	REGU	LACCE (ACCE LACY INF	CLERATED RI ORMATION	DS PROCE	(1 SSIN UTICOSYSTEM	(RIDS)		
ACCESSI FACIL: AUTH. ROBINS RECIP	ON NBR:940818 50-400 Shearon NAME AN ON,W.R. Cas .NAME RI	0204 DC n Harris N UTHOR AFFI rolina Pow ECIPIENT A	C.DATE: 9 Luclear Po LIATION er'& Ligh FFILIATIO	4/08/08 wer Pla t Co.	NOTARIZED: nt, Unit 1,	NO Carolin	DOCKET # a 05000400	
SUBJEC	T: "Harris Nu 940808 ltr	clear Plan •	t Unit 1,	Cycle 6	Startup Tes	t Rept.	" W/	F F
DISTRI TITLE:	BUTION CODE: 3 Startup Repor	IE26D COP rt/Refueli	IES RECEI ng Report	VED:LTR (per To	ENCL ECC Specs	SIZE:	50	_
NOTES:	Application fo	or permit	renewal f	iled.			05000400	C
	RECIPIEN ID CODE/NA PD2-1 PD	F CO AME LT 1	PIES TR ENCL l	REC ID CO LE,N	IPIENT DDE/NAME	COPIE LTTR E 2	S NCL 2	٦ ا
INTERNAL	ACRS	5 ו	5 1	AEOD/DS	SP/TPAB	1	1	٦
E C	REG FILE	02 1	ī	RGN2	FILE 01	1	1	Y
EXTERNAL	NRC PDR	1	1	NSIC		1	1	
								1
						•		C

NOTE TO ALL "RIDS" RECIPIENTS: PLEASE HELP US TO REDUCE W

.

PLEASE HELP US TO REDUCE WASTE! CONTACT THE DOCUMENT CONTROL DESK, ROOM PI-37 (EXT. 504-2083) TO ELIMINATE YOUR NAME FROM DISTRIBUTION LISTS FOR DOCUMENTS YOU DON'T NEED!

.

.

.

TOTAL NUMBER OF COPIES REQUIRED: LTTR 15 ENCL 15

MA

С

С

ι

N

Ε

Ν

٦

.

0

7.7

ž. *

Carolina Power & Light Company PO Box 165 New Hill NC 27562 William R. Robinson Vice President Harris Nuclear Plant

SERIAL: HNP-94-062

AUG 0 8 1994

File Number: HO-940352

United States Nuclear Regulatory Commission ATTENTION: Document Control Desk Washington, DC 20555

SHEARON HARRIS NUCLEAR POWER PLANT DOCKET NO. 50-400/LICENSE NO. NPF-63 STARTUP TEST REPORT

Gentlemen:

In accordance with the reporting requirements for the Shearon Harris Nuclear Power Plant (SHNPP) Technical Specifications, Section 6.9.1.1,Carolina Power & Light Company herein submits the Startup Test Report for Cycle 6 operation. The report is required because the SHNPP core for Cycle 6 contains fuel purchased from a different supplier, Siemens Power Corporation.

Questions regarding this matter may be referred to Mr. R. W. Prunty at (919) 362-2030.

Sincerely, 18-

W. R. Robinson

SDC/sdc

c: Mr. S. D. Ebneter Mr. N. B. Le Mr. J. E. Tedrow

PDR

170026

9408180204 940808

ADOCK 05000400

State Road 1134 New Hill NC

PDR

,

Serial: NF-94A-0597

Harris Nuclear Plant Unit 1, Cycle 6 Startup Test Report

The First Reload of a Transition from Westinghouse to Siemens Supplied Fuel

NFM&SA File: 908.04

Page 1 of 50 (Rev. 0)

Harris Nuclear Plant Unit 1, Cycle 6

٤.,.

Startup Test Report

Table of Contents

۲		Pa	ge
1.	Introduction and Cycle Description	•••	3
2.	Control and Shutdown Rod Drop Times	•••	5
[.] 3.	Control and Shutdown Rod Bank Worth Measurements	•••	6
4.	Endpoint Measurements	• •	8
5.	Isothermal Temperature Coefficients	••	9
6.	Power Distributions	• '	10
7.	Intermediate Range Detector Setpoint Verification	•	11
8.	Conclusions	• •	12
9.	References	•	13
10.	Appendix	• •	14
11.	Distribution List	. :	50

.

نې د ۲

1.0 Introduction and Cycle Description

This report documents the startup test results for Harris Nuclear Plant Unit 1, Cycle 6. This report will focus primarily on the results obtained from the various startup physics tests and on a comparison between measured and predicted data supplied by Siemens Power Corporation (SPC). Note that this report is not intended to be a detailed description of the startup tests; for detailed documentation of the tests, refer to the following procedures:

- EPT-069 Initial Criticality
- EPT-026 Reactivity Computer Initial Setup and Calibration Using the Reactivity Computer - Detector
- EPT-070 Reactivity Computer Initial Setup and Calibration
- EPT-067 Boron Endpoint Measurement All Rods Out
- EST-707 Special Test Exceptions
- EST-703 Moderator Temperature Coefficient Measurement BOL After Each Refueling
- EST-701 Shutdown Margin Calculation Mode 2
- EPT-068 Reactivity Worth of the Control and Shutdown Banks Utilizing the Rod Swap Technique
- EST-724 Shutdown and Control Rod Drop Test Using Computer
- FMP-101 Incore Thermocouple and Flux Mapping
- EST-710 Hot Channel Factor Tests
- EPT-009 Intermediate Range Detector Setpoint Verification

Specifically, the following items are addressed:

- Control Rod Drop Times
- o Control and Shutdown Bank Worth Measurements
- Endpoint Measurements
- o Isothermal Temperature Coefficients
- Power Distributions
- o Intermediate Range Detector Setpoint Verification
- o Conclusions

٠

•

-...

is Nuclear Plant Unit 1, Cycle 6 Startu est Report

1.0 Introduction and Cycle Description (Continued)

Among the items discussed for each of the topics above will be measured data, comparisons to predicted data, and applicable acceptance criteria which must be satisfied for the successful completion of the tests.

Harris Unit 1 is a three-loop Westinghouse PWR reactor currently in its sixth cycle of operation. The rated thermal power is 2775 MWt. The reactor core consists of 157 assemblies grouped into four regions for Cycle 6; with 52 fresh Siemens High Thermal Performance (HTP) assemblies, 96 carryover Westinghouse Vantage-5 assemblies and 9 Westinghouse reinserted LOPAR assemblies. The 9 reinserted assemblies were used because of the potential to exceed the peak pin burnup limits in the assemblies that they replaced. Tables 1.1, 1.2, 1.3 and 1.4 provide a review of the Cycle 6 core design parameters and a description of each fuel type. Figures 1.1 and 1.2 provide the core loading pattern and the thimble and control rod locations, respectively. Figure 1.3 provides the gadolinia loading in the fresh fuel assemblies.

There are several new features in Cycle 6. The fresh fuel is now supplied by Siemens Power Corporation (SPC) and the burnable poison in the fresh fuel is gadolinium oxide (Gd_2O_3) . Additional changes to the Harris Plant include the elimination of the RTD bypass manifold, a T_{HOT} reduction of 8°F and the removal of the neutron source assemblies from use in the Cycle 6 core.

The predicted full power Cycle 6 length is 420 EFPDs based on a 463 EFPD Cycle 5.

Cycle 6 initial criticality was achieved on May 10, 1994; the unit synchronized to the grid on 5/12/94. Following criticality, checkouts of the reactivity computers (connected to NI-41 and Reactivity Computer Detector) were performed by comparing period measurements to the startup rate indicated by the computer. The six-group constants input to the reactivity computers were provided by SPC and are listed in Table 1.5. After confirming correct operation of the reactivity computers, startup physics testing continued in accordance with the established schedule. The reactivity computer connected to NI-41 was disconnected since the reactivity computer connected to the Reactivity Computer Detector was performing satisfactorily. The results of the Low Power Physics tests and the applicable acceptance criteria are provided in Tables 1.6 and 1.7.

÷

2.0 Control and Shutdown Rod Drop Times

÷...

Rod drop tests were performed in accordance with procedure EST-724 at hot full flow coolant conditions. Briefly, a bank was selected and pulled to the fully withdrawn position. Rods were then dropped by opening the reactor trip breakers, thus interrupting the circuit.

Technical Specifications require that the rod drop time from the beginning of the drop to dashpot entry be no greater than 2.7 seconds at full core flow and $T_{xyg} \ge 551^{\circ}F$

In Cycle 6, all rods met the rod drop acceptance criteria.

The summarized results of the rod drop test are presented in Table 2.1. The data for the rods going into the SPC fuel has been italicized.

3.0 Control and Shutdown Rod Bank Worth Measurements

Rod worth measurements were performed in accordance with plant procedure EPT-068. This procedure uses the rod swap technique to measure all banks except for the reference bank; this bank is measured through boron dilution. The purposes of this procedure are as follows:

- 1. To verify that the reactivity worth of the reference RCC bank, as determined through reactivity computer measurement, is consistent with design predictions. The reference RCC bank is the bank that has the highest predicted reactivity worth of all control and shutdown banks when inserted into an otherwise unrodded core. In Cycle 6 the Reference Bank is Control Bank B.
- 2. To verify that the reactivity worth of each control and shutdown bank (except for the Reference Bank), as measured in the presence of the Reference Bank in a critical configuration, is consistent with design predictions.
- 3. To verify by analysis that shutdown margin is consistent with accident analysis assumptions.
- 4. To determine the critical RCS boron concentration and associated reactivity worth appropriate to an endpoint configuration. The boron endpoints of interest in this procedure are those with ARO and the reference bank fully inserted. The method used to obtain this data is similar to that used in EPT-067, except that the Reference Bank is manipulated instead of Control Bank D.

3.0 Control and Shutdown Rod Bank Worth Measurements (Continued)

The review criteria for the rod worths is as follows:

ډېر کړ

- 1. The absolute value of the percent difference between measured and predicted integral worth of the Reference Bank is (10%.
- 2. For all banks other than the Reference Bank; either
 - a. The absolute value of the percent difference between measured and predicted worths is (15%, or
 - b. The absolute value of the reactivity difference between measured and predicted worths
 is (100 pcm, whichever is greater.

The acceptance criteria requires that the sum of the measured worths be greater than 90% and less than 110% of the sum of the predicted worths.

Table 3.1 presents the integral and differential worth of Control Bank B (Reference Bank). Table 1.6 presents the measured and predicted endpoint data and measured integral worth for all banks. Figures 3.1 and 3.2 graphically compare the predicted and measured integral and differential. rod worths for Control Bank B.

The review and acceptance criteria on bank worths were met.

4.0 Endpoint Measurements

The ARO boron endpoint measurement was performed in accordance with the procedure EPT-067. The acceptance criterion for the boron endpoint measurement requires that the ARO critical boron concentration be within 500 pcm (71 ppm at Cycle 6 BOC boron worth) of the measured value.

For Cycle 6, the ARO endpoint was 16 ppm more than the predicted value (1826 ppm predicted, 1842 ppm measured). The acceptance criterion for the endpoint was met.

5.0 Isothermal Temperature Coefficient

Isothermal Temperature Coefficient (ITC) measurements were taken, in accordance with EST-703, to insure that Technical Specification requirements limiting the moderator temperature coefficient to less than or equal to +5 pcm/°F at HZP and 0.0 pcm/°F at HFP are met. Should the MTC exceed +5 pcm/°F at HZP, ARO conditions, rod withdrawal limits for startup and power ascension must be established. The ITC is measured at HZP and operating pressure with rods close to ARO.

The ITC is obtained by a uniform cooldown and heatup of the primary system with the resultant reactivity changes monitored by the reactivity computer and recorded on an X-Y plotter. All measurements are made below the nuclear heating range to minimize Doppler feedback effects. Over the temperature range used (558-553°F) the reactivity versus temperature relationship is approximately linear. As such, the coefficients were measured as the slope of the reactivity change versus the temperature change provided on the X-Y plotter. Note that the ITC measurements were taken for two cooldowns and heatups (one cooldown was discarded because of reactivity computer problems during the process) and the results averaged in order to calculate the MTC. The averaging was done to minimize the effect of boron additions to the system during the cooldown (boron additions are caused by concentration mismatches between the RCS and pressurizer). Calculation of the MTC from the measured ITC is done using the equation below and the SPC predicted HZP Doppler coefficient of -1.60 pcm/°F:

$$\alpha_{iso} = \alpha_{mod} + \alpha_{Dopp}$$

Results of the ITC/MTC measurements are presented in Tables 5.1 and 5.2 and the actual test data is provided graphically (obtained from Cycle 6 EST-703) as Figures 5.1, 5.2 and 5.3.

The results indicate a negative MTC of -2.2 pcm/°F at HZP, ARO conditions indicating that no rod withdrawal limits would be necessary.

.

6.0 Power Distributions

The core power distribution measurements are taken to insure correct core loading and to verify compliance with Technical Specification requirements and limits on hot channel factors, quadrant power tilts, power density and allowed power limits. Core power distribution is measured by processing moveable detector data using the INCORE code which evaluates the map quality, flux trace validity, hot channel factors and locations, and allowed power limits.

Tables 6.1 and 6.2 provide pertinent statistics for evaluating map quality and core parameters which must be monitored. Flux maps were taken at power levels of 27.5, 72.6, 93.8 and 99.8% power (Maps 211, 212, 214 and 215, respectively). Map 213 was not valid because of detector drift due to axial and radial xenon oscillations induced by rod movement immediately prior to the start of taking thimble data.

Figures 6.1 through 6.8 provide pertinent INCORE results for the four flux maps. All Technical Specification limits were met.

7.0 Intermediate Range Detector Setpoint Verification

SPC introduced a new methodology for the adjustment of the Power and Intermediate Range Detectors to account for the flux leakage changes between the end of Cycle 5 and the beginning of Cycle 6. During the power ascension phase of the startup physics testing, the procedure EPT-009 is used to verify that the Intermediate Range Rod Withdrawal Stop and Trip Setpoints are within acceptance limits. Although EPT-009 is not specifically required by Technical Specifications, it is generally performed for each startup to monitor, verify and determine the Intermediate Range Detector Setpoints. During a reactor startup, the Intermediate Range Rod Withdrawal Stop and Trip Setpoints are verified to be as follows for both N35 and N36:

- a. Current equivalent to 15% power $\leq P_{Trip} \leq$ current equivalent to 27% power for N35.
- b. Current equivalent to 15% power $\leq P_{Trip} \leq$ current equivalent to 27% power for N36.

The highest Power Range indicated power at which the bistables engaged for the Intermediate Range Trip was 18.5 and 22.4, for N35 and N36 respectively.

The Technical Specification allowed value for the trip setpoint is 30.9% RTP.

. р

8.0 Conclusions

The data obtained during the Cycle 6 startup physics testing show acceptable agreement between measured and predicted rod worths, boron endpoints, temperature coefficients. The flux maps allowed power ascension and then full power operation based on meeting the acceptance criteria as presented in Table 1.7.

Since the startup physics predictions were acceptable overall, confidence in both the SPC data and the . . NFM&SA Section's ability to predict future Cycle 6 core behavior is reasonable.

9.0 References

- 1. "Shearon Harris Unit 1, Cycle 6 Startup and Operations Report", EMF-94-025(P), April 1994.
- 2. Shearon Harris Engineering Periodic Test Procedure EPT-069, "Initial Criticality", Revision 4, May 3,1994, Revision 4, May 3, 1994.
- 3. Shearon Harris Engineering Periodic Test Procedure EPT-070, "Reactivity Computer Initial Setup and Calibration", Revision 3, March 14, 1994.
- 4. Shearon Harris Engineering Periodic Test Procedure EPT-026, "Reactivity Computer Initial Setup and Calibration Using the Reactivity Computer Detector", Revision 3, April 20, 1994.
- 5. Shearon Harris Engineering Periodic Test Procedure EPT-067, "Boron Endpoint Measurement
 All Rods Out", Revision 5, May 2, 1994.
- 6. Shearon Harris Engineering Surveillance Test Procedure EST-707, "Special Test Exceptions", Revision 4, October 14, 1993.
- 7. Shearon Harris Engineering Surveillance Test Procedure EST-703, "Moderator Temperature Coefficient Measurement BOL After Each Refueling", Revision 8, May 2, 1994.
- 8. Shearon Harris Engineering Surveillance Test Procedure EST-701, "Shutdown Margin Calculation Mode 2", Revision 6, November 22, 1993.
- 9. Shearon Harris Engineering Periodic Test Procedure EPT-068, "Reactivity Worth of the Control and Shutdown Banks Utilizing the Rod Swap Technique", Revision 5, May 2, 1994.
- 10. Shearon Harris Engineering Surveillance Test Procedure EST-724, "Shutdown and Control Rod Drop Test Using Computer", Revision 0, March 6, 1994.
- 11. Shearon Harris Fuel Management Procedure FMP-101, "Incore Thermocouple and Flux Mapping", Revision 7, May 13,1994.
- Shearon Harris Engineering Surveillance Test Procedure EST-710, "Hot Channel Factor Tests", Revision 10, May 13, 1994.
- 13. Shearon Harris Engineering Periodic Test Procedure EPT-009, "Intermediate Range Detector Setpoint Verification", Revision 4, March 3, 1994.

- ris Nuclear Plant Unit 1, Cycle 6 Startupeest Report
- 10. Appendix: List of Tables and Figures in Appendix

ۍ چ

- Table 1.1Comparison of Cycles 5 and 6 Fuel Loading
- Table 1.2
 Comparison of Cycles 5 and 6 Peaking Factor Limits
- Table 1.3Fuel Inventory Dimensions
- Table 1.4 Fuel Inventory Enrichment
- Table 1.5
 Input Parameters to the Reactivity Computer
- Table 1.6 Startup Test Summary
- Table 1.7
 Startup Physics Test Procedures Acceptance Criteria
- Figure 1.1 Cycle 6 Loading Pattern
- Figure 1.2 Cycle 6 Control Rod and Thimble Locations
- Figure 1.3 Cycle 6 Gadolinia Loading
- Table 2.1Hot Rod Drop Times
- Table 3.1 Rod Worth Measurement: Control Bank B
- Figure 3.1 Control Bank B Integral Worth
- Figure 3.2 Control Bank B Differential Worth
- Table 5.1
 Isothermal Temperature Coefficient
- Table 5.2
 Isothermal Temperature Coefficient, Cycles 1-6
- Figure 5.1 ITC, D-212, Cooldown Measured Value
- Figure 5.2 ITC, D-212, Heatup #1 Measured Value
- Figure 5.3 ITC, D-212, Heatup #2 Measured Value
- Table 6.1Flux Map Summary
- Table 6.2Flux Map Statistics
- Figure 6.1 Assembly Relative Power Map 211
- Figure 6.2 Assembly Relative Power Map 212
- Figure 6.3 Assembly Relative Power Map 214
- Figure 6.4 Assembly Relative Power Map 215

-

÷...

ris Nuclear Plant Unit 1, Cycle 6 Startu est Report

10. Appendix Continued

نې د رو

б.: Г

Note: $F_{a}^{T} = F_{a}^{M*1.05*1}$.03	
Figure 6.8	Cycle 6 $F_{\alpha}^{\tau}V(z)/K(z)$ versus Core Elevation, Ma	ip 215
Figure 6.7	Cycle 6 F_{α}^{T} V(z)/K(z) versus Core Elevation, Ma	ip 214
, Figure 6.6	Cycle 6 $F_0^T V(z)/K(z)$ versus Core Elevation, Ma	ap 212
Figure 6.5	Cycle 6 $F_{\alpha}^{T*}V(z)/K(z)$ versus Core Elevation, Ma	ap 211

Page 15 of 50 (Rev. 0)

ris Nuclear Plant Unit 1, Cycle 6 Startu

د د ور

(**é**, **f**

J est	Report
--------------	--------

Table 1.1 Comparison of Cycles 5 and 6 Fuel Loading								
Cycle 5 Cycle 6								
As-built Zero Burnup Loading (MTU)								
Region 1	4 Assy - 1.847	9 Assy - 4.161						
Region 5A	13 Assy - 5.533	•						
Region 5B	20 Assy - 8.495	-						
Region 6A	32 Assy - 13.602	12 Assy - 5.098						
Region 6B	28 Assy - 11.917	24 Assy - 10.213						
Region 7A	32 Assy - 13.580	32 Assy - 13.580						
Region 7B	28 Assy - 11.896	28 Assy - 11.896						
Region 8 LFA	-	8 Assy - 3.663						
Remainder Region 8	-	44 Assy - 20.046						
Total (MTU)	66.870	68.657408						
Power Rating (MWt)	2775	2775						
Rod Out Park Position (steps)	228	231						
System Pressure (psig)	2250	2250						
Core Average Moderator Temperature (HZP/HFP °F)	557/588.8	557/580.8						
Number of Poison Rod/Pins	4096 IFBAs 96 WABAs	40@2 w/o Gd₂O₃ 632@6 w/o Gd₂O₃ 160@8 w/o Gd₂O₃						

*

Page 16 of 50 (Rev. 0)

.

.

1. **•**

.

Table 1.2 Comparison of Cycles 5 and 6 Peaking Factor Limits							
Cycle 5 Cycle 6							
F _a Limit	2.45 - LOPAR, V5	2.45 - LOPAR, V5 2.52 SPC HTP					
F₄ӊ Limit	1.62- LOPAR 1.65 - V5	1.62- LOPAR 1.65 - V5 1.73- SPC HTP					

Page 17 of 50 (Rev. 0)

.

-8

÷. •

tis Nuclear Plant Unit 1, Cycle 6 Starturest Report

÷., }

÷,,;

Table 1.3 Fuel Inventory Dimensions							
Region	1	6A	6B	7A	7B	8	
Number of Assemblies	9	12	24	32	28	52	
Fuel Design	LOPAR	V5	V5	V5	V5	НТР	
Pellet Density (% TD)	95.1 ⁽¹⁾	95.4 ⁽¹⁾	95.6 ⁽¹⁾	95.5 ⁽¹⁾	95.6 ⁽¹⁾	95.0	
Pellet O.D., inches	.3225	.3088	.3088	.3088	.3088	.3215	
Clad I.D., inches	.329	.315 ໍ	.315	.315	.315	.328	
Clad O.D., inches	.374	.360	.360	.360	.360	.376	
Fill Gas Pressure, psig	•	-	-	-	-	355	
Region-wise loading, MTU	4.161	5.098	10.213	13.580	11.896 、	23.709	
(1) Region 1, 6A, 6B, 7A and 7B pellet densities are as built							

ч •

t, e

•;•

is Nuclear Plant Unit 1, Cycle 6 Startugest Report

•

F git

633

Table 1.4 Fuel Inventory Enrichment							
Nominal Initial Enrichment, w/o U235							
Region	1	6A	6B	7A	7B	8	
Top 3 inches	2.10	0.72	0.72	0.74	0.74	0.71	
Next 3 inches	2.10	0.72	0.72	0.74	0.74	4.95	
Next 6 inches	2.10	4.40	4.80	4.40	4.80	4.95	
Central 120 inches:		• • • • • •		4 <u></u>			
0 w/o Gd ₂ O ₃	2.10	4.40	4.80	4.40	4.80	4.95 ⁽¹⁾	
2 w/o Gd ₂ O ₃	-	-	-	_	-	4.85 ⁽²⁾	
6 w/o Gd ₂ O ₃	-	-	-	-	-	4.65 ⁽³⁾	
8 w/o Gd ₂ O ₃	-	-	_	-	-	4.55(4)	
Next 3 inches	2.10	4.40	4.80	4.40	4.80	4.95	
Next 3 inches	2.10	0.72	0.72	0.74	0.74	4.95	
Bottom 3 inches	2.10	0.72	0.72	0.74	0.74	0.71	
(1) 12,896 rods contain 0 w/o Gd_2O_3 (2) 40 rods contain 2 w/o Gd_2O_3 (3) 632 rods contain 6 w/o Gd_2O_3 (4) 160 rods contain 8 w/o Gd_2O_3							

.

.
is Nuclear Plant Unit 1, Cycle 6 Startup st Report

Input	Table 1.5 Input Parameters to the Reactivity Computer									
Group	βί	ان (sec⁻¹)								
1	.000207	.0128								
2	.001293	.0316								
3	.001163	.1203								
4	.002497	.3211								
5	.000904	1.4045								
6	.000216	3.8696								

.

6		
Σβί	=	0.00628
i = 1		ſ
	,	
/*	-	17.39
1	=	0.965
$\beta_{\rm eff}$	=	0.006060

.

ڊ ب^ع

د به

a

ø .

Hen Nuclear Plant Unit 1, Cycle 6 Startup

۽ و. ج

4 t Report

Table 1.6 Startup Test Summary										
	E	Boron Endpoint (ppm))							
Config	juration	Measured	Predicted	Difference (M-P)						
A	RO	1842	1826	16						
B-	-IN	1665	1637	28						
Control Rod Worths (pcm)										
Bank	Measured	Predicted	Wm-Wp	Percent Difference						
CBB	1281	1342	-61	-4.5%						
СВА	346	371	-25	-6.7%						
SBC	433	· 480	-47	-9.8%						
SBB	746	811	-65	-8.0%						
SBA	956	1040	-84	-8.1%						
СВС	1081	1150	-69	-6.0%						
CBD	901	948	-47	-5.0%						
Sum of the Measured Worths	Sum of the Predicted Worths	0.9*Predicted Worth	1.10* Predi	cted Worth						
5744	6142	5528	67	56						

Page 21 of 50 (Rev. 0)

•

T

•

.

÷, -

•

٠., •

ę.

Table 1.6 Continued Startup Test Summary										
. Moderator Temperature Coefficient (pcm/°F)										
Configuration	Measured	Predicted	Difference							
CBD-212	-2.2	+1.2								
	Differer	ntial Boron Worth (po	m/ppm)							
Configuration	Measured	Predicted	Percent Difference							
CBB going in	-7.24	-7.09	-2.1							

Page 22 of 50 (Rev. 0)

H

ڊي:

÷., }

.

•

Table 1.7 Startup Physics Test Procedures Acceptance Criteria								
Test	Criteria							
Boron Endpoint	The ARO critical boron concentration should be within 500 pcm (71 ppm) of the measured value.							
Moderator Temperature Coefficient	The moderator temperature coefficient during power escalation is less than or equal to +5.0 pcm/°F at HZP.							
Control Rod Worth	 <u>Review Criteria:</u> a. The reference bank must be within ±10% of the predicted worth. b. The absolute value of the percent difference between measured and predicted worths is (15%, or c. The absolute value of the reactivity difference between measured and predicted worths is (100 pcm, whichever is greater. Acceptance Criteria: The sum of the measured worths are within ±10% of the sum of the predicted worths. 							

.

.

•

÷. • **·**.·

Nuclear Plant Unit 1, Cycle 6 Startup Report

H

ڊن ۽

÷.:

.

Table 1.7 Startup Physics Test Procedures Acceptance Criteria									
Test	Criteria								
Power Distribution Maps	a. $F_{Q}(z) \leq \frac{F_{Q}^{RTP} * K(z)}{P}, P > 0.5$ $F_{Q}(z) \leq \frac{F_{Q}^{RTP} * K(z)}{P}, P \leq 0.5$								
	Where: P is a fraction of HFP $F_{\alpha}^{RTP} = 2.45$ for LOPAR and Vantage 5 fuel $F_{\alpha}^{RTP} = 2.52$ for SPC HTP fuel								
,	b. $F_{_{4H}} \leq 1.62[1 + 0.30(1-P)]$ (LOPAR Fuel) $F_{_{4H}} \leq 1.65[1 + 0.35(1-P)]$ (Vantage 5 Fuel) $F_{_{4H}} \leq 1.73[1 + 0.35(1-P)]$ (SPC HTP Fuel) c. Quadrant tilts ≤ 1.02								
Control Rod Drop	The drop time to dashpot under hot conditions ≤ 2.7 seconds.								

rris Nuclear Plant Unit 1, Cycle 6 Start

نې:

	R	٩	N	М	L	к	J	Н	G	F	£	D	C	В	A	
01						,	F48 40472 68	F06 41851 6A	F44 44639 68							01
02					F57 45521 68	F30 38305 6A	H03 0 5A	634 21795 78	H02 0 58	F10 37123 6A	F45 44911 6B					02
03				F33 44038 68	HI 1 0 58	H27 0 5B	G08 24691 7A	H33 0 58	G14 24614 78	H26 0 58	H10 0 58	F39 44012 68				03
04			F35 44188 6B	H18 0 58	H47 0 58	G25 26091 78	G35 22668 78	G26 24907 7A	G42 22455 78	G21 26018 78	H46 0 58	H17 0 58	F40 43581 68			04
05		F51 45715 6B	H12 0 58	H4B 0 5B	A15 15917 1R	G11 25539 7A	H39 0 5B	G23 25206 7A	H38 0 58	G12 25083 7R	A27 15916 1R	H45 0 5B	H09 0 5B	F53 45423 6B		05
06		F01 38076 6A	H28 0 5B	G22 25861 7A	G06 25137 7A	G38 21637 78	658 26009 78	G51 23961 78	657 26068 78	G41 21664 78	603 25460 7A	G19 26074 7A	H25 0 58	F26 38458 6A		06
07	F43 45143 6B	H04 0 5A	G15 24757 7A	G36 22367 7B	H40 0 5B	660 25835 78	A12 16234 1R	H21 0 58	A24 16217 1R	G55 26118 78	H37 0 58	645 22673 78	G02 24805 7A	H01 0 5A	F49 40947 6B	07
08	F09 42289 6R	647 21260 78	H34 D 58	G27 24857 7A	G28 25011 78	G43 23874 78	H22 0 58	A39 13475 1R	H24 0 5B	G46 23580 78	G32 25321 7A	G20 24976 78	H36 0 58	649 21358 78	F05 41905 6R	08
09	F58 40718 6B	H05 0 58	609 2 1 693 78	G44 22474 7B	H41 0 58	G54 26134 7B	806 15685 1R	H23 0 5B	A51 16522 1R	G56 26047 7B	H44 0 58	639 22490 78	G10 24645 78	H08 .0 5A	F42 44395 6B	09
10		F23 38395 6A	H29 0 5B	G29 26262 7A	G13 25629 7A	G52 21562 78	653 26042 78	G40 23804 78	659 25912 78	648 21556 78	G01 24915 7A	G17 25854 7A	H32 0 58	F12 37397 6A		10
11		F46 45462 68	H13 0 58	H49 0 58	A35 16651 1R	G16 25438 78	H42 0 58	G24 25121 7A	H43 0 5B	604 25310 7A	A21 16240 1R	H52 0 58	H16 0 58	F52 45315 6B		11
12			F36 43746 68	H19 0 58	H50 0 58	G30 25956 7A	637 22682 78	G31 24840 78	650 22686 78	G18 26113 7A	HS1 0 5B	H20 0 58	F34 43712 68			12
13				F38 43926 68	H14 0 5B	H30 0 58	605 24401 78	H35 0 58	607 24644 78	H31 0 58	H15 0 58	F37 43870 68	ASSEME BOC E) FUEL F	BLY 1D (POSURI REGION	Ξ.	13
14					F50 45141 68	F08 37537 6A	H06 0 5A	G33 21438 78	H07 0 5A	F15 38322 6A	F47 45650 68		-			14
15							F41 44746 6B	F07 42435 68	F55 41084 68			-				15
	R	Р	N	м	L	к	J	н	G	F	E	D	С	в	ß	

Page 25 of 50 (Rev. 0)

\$

۶.

€_Q‡

<u>ج</u>ې

• , .

	R	٩	Ν	Μ	L	К		Н	G	F	Е	D	С	В	A	
01								18				_				01
02						Â		D		A 31						02
03				1			SA 9		SA		SC	10				03
04			[С	13	В		37		8 3		C				04
05			SC 22		SB		24				58 49	39		7		05
06		A		в	40	D		C 8		0 15		В		A		06
07			5A 33				SB 28		SB 20			29	SA	17		07
08	36	D	46		4	C				С 5			44	D 25		08
09			SA		11		SB		SB 19	32			SA		34	09
10	L	A	26	8		D	23	C		D		B 41		A 12		10
11		·			SB 48			38		21	SB 47		SC		1	11
12			35	С		8	16			В		C 6	27		,	12
13			L		SC		SA	43	SA	14			ROD BI	i ANK IHIMBLI	ES	13
14				L	. 30	A		D	42	A			د			14
15						1	2				L	J				15
	R	Ρ	N	М	L	к	 J	Н	G	, F	E	D	C	В	A	

Page 26 of 50 (Rev. 0)

is Nuclear Plant Unit 1, Cycle 6 Startup Ha

.

8

£ (j(*

5,5

Gadolinia Loading

(ASM and AS represent Asymmetric gadolinia loadings)

	R	P	N	М	L	К	J	Н	G	F	ε	Ð	С	В	A	
01						,	F48	F06	F44]						01
02					F57	F30	H03 402 ASM	634	H02 402 ASM	FIO	F45					02
03				F33	H11 102AS 406AS	H27 2005	G08	H33 2896	G14	H26 2096	H10 10285 40685	F39]			03
04			F35	H18 696 ASM	H47 2008	G25	G35	G26	G42	G21	H46 2098	H17 606 ASM	F40]		04
05		FSI	H12 102AS 406AS	H48 2008	A15	G11	H39 2806	G23	H38 2806	G12	A27	H45 2008	H09 102AS 406AS	F53		05
06		F01	H28 2086	G22	G06	G38	G58	G51	G57	G41	603	G19	H25 2096	F26		06
07	F43	H04 402 ASM	G15	G36	H40 2896	G60	A12	H21 2096	A24	G55	H37 2896	G45	G02	H01 402 ASM	F49	07
60	F09	G47	H34 2896	G27	G28	G43	H22 2086	A39	H24 2096	G46	G32	G20	H36 2896	G49	F05	08
09	F58	H05 492 85M	609	G44	H41 2805	G54	806	H23 2006	A51	G56	H44 2896	639	G10	H08 402 85M	F42	09
10	L	F23	H29 2086	G29	G13	G52	G53	G40	659	G48	GÖ1	G17	H32 2096	F12		10
11		F46	H13 19285 49685	H49 2088	A35	G16	H42 2896	G24	H43 2805	G04	A21	H52 2098	H16 102AS 406AS	F52		11
12		L	F36	H19 606 RSM	H50 2098	G30	G37	G31	650	G18	H51 2008	H20 605 ASM	F34		,	12
13			· · · · · · ·	F38	H14 102AS 405AS	H30 2096	605	H35 2896	G07	H31 2006	H15 192AS 496AS	F37	ASSEM =GAD =GAD	SLY 1D PINS PINS		13
14					F50	F08	HD6 402AS	G33	HD7 402R5	F15	F47		,	••••		14
15							F41	F07	F55		I	I				15
	R	Р	N	м	L	к	لــــا	ц	G.	י ר	E	D	С	в	A	

Page 27 of 50 (Rev. 0)

*

Nuclear Plant Unit 1, Cycle 6 Startup H

٤,1

٤,:

.

Table 2.1 Hot Rod Drop Times									
		Time from	Time from						
RCCA	RCCA	Drop to	to Bottom of		RCS	RCS			
Bank and	Grid	Dashpot Entry	Dashpot	RCS Tavg	Flow	Press			
Group	Location	(Seconds)	(Seconds)	(°F)	(%)	(psig)			
	F2	1.485	1.937	557	100	2292			
CBA	B10	1.534	2.043	557	100	2292			
	K14	1.613	2.105	557	100	2292			
	P6	1.484	1.934	557	100	2292			
	К2	1.485	1.934	557	100	2292			
СВА	B6	1.713	2.178	557	100	2292			
	F14	1.479	1.888	557	100	2292			
	P10	1.471	1.904	557	100	2292			
	F4	1.512	1.928	556.8	101	2221			
CBB	D10	1.488	1.915	556.8	101	2221			
	K12	1.439	1.896	556.8	101	2221			
	M6	1.457	1.897	556.8	101	2221			
	K4	1.482	1.971	556.8	101	2221			
CBB	D6	1.469	1.906	556.8	101	2221			
	F12	1.476	1.900	556.8	101	2221			
	M10	1.504	1.944	556.8	101	2221			

٠

.

• *

÷.,

4;:

	Table 2.1 (Continued) Hot Rod Drop Times									
•		Time from Initiation of	Time from Initiation of Drop							
RCCA	RCCA	Drop to	to Bottom of		RCS	RCS				
Bank and	Grid	Dashpot Entry	Dashpot	RCS Tavg	Flow	Press				
Group	Location	(Seconds)	(Seconds)	(°F)	(%)	(psig)				
,	D4	1.438	1.865	557	100	2292				
CBC	D12	1.431	1.864	557	100	2292				
	M12	1.445	1.880	557	100	2292				
	M4	1.492	1.908	557	100	2292				
СВС	H6	1.473	1.925	557	100	2292				
	F8	1.424	1.878	, 557 ,	100	2292				
	H10	1.450	1.954	557	100	2292				
	К8	1.472	1.965	557	100	2292				
CDD	H2	1.482	1.947	556.8	101	2221				
CBD	B8	1.574	2.094	556.8	101	2221				
	H14	1.484	1.970	556.8	101	2221				
	P8	1.448	1.927	556.8	101	2221				
000	F6	1.484	1.958	556.8	101	2221				
CRD	F10	1.501	1.970	556.8	101	2221				
	К10	1.484	1.927	556.8	101	2221				
	К6	1.498	1.958	556.8	101	2221				

•

. • •••

٤,:

4,:

1

t Report	
----------	--

Table 2.1 (Continued) Hot Rod Drop Times								
RCCA		Time from Initiation of Drop to	Time from Initiation of Drop to Bottom of		RCS	RCS		
Bank and	RCCA Grid	Dashpot Entry	Dashpot	RCS	Flow	Press		
Group	Location	(Seconds)	(Seconds)	Tavg (°F)	(%)	(psig)		
CD A	G3	1.482	1.903	556.7	101	2291		
SBA	C9	1.468	1.883	556.7	101	2291		
	J13	1.455	1.889	556.7	101	2291		
	N7	1.461	1.901	556.7	101	2291		
	J3	1.473	1.904	556.7	101	2291		
SBA	C7	1.484	1.901	556.7	101	2291		
	G13	1.478	1.900	556.7	101	2291		
	N9	1.464	1.895	556.7	101 `	2291		
000	E5	1.481	1.926	556.8	101	2291		
SBB	E11	1.465	1.895	556.8	101	2291		
	L11	1.473	1.958	556.8	101	2291		
	L5	1.458	· 1.886	556.8	101	2291		
000	G7	1.485	1.964	556.8	101	2291		
SBB	G9	1.481	1.920	556.8	101	2291		
	9L	1.471	1.917	556.8	101	2291		
	J7	1.464	1.914	556.8	101	2291		

.

.

.

:.* <u>.</u>-

٤, ١

3,1

Nuclear Plant Unit 1, Cycle 6 Startup t Report

•

,

Table 2.1 (Continued) Hot Rod Drop Times									
RCCA Bank and Group	RCCA Grid Location	Time from Initiation of Drop to Dashpot Entry (Seconds)	RCS Tavg (°F)	RCS Flow (%)	RCS Press (psig)				
000	E3	1.429	1.865	556.9	100	2291			
SBC	C11	1.496	1.940	556.9	100	2291			
	L13	1.537	1.990	556.9	100	2291			
	N5	1.475	1.922	556.9	100	2291			

ï

•

:.>

: *

HanNuclear Plant Unit 1, Cycle 6 Startup Report

٤., ٤

3,3

	Rod	Tabl Worth Measure	e 3.1 ment: Control Ba	nk B	
<u></u>		RCCA Position (Steps Withdrawn	}	
RCC Po	sition (Steps Wit	hdrawn)		Reactivity (pcm)	
Initial	Final	Average	۵p	Σδρ	<i>₄</i> ∕/⊿h
231	217	223.5	19	19	1.3
217	209	213	69	88	8.6
209	206	207.5	31	119	10.3
206	202	204	47	166	11.8
202	199	200.5	32	198	10.7
199	196	197.5	33	231	11.0
196	193	194.5	33	264	11.0
193	189	191	42	306	10.5
189	185	187	40	346	10.0
185	180	182.5	47	393	9.4
180	175	177.5	44	437	8.8
175	170	172.5	42	479	8.4
170	165	167.5	42	521	8.4
165	160	162.5	40	561	8.0
160	155	157.5	37	598	7.4
155	149	152	43	641	7.2
149	143	146	41 `	682	6.8
143	137	140	42	724	7.0
137	131	134	38	762	6.3

Page 32 of 50 (Rev. 0)

Ha Nuclear Plant Unit 1, Cycle 6 Startup 7

Table 3.1			
Rod Worth Measurement:	Control	Bank	В

RCCA Position (Steps Withdrawn)								
RCC Po	RCC Position (Steps Withdrawn)			Reactivity (pcm)				
Initial	nitial Final A		۵p	Σδρ	<i>₄p/</i> ⊿h			
131	125	128	37	799	6.2			
125	119	122	38	837	6.3			
119	113	116	37	874	6.2			
113	107	110	40	914	6.7			
107	ຳ 101	104	39	953	6.5			
101	95	98	40	993	6.7			
95	89	92	42	1035	7.0			
89	89 83		39	1074	6.5			
83	77	80	38	1112	6.3			
77 ~	71	74	34 .	1146	5.7			
71	62	66.5	48	1194	5.3			
62	52	57	38	1232	3.8			
52	45	48.5	17	1249	2.4			
45	0	22.5	32	1281	0.7			

Measured Integral Worth = 1281 pcm Predicted Integral Worth = 1342 pcm Percent Difference = -4.5%

ŧ.:

، ۹.,:

Page 33 of 50 (Rev. 0)

PREDICTED

÷. 3

Page 34 of 50 (Rev. 0)

÷.•

:.<u>*</u>

٤.):

933

Page 35 of 50 (Rev. 0)

:..

٤.,

4.:

Table 5.1 Isothermal Temperature Coefficient							
Configuration	Me	asured ITC (pcm	Predicted	Difference			
	Cooldown	(pcm/°F)	(pcm/ºF)				
CBD-212	-3.7	-3.9	-3.8	-4.97	+1.2		
		-3.7	1				

	Table 5.2 Isothermal Temperature Coefficient								
	Temperature Coefficients, HZP, BOL								
Cycle -	CycleConfigurationBoronMeasured ITCPredicted ITCDifferenceDopple(ppm)(pcm/°F)(pcm/°F)(pcm/°F)(pcm/°F)(pcm/°F)								
1	ARO	1353	-1.50	-2.28	0.78	-1.9			
2	D-216/217	1764	-0.82	-0.06	-0.76	-1.6			
3	D-206	1839	-0.528	-0.79	0.262	-1.6			
4	D-214	1718	-1.615	-1.39	-0.225	-1.69			
5	D-206	1940	+1.17	+1.43	-0.260	-1.86			
6	D-212	1835	-3.8	-4.97	+1.2	-1.6			

:, >

:.**+**

.

۲

Nuclear Plant Unit 1, Cycle 6 Startup

Table 6.1 Flux Map Summary									
Мар	MWd/ MTU	Date	PWR %	D Bank	Core AO	Core Avg FZ	بہF	Loc F _{лн}	
211	20	5/13/94	28	181	8.73	1.269	1.857	D12	
212	61	5/16/94	73	190	4.66	1.217	1.796	M12	
214	161	5/18/94	94	219	5.35	1.175	1.740	M12	
215	344	5/24/94	100	219	3.87	1.154	1.651	D12	

٠

Table 6.1 (Continued) Flux Map Summary										
Мар	MWd/ MTU	,Max. KW/FT	Lim F _a /K(z)	Fa	Loc Fa	F _R	PDC3	Fz	LOC Fz	
211	20	3.65	2.444	2.372	D12	1.510	89.68	1.416	F6	
212	61	8.94	2.281	2.201	M12	1.472	96.08	1.345	F10	
214	161	11.03	2.176	2.101	M12	1.433	100.69	1.293	G11	
215	344	11.52	2.129	2.004	H7	1.359	102.93	1.227	J7	

 F_{α} includes a 1.03 engineering factor and a 1.05 measurement uncertainty

F_H includes a 1.04 measurement uncertainty

H

ŵ. **:**

Å.:

KW/FT includes a 1.03 engineering uncertainty and a 1.05 measurement uncertainty

H. Nuclear Plant Unit 1, Cycle 6 Startup Report

* .:

Table 6.1 (Continued)Flux Map Summary.										
		Quadi	rant Tilt		Power Fraction, Fuel Region					
Мар	NW	NE	sw	SE	1	2	3	4		
211	0.994	1.000	0.998	1.008	0.805	· 0.413	1.109	1.314		
212	0.993	1.001	1.002	1.004	0.829	0.407	1.122	1.299		
214	0.991	_. 1.004	1.002	1.003	0.840	0.402	1.136	1.285		
215	0.990	1.002	1.005	1.003	`0.847	0.400	1.138	1.282		

Table 6.2 Flux Map Statistics										
	•	Stand	ard Devia		, Central Region					
Мар	PWR %	1	2	3	4	No. of Useable	 Reaction Rate Percent Differences 			
211	28	6.334	5.406	3.836	4.457 [·]	61	5.60			
212	73	1.886	4.314	1.691	1.983	58	3.02			
214	94	1.135	4.044	1.330	1.698	74	2.38			
215	100	1.629	4.000	1.325	1.827	58	2.45			

Page 41 of 50 (Rev. 0)

is Nuclear Plant Unit 1, Cycle 6 Startun st Report

н

7,1

ĺ.:

Figure 6.1

Assembly Relative Power Map 211

Predicted

.

Measured

% Difference

						, :	0.269. 0.275. 2.43.	0.294. 0.302. 2.85.	0.259. 0.267. 2.95.						
				•	0.334. 0.364. 9.20.	0.535. 0.538. 0.48.	i.119. 1.133. 1.25.	0.869. 0.888. 2.08.	1.118. 1.143. 2.21.	0.538. 0.553. 3.07.	0.334. 0.346. 3.43.				
			• • •	0.497. 0.531. 6.82.	1.312. 1.396. 6.38.	1.305. 1.331. 2.04.	1.117. 1.100. -1.50.	1.243. 1.221. -1.76.	1.117. 1.116. -0.06.	1.308. 1.336. 2.28.	1.313. 1.348. 2.66.	0.497. 0.516. 3.82.			
	·	:	0.497. 0.535. 7.52.	1.420. 1.482. 4.31.	1.439. 1.494. 3.83.	1.161. 1.160. -0.07.	1.259. 1.229. -2.39.	1.158. 1.129. -2.54.	1.261. 1.245. -1.20.	1.162. 1.174. 0.99.	1.440. 1.478. 2.57.	1.428. 1.462. 2.94.	0.497. 0.519. 4.52.		
		0.334 0.355 6.28	1.313. 1.390. 5.81.	1.440. 1.459. 1.25.	0.862. 0.860. -0.18.	1.678. 1.658. -0.97.	1.289. 1.207. -6.36.	1.143. 1.070. -6.42.	1.298. 1.234. -4.38.	1.050. 1.091. 1.05.	e.862. e.882. 2.33.	1.439. 1.481. 2.88.	1.312. 1.374. 4.72.	0.334. 0.346. 3.83.	
		0.536. 0.552. 2.99.	1.306. 1.341. 2.63.	1.162. 1.166. 0.30.	1.080. 1.056. -2.18.	1.099. 1.054. -4.17.	1.127. 1.048. -7.02.	1.178. 1.093. -7.27.	1.128. 1.038. -8.16.	1.099. 1.054. -4.16.	1.078. 1.093. 1.34.	1.161. 1.174. 1.14.	1.305. 1.350. 3.44.	0.535. 0.565. 5.62.	
•	0.259. 0.260. 0.03.	1.118. 1.123. 0.43.	1.117. 1.121. 0.37.	1.261. 1.239. -1.70.	1.290. 1.239. -3.95.	1.128. 1.067. -5.40.	0.811. 0.742. -8.45.	1.280. 1.176. -8.12.	0.811. 0.746. -7.98.	1.127. 1.037. -7.94.	1.289. 1.254. -2.71.	1.259. 1.256. -0.27.	1.117. 1.144. 2.44.	1.119. 1.178. 5.25.	0.269. 0.290. 7.70.
•	0 294. 0.298. 1.51.	0.869. 0.879. 1.15.	1.243. 1.247. 0.36.	1.158. 1.141. -1.49.	1.143. 1.103. -3.46.	1.178. 1.119. -5.02.	1.280. 1.172. -8.41.	0.838. 0.770. -8.19.	1.280. 1.184. -7.51.	1.178. 1.689. -7.59.	1.143. 1.095. -4.20.	1.158. 1.158. 0.61.	1.243. 1.271. 2.28.	0.869. 0.918. 5.62.	0.294. 0.312. 6,44.
:	0.269. 0.273. 1.43.	1.119. 1.160. 3.62.	1.117. 1.157. 3.63.	1.259. 1.260. 0.07.	1.289. 1.244. -3.44.	1.127. 1.676. -4.51.	0.811. 0.752. -7.29.	1.280. 1.177. -8.64.	0.811. 0.750. -7.54.	1.128. 1.844: -7.40.	1.290. 1.253. -2.86.	1.261. 1.279. 1.49.	1.117. 1.15 0 . 2.98.	1.118. 1.168. 4.45.	0.259. 0.274. 5.51.
•		0.535. 0.567. 5.94.	1.305. 1.378. 5.58.	1.161. 1.179. 1.56.	1.078. 1.072. -0.60.	1.099. 1.070. -2.70.	1.128. 1.054. -6.5 9 .	1.178. 1.092. -7.29.	1.127. 1.054. -6.41.	1.099. 1.050. -4.48.	1.680. 1.659. -1.93.	1.162. 1.174. 1.03.	1.306. 1.343. 2.82.	0.538. 0.564. 5.23.	• • •
		0.334. 0.357. 6.98.	1.312. 1.399. 6.64.	1.439. 1.507. 4.70.	e.862. e.872. 1.16.	1.688. 1.652. -2.54.	1.298. 1.224. -5.12.	1.143. 1.685. -5.07.	1.289. 1.218. -5.48.	1.078. 1.061. -1.66.	0.862. 0.875. 1.46.	1.440. 1.568. 4.66.	1.313. 1.387. 5.61.	0.334. 0.357. 6.99.	
	•	• • •	0.497. 0.537. 8.05.	1.420. 1.483. 4.39.	1.440. 1.455. 0.98.	1.162. 1.156. -0.58.	1.261. 1.244. -1.28.	1.158. 1.144. -1.21.	1.259. 1.258. -0.11.	1.161. 1.171. 0.87.	1.439. 1.478. 2.70.	1.420. 1.510. 6.32.	6.497. 6.546. 8.54.		
	•	•	•	0.497. 0.537. 8.05.	1.313. 1.324. 0.84.	1.306. 1.276. -2.31.	1.117. 1.130. 1.16.	1.243. 1.276. 2.17.	1.117. 1.171. 4.65.	1.305. 1.365. 4.65.	1.312. 1.403. 8.91.	0.497. 0.539. 8.56.			
			•	• • •	0.334. 0.327. -2.27.	0.536. 0.525. -2.12.	1.118. 1.131. 1.11.	0.869. 0.895. 2.93.	i.119. 1.173. 4.83.	0.535. ●.582. 4.97.	•.334. •.352. 5.52.				
				·			0.259. 0.255. -1.77.	0.294. 0.298. 1.38.	0.269. 0.281. 4.46.						
						•									

Page 42 of 50 (Rev. 0)

۲, ۳ ۲, ۵

þ

Harris Nuclear Plant Unit 1, Cycle 6 Startup Test Report

Figure 6.2

Assembly Relative Power Map 212

Predicted Measured

% Difference

		0.271. 0.298. 0.288. 0.317. 6.42. 6.51.	0.262. 0.274. 4.85.		
	. 0.331. 0.534. . 0.347. 0.528. . 4.581.15.	1.126. 0.888. 1.145. 0.909. 1.69. 2.36.	1.125. 0.535. 0. 1.159. 0.550. 0. 3.05. 2.79. 3	332. 343. .38.	
	0.492. 1.303. 1.300. 0.502. 1.322. 1.283. 1.91. 1.451.34.	1.118. 1.248. 1.697. 1.225. -1.691.82.	1.116. 1.302. 1. 1.108. 1.300. 1. -0.910.14. 1	305. 0.493. 319. 0.513. .12. 3.99.	
. 0.493.	1.410. 1.432. 1.156.	1.256. 1.156.	1.257. 1.157. 1.	433. 1.410. 0.492.	
. 0.591.	1.416. 1.444. 1.142.	1.229. 1.138.	1.229. 1.147. 1.	440. 1.432. 0.504.	
. 1.66.	0.44. 0.881.26.	-2.182.23.	-2.260.86. 0	.49. 1.57. 2.28.	
. 0.332. 1.305.	1.433. 0.860. 1.681.	1.291. 1.142.	1.292. 1.082. 0.	860. 1.432. 1.303.	0.331.
. 0.329. 1.291.	1.417. 0.852. 1.667.	1.241. 1.099.	1.248. 1.078. 0.	858. 1.440. 1.320.	0.340.
0.771.02.	-1.130.971.24.	-3.853.78.	-3.560.400	.27. 0.57. 1.31.	2.68.
. 0.535. 1.302.	1.157. 1.082. 1.121.	1.132. 1.179.	1.133. 1.121. 1.	681. 1.156. 1.300.	0.534.
. 0.531. 1.289.	1.148. 1.073. 1.109.	1.104. 1.158.	1.110. 1.127. 1.	083. 1.154. 1.312.	0.551.
0.660.97.	-0.830.791.10.	-2.502.02.	-2.08. 0.48. 0	.210.17. 0.89.	3.25.
0 262. 1.125. 1.118.	i.257. i.292. i.133.	0.813. 1.282.	0.813. 1.132. 1.	291. 1.256. 1.116.	1.126. 0.271.
0.281. 1.145. 1.107.	1.237. 1.261. 1.115.	0.796. 1.263.	0.799. 1.129. 1.	260. 1.242. 1.131.	1.157. 0.282.
7.41. 1.790.83.	-1.572.401.61.	-2.071.44.	-1.730.312	.371.10. 1.36.	2.73. 4.21.
. 0.298. 0.888. 1.248.	1.156, 1.142, 1.179,	1.282. 0.839.	1.282. 1.179. 1.	142. 1.156. 1.248.	0.888. 0.298.
0.320. 0.911. 1.236.	1.138, 1.117, 1.161,	1.276. 0.836.	1.266. 1.163. 1.	116. 1.144. 1.262.	0.927. 0.314.
7.53. 2.540.95.	-1.51, -2.17, -1.59,	-0.500.48.	-1.211.362	.310.98. 1.10.	4.41. 5.42.
. 0,271, 1,126, 1,116,	1.256. 1.291. 1.132.	0.813. 1.282.	0.813. 1.133. 1.	292. 1.257. 1.116.	1.125. 0.262.
. 0,291, 1,157, 1,122,	1.245. 1.262. 1.165.	0.784. 1.253.	6.798. 1.111. 1.	268. 1.252. 1.141.	1.172. 0.277.
. 7,42, 2,80, 0,56,	-0.842.262.40.	-3.572.26.	-1.831.991	.830.38. 2.17.	4.25. 5.95.
. 0.534. 1.300.	1.158. 1.081. 1.121.	1.133. 1.179.	1.132. 1.121. 1.	682. 1.157. 1.362.	0.535.
. 0.544. 1.319.	1.164. 1.083. 1.113.	1.104. 1.154.	1.112. 1.116. 1.	679. 1.167. 1.328.	0.568.
. 1.86. 1.48.	0.67. 0.250.72.	-2.602.17.	-1.740.420	.32. 6.83. 2.65.	6.23.
. 0.331. 1.303.	1.432, 0.860, 1.682,	1.292. 1.142.	1.291. 1.681. 0.	860. 1.433. 1.305.	0.332.
. 0.343. 1.347.	1.472, 0.877, 1.671,	1.258. 1.114.	1.267. 1.689. 0.	862. 1.454. 1.332.	0.340.
. 3.65. 3.39.	2.84, 1.98, -1.61,	-2.652.43.	-1.87. 0.73. 0	.25. 1.45. 2.11.	5.00.
. 0.492.	1.410. 1.433. 1.157.	1.257. 1.158.	1.256. 1.156. 1.	432. 1.410. 0.493.	• • •
. 0.520.	1.460, 1.458. 1.155.	1.233. 1.134.	1.241. 1.161. 1.	433. 1.441. 0.506.	
. 5.54.	3.55. 1.770.22.	-1.941.91.	-1.20. 0.46. 0	.09. 2.22. 2.57.	
· · · · · · · · · · · · · · · · · · ·	0.493, 1.305, 1.302, 0.520, 1.326, 1.268, 5.54, 1.67, -2.57,	1.116. 1.248. 1.696. 1.239. -1.850.74.	1.116. 1.300. 1. 1.120. 1.307. 1. 0.35. 0.550	303. 0.492. 301. 0.504. .20. 2.34.	
	. 0.332. 0.535. . 0.342. 0.552. . 3.15. 3.28.	1.125. 0.888. 1.136. 0.907. 1.01. 2.05.	1.126. 0.534. 0. 1.132. 0.540. 0. 0.52. 1.170	331. 331. .68.	
	•	0.262. 0.298. 0.271. 0.367. 3.61. 3.27.	0.271. 0.278. 2.58.		

Page 43 of 50 (Rev. 0)

ر بر ۲

€, 1

ris Nuclear Plant Unit 1, Cycle 6 Startur st Report

H

Figure 6.3

Street

Assembly Relative Power Map 214

Predicted

Measured

% Difference

	:	0.279. 0.313. 0.296. 0.332.	0.269. 0.282.		
	. 0.323. 0.529. . 0.335. 0.523. . 3.451.17.	i.146. 0.953. 1.157. 0.966. 0.96. 1.31.	1.144. 0.530. 0.324 1.172. 0.547. 0.335 2.40. 3.05. 3.51	•	
:	6.477. 1.276. 1.282. 0.480. 1.268. 1.250. 0.480.212.45.	1.115. 1.263. 1.094. 1.236. -1.832.17.	i.115, i.283, i.272 1.105, i.286, i.289 -0.87, 0.21, 1.35	0.497. 0.497. 0.3.96.	
. 0.478.	1.370. 1.402. 1.140.	1.246. 1.149.	1.247. 1.141. 1.403	1.370. 0.477.	
. 0.479.	1.364. 1.405. 1.125.	1.219. 1.124.	1.220. 1.147. 1.410	1.390. 0.485.	
. 0.25.	-0.43. 0.211.27.	-2.142.20.	-2.12. 0.51. 0.49	1.43. 1.55.	
. 0.324. 1.272.	1.403. 0.854. 1.090.	1.298. 1.148.	1.299. 1.892. 0.854	. 1.482. 1.278.	0.323.
. 0.315. 1.233.	1.379. 0.844. 1.076.	1.259. 1.108.	1.265. 1.101. 0.856	. 1.485. 1.271.	0.333.
2.633.03.	-1.691.221.31.	-3.032.78.	-2.83. 0.870.44	. 0.20. 0.85.	2.86.
0.530. 1.283.	1.141. 1.092. 1.198.	1.153. 1.185.	1.154. 1.198. 1.094	. 1.140. 1.282.	0.529.
0.518. 1.248.	1.129. 1.093. 1.196.	1.140. 1.180.	1.154. 1.231. 1.094	. 1.141. 1.281.	0.541.
-2.272.69.	-1.03. 0.100.22.	-1.110.41.	-0.64. 2.70. 0.31	. 0.100.03.	2.18.
0.269. 1.144. 1.115.	1.247. 1.299. 1.154.	0.823. 1.289.	0.823. 1.153. 1.298	1.248. 1.115.	1.146. 0.279.
0.289, 1.153. 1.093.	1.224. 1.274. 1.148.	0.820. 1.295.	0.823. 1.175. 1.282	1.230. 1.119.	1.154. 0.285.
7.11. 0.731.94.	-1.801.950.55.	-0.38. 0.40.	-0.08. 1.921.24	1.25. 0.38.	0.72. 2.21.
0,313, 0,953, 1,263,	1.149. 1.140. 1.185.	1.289. 0.843.	1.289. 1.185. 1.146	9. 1.149. 1.263.	0.953. 0.313.
0,335, 0,964, 1,234,	1.128. 1.121. 1.178.	1.308. 0.857.	1.301. 1.196. 1.120	5. 1.134. 1.264.	0.976. 0.325.
7,10, 1,16, -2,30,	-1.811.700.57.	1.44. 1.69.	0.90. 0.901.18	51.31. 0.01.	2.41. 3.90.
. 0.279. 1.146. 1.115.	1.246. 1.298. 1.153.	0.823. 1.289.	0.823. 1.154. 1.299	1.247. 1.115.	1.144. 0.269.
. 0.299. 1.160. 1.100.	1.227. 1.272. 1.138.	0.815. 1.299.	0.826. 1.157. 1.281	1.230. 1.131.	1.183. 0.284.
. 7.11. 1.231.30.	-1.461.981.33.	-1.02. 0.73.	0.29. 0.271.43	1.32. 1.48.	3.36. 5.47.
. 0.529, 1.282.	1.140. 1.090. 1.198.	1.154. 1.185.	1.153. 1.198. 1.692	1.141. 1.283.	0.530.
. 0.526. 1.267.	1.140. 1.096. 1.200.	1.140. 1.183.	1.150. 1.269. 1.694	1.149. 1.309.	0.564.
0.701.16.	0.05. 0.52. 0.17.	-1.250.17.	-0.26. 0.93. 0.15	0. 0.74. 2.05.	0.42.
0.323. 1.270.	1.402. 0.854. 1.692.	1.299. 1.148.	1.298. 1.090. 0.854	1.483. 1.272.	0.324.
0.330. 1.290.	1.425. 0.872. 1.694.	1.277. 1.123.	1.280. 1.108. 0.851	1.416. 1.295.	0.342.
1.96. 1.57.	1.69. 2.69. 0.22.	-1.701.48.	-1.40. 1.420.34	0.94. 1.85.	5.70.
. 0.477.	1.376. 1.463. 1.141.	1.247. 1.149.	1.248. 1.148. 1.462	2. 1.378. 0.478.	
0.499.	1.414. 1.433. 1.146.	1.223. 1.127.	1.229. 1.148. 1.390	3. 1.393. 0.488.	
4.62.	3.20. 2.12. 0.43.	-1.901.97.	-1.30. 0.570.43	3. 1.65. 2.15.	
	0.478. 1.272. 1.283. 0.500. 1.299. 1.258. 4.62. 2.141.98.	1.115. 1.283. 1.093. 1.241. -1.941.75.	1.115. 1.282. 1.270 1.103. 1.268. 1.249 -1.081.051.71	0. 0.477. 0. 0.486. 1. 1.77.	
	. 0.324. 0.530. . 0.339. 0.555. . 4.62. 4.60.	1.144. 0.953. 1.155. 0.960. 0.99. 0.75.	1.146. 0.529. 0.323 1.131. 0.526. 0.326 -1.260.571.17	3. 9. 7.	
		e .259. e .313. e .282. e .321. 4 .62. e .41.	0.279. 0.279. 0.07.	•	

Page 44 of 50 (Rev. 0)

•

н

-

 Hanis Nuclear Plant Unit 1, Cycle 6 Startup Test Report

ł

۰.

Figure 6.4

Assembly Relative Power Map 215

Predicted

.

Measured

% Difference

	. 0.280. . 0.298. . 6.44.	0.315. 0.271. 0.335. 0.284. 6.42. 5.04.		•
	0.324. 0.529. 1.144. 0.333. 0.525. 1.152. 2.820.75. 0.70.	0.954. 1.143. 0.531. 0.964. 1.168. 0.549. 1.05. 2.16. 3.41.	0.324. 0.336. 3.65.	
. 0.476.	1.265. 1.279. 1.114.	1.266. 1.114. 1.281.	1.266. 0.477.	
. 0.476.	1.255. 1.248. 1.092.	1.235. 1.104. 1.288.	1.285. 0.495.	
0.04.	-0.742.441.97.	-2.440.91. 0.57.	1.56. 3.86.	
. 0.477. 1.363.	1.398. 1.139. 1.245.	1.150. 1.246. 1.140	1.399. 1.363. 0.476.	
0.474. 1.348.	1.393. 1.123. 1.217.	1.123. 1.218. 1.147	1.402. 1.375. 0.482.	
0.601.11.	-0.381.392.23.	-2.302.25. 0.67	0.22. 0.92. 1.18.	
0.324. 1.266. 1.399.	0.857. 1.092. 1.301.	1.141. 1.302. 1.093.	0.857. 1.398. 1.265.	0.324.
0.312. 1.214. 1.365.	0.841. 1.074. 1.266.	1.114. 1.274. 1.104	0.850. 1.390. 1.259.	0.333.
-3.654.092.44.	-1.801.672.71.	-2.402.14. 1.00	-0.780.560.45.	3.03.
. 0.531. 1.281. 1.140.	1.093. 1.200. 1.156.	1.187. 1.157. 1.200	1.092. 1.139. 1.279.	0.529.
0.517. 1.242. 1.123.	1.088. 1.199. 1.151.	1.187. 1.157. 1.231	1.091. 1.135. 1.271.	0.538.
-2.613.031.49.	-0.480.090.39.	0.04. 0.06. 2.54	-0.110.340.65.	1.57.
. 0.271. 1.143. 1.114. 1.246.	1.302. 1.157. 0.828.	1.293. 0.828. 1.156	1,301. 1.245. 1.114.	1.144. 0.280.
0.292. 1.156. 1.094. 1.222.	1.270. 1.154. 0.835.	1.305. 0.826. 1.174	1.284. 1.231. 1.117.	1.150. 0.285.
7.93. 1.091.821.92.	-2.420.20. 0.77.	0.890.28. 1.57	-1.331.14. 0.30.	0.54. 1.91.
. 0.315. 0.954. 1.266. 1.150.	1.141. 1.187. 1.293.	0.847. 1.293. 1.187.	1.141. 1.150. 1.266.	0.954. 0.315.
0.340. 0.968. 1.238. 1.131.	1.124. 1.188. 1.334.	0.868. 1.312. 1.205.	1.133. 1.136. 1.265.	0.949. 0.313.
7.90. 1.482.201.66.	-1.50. 0.11. 3.18.	2.45. 1.44. 1.56.	-0.711.200.01.	-0.590.64.
. 0.280. 1.144. 1.114. 1.245.	1.301. 1.156. 0.828.	1.293. 0.828. 1.157.	1.362. 1.246. 1.114.	1.143. 0.271.
0.302. 1.158. 1.094. 1.225.	1.278. 1.144. 0.825.	1.316. 0.840. 1.173.	1.289. 1.231. 1.133.	1.147. 0.273.
7.92. 1.201.791.59.	-1.780.980.40.	1.74. 1.43. 1.41.	-1.621.27. 1.69.	0.37. 0.79.
. 0.529. 1.279. 1.139.	1.092. 1.200. 1.157.	1.187. 1.156. 1.200.	1.693. 1.140. 1.281.	0.531.
0.521. 1.255. 1.141.	1.104. 1.209. 1.148.	1.194. 1.162. 1.220.	1.699. 1.148. 1.367.	0.534.
-1.551.93. 0.16.	1.12. 0.740.78.	0.59. 0.55. 1.67.	0.53. 0.69. 2.01.	0.66.
0.324. 1.265. 1.398.	0.857. 1.693. 1.392.	1.141. 1.301. 1.092.	0.857. 1.399. 1.288.	0.324.
0.328. 1.279. 1.422.	0.851. 1.102. 1.286.	1.129. 1.290. 1.111	0.854. 1.412. 1.288.	0.343.
1.49. 1.15. 1.73.	2.90. 0.781.25.	-1.050.86. 1.73.	-0.28. 0.91. 1.78.	5.79.
0.476. 1.363.	1.399. 1.140. 1.246.	1.150. 1.245. 1.139.	1.398. 1.363. 0.477.	
0.498. 1.411.	1.440. 1.151. 1.225.	1.130. 1.231. 1.147.	1.393. 1.385. 0.487.	
4.53. 3.56.	2.96. 0.961.67.	-1.731.14. 0.70.	-0.35. 1.63. 2.09.	
. 0.477.	1.266. 1.281. 1.114.	1.266. 1.114. 1.279.	1.265. 0.476.	
0.498.	1.303. 1.259. 1.694.	1.243. 1.099. 1.261.	1.239. 0.484.	
. 4.53.	2.941.701.79.	-1.801.341.41.	-1.98. 1.68.	
	0.324. 0.531. 1.143. 0.341. 0.558. 1.158. 5.24. 5.20. 1.26.	0.954. 1.144. 0.529 0.961. 1.127. 0.524 0.721.540.95	0.324. 0.319. -1.37.	
	. 0.271. . 0.285. . 5.20.	0.315. 0.280. 0.322. 0.279. 2.450.45.		

Page 45 of 50 (Rev. 0)

,

ين بر بر بر

Harris Nuclear Plant Unit 1, Cycle 6 Startup Test Report

633

Ŋ.3

 $F_{Q}^{T*}V(z)/K(z)$ versus Core Elevation Map 211

Page 46 of 50 (Rev. 0)

P

30

٠

ę

د د م

50 m

Page 47 of 50 (Rev. 0)

é

Page 48 of 50 (Rev. 0)

- TECH SPEC LIMIT O- FQT(Z) - FQT+V 3X

Page 49 of 50 (Rev. 0)

7

٠

ź

Distribution List

NRC

1

Harris Plant

Manager - NSSS Manager - Technical Support Manager - Regulatory Affairs Power Ascension Coordinator - Cycle 6

NFM&SA Section

File: 908.04

Page 50 of 50 (Rev. 0)

۹,

