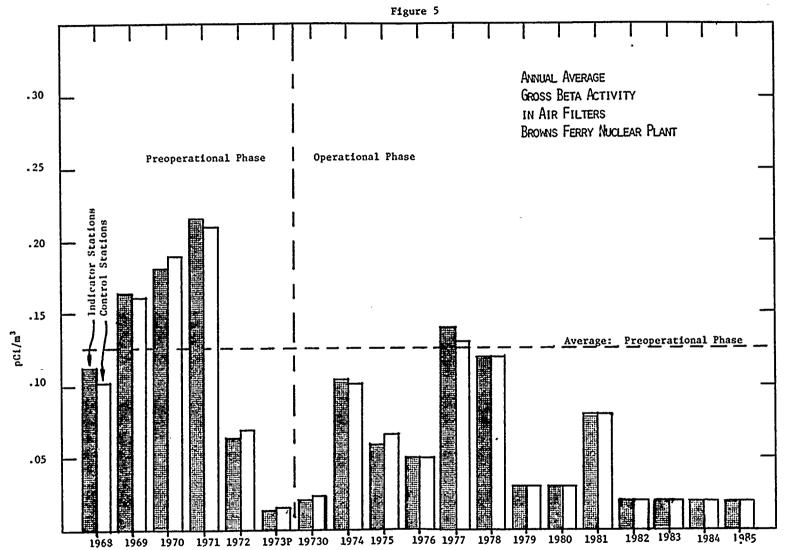




Figure 4

••••• 1

•

,

а р

•

k. •

, •

.

Terrestrial Monitoring

Terrestrial monitoring is accomplished by collecting environmental media within the general area of the plant for indicator locations, and at remote locations for controls. These media sampled include milk, vegetation, soil, ground water, drinking water, and food crops. In addition, environmental gamma radiation levels are determined by strategic placement of thermoluminescent dosimeters. Twice each year a land use survey is conducted to determine milk producing animal census and location.

Land Use Survey

. The land use surveys were conducted in June and September of 1985. The fall survey revealed that a dairy operation had resumed at a location previously used as a milk sampling point. This location was added to the environmental sampling program.

After the land use survey was completed and during routine sample collection run, a dairy operation from which samples had routinely been collected ceased operation. This location was removed from the sampling schedule. In compliance with plant technical specifications, a Special Report was submitted to the Nuclear Regulatory Commission on November 26, 1985.

Milk

Milk was collected from three farms within a 10-mile radius of the plant (see figure 3), and from at least one of six control farms. During this report period, one indicator dairy farm ceased operation with the last sample being collected October 28, 1985. At about the same time, operations were resumed at a dairy formerly used as an indicator location. This location was added to the milk sampling program with the first sample collected on November 4, 1985.

Raw milk samples are collected from indicator and control farms, and are analyzed weekly for iodine-131 and monthly for gammaemitting isotopes and radiostrontium. Analytical results are summarized in table 10. During the 1985 reporting period, 7 samples were not available for collection, and one sample was inadvertently destroyed prior to analysis for radiostrontium.

Vegetation

Vegetation is sampled monthly at five indicator farms (three dairies and two farms with one milk-producing animal), and at each air monitoring station. Quarterly vegetation samples are collected at four control farms (one control farm ceased operation in August). The monthly samples are analyzed for iodine-131 and gamma-emitting isotopes with analysis for radiostrontium performed on the last monthly sample of each quarter. Samples collected quarterly are analyzed for gamma-emitting isotopes. Table 11 summarizes analytical results. During this reporting period, three samples were inadvertently destroyed before iodine analysis was done.

Soil

Soil samples are collected annually near each monitoring station to provide an indication of long-term buildup of radioactivity in the environment. An auger or a "cookie cutter" type sampler is used to obtain samples of the top two inches (5 cm) of soil. These samples are analyzed for gamma-emitting radionuclides, strontium-89, and strontium-90. The results are given in table 12.

Ground Water

An automatic sequential-type sampling device collects groundwater from a well downgradient from BFN. A composite sample from this well is analyzed for gamma-emitting radionuclides monthly and composited quarterly for determination of tritium. A grab sample is also taken monthly from a control well upgradient from the plant. The results of the analysis of well water are shown in table 13. During this report period one sample was not available for gamma analysis.

Drinking Water

Potable water supplies taken from the Tennessee River in the vicinity of BFN are sampled and analyzed for gross beta and gamma-emitting radionuclides, and composited quarterly for tritium, ⁸⁹Sr, and ⁹⁰Sr analyses. The first potable water supply downstream from the plant is equipped with an automatic sampler with samples collected and analyzed weekly. The sampler is located on the water intake structure and takes the sample from the river as the raw water is drawn into the water treatment facility. Two additional supplies downstream and one public water supply upstream are sampled by taking monthly grab samples of treated water at user points. In addition, the surface water sample collected by an automatic water sampler upstream from the plant is included as a control for drinking water. Table 14 indicates. the results from the analysis of drinking water samples. During this reporting period, two weekly samples were not collected because of automatic sampling equipment malfunction.

Figure 6 shows the trends in gross beta activity in drinking water from 1968 through 1985. The annual average level from the raw water samples tends to run slightly higher than the average for treated water samples; however, the levels are consistent with the activities reported in surface water samples taken upstream from BFN (figure 12) and in samples taken from the Tennessee River in preoperational monitoring programs conducted by TVA at other sites.

Environmental Gamma Radiation Levels

Bulb-type Victoreen manganese-activated calcium fluoride $(Ca_2F: Mn)$ thermoluminescent dosimeters (TLDs) are placed at sixteen stations around the plant near the site boundary, at the perimeter and remote air monitors, and at nineteen additional stations out to approximately five miles from the site to determine the gamma exposure rates at these locations. The dosimeters, located inside energy compensating shields to correct for energy dependence, are placed at approximately one meter above the ground, with three TLDs at each station. They are

\$

annealed and read with a Victoreen model 2810 TLD reader. The values are corrected for gamma response, self-irradiation, and fading, with individual gamma response calibrations and self-irradiation factors determined for each TLD. The TLDs are exchanged every three months. The quarterly gamma radiation levels determined from these TLDs are given in table 15, which indicates that average levels at onsite stations are approximately 2-5 mR/quarter higher than levels at offsite stations. This is consistent with levels reported at TVA's nonoperating nuclear power plant construction sites where the average radiation levels onsite are generally 2-6 mR/quarter higher than levels offsite. The causes of these differences have not been completely isolated; however, it is postulated that the differences are probably attributable to combinations of influences, such as natural variations in environmental radiation levels, earth moving activities onsite, the mass of concrete employed in the construction of the plant, and other undetermined influences.

Figure 7 compares plots of the data from the onsite or site boundary stations with those from the offsite stations over the period from 1976 through 1985. To reduce the variations present in the data sets, a four-quarter moving average was constructed for each set. Figure 8 presents a trend plot of the direct radiation levels as defined by the moving averages. The data follow the same general trend as the raw data, but the curves are smoothed considerably.

Prior to 1976 measurements were made with less sensitive dosimeters, and consequently the levels reported in the preoperational phase of the monitoring program are up to 2 times the levels reported herein. Those data are not included in this report. Therefore, for comparison purposes, figures 9 and 10 depict the environmental gamma radiation levels measured during the construction of TVA's Watts Bar Nuclear Plant to the present. Note that the data follow a similar pattern to the BFN data and that, as discussed above, the levels reported at onsite stations are similarly higher than the levels at offsite stations.

Food Products

Food products raised in the vicinity of BFN and at control locations are sampled as they become available during the growing season, and analyzed for gross beta activity and for gamma-emitting radionuclides. During this sampling period, samples of apples, cabbage, corn, green beans, potatoes, beef, and tomatoes were collected and analyzed for specific gamma-emitting radionuclides. The results are given in tables 16 through 22.

TABLE 10	T.	A	8	L	Ε	1	0	
----------	----	---	---	---	---	---	---	--

RADIOACTIVITY IN MILK

PCI/L - 0.037 BQ/L

NAME OF FACILITY_BROWNS_EEBBY_____ DOCKET NO. 50-259-260-296 LOCATION OF FACILITY_LIMESTONE____ALABAMA____ REPORTING PERIOD 1985 TYPE AND LOWER LIMIT ALL CONTROL NUMBER OF TOTAL NUMBER OF INDICATOR LOCATIONS LOCATION_WITH_HIGHEST_ANNUAL_MEAN_____ LOCATIONS NONROUTINE OF ANALYSIS DETECTION MEAN (F) MEAN (F) NAME MEAN (F) REPORTED PERFORMED (LLD) DISTANCE AND DIRECTION RANGE RANGE RANGE MEASUREMENTS SEE_NOIE_2_____SEE_NOTE_2____ _SEE_NOIE_1 ____SEE_NOIE_2_ ODINE-131 0.50 156 VALUES <ULD 278 VALUES <LLD 434 ANALYSIS PERFORMED AMMA (GELI) 108 CS-137 5.00 8.41(6/ 39) PAGE FARM 8.41(6/ 11) 8.59(2/ 69) 6.29 -8.75 MILES E 9.98 6.29 - 9.98 5.84 - 11.34 NOT ESTAB 1193.09(39/ 39) LOONEY FARM 1264.53(13/ 13) 1297.44(69/ 69) 768.95 - 1686.67 5.75 MILES ENE 1058.34 - 1435.68 781.33 - 1925.94 81-214 NOT ESTAB 7.41(31/ 39) SMITH/BENNETT FA 6.93(38/ 69) 9.98(2/ 2) 0.59 -35.98 4.75 MILES N 8.41 - 11.55 0.22 - 21.87 PB-214 7.38(27/ 69) NOT ESTAB 7.35(13/ 39) LOONEY FARM 10.02(4/ 13) 26.95 1.36 -1.36 -5.75 MILES ENE 26.95 0.04 - 29.05 PB-212 NOT ESTAB 2.00(8/ 39) LOONEY FARM 3.00(1/ 13) 1.98(12/ 69) 0.39 -3.30 5.75 MILES ENE 3.00 -3.00 0.56 -6.27 TL-208 NOT ESTAB 1.35(6/ 39) PAGE FARM 2.25(2/ 11) 0.97(13/ 69) 0.12 -3.63 8.75 MILES E 0.87 -3.03 0.01 -2.78 AC-228 NOT ESTAB 8.52(3/ 39) PAGE FARM 10.23(2/ 11) 5.20(9/ 69) 13.26 8.75 MILES E 5.08 -7.21 -13.26 0.72 - 11.66 10.00 **39 VALUES <LLD** 68 VALUES <LLD 107 ANALYSIS PERFORMED 2.00 3.40(38/ 39) SMITH/BENNETT FA 4.12(2/ 2) 3.70(56/ 68) 107 2.05 -5.44 4.75 MILES N 3.77 -4.48 2.00 -6.51

K-40

8 89

R 90

NOTE: 1. NOMINAL LOWER LIMIT OF DETECTION (LLD) AS DESCRIBED IN TABLE 3. NOTE: 2. MEAN AND RANGE BASED UPON DETECTABLE MEASUREMENTS ONLY. FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F).

TABLE 11

RADIOACTIVITY IN VEGETATION

PCI/G - 0.037 BQ/G (DRY WEIGHT)

LOCAT	NAME OF FACI Ion of Facili	LITY_BROWNS_EEBBY		DOCKET NO. Reporting	50-25922602226 Period_1285	
TYPE AND TOTAL NUMBER OF ANALYSIS PERFORMED IODINE-131 208 GAMMA (GELI)	LOWER LIMIT OF Detection (LLD) <u>SEE_NQIE_1</u> Not estab	INDICATOR LOCATIONS HEAN (F) RANGE SEE_NOIE_2 0.00(35/ 183)	NAHE DISTANCE AND DIREC	IESI_ANNUAL_MEAN MEAN (F) TION RANGE SEE_NQIE_2 0.01(6/ 12) 0.00 - 0.02	MEAN (F) Range SEE_NQIE_2 0.00(10/ 25)	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
226 CO-69	0.06			• 0.49(1/ 13)	41 VALUES <lld< td=""><td>1 (Note 3)</td></lld<>	1 (Note 3)
CS-137 ,	0.96	0.49 - 0.49 0.13(14/185)	PAGE FARM	°0,27(1/ 11)	0.12(3/ 41) 0.06 - 0.15	-
K-40	NOT ESTAB	0.07 - 0.27 15.56(182/ 185) 1.04 - 43.21	PAGE FARM	75 867 447 441	15.87(40/ 41) 1.43 - 40.34	
BI-214	0.10	0.22(93/ 185) 0.10 - 0.60	8.75 MILES E PAGE FARM 8.75 MILES F	0.39(4/ 11) 0.13 - 0.60	0.20(14/ 41) 0.11 - 0.46	
BI-212	NOT ESTAB	0.38(2/ 185) 0.27 - 0.50	PAGE FARM	0.50(1/ 11) 0.50 - 0.50	41 VALUES <lld< td=""><td></td></lld<>	
PB-214	NOT ESTAB	0.16(167/ 185) 0.00 - 0.66	EVANS FARM	0.21(12/ 13) 0.06 - 0.42	0.12(33/ 41) 0.01 - 0.40	
PB-212	NOT ESTAB	0.07(126/ 185) 0.00 - 0.43	EVANS FARM	0.13(9/ 13) 0.01 - 0.30	0.04(18/ 41) 0.01 - 0.11	
8E - 7	NOT ESTAB	7.13(184/ 185) 0.61 - 25.22		10.28(5/ 5) 6.47 - 15.56	7.44(41/ 41) 0.97 - 18.75	
TL-208	NOT ESTAB	0.04(78/ 185) 0.00 - 0.14	EVANS FARH 6.1 MILES NE	0.07(6/ 13) 0.01 - 0.11 0.29(2/ 11)	0.02(11/ 41) 0.00 - 0.05	
AC-228	NOT ESTAB	0.20(73/ 185) 0.02 - 0.79	PAGE FARM 8.75 MILES E	0.29(2/ 11) 0.13 - 0.45	0.16(12/ 41) 0.05 - 0.30	¢
SR 89 65	0.25	57 VALUES <lld ANALYSIS PERFORMED</lld 			8 VALUES <lld< td=""><td></td></lld<>	
SR 90 65	0.05	0.20(53/ 57) 0.06 - 0.56		0.35(4/ 4) 0.16 - 0.56	0.21(8/ 8) 0.09 - 0.41	

.

NOTE: 1. NOMINAL LOWER LIMIT OF DETECTION (LLD) AS DESCRIBED IN TABLE 3. NOTE: 2. MEAN AND RANGE BASED UPON DETECTABLE MEASUREMENTS ONLY. FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F).

Note: 3. A report was submitted to the Nuclear Regulatory Commission on June 14, 1985, outlining the high value. The single, isolated occurrence of cobalt-60 in vegetation, the absence of other fission and activation products in the sample, and the lack of an increase iπ cobalt-60 releases from the plant prevented an identification of the causes for the presence of the isotope in the sample. Subsequent samples showed no indication of the presence of cobalt-60. ب ۲

RADIOACTIVITY IN SOIL

PCI/G - 0.037 BQ/G (DRY WEIGHT)

LOCA	NAME OF FACI	ILITY_BROWNS_EERBY	ALABANA	DOCKET NO. S Reporting Pe	0-25922602296 RIOD_1985	•••
TYPE AND Total Number Of Analysis Performed	LOWER LIMIT Of Detection (LLD)	ALL INDICATOR LOCATIONS MEAN (F) Range	LQCAILON_WITH_HIGHEST_ANNUAL_ NAME MEAN DISTANCE AND DIRECTION RAN SEE_N	MEAN (F) GE CTE_2	CONTROL LOCATIONS MEAN (F) RANGE SEE_NOTE_2	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
AMMA (GELI)						
11 CS-137	0.02	0.4°(9/ 9) 0.02 - 1.43	LM5 BF DAVIS F 1.43(2.5 MILES WSW 1.43	1/ 1) - 1.43	0.38(2/ 2) 0.20 - 0.57	
K-40	0.25	5.28(9/ 9)	LM1 BF NORTHWEST 7.24(1/ 1)	4.03(2/ 2) 3.17 - 4.89	
81-214	0.05	1-08(9/ 9)	1 N2 85 NORTH 1.43(1/ 1)	0.90(2/ 2) 0.87 - 0.94	
BI-212	0.10	1.21(9/ 9) 0.62 - 1.55	LM2 BF NORTH 1.55(1/ 1) - 1.55	0.91(2/ 2) 0.89 - 0.94	•
PB-214	0.05	1.17(9/ 9) 0.67 - 1.48		1/ 1)	0.96(2/ 2) 0.88 - 1.04	
PB-212	NOT ESTAB	1-1141 07 01	115/ ATHD. AL 1 457	1/ 23	0.85(2/ 2)	
RA-226	0.05	1.08(9/ 9) 0.63 - 1.43	8.2 MILES SSE 1.35 LM2 BF NORTH 1.43(0.9 MILE NNE 1.43 LM3 BF NORTHEAST 1.47(1.0 MILE ENE 1.47	1/ 1)	0.90(2/ 2) 0.87 - 0.94	-
RA-224	NOT ESTAB	1.11(7/ 9) 0.62 - 1.47	LM3 BF NORTHEAST 1.47(1.0 MILE ENE 1.47	1/ 1)	0.87(2/ 2) 0.80 - 0.93	
8E-7	0.16	0.21(27)	DECATUR, AL 0.24(8.2 MILES SSE 0.24	1/ 1)	0.22(1/ 2) 0.22 - 0.22	
		9 VALUES <lld< td=""><td></td><td></td><td>0.11(1/ 2) 0.11 - 0.11</td><td></td></lld<>			0.11(1/ 2) 0.11 - 0.11	
TL-208	0.02	0.36(9/ 9) 0.19 - 0.47	DECATUR, AL 0.47(8.2 HILES SSE 0.47 DECATUR, AL 1.38(1/ 1) - 0.47	0.28(2/ 2) 0.27 - 0.29	
AC-228		1.06(9/ 9) 0.55 - 1.38	8.2 MILES SSE 1.38	1/ 1) • 1•38	0.85(2/ 2) 0.83 - 0.87	
	NOT ESTAB	1413 1 6414	ROGERSVILLE, AL 2.74(13.8 MILES NW 2.74 -	1/ 1) - 2.74	2.39(2/ 2) 1.44 - 3.33	
R 89 11	1.50	9 VALUES <lld Analysis performed</lld 	13.8 MILES NW 2.74 -		2 VALUES <lld< td=""><td></td></lld<>	
R 90 11	0.15	0.24(4/ 9) 0.20 - 0.28	LH5 BF DAVIS F 0.28(2.5 MILES WSW 0.28 -	1/ 1) - 0.28	2 VALUES <lld< td=""><td></td></lld<>	

NOTE: 1. NOMINAL LOWER LIMIT OF DETECTION (LLD) AS DESCRIBED IN TABLE 3. NOTE: 2. MEAN AND RANGE BASED UPON DETECTABLE MEASUREMENTS ONLY. FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATEG IN PARENTHESES (F).

. .

RADIOACTIVITY IN WELL WATER

PCI/L - 0.037 80/L .

TYPE AND TOTAL NUMBER OF ANALYSIS PERFORMED GAMMA (GELI) 25	LOWER LIMIT OF Detection (LLD) _SEE_NQIE_1	MEAN (F)	LOCATION_HITH_HIGHEST NAME DISTANCE AND DIRECTIO	MEAN (F)	CONTROL LOCATIONS MEAN (F) RANGE SEE_NQIE_2	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
K-40	NOT ESTAB	8.92(1/ 13) 8.92 - 8.92	BFN WELL #6 G.02 MILES W	5.92(1/ 13) 8.92 - 8.92	4.57(2/ 12) 1.06 - 8.09	-
BI-214	NOT ESTAB	9.36(12/ 13) 1.43 - 17.22	BFN WELL #6	9.36(12/ 13) 1.43 - 17.22	175.22(12/ 12) 40.97 - 680.25	
PB-214	NOT ESTAB	12.08(9/ 13) 2.97 - 18.27	BFN WELL #6	12.08(9/ 13) 2.97 - 18.27	177.10(12/ 12) 43.74 - 682.22	
P3-212	NOT ESTAB	2.80(4/ 13) 0.71 - 4.54		2.80(4/ 13) 0.71 - 4.54	3.77(3/ 12) 1.63 - 6.16	
TL-208	NOT ESTAB	13 VALUES <lld< td=""><td></td><td></td><td>0.33(2/ 12) 0.28 - 0.38</td><td></td></lld<>			0.33(2/ 12) 0.28 - 0.38	
AC-228	NOT ESTAB	7.09(1/ 13) 7.09 - 7.09	BFN WELL #6 0.02 miles w	7.09(1/ 13) 7.09 - 7.09	12 VALUES <lld< td=""><td></td></lld<>	
TRITIUM 8	330.00	4 VALUES <lld Analysis performed</lld 			4 VALUES <lld< td=""><td></td></lld<>	

NOTE: 1. NOMINAL LOWER LIMIT OF DETECTION (LLD) AS DESCRIBED IN TABLE 3. NOTE: 2. NEAN AND RANGE BASED UPON DETECTABLE MEASUREMENTS ONLY. FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F). *

ير م

RADIOACTIVITY IN PUBLIC WATER SUPPLY

PCI/L - 0.037 BQ/L

·LO	NAME (Cation of)F FACI Facili	LITY_BROHNS_EEBB TY_LINSSIONE	Y			_ 0 _ R	OCKET NO	50-259226 PERIOD_128	02226	
TYPE AND Total Numb Of Analysi Performed	ER C	7	ALL INDICATOR LOCAT MEAN (F) Range	TONS	LOCATION_WITH_H NAME DISTANCE AND DI	IGHESI_ANNUAL Mea Rection Ra	LUEAN N (F) Nge		100477	ONC.	NUMBER OF Nonroutine Reported Measurements
ROSS BETA	SEE_N	QIE_1	SEE_NOIE_2			SEE_	NQIE_	2	SEE_NOI	E_2	
			20621 227	107	UNAMPIUN PAPER	3.386	407	207	2.93(22/ 20)	
AMMA (GELI	02		2:07 **	0.00	TRM 282.6	2.08	-	0.28	2.04 -	5.62	
	02		-								
X-40	NOT ES	TAB	14.82(12/	76)	WHEELER DAM, AL	23.86(3/	13)	0.47(1/ 26)	
			2.22 -	42.16	TRM 274.9	11.40	-	42.16	0.47 -	0.47	
BI-214	NOT ES	TAB	2.42(397	(0)	WHEELER DAM/ AL	7.39(7/	15)	9.22(12/ 26)	
22-24/			0.37 -				-	14.32	0.13 -	47.47	
PB-214	NOT ES	TAB		76)	SHEFFIELD, AL RO	8 7.29(_, 3/	13)	5.62(7/ 26)	
PB-212	NOT ES	TAR	1.76(15/	74	TRH 254.3	0.56		17.79		18.90	
	NOT 23	TAD			WHEELER DAM/ AL TRM 274.9	4.10(1/	13)	1.49(
TL-208	NOT ES	TAB	1,02(12/	76)	CHAMPTON PAPER	1 057	3/	501	26 VALUE:	2.72	
			0.00 -	2.38	TRM 282.6	0.00	- %	2.38	ZO VALUE:		
AC-228	NOT ES	TAB	5.46(9/	76)	SHEFFIELD, AL ROS	3 9.49(1/	13)	8.78(4/ 26)	
			0.13 -	11.59	TRM 254.3	9.44	-	9.49		27.49	
R 8.9	10	•00		LD					8 VALUES		
			ANALYSIS PERFOR	MED							
FR 90	2 20		12 VALUES <l< td=""><td>LD</td><td></td><td></td><td></td><td></td><td>8 VALUES</td><td>S <lld< td=""><td></td></lld<></td></l<>	LD					8 VALUES	S <lld< td=""><td></td></lld<>	
'RITIUN		00	ANALYSIS PERFOR	MEU 1 D							
	20 .	•00	12 VALUES <l< td=""><td>LU</td><td></td><td></td><td></td><td></td><td>333.48(</td><td></td><td></td></l<>	LU					333.48(
•						*			333.48 -	333.48	•

NOTE: 1. NOMINAL LOWER LIMIT OF DETECTION (LLD) AS DESCRIBED IN TABLE 3. NOTE: 2. MEAN AND RANGE BASED UPON DETECTABLE HEASUREMENTS ONLY. FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS

IS INDICATED IN PARENTHESES (F).

Table 15

ENVIRONMENTAL GAMMA RADIATION LEVELS

Average External Gamma Radiation Levels at Various Distances from Browns Ferry Nuclear Plant for Each Quarter - 1985 mR/Quarter^a

Distance <u>miles</u>	Average 1st Quarter	External Gamma 2nd Quarter	Radiation Levels <u>3rd Quarter</u>	b <u>4th Quarter</u>
0-1	18.0 ± 2.5	19.4 ± 0.8	21.8 ± 3.7	21.0 ± 2.1
1-2	16.2 ± 2.6	17.7 ± 1.8	17.9 ± 3.8	18.1 ± 2.4
2-4	15.1 ± 1.4	15.9 ± 1.5	16.1 [°] ± 3.0	18.2 ± 2.7
4-6	14.8 ± 1.3	16.1 ± 1.7	16.5 ± 3.2	17.6 ± 2.2
>6	14.4 ± 1.3	15.8 ± 1.5	15.2 ± 2.4	17.4 ± 1.9
Average, O-2 miles (Onsite)	17.6 ± 2.5	18.9 ± 1.3	20.8 ± $\frac{1}{4.0}$	`. 20.3 ± 2.4
Average, >2 miles (Offsite)	14.8 ± 1.3	15.9 ± 1.5	16.0 ± 2.9	17.6 ± 2.2

a. Data normalized to one quarter (2190 hours). b. All averages reported $\pm 1\sigma$ (68 percent confidence level).

31

RADIOACTIVITY IN CABBAGE

PCIVKG - 0.037 BQ/KG- (WET WEIGHT)-

LOCAT		LITY_BROWNS_EERBY	ALABANA		•_50=252/260/226 PERIOD_1285	
TYPE AND OTAL NUMBER IF ANALYSIS PERFORMED	LOWER LIMIT OF Detection (LLD) _SEE_NOIE_1	ALL INDICATOR LOCATIONS MEAN (F) RANGE SEE_NOIE_2	LQCAIIQN_HIIH_HI NAME DISTANCE AND DIR	GHESILANNUAL_MEAN MEAN (F) ECTION RANGE SEE_NQIE_2	CONTROL LOCATIONS MEAN (F) RANGE SEE_NQIE_2	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
OSS BETA 2 MMA (GELI) 2	25.00	3764.15(1/ 1) 3764.15 - 3764.15		3764.15(1/ 1) 3764.15 - 3764.15	3440.65(1/ 1) 3440.65 - 3440.65	
:-40	NOT ESTAB	1652.04(1/ 1) 1652.64 - 1652.04		1652.64(1/ 1) 1652.64 - 1652.64	1569.45(1/ 1) 1569.45 - 1569.45	

IOTE: 1. NOMINAL LOWER LIMIT OF DETECTION (LLD) AS DESCRIBED IN TABLE 3. IOTE: 2. NEAN AND RANGE BASED UPON DETECTABLE MEASUREMENTS ONLY. FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F).

RADIOACTIVITY IN CORN

PCI/KG - 0.037 BQ/KG (WET WEIGHT)

LOWER LIMIT OF Detection (LLD)	INDICATOR LO MEAN (RANGE	F)	NAME DISTANCE AND DI	MEAN () RECTION RANGE	F) (LOCATIO MEAN	NS	NUMBER OF Nonroutine Reported Measurements	
_SEE_NOIE_1	SEE_NOT	E_2		SEE NOT		SEE_NOIE			
25.00	4152.67 -	4152.67	/ MILCS NNW						
NOT ESTAB	2518.86(1/ 1)	7 MILES NNW	2518-86(1/ 1)	2163-31(1/ 1)		
	2518.86 -	2518.86		2518.86 -	2518.86	2163.31 -	2163.31		
NOT ESTAB						1 VALUES	<lld< td=""><td></td></lld<>		
	111.38 *								
	MIT OF DETECT	ION (LLD)) AS DESCRIBED IN MEASUREMENTS ONLY			EASUREMENTS	AT SPECIF	IED LOCATIONS	
N AND RANGE B	MIT OF DETECT	ION (LLD) Ectable A) AS DESCRIBED IN Measurements only			EASUREMENTS	AT SPECIF	IED LOCATIONS	
N AND RANGE B	MIT OF DETECT ASED UPON DET	ION (LLD) Ectable A) AS DESCRIBED IN Measurements only			EASUREMENTS	AT SPECIF	IED LOCATIONS	
N AND RANGE B	MIT OF DETECT ASED UPON DET	ION (LLD) Ectable A) AS DESCRIBED IN Measurements only			EASUREMENTS	AT SPECIF	IED LOCATIONS	
N AND RANGE B	MIT OF DETECT ASED UPON DET	ION (LLD) Ectable A) AS DESCRIBED IN Measurements only			EASUREMENTS	AT SPECIF	IED LOCATIONS	
N AND RANGE B	MIT OF DETECT ASED UPON DET	ION (LLD) Ectable A) AS DESCRIBED IN Measurements only			EASUREMENTS	AT SPECIF	IED LOCATIONS	
N AND RANGE B	MIT OF DETECT ASED UPON DET	ION (LLD) Ectable A) AS DESCRIBED IN Measurements only			EASUREMENTS	AT SPECIF	IED LOCATIONS	
N AND RANGE B	MIT OF DETECT ASED UPON DET	ION (LLD) Ectable A) AS DESCRIBED IN Measurements only			EASUREMENTS	AT SPECIF	IED LOCATIONS	
	OF DETECTION (LLD) _SEE_NDIS_1 25.00	OF INDICATOR LC DETECTION MEAN (LLD) RANGE _SEE_NQIS_1 SEE_NQI 4152.67(_25.00 4152.67(4152.67(NOT ESTAB 2518.86(2518.86(NOT ESTAB 10.58(10.58(OF INDICATOR LOCATIONS DETECTION MEAN (F) (LLD) RANGE -SEE_NQIE_1 SEE_NQIE_2 25.00 4152.67(1/ 1) 4152.67 - 4152.67 NOT ESTAB 2518.86(1/ 1) 2518.86 - 2513.86 NOT ESTAB 10.58(1/ 1)	OF INDICATOR LOCATIONS LOCATION_HITH_H DETECTION MEAN (F) NAME (LLD) RANGE DISTANCE AND DI	OF INDICATOR LOCATIONS LOCATION_HIH_HIGHEST_ANNUAL_ME DETECTION MEAN (F) NAME MEAN ((LLD) RANGE OISTANCE AND DIRECTION RANGE _SEE_NOIS_1	OF INDICATOR LOCATIONS LCCATION_HIH_HIGHEST_ANNUAL_MEAN DETECTION MEAN (F) NAME MEAN (F) (LLD) RANGE DISTANCE AND DIRECTION RANGE SEE_NOIS_1 SEE_NOIE_2 SEE_NOIE_2 SEE_NOIE_2 25.00 4152.67(1/1) 7 MILES NNW 4152.67(1/1) NOT ESTAB 2518.86(1/1) 7 MILES NNW 2518.86(1/1)	OF INDICATOR LOCATIONS LCCATION HIH HIGHESI ANNUAL MEAN LOCATIO DETECTION MEAN (F) NAME MEAN (F) MEAN (F) MEAN (LLD) RANGE OISTANCE AND DIRECTION RANGE RANGE SEE_NOIS 25:00 4152.67(1/1) 1) 7 MILES NNW 4152.67(1/1) 3807.94(4152.67 4152.67 4152.67 4152.67 3307.94 - NOT ESTAB 2518.86(1/1) 7 MILES NNW 2518.86(1/1) 2163.31(2518.86 2518.86 2518.86 2163.31 - NOT ESTAB 10.58(1/1) 7 MILES NNW 10.58(1/1) 1	OF INDICATOR LOCATIONS MEAN (F) MEAN (F) <th <="" td=""></th>	

RADIOACTIVITY IN GREEN BEANS

PCI/KG - 0.037 BQ/KG (WET WEIGHT)

LOCAT	NAME OF FACI Ion of facili	LITY_BROWNS_EEBBY	ALABAMA		0. <u>50-259/260/296</u> G PERIOD <u>1985</u>	
TYPE AND OTAL NUMBER OF ANALYSIS PERFORMED OSS BETA MMA (GELI)		SEE_NOIE_2	DISTANCE AND DIRECTION RAN	V (F) VGE VQ] <u>E_2</u> 1/ 1)	RANGE	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
:-40 3I-214 3B-214	NOT ESTAB NOT ESTAB NOT ESTAB	1659.47(1/ 1) 1659.47 - 1659.47 1 VALUES <lld 1 VALUES <lld< td=""><td></td><td>1/ 1) - 1659.47</td><td>2003.71(1/ 1) 20G3.71 - 2003.71 3.70(1/ 1) 3.70 - 3.70 2.14(1/ 1) 2.14 - 2.14</td><td></td></lld<></lld 		1/ 1) - 1659.47	2003.71(1/ 1) 20G3.71 - 2003.71 3.70(1/ 1) 3.70 - 3.70 2.14(1/ 1) 2.14 - 2.14	

IOTE: 1. NOMINAL LOWER LIMIT OF DETECTION (LLD) AS DESCRIBED IN TABLE 3. IOTE: 2. MEAN AND RANGE BASED UPON DETECTABLE MEASUREMENTS ONLY. FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F).

TABLE 19 V

RADIOACTIVITY IN APPLES

PCI/KG - 0.957 BQ/KG (WET WT)

LOCAT		LITY_BROWNS_EERRY TY_LIMESIONE			050-259/260/296 5 PERIOD_1285	
TYPE AND Total Number Of Analysis Performed	LOWER LIMIT OF Detection (LLD)	ALL INDICATOR LOCATIONS MEAN (F) RANGE	DISTANCE AND DIR		CONTROL LOCATIONS MEAN (F) Range	NUM3ER OF Nonroutine Reported Measurements
GROSS BETA 2 GAMMA (GELI)	_ <u>SEE_NQIE_1</u> 25.00	<u>SEE NOIE 2</u> 1695.72(1/ 1) 1695.72 - 1695.72	PAGE FARM	<u>SEE_NQIE_2</u> 1695.72(1/ 1) 1695.72 - 1695.72	<u>SEE NOIE 2</u> 1618.79(1/ 1) 1618.79 - 1518.79	
к-40	NOT ESTAB	1080.23(1/ 1) 1089.23 - 1089.23		1080.23(1/ 1) 1080.23 - 1080.23	862.72(1/ 1) 862.72 - 862.72	
81-214	NOT ESTAB	1 VALUES <lld< td=""><td></td><td></td><td>8.47(1/ 1) 8.47 - 8.47</td><td></td></lld<>			8.47(1/ 1) 8.47 - 8.47	
PB-214	NOT ESTAB	1 VALUES <lld< td=""><td></td><td></td><td>3.62(1/ 1) 3.62 - 3.62</td><td></td></lld<>			3.62(1/ 1) 3.62 - 3.62	
AC-228	NOT ESTAB	1 VALUES <lld< td=""><td>=</td><td></td><td>2.70(1/ 1) 2.70 - 2.70</td><td></td></lld<>	=		2.70(1/ 1) 2.70 - 2.70	

NOTE: 1. NOMINAL LOWER LIMIT OF DETECTION (LLD) AS DESCRIBED IN TABLE 3. NOTE: 2. MEAN AND RANGE BASED UPON DETECTABLE MEASUREMENTS ONLY. FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F).

ŝ

RADIOACTIVITY IN POTATOES

PCI/KG - 0.037 BQ/KG. (WET. WEIGHT).

LOCAT		LITY_BBOHNS_EEBBX TY_LINESIQUE		00CKET NO. 50-259/260/226 Reporting Period_1285			
TYPE AND FOTAL NUMBER JF ANALYSIS PERFORMED COSS_BETA 2	LOWER LIMIT OF DETECTION (LLD) _SEE_NQIE_1 25.00	ALL INDICATOR LOCATIONS MEAN (F) RANGE <u>SEE_NOIE_2</u> 6048.46(1/ 1) 6048.46 - 6048.46		MEAN (F)	CONTROL LOCATIONS MEAN (F) RANGE 	NUMBER OF NONROUTINE REPORTED MEASUREMENTS	
MMA (GELI) 2 (-40	NOT ESTAB	3408.85(1/ 1) 3408.85 - 3408.85	PAGE FARM E.75 MILES E	3408.85(1/ 1) 3408.85 - 3408.85	3694.01(1/ 1) 3694.61 - 3694.61		

HOTE: ' 1. NOMINAL LOWER LIMIT OF DETECTION (LLD) AS DESCRIBED IN TABLE 3.

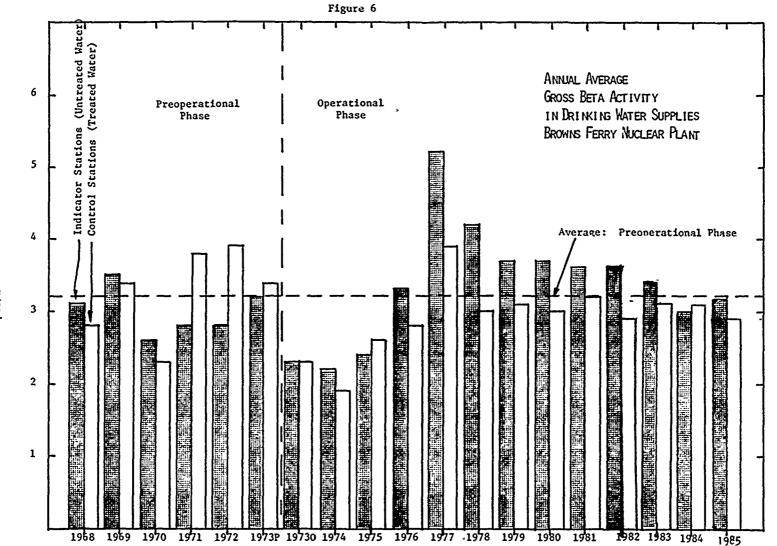
NOTE: '2. MEAN AND RANGE BASED UPON DETECTABLE MEASUREMENTS ONLY. FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F).

RADIOACTIVITY IN BEEF

PCI/KG - 0.037 BQ/KG (WET WEIGHT)

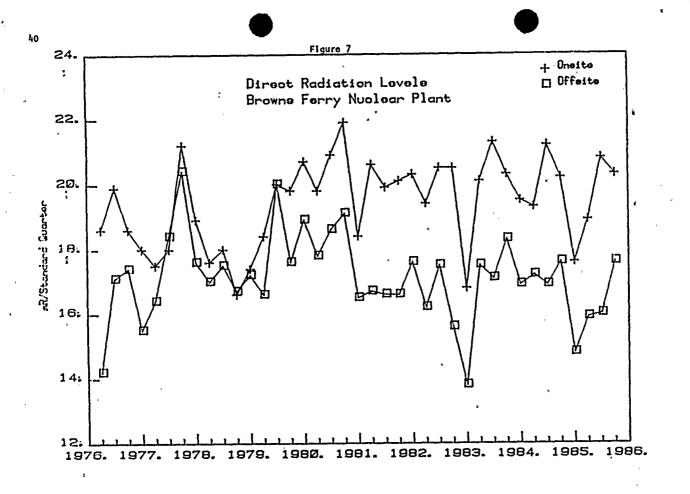
LOCAT	NAME OF FACI 110N OF FACILI	LITY_BROWNS_EEBBY	ALABEMA		•_50-252/260/226 PERIOD_1285	
TYPE AND Total Number Of Analysis Performed	LOWER LIMIT OF Detection (LLD) _See_Ngie_1	ALL INDICATOR LOCATIONS MEAN (F) Range See_Note_2	DISTANCE AND DIRECTION RA	-UEAN N (F) Nge Ngte_2	CONTROL LOCATIONS MEAN (F) RANGE SEE_NOTE_2	NUMBER OF Nonroutine Reported Measurements
GROSS BETA 2 Gamma (Geli)	25.00	4397.55(1/ 1) 4397.55 - 4397.55		1/ 1)	3768.67(1/ 1) 3768.67 - 3768.67	
K-40	NOT ESTAB	1838.92(1/ 1)	LOONEY FARM 1838.920	1/ 1)	1384.55(1/ 1)	
PB-214	NOT ESTAB	1838.92 - 1838.92 0.10(1/ 1) 0.10 - 0:10	LOONEY FARH 0.100	- 1838.92 / 1/ 1) - / 0.10	1384.55 - 1384.55 1.21(1/ 1) 1.21 - 1.21	
PB-212	NOT ESTAB	0.33(1/ 1)		1/ 1)	0.77(1/ 1) 0.77 - 0.77	τ

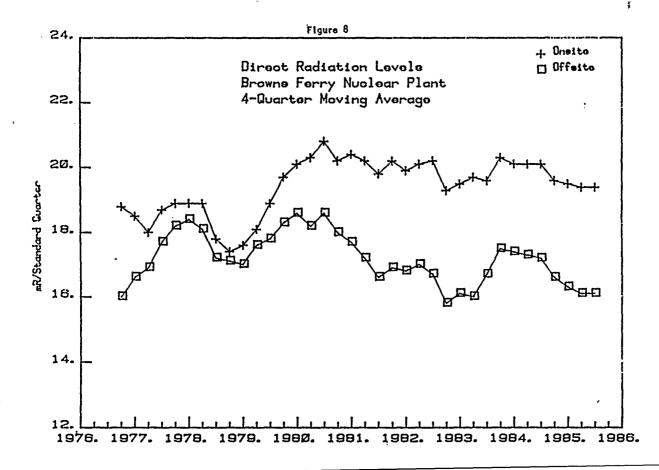
NOTE: 1. NOMINAL LOWER LIMIT OF DETECTION (LLD) AS DESCRIBED IN TABLE 3. NOTE: 2. MEAN AND RANGE BASED UPON DETECTABLE MEASUREMENTS ONLY. FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F).

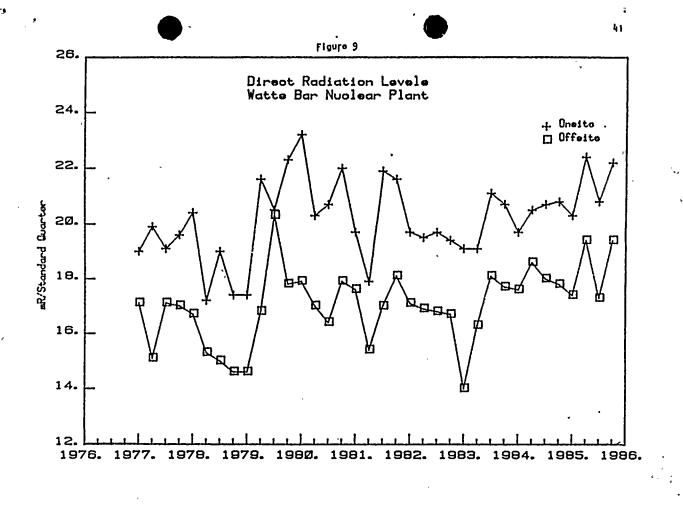

RADIOACTIVITY IN TOMATOES

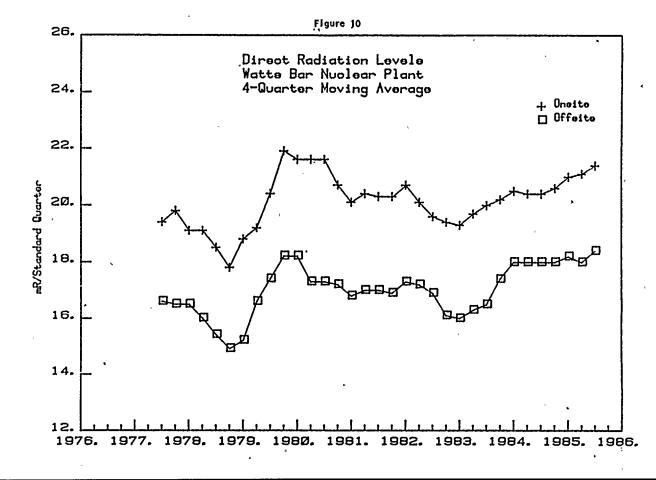
-PCI/KG - 0-037 BQ/KG (WET WEIGHT)

LOCAT	NAME OF FACI Ion of facili	LITY_ <u>BROWNS_EEBBY</u> . TY_LIMESIONE	ALABAMA		-50-25922602296 PERIOD_1955	
		HEAN (F) RANGE SEE NOIE 2 4228.87(1/ 1)	DISTANCE AND DIRECTION RA	N (F) Nge	CONTROL LOCATIONS MEAN (F) RANGE SEE_NOIE_2 3786.61(1/ 1) 3786.61 - 3786.61	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
AMMA (GELI)		4228.87 - 4228.87	4228.87	- 4220.57	3130.01 - 3109.01	đ
K-40	NOT ESTAB	2103.35(1/ 1) 2103.35 - 2103.35		1/ 1) - 2103.35	2103.69(1/ 1) 2103.69 - 2103.69	
91-214	NOT ESTAB	6.31(1/ 1) 6.31 - 6.31	7 HILES NNW 6.31(6.31	1/ 1) - 6.31	8.97(1/ 1) 8.97 - 8.97	
PB-214	NOT ESTAB	2.20(1/ 1) 2.20 - 2.20	7 MILES NNW 2.20(2.20	1/ 1) - 2.20	3.10(1/ 1) 3.10 - 3.10	


NOTE: 1. NOMINAL LOWER LIMIT OF DETECTION (LLD) AS DESCRIBED IN TABLE 3.


NOTE: 2. MEAN AND RANGE BASED UPON DETECTABLE MEASUREMENTS ONLY. FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F).




pC1/1.

39

Reservoir Monitoring

Samples are collected from various Tennessee River cross sections as detailed in table 23. Samples collected for radiological analysis include water and plankton from three of these cross sections and bottom fauna and sediment from four cross sections. The locations of these cross sections are shown on the accompanying map (figure 11) and conform to sediment ranges established and surveyed by TVA.

Water

Water samples are collected automatically by sequential type sampling devices at three cross sections and composite samples analyzed monthly for gross beta and gamma-emitting radionuclides. Further composites are made quarterly for strontium and tritium analyses. In addition to these required samples, grab samples were also collected monthly from the vicinity of the plant discharge to the Tennessee River, and at a point on the Elk River, and analyzed for gross beta, gamma-emitting radionuclides, and strontium. Results are displayed in table 24. Figure 12 presents a plot of the gross beta activity in surface water from 1968 through 1985. No gross beta measurements were made in surface water samples in 1978. The levels reported are consistent with gross beta levels measured in surface water samples taken from the Tennessee River in preoperational monitoring programs conducted by TVA at other sites.

Fish

Radiological monitoring for fish is accomplished by analysis of composite samples of adult fish taken from each of three contiguous reservoirs--Wilson, Wheeler, and Guntersville. No permanent sampling stations have been established within each reservoir; this reflects the movement of fish species within reservoirs as determined by TVA data from the BFN preoperational monitoring program. Two species, white crappie and smallmouth buffalo, are collected representing both commercial and game species. Sufficient fish are collected in each reservoir to yield 250 to 300 grams oven-dry weight for analytical purposes. All samples are collected semiannually and analyzed for gamma-emitting radionuclides. The composite samples contain approximately the same quantity of flesh from each fish. For each composite a subsample of material is drawn for counting. Results are given in tables 25, 26, and 27.

Sediment

Sediment samples are collected semiannually from Ponar dredge hauls made for bottom fauna. Gamma radioactivity and ⁸⁹Sr and ⁹⁰Sr content are determined in composite samples collected from each of four stations. Locations of these stations are shown in table 23. Results are shown in 'table 28.

Plankton

Net plankton (all phytoplankton and zooplankton caught with a 100 μ mesh net) is collected for radiological analyses at each of three stations by vertical tows with a 1/2-meter net. At least 50 grams (wet weight) of material is necessary for analytical accuracy. Samples are collected semiannually and submitted for gross beta analysis, and when quantities are sufficient, for gamma activity and ⁸⁹Sr and ⁹⁰Sr content. During this reporting period, samples collected during the first half of the year contained insufficient volume for any analysis. During the second half of the year, sufficient quantities of plankton were collected for only one gross beta analysis. Results are presented in table 29.

Bottom Fauna

The flesh and shells of Asiatic clams collected semiannually from the cross sections at four stations (table 23) are analyzed for gamma-emitting radionuclides. Levels of 89 Sr and 90 Sr are determined on the shells; and on the flesh when sufficient amounts were available. A 50-gram (wet weight) sample provides sufficient activity for counting. Results are given in tables 30 and 31. Clams from one location were not available; and from two locations, insufficient quantities were collected to permit analysis of clam flesh.

Table 23

SAMPLING SCHEDULE - RESERVOIR MONITORING

Biological samples (collected semiannually) Zooplankton, Water Samples chlorophy11, Benthic Fish^a (collected monthly) River/river mile phytoplankton fauna Sediment Х Tennessee 277.9 X Х Tennessee 285.2 b Х X Tennessee 288.7 Tennessee 291.7 Х b Tennessee 293.5 X X Tennessee 293.7 С (discharge area) Tennessee 305.0 b (Control)

Х

Х

a. Gill net and/or electroshocker will be used for collection. Samples of fish are collected from Guntersville, Wheeler, and Wilson Reservoirs.

Х

b. Automatic sampler.

c. Grab sample.

Tennessee 307.5

(Control)

(Control)

E1k 20.5

£

С

л

T	A	B	L	E	24	

RADIOACTIVITY IN SURFACE WATER TOTAL

PCI/L - 0.037 BQ/L

LOCAT	NAME OF FACI Ion of Facili	LITY_B80HNS_EE8BY	ALABAMA	DOCKET NO. Reporting	_50-252/260/226 PERIOD_1285	
TYPE AND TOTAL NUMBER OF ANALYSIS PERFORMED ROSS ALPHA	08	ALL INDICATOR LOCATIONS MEAN (F) RANGE SEE_NQIE_2 O VALUES <lld< td=""><td>LQCATION_WIH_HIGH NAME DISTANCE AND DIREC</td><td>ESI_ANNUAL_MEAN Mean (F) TION RANGE SEE_MQIE_2</td><td>CONTROL LOCATIONS MEAN (F) RANGE SEE_NQIE_2 1 VALUES <lld< td=""><td>NONROUTINE</td></lld<></td></lld<>	LQCATION_WIH_HIGH NAME DISTANCE AND DIREC	ESI_ANNUAL_MEAN Mean (F) TION RANGE SEE_MQIE_2	CONTROL LOCATIONS MEAN (F) RANGE SEE_NQIE_2 1 VALUES <lld< td=""><td>NONROUTINE</td></lld<>	NONROUTINE
65 Jamma (geli)	2.00	ANALYSIS PERFORMED 3.13(35/ 39) 2.13 - 4.37		3.27(12/ 13) 2.37 - 4.31		
65 K-40	NOT ESTAB	11.52 - 11.52	TRM 293.7 BFN DISCHARGE	11.52(1/ 13) 11.52 - 11.52	20.68 - 39.53	
	NOT ESTAB	7.02(11/ 39) 0.34 - 23.29	TRM 285.2	9.47(3/ 13) 0.34 - 22.93	10.36(17/ 26) 0.13 - 44.09	
PB-214	NOT ESTAB	3.08(6/ 39) 0.78 - 6.30			7.29(15/ 26) 0.47 - 18.90	
PB-212	NOT ESTAB	1.74(6/ 39) 0.12 - 3.47	TRM 285.2	3.47(1/ 13) 3.47 - 5.47	1.57(10/ 26) 0.29 - 3.11	
AC-228	15.00	39 VALUES <lld< td=""><td></td><td>5.4/ 5.4/</td><td>27.49(1/ 26) 27.49 - 27.49</td><td></td></lld<>		5.4/ 5.4/	27.49(1/ 26) 27.49 - 27.49	
3R 89 20	10.00	12 VALUES <lld ANALYSIS PERFORMED</lld 			8 VALUES <lld< td=""><td></td></lld<>	
SR 90	2.00	12 VALUES <lld< td=""><td></td><td></td><td>8 VALUES <lld< td=""><td></td></lld<></td></lld<>			8 VALUES <lld< td=""><td></td></lld<>	
20 Iritium 20	330.00	ANALYSIS PERFORMED 334.51(1/ 12) 334.51 - 334.51	TRM 285.2	334.51(1/ 4) 334.51 - 334.51	333.48(1/ 8) 333.48 - 333.48	

÷

NOTE: 1. NOMINAL LOWER LIMIT OF DETECTION (LLD) AS DESCRIBED IN TABLE 3. NOTE: 2. MEAN AND RANGE BASED UPON DETECTABLE MEASUREMENTS ONLY. FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F).

RADIOACTIVITY IN WHITE CRAPPIE (FLESH)

PCI/G - 0.037 BC/G (DRY WEIGHT)

LOCAT	NAME OF FACI ION OF FACILI	LITY_BROWNS_EERBY		DOCKET NO. Reporting	_50-25922602296 PERIO0_1285	
TOTAL NUMBER	OF Detection (LLD)	MEAN (F) Range	NAME DISTANCE AND DIRECT	SI_ANUVAL_MEAN MEAN (F) Ion Range SEE NOTE 2	MEAN (F) Range	NONROUTINE
GROSS BETA 6 GAMMA (GELI)	0.10	32.66(4/ 4) 27.58 - 37.75	WILSON RESERVOIR TRM 259-275	SEE NOIE 2 32.67(2/ 2) 27.58 - 37.75	29.20(2/ 2) 28.67 - 29.75	
6 CS-137	0.02		WILSON RESERVOIR TRH 259-275	0.09(2/ 2) 0.07 - 0.11	0.09(2/ 2) 0.09 - 0.10	
K-40	NOT ESTAB	14.03(4/ 4) 10.81 - 16.81	WILSON RESERVOIR	14.25(2/ 2)	15.15(2/ 2) 14.59 - 15.71	
81-214	0.02	4 VALUES <lld< td=""><td></td><td></td><td>0.02(1/ 2) 0.02 - 0.02</td><td></td></lld<>			0.02(1/ 2) 0.02 - 0.02	
PB-214	NOT ESTAB	0.02(1/ 4) 0.02 - 0.02	WHEELER RES TRM 275-349	0.02(1/ 2) 0.02 - 0.02	9.01(1/ 2) 0.01 - 0.01	
PB-212	NOT ESTAS	0.00(1/ 4)		0.00(1/ 2)	2 VALUES <lld< td=""><td></td></lld<>	

NOTE: 1. NOMINAL LOWER LIMIT OF DETECTION (LLD) AS DESCRIBED IN TABLE 3. NOTE: 2. MEAN AND RANGE BASED UPON DETECTABLE MEASUREMENTS ONLY. FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F).

RADIOACTIVITY IN SMALLHOUTH BUFFALO (FLESH)

PCI/G - 0.037 BQ/G (DRY WEIGHT)

LOCAT	NAME OF FACI	LITY_BROWNS_EERBY		DOCKET NO. Reporting	_50-25222602226 PERIO0_1285	
TYPE AND TOTAL NUMBER Of Analysis Performed	LOWER LIMIT OF Detection (LLD)	ALL INDICATOR LOCATIONS MEAN (F) RANGE	LEGATION_WITH_HIGHE NAME DISTANCE AND DIRECT	MEAN (F) ION RANGE	CONTROL Locations Mean (F) Range	NUMBER OF Nonroutine Reported Measurements
		SEE_NOIE_2		SEE_NGIE_2	SEE_NQIE_2	
GROSS BETA	0.10	19.33(4/ 4)		20.16(2/ 2)	20.06(2/ 2)	
6 Jamma (geli)	5	16.62 - 20.38	TRM 275-349	20.07 - 20.25	18.89 - 21.22	
6		5				
CS-137	0.02	0.03(2/ 4) 0.03 - 0.03		0.03(1/ 2) 0.03 - 0.03	0.03(1/ 2)	
K-40	NOT ESTAB	9.95(4/ 4)	WHEELER RES	10.64(2/ 2)	0.03 - 0.03 9.20(2/ 2)	
BI-214	0.02	8.65 - 11.90 4 VALUES <lld< td=""><td>TRM 275-349</td><td>9.37 - 11.90</td><td>7.49 - 10.90 0.07(2/ 2)</td><td></td></lld<>	TRM 275-349	9.37 - 11.90	7.49 - 10.90 0.07(2/ 2)	
PB-214	NOT ESTAB	0.04(1/ 4)		0.04(1/ 2)	0.04 - 0.10 0.06(2/ 2)	
PB-212	NOT ESTAB	0.04 - 0.04 0.00(2/4)	WHEELER RES	0.04 - 0.04 0.01(1/ 2)	0.04 - 0.08 0.00(1/ 2)	
~~ ~~		0.00 - 0.01	TRM 275-349	0.01 - 0.01	0.00 - 0.00	
SR 89	0.50	2 VALUES <lld< td=""><td></td><td></td><td>0 VALUES <lld< td=""><td></td></lld<></td></lld<>			0 VALUES <lld< td=""><td></td></lld<>	
2		ANALYSIS PERFORMED				
SR 90	0.10	2 VALUES <lld< td=""><td></td><td></td><td>O VALUES <lld< td=""><td></td></lld<></td></lld<>			O VALUES <lld< td=""><td></td></lld<>	
2		ANALYSIS PERFORMED		-		

NOTE: 1. NOMINAL LOWER LIMIT OF DETECTION (LLD) AS DESCRIBED IN TABLE 3. NOTE: 2. MEAN AND RANGE BASED UPON DETECTABLE NEASUREMENTS ONLY. FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F).

48

RADIOACTIVITY IN SHALLMOUTH BUFFALO (WHOLE)

PCI/G - 0.037 BQ/G (ORY WEIGHT)

TYPE AND Total Number Of Analysis	LOWER LIMIT OF Detection	ALL 4 Indicator Locations Mean (F)	LOCATION_WITH_HIGHE	SI_ANNUAL_MEAN Mean (f)	CONTROL Locations Mean (F)	NUMBER OF Nonroutine Reported
PERFORMED	(LLD)	RANGE	DISTANCE AND DIRECT		RANGE	MEASUREMENTS
FLATURALD	_SEE_NOIE_1	SEE_NOIE_2		SEE_NOIE_2	SEE NOIE 2	
ROSS BETA	0.10	17.59(4/ 4)	WHEELER RES	17.93(2/ 2)	19.59(2/ 2)	
6		14.48 - 20.02		17.35 - 18.52	17.54 - 21.64	
AMMA (GELI) 6						
CS-137	0.02	0.03(2/ 4) 0.02 - 0.03	WILSON RESERVOIR TRM 259-275	0.03(2/2) 0.02 - 0.03	2 VALUES <lld< td=""><td></td></lld<>	
⁻ κ-40	NOT ESTAB	7.08(4/ 4) 6.65 - 8.00	WHEELER RES	7.49(2/ 2) 6.97 - 8.00	11.04(2/ 2) 7.37 - 14.70	
BI-214	0.92	0.04(1/ 4) 0.04 - 0.04	WHEELER RES TRM 275-349	0.04(1/ 2) 0.04 - 0.04	0.04(1/ 2) 0.04 - 0.04	
PB-214	NOT ESTAB	0.03(4/ 4) 0.01 - 0.04	WHEELER RES	0.03(2/2) 0.03 - 0.04	2 VALUES <lld< td=""><td></td></lld<>	
P8-212	NOT ESTAB	0.01(3/ 4) 0.00 - 0.01	WILSON RESERVOIR	0.01(1/ 2) 0.01 - 0.01	2 VALUES <lld< td=""><td>•</td></lld<>	•

NOTE: 1. NOMINAL LOWER LIMIT OF DETECTION (LLD) AS DESCRIBED IN TABLE 3. NOTE: 2. MEAN AND RANGE BASED UPON DETECTABLE MEASUREMENTS ONLY. FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F).

RADIOACTIVITY IN SEDIMENT

PCI/G - 0.037 BQ/G (DRY WEIGHT)

				DOCKET NO. Reporting		
TYPE AND Total Number Of Analysis Performed	LOWER LIMIT OF Detection (LLD) See Note 1	ALL INDICATOR LOCATIONS MEAN (F) RANGE SEE NOTE 2	LQCAIION_WIIH_WIGH NAME DISTANCE AND DIREC	ESI_ANNUAL_BEAN MEAN (F) TION RANGE SEE_NQIE_2	CONTROL LOCATIONS MEAN (F) RANGE SEE NOTE 2	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
JANNA (GECT)						
CO-60	0.01	0.15(9/ 10) 0.02 - 0.23	TRM 293.7 BFN DISCHARGE	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.03(2/ 4) 0.02 - 0.03	
CS-134	0.08	0.11(5/ 10) 0.08 - 0.18	TRM 293.7 BFN DISCHARGE	0.12(3/ 3) 0.08 - 0.18	4 VALUES <lld< td=""><td></td></lld<>	
CS-137	0.02	0.79(10/ 10) 0.04 - 1.27	TRM 288.78	1.08(2/ 2) 0.89 - 1.27	0.30(4/ 4) 0.17 - 0.51	
K-40	NOT ESTAB	13.05(10/ 10) 7.92 - 16.72	TRM 288.78	16.23(2/ 2) 15.73 - 16.72	13.00(4/ 4) 11.76 - 13.69	
ZN-65	0.02	7.92 - 16.72 0.04(2/10) 0.02 - 0.07	TRM 293.7 BFN DISCHARGE	0.07(1/ 3) 0.07 - 0.07	4 VALUES <lld< td=""><td>-</td></lld<>	-
81-214	0.02	1.32(10/ 10) 0.36 - 1.91	TRM 288.78	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.12(4/ 4) 0.98 - 1.22	
BI-212	0.10	1.49(10/ 10) 0.48 - 1.97	TRM 288.0	1.89(1/ 1) 1.89 - 1.39	1.35(4/ 4) 1.95 - 1.47	
PB-214	NOT ESTAB	1.42(10/ 10) 0.40 - 1.99	TRM 288.78	1.96(2/ 2) 1.93 - 1.99	1.19(4/ 4) 1.01 - 1.40	•
PB-212	NOT ESTAB	1.44(10/ 10) 0.43 - 1.96	TRM 286.78	1.78(2/ 2) 1.60 - 1.96	1.27(4/ 4) 1.17 - 1.36	-
RA-226	NOT ESTAB	1.02(6/ 10) 0.36 - 1.34	TRM 288.0	1.34(1/1) 1.34 - 1.34	1.09(3/ 4) 0.98 - 1.22	
RA-224	NOT ESTAB	1.20(5/ 10)	TRM 288.0	1.86(171) 1.86 - 1.86	1.50(2/ 4) 1.48 - 1.51 0.27(3/ 4)	
BE-7	NOT ESTAB	0.18(27 10) 0.16 - 0.20	TRM 292.7	0.20(-17-1) 0.20 - 0.20	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
TL-208	0.02	0.15 - 0.68	1KM 200+70	0.63 - 0.68	0.42 - 0.47 1.32(4/ 4)	
AC-228	0.00	0.44 - 2.02 2.54(2/ 10)	IKM 200+70	1.67 - 1.91	1.15 - 1.41 4.27(2/4)	
FA-2340	1 50	2.18 - 2.91	INA 471070	$1 \cdot 29 - 1 \cdot 39$ $1 \cdot 26(2/2)$ $1 \cdot 93 - 1 \cdot 99$ $1 \cdot 78(2/2)$ $1 \cdot 60 - 1 \cdot 96$ $1 \cdot 34(1/1)$ $1 \cdot 34 - 1 \cdot 34$ $1 \cdot 86(1/1)$ $1 \cdot 34 - 1 \cdot 34$ $1 \cdot 86(1/1)$ $1 \cdot 86(-1/1)$ $1 \cdot 86 - 1 \cdot 86$ $0 \cdot 20(-1/1)$ $1 \cdot 86$ $0 \cdot 20(-1/1)$ $0 \cdot 20 - 0 \cdot 20$ $0 \cdot 65(2/2)$ $0 \cdot 65(2/2)$ $0 \cdot 65(-2/2)$ $0 \cdot 65(-2/2)$ $1 \cdot 67 - 1 \cdot 91$ $2 \cdot 91(-1/1)$ $2 \cdot 91(-1/1)$ $2 \cdot 91 - 2 \cdot 91$ $0 \cdot 41(-2/2)$ $0 \cdot 45$	3.66 - 4.87 2 VALUES <llo< td=""><td></td></llo<>	
SR 89 8	1.33	ANALYSIS PERFORMED		- <i>44</i>		
SR 90 8	0.15	0.35(4/ 6) 0.28 - 0.45	TRM 277.96	0.41(2/ 2) 0.36 - 0.45	0.34(1/2) 0.34 - 0.34	

NOTE: 1. NOMINAL LOWER LIMIT OF DETECTION (LLD) AS DESCRIBED IN TABLE 3. NOTE: 2. HEAN AND RANGE BASED UPON DETECTABLE MEASUREMENTS ONLY. FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F).

S

6.2

RADIOACTIVITY IN PLANKTON (SAMPLE 1)

PCI/G - 0.037 BQ/G (DRY WEIGHT)

	LITY_BBOWNS_EEBBY TY_LIMESIONE			0. <u>50-25922002226</u> G PERIOD <u>1285</u>	
TYPE AND TOTAL NUMBER OF ANALYSIS PERFORMED GROSS BETA 1 LOWER LIMIT OF DETECTION (LLD) SEE NOIE-1 NOT ESTAB	ALL [®] INDICATOR LOCATIONS MEAN (F) RANGE SEE_NQIE_2 SEE	LOCATION_WITH_HIGHESI_A NAME DISTANCE AND DIRECTION NOTE 3	NNUAL_MEAN Mean (F) Range _See_Ngis_2	CONTROL LOCATIONS MEAN (F) RANGE SEE_NOIE_2 34.71(1/ 1) 34.71 - 34.71	NUMBER OF Nonroutine Reported Measurements

NOTE: 1. NOMINAL LOWER LIMIT OF DETECTION (LLD) AS DESCRIBED IN TABLE 5.

NOTE: 2. HEAN AND RANGE BASED UPON DETECTABLE MEASUREMENTS ONLY. FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F).

NOTE: 3. Insufficient sample available for analysis.

ະ ກ

RADIOACTIVITY IN CLAH FLESH

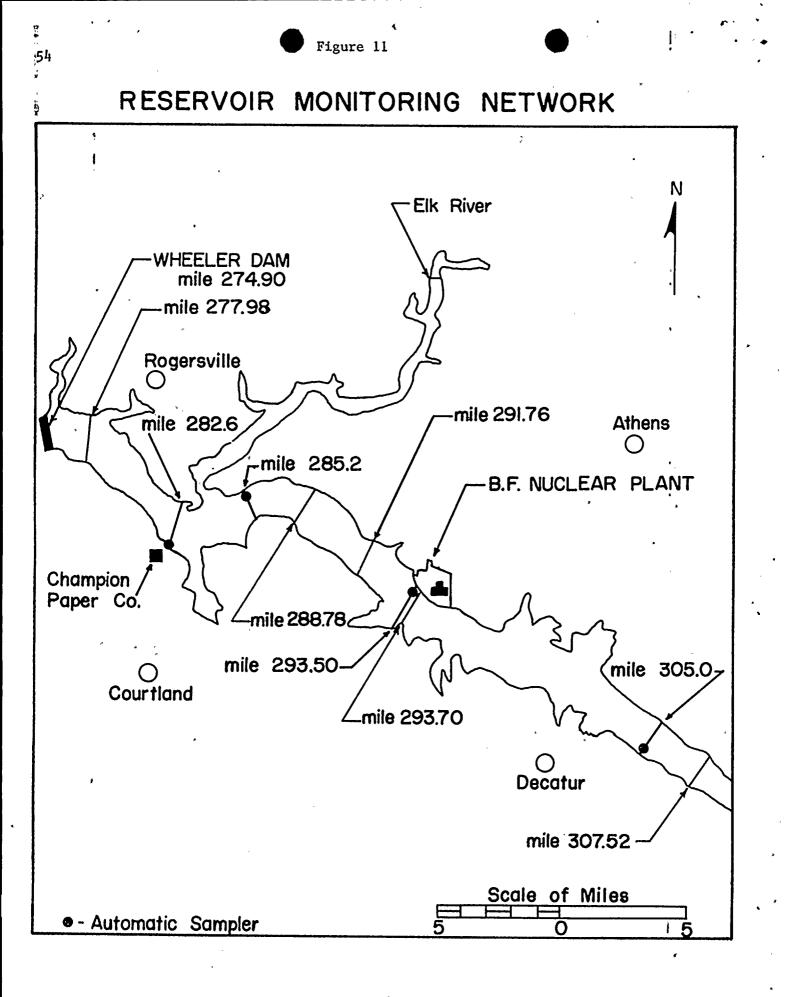
PCI/G - 0.037 BQ/G (DRY WEIGHT)

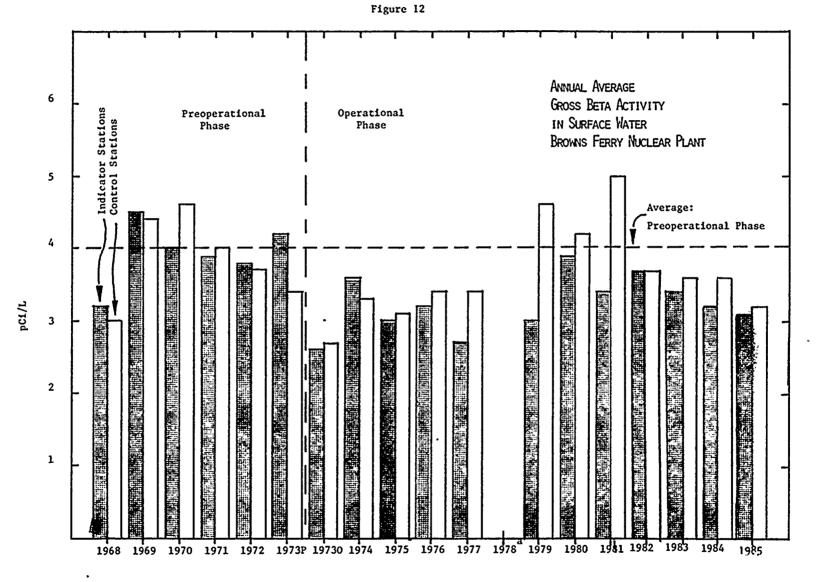
· LOCAT	NAME OF FACI Ion of Facili	LITY_BROWNS_EEBBY TY_LIMESIONE		DCCKET NO Reporting	50-252/260/295 PERIOD_1985	
TYPE AND TOTAL NUMBER OF ANALYSIS PERFORMED JANMA (GELI) 12	LOWER LIMIT OF Detection (LLD) _SEE_NQIE_1	INDICATOR LOCATIONS MEAN (F) Range	NAME DISTANCE AND DIREC	EST_ANNVAL_BEAN MEAN (F) TION RANGE SEE_NGIE_2	CONTROL LOCATIONS MEAN (F) RANGE SEE_NOIE_2	NUMBER OF Nonroutine Reported Measurements
C0-60	0.08	0.16(1/ 8) 0.16 - 0.16		0.16(1/ 3)	4 VALUES <lld< td=""><td></td></lld<>	
K-40	NOT ESTAB	4.00(5/ 8)		12.43(1/ 1)	· 2.82(4/ 4)	
ZN-65	0.17	0.89 - 12.43 1.09(4/ 8) 0.64 - 1.81		12.43 - 12.43 1.53(2/ 3) 1.24 - 1.81	0.90 - 5.49 4 VALUES <lld< td=""><td>1 (Note 3)</td></lld<>	1 (Note 3)
BI-214	NOT ESTAB	2.40(8/ 8) 0.33 - 7.42	TRM 288.78	4.90(1/ 1) 4.90 - 4.90	1.45(4/ 4) 0.23 - 4.66	-
PB-214	NOT ESTAB	2.11(8/ 8) 0.30 - 6.96	TRH 277.98	2.96(1/ `1)	1.40(4/ 4)	
P8-212	NOT ESTAB	0.10(5/ 8) 0.04 - 0.21	TRM 277.98	2.96 - 2.96 0.21(1/ 1)	0.12 - 4.98 0.20(3/ 4)	
TĻ-208	NOT ESTAB	0.03(3/ 8)	TRM 291.76	0.21 - 0.21 0.05(1/ 1)	0.11 - 0.25 0.02(- 1/ 4)	
AC-228	NOT ESTAB	0.02 - 0.05 0.16(2/ 8) 0.15 - 0.17	TRM 293.7 BFN DISCHARGE	0.05 - 0.05 0.16(2/ 3) 0.15 - 0.17	9.02 - 0.02 0.14(1/ 4) 0.14 - 0.14	

NOTE: 1. NOMINAL LOWER LIHIT OF DETECTION (LLD) AS DESCRIBED IN TABLE 3. NOTE: 2. MEAN AND RANGE BASED UPON DETECTABLE MEASUREMENTS ONLY. FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F).

3. Zinc-65 in clam flesh reported to the Nuclear Regulatory Commission on June 25, 1985. Samples collected in November contained no evidence of fission or activation products. NOTE:

RADIOACTIVITY IN CLAM SHELL


PCI/G - 0.037 BQ/G (DRY WEIGHT)


NAME OF FACILITY_BBQHNS_EEBBY	DOCKET NO. 50-25922602296
LOCATION OF FACILITY_LINESIONEALABAMA	REPORTING PERIOD 1985

TOTAL NUMBER	OF Detection (LLD)	MEAN (F) Range	LCCATION_WITH_HIGHEST_ANNUAL_MEA NAME MEAN (F DISTANCE AND DIRECTION RANGE SEE_NOIE	>	MEAN (F) Range	NONROUTINE Reported Measurements
12						
со-60 к-40	0.01	0.01(1/8) 0.01 - 0.01	TRM 293.7 0.01(1 BFN DISCHARGE 0.01 -		4 VALŲES <lld< td=""><td></td></lld<>	
K-40	NOT ESTAB	0.13(6/ 3) 0.01 - 0.29	TRM 277.98 * 0.22(1	/ 1)	0.14(2/ 4)	
81-214	0.05	0.16(6/ 3)	TRN 288.75 0.25(1	/ 1)	0.19(3/ 4)-	
BI-212	0.10	0.12(1/ 3)	0.25 - TRM 292.7 0.12(1	/ 1)	0.09 - 0.35 4 VALUES <lld< td=""><td></td></lld<>	
P8-214	0.05	0.12 - 0.12 0.17(7/ 3)	TRM 288.78 0.27(1	/ 1)	0.17(3/ 4)	
P8-212	NOT ESTAB	0.06(8/ 3)	TRM 288.78 0.16(1	/ 1)	0.09 - 0.32 0.02(3/ 4)	
RA-226	0.05		0.16 - TRM 295.7 0.12(1	/ 3)	0.01 - 0.04 4 VALUES <lld< td=""><td></td></lld<>	
TL-208	0.02	0.05(3/ 3)	BFN DISCHARGE 0.12 - TRM 288.78 0.08(1)	/ 1)	4 VALUES <lld< td=""><td></td></lld<>	
AC-228	0.06	0.02 - 0.03 0.20(7/ 8)	0.08 - TRM 288.78 0.40(1.	/ 1)	0.13(3/ 4)	
	F 20	0.07 - 0.40 4 VALUES <lld< td=""><td>0.40 -</td><td>0.40</td><td>0.11 - 0.14</td><td>*</td></lld<>	0.40 -	0.40	0.11 - 0.14	*
SR 89 6	- 5.00				2 VALUES <lld< td=""><td></td></lld<>	
ऽ९ ४०	1.00	ANALYSIS PERFORMED	TRM 293.7 1.09(1.	/ 2)	1.02(1/ 2)	
53 70 6	1.55	1.09 - 1.09	BFN DISCHARGE 1.09 -		1.02 - 1.02	

NOTE: 1. NOMINAL LOWER LIMIT OF DETECTION (LLD) AS DESCRIBED IN TABLE 3. NOTE: 2. MEAN AND RANGE BASED UPON DETECTABLE MEASUREMENTS ONLY. FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F).

ង

a. No gross beta measurements made in 1978.

SS

· · ·

.

.

Quality Control

A quality control program has been established with the Alabama Department of Public Health Environmental Health Administration Laboratory and the Eastern Environmental Radiation Facility, Environmental Protection Agency, Montgomery, Alabama. Samples of air, water, milk, and vegetation collected around BFN are forwarded to these laboratories for analysis, and results are exchanged for comparison.

Data Analysis

The results from each sample are compared with the concentrations from the corresponding control stations and appropriate preoperational and background data to determine influences from the plant. During this report period, concentrations in two samples were found to exceed the reporting levels as outlined in the plant Environmental Technical Specifications.

Cobalt-60 was identified in one vegetation sample collected near the site boundary in April. No indication of the presence of cobalt-60 was observed either at the control stations or at any of the other stations around the plants. Subsequent samples showed no indication of the presence of cobalt-60. This single, isolated occurrence, the absence of other fission and activation products in the sample, and the lack of an increase in cobalt-60 releases from the plant prevented an identification of the causes for the presence of the isotope in the sample.

In May 1985, zinc-65 was identified in one sample of clam flesh taken from the Tennessee River approximately one-half mile downstream from the plant discharge. No fission or activation products had been identified in this medium during the previous report period. Followup samples collected in June revealed zinc-65 at these downstream stations, with highest value being about two-thirds and the other values about one-third of the concentration reported in May. No fission or activation products were found in clam flesh samples collected in the November sample period. The exposure to an individual consuming clam with the highest activity was calculated to be less than 0.01 mRem/year, or 0.03 percent of the annual exposure limit. However, to the best of our knowledge clams from the Tennessee River are not harvested for human consumption, therefore, even this small exposure is unlikely to take place.

Dose estimates were made from concentrations of radioactivity found in samples of environmental media. Media sampled include, but are not limited to, air, milk, food products, drinking water, and fish. Inhalation and ingestion doses estimated for persons at the indicator locations were essentially identical to those determined for persons at control locations. Greater than 95 percent of those doses were contributed by the naturally occurring radionuclide potassium-40, and by strontium-90 and cesium-137 which are long-lived radioisotopes found in fallout from nuclear weapons testing.

57

Conclusions

7

It is concluded from the above analysis of the data and from the trend plots presented earlier that there were no measurable increases in the exposure to members of the general public attributable to the operation of BFN. Indications of the presence of small quantities of fission and activation products have been seen, especially in aquatic media. Although the levels reported sometimes exceed the values reported at the corresponding control stations, they are similar to levels reported in samples collected in conjunction with preoperational monitoring programs being conducted by TVA at nuclear plant construction sites upstream from Browns Ferry. The radioactivity reported herein may be the result of fallout, fluctuations in the existing environment, or computer program artifacts, and may include small contributions from plant operations. Any activity resulting from plant operations which may be present is generally difficult to distinguish from background.