Development of EAL Threshold values from NEE-323-CALC-002

Due to elevated background radiation levels on these monitors during plant operation (10-12 R/hr), the calculated threshold value was rounded to 5 (minimum serviceable threshold value accounting for scale of monitor) for ease of use by the EAL evaluator, and the "in Mode 5 only" caveat is added to the EAL usage.

The resultant EALs are:

- RA2.2 Reading greater than 5 R/hr on ANY of the following radiation monitors (in Mode 5 only):
 - NW Drywell Area Hi Range Rad Monitor, RIM-9184A
 - South Drywell Area Hi Range Rad Monitor, RIM-9184B
- CS1/CG1 Core uncovery is indicated by ANY of the following:
 - Drywell Monitor (9184A/B) reading greater than 5.0 R/hr

CALCULATION COVER SHEET

CALC NO.	NEE-323-CALC-002
REV.	00

PAGE NO.				O. 1 of 28				
Title:	Dose Rate Evaluation of Reactor Vessel Water Levels During Refueling for EAL Thresholds		Client: D	uane Arnold	d Energy Center			
Tiue.			Project Identifier:		NEE-323			
Item		Cover Sheet Items			Yes	No		
1		n contain any open assum e confirmation? (If YES , identi		reliminary		\boxtimes		
2	Does this calculation so verified calculation.)	erve as an "Alternate Calculatio	on"? (If YES , identify t	he design		\boxtimes		
	Design Verified Calculation No.							
3	Does this calculation s verified calculation.)	upersede an existing Calculation	on? (If YES, identify t	he design		\boxtimes		
	Superseded Calculat	ion No						
Revisi Initial I	on Impact on Results	s:						
	Study	Calculation	nal Calculation 🔀					
	Safe	ety-Related Non-	Safety-Related 🔀]				
		(Print Name and	l Sign)					
Origina	ator: Jay Bhatt			Date:	12/1	2/17		
Design	ı Verifier¹ (Reviewer if I	NSR): Caleb Trainor		Date:	12/1	2/17		
Approv	ver: Aaron Holloway	Stage of the stage		Date:	12/1	2/17		

Note 1: For non-safety-related calculation, design verification can be substituted by review.

CALCULATION REVISION STATUS SHEET

CALC NO. NEE-323-CALC-002

Excellence—Eve	ry project. Every day.	REVISION STATU	JS SHEET	REV. 00	
		CALCULATION R	REVISION STATU	<u>IS</u>	
REVISION 00		<u>DATE</u> 12/12/17		DESCRIPTION Initial Issue	
		PAGE REVIS	SION STATUS		
<u>PAGE NO.</u> All		REVISION 00	PAGE NO.	RI	<u>EVISION</u>
	APP	ENDIX/ATTACHMI	ENT REVISION S	TATUS	
APPENDIX NO. A B C	NO. OF PAGES 1 2 1	REVISION NO. 00 00 00	ATTACHMENT NO. 1	NO. OF PAGES	REVISION NO. 00

TABLE OF CONTENTS

CALC NO.	NEE-323-CALC-002
REV.	00

Section	Page No.
1.0 Purpose and Scope	4
2.0 Summary of Results and Conclusions	4
3.0 References	5
4.0 Assumptions	6
5.0 Design Inputs	8
6.0 Methodology	13
7.0 Calculations	14
8.0 Computer Software	27
9.0 Impact Assessment	28
List of Appendices	# of Pages
Appendix A – Electronic File Listing	1
Appendix B - DAEAL.xlsx Sheets	2
Appendix C – SCALE Input	1
List of Attachments	# of Pages
Attachment 1 - Calculation Preparation Checklist	5

CALC NO.	NEE-323-CALC-002			

REV. 00

1.0 Purpose and Scope

The purpose of this calculation is to evaluate dose rates with water at the top of active fuel in the reactor vessel during cold shutdown or refueling operations in order to set Emergency Action Level (EAL) thresholds (RA2, CS1, CG1) per NEI 99-01 [Reference 3.5]. The dose rates are calculated at the locations of the drywell monitors 9184A/B so that dose rate measurements by these devices can be correlated to the water level in the core, upon failure of other water level detection systems. This calculation is nonsafety-related as the results of the calculation do not affect the design basis or safety-related systems structures or components. These results are best estimates based on as-built conditions and provide information to operators with respect to classifying an emergency, therefore no acceptance criteria is required.

2.0 Summary of Results and Conclusions

The dose rates just prior to the core being uncovered (i.e. water at the top of the active fuel) are shown in the table below. Note that the results presented below are calculated dose rates and do not account for background radiation or any installed detector check sources.

Table 1 – Dose Rate at Top of Active Fuel

Model Description	Drywell Monitor 9184A Reading (R/hr)	Drywell Monitor 9184B Reading (R/hr)	Drywell Monitor (9184A/B) Range (R/hr)
Head Off	1.81	1.68	1 to 1E+7
Head On	1.11	$7.41E-01^{1}$	1 to 1E+7

¹ This value is off scale low.

CALC NO. NEE-323-CALC-002

REV. 00

3.0 References

- 3.1 "Standard Composition Library," ORNL/NUREG/CSD-2/V1/R6, Volume 3, Section M8, March 2000
- 3.2 CGDG-SCALE-6.1.2, Rev 00, Commercial Grade Dedication SCALE Version 6.1.2
- 3.3 CGDG-MCNP6-V1.0, Rev 00, Commercial Grade Dedication MCNP6 Version 1.0
- 3.4 ANSI/ANS 6.1.1-1977, Neutron and Gamma Flux-To-Dose Conversion Factors
- 3.5 NEI 99-01, Rev. 6, "Development of Emergency Action Levels for Non-Passive Reactors"
- 3.6 I.RIM-V115-01, Rev. 10, "Victoreen Model 876A Containment Radiation Monitor Calibration"
- 3.7 NUREG 1940, "RASCAL 4: Descriptions of Models and Methods"
- 3.8 CAL-R00-PUP-008, Rev. 03, "Non-LOCA Radiological Consequence Dose with Alternate Source Term"
- 3.9 RFP 110, Rev. 45, "Refueling Procedure- Reactor Pressure Vessel Disassembly"
- 3.10 Technical Specifications, Section 1.1
- 3.11 Technical Specifications, Section 4.2.1
- 3.12 NUREG 1754, "A New Comparative Analysis of LWR Fuel Designs"
- 3.13 BECH-M009, Rev. 14, "Equipment Locations Reactor Building Section-GG"
- 3.14 BECH-C405, Rev. 14, "Reactor Building Floor Plan @ El. 757'-6""
- 3.15 NG-17-0156, Proprietary Data Transmittal to ENERCON
- 3.16 BECH-M405, Sh 04, Rev. 24, "Instrument Points and Rack Locations Diagram Plans at Elevs 812'-0" & 833'-6""
- 3.17 NG-88-0966, "G.E. Fuel Damage Documentation/Dose Rate Calculations"
- 3.18 C003-029, Rev. 0, "Drywell Cylindrical Shell & Cone"
- 3.19 VS-01-06, Rev. 4, "Top Head Assembly"
- 3.20 BECH-C511, Rev. 5, "Reactor Building RPV Ped Dev. Elev. & Sect's"
- 3.21 BECH-C514, Rev. 1, "Drywell Interior Biological Shield Wall Reinforcing Sections"
- 3.22 BECH-C-516, Rev. 6, "Drywell Interior Biological Shield Wall Plans El. 816'-3 1/4" to El 779'-1 1/2""
- 3.23 BECH-M405, Sh 02, Rev. 71, "Instrument Points & Lines Diagrams Plan at Elev 757'-6""
- 3.24 APED-B-31-2816-001, Rev. 5, "Outline Reactor Recirculating Pump"

CALC NO. NEE-323-CALC-002

REV.

00

3.25 FSAR Section 4.3.2.1, and Section 9.1

3.26 CAL-M98-058, Rev. 1, "ADS Accumulator Size Verification"

4.0 Assumptions

- 4.1 The core is homogenized based on the typical 10x10 fuel assembly dimensions, taking into account the fuel rods and space between. Any small variations in fuel parameters will have a negligible effect on containment dose rates. The cladding is modeled as Zircaloy 4 in lieu of ZIRLO; this is acceptable due to the similarity of the materials.
- 4.2 Any non-fuel hardware, including rod end plugs, is ignored in the active fuel region. This is acceptable since the primary self-shielding occurs in the fuel itself, and there may be some unknown streaming effects through the non-fuel hardware. This homogenization takes into account the presence of water when calculating the isotopic weight fraction and homogenized density. For the case with the reactor vessel head in place, the region between the head and the active fuel region is homogenized based on the actual mass of the upper internals over the entire region. Homogenization of source regions and shields is acceptable due to the insignificant effects on the detector response given the model geometry.
- 4.3 The composition of the containment structure and components are based on the values in the SCALE standard composition library [Reference 3.1]. These material properties are commonly used in shielding applications, and are acceptable for modelling the structures and components used to determine the best estimate response at the detector locations.
- 4.4 The minimum period of decay after reactor shutdown before moving fuel is 60 hours [Reference 3.8, Section 4.3.8]. This calculation assumes a decay time of 50 hours to allow EAL thresholds to be determined for reactor vessel conditions that exist prior to the commencement of fuel movement which is representative of the applicable operating modes (cold shutdown, refueling). This decay time is appropriate to produce best estimate results for both the head on and head off configurations.
- 4.5 The hardware in the upper internals region between the active fuel region, reactor recirculating pumps and reactor vessel head is assumed to be stainless steel type 304. While the actual composition of the hardware may vary slightly, small variations in the material will have a negligible effect on the dose rate response at the detectors.
- 4.6 It is assumed that the water below the active fuel region is liquid at a constant temperature. Using a density of 0.9982 g/cm³ is common in shielding

CALC NO. NEE-323-CALC-002

REV. 00

applications. Any water above this region would be steam with little shielding value.

- 4.7 The source term is generated shortly after shutdown, therefore, the fuel gamma source term will predominate and the neutron-gamma and hardware activation can be neglected.
- 4.8 The high range detectors read out in roentgen per hour (R/h) which is a measurement of exposure rate, while the MCNP output is provided in mrem/h which is a measurement of the equivalent dose rate that represents the biological effects of ionizing radiation. It is assumed that 1 R is approximately 1000 mrem. This is acceptable as only the gamma source term is considered.
- 4.9 The roof of the Reactor Building is modeled as 0.5 inches of stainless steel. This will account for any scattering interactions that may contribute to the response at the detector. The magnitude of the detector response due to scattering off of the roof will be small due to the geometry and amount of shielding in the model, and is therefore acceptable.
- 4.10 Automatic Depressurization System Accumulators 1R003A/B/C located on the 775'-11 ½" elevation are not included in the model. The size of the accumulators are 200 gallons [Reference 3.26]. This is relatively small compared to the geometry of the model, and the corresponding scatter interactions will not have a significant impact on the detector response.

CALC NO.		NEE-323-CALC-002	
	REV.	00	

5.0 Design Inputs

5.1 Fuel Assembly Parameters

The following fuel assembly parameters are used to homogenize the core in the MCNP model. They are based on typical fuel assembly values for 10x10 fuel.

Table 2 – Design Input Fuel Assembly Parameters

Parameters	Value	Unit	Reference
Fuel type	10x10		3.25
# of Assemblies in Core	368		3.11
# Fuel rods per assembly	92		3.12
Pitch	0.51	[in]	3.12
Density (% of theoretical)	95		3.12
Fuel pellet OD	0.336	[in]	3.12
Fuel rod OD	0.395	[in]	3.12
Clad thickness	0.026	[in]	3.12
Active length	144	[in]	3.12

5.2 Model Dimensions

The following elevations and dimensions are based on the associated drawings or other reference. Some parameters are estimated using drawing scales when exact dimensions are not provided.

Table 3 – Design Input Dimensions

Dimension	ft	in	cm	Reference
Pedestal inner radius	8		243.84	3.20
Pedestal outer radius	12		365.76	3.20
Reactor vessel inner diameter		185.375	470.85	3.15
Reactro vessel thickness		5	12.70	3.15
Drywell spherical portion radius	31.5		960.12	3.17 Figure 2
Concrete around drywell spherical portion(x and y directions radius)	36	9	1120.14	3.14
Drywell cylindrical portion radius	17		518.16	3.16
Drywell liner thickness		0.75	1.91	3.18
Concrete around drywell cylindrical portion (x and y directions)	22	9	693.42	3.16
Reactor Building (x and y directions)	140		4267.20	3.14
Reactor Building Roof Thickness		0.5	1.27	Assumption 4.9
Height of active fuel		144	365.76	3.12
Vessel Height		704.5	1789.43	3.15

CALC NO. NEE-323-CALC-002

REV. 00

Dimension	ft	in	cm	Reference
Reactor vessel head thickness		3.9375	10.00	3.19
Distance from vessel 0 to bottom of active fuel		200.94	510.39	3.15, 3.12
Bio shield inner radius	9	6.25	290.20	3.21
Bio shield outer radius	11	8.25	356.24	3.21
Reactor recirculating pump height	17	2	523.24	3.24
Reactor recirculating pump radius	2	9	83.82	3.24
Detector RE-9184A distance from origin (x plane)	-4		-121.92	3.23 [Scaled]
Detector RE-9184A distance from origin (y plane)	13.33		406.29	3.23 [Scaled]
Detector RE-9184B distance from origin (x plane)	6		182.88	3.23 [Scaled]
Detector RE-9184B distance from origin (y plane)	-12		-365.76	3.23 [Scaled]
Reactor Recirculating Pump IP- 201A distance from origin (x plane)	12		365.76	3.23 [Scaled]
Reactor Recirculating Pump IP- 201A distance from origin (y plane)	12		365.76	3.23 [Scaled]
Reactor Recirculating Pump IP- 201B distance from origin (x plane)	-12		-365.76	3.23 [Scaled]
Reactor Recirculating Pump IP- 201B distance from origin (y plane)	-12		-365.76	3.23 [Scaled]

Table 4 – Design Input Elevations²

Dimension:	ft.	in	cm	Reference
Drywell Equator	766	0.5	0.00	3.13
Vessel 0	772	5.5	195.58	3.15
Bottom of pedestal elevation	742	9	-709.93	3.13
Top of cylindrical portion of drywell concrete	855		2711.45	3.13
Top of Reactor Building	897	6	4006.85	3.13
Detector elevation	760		-184.15	3.17
Top of pedestal/ bottom of bio shield	770	10.5	147.32	3.20
Top of bio shield	816	3.25	1530.99	3.22
Reactor recirculating pump bottom	748	8.5	-528.32	3.13

² All elevations listed in centimeters are relative to the equator of the drywell elevation of 766' 0.5" [Reference 3.13].

CALC NO. NEE-323-CALC-002

REV. 00

5.3 Core Isotopic Inventory

Core isotopic activities in Ci/MWt are taken from Reference 3.7 Table 1-1. A table of the input values is shown in Table 5, below. The activities in Ci are determined by multiplying by the rated thermal power of 1912 MWt taken from Reference 3.10.

Table 5 - Core Source Term

Isotope	Ci/MWt	Ci	Isotope	Ci/MWt	Ci
Ba-139	4.74E+04	9.06E+07	Rh-105	2.81E+04	5.37E+07
Ba-140	4.76E+04	9.10E+07	Ru-103	4.34E+04	8.30E+07
Ce-141	4.39E+04	8.39E+07	Ru-105	3.06E+04	5.85E+07
Ce-143	4.00E+04	7.65E+07	Ru-106	1.55E+04	2.96E+07
Ce-144	3.54E+04	6.77E+07	Sb-127	2.39E+03	4.57E+06
Cm-242	1.12E+03	2.14E+06	Sb-129	8.68E+03	1.66E+07
Cs-134	4.70E+03	8.99E+06	Sr-89	2.41E+04	4.61E+07
Cs-136	1.49E+03	2.85E+06	Sr-90	2.39E+03	4.57E+06
Cs-137	3.25E+03	6.21E+06	Sr-91	3.01E+04	5.76E+07
I-131	2.67E+04	5.11E+07	Sr-92	3.24E+04	6.19E+07
I-132	3.88E+04	7.42E+07	Tc-99m	4.37E+04	8.36E+07
I-133	5.42E+04	1.04E+08	Te-127	2.36E+03	4.51E+06
I-134	5.98E+04	1.14E+08	Te-127m	3.97E+02	7.59E+05
I-135	5.18E+04	9.90E+07	Te-129	8.26E+03	1.58E+07
Kr-83m	3.05E+03	5.83E+06	Te-129m	1.68E+03	3.21E+06
Kr-85	2.78E+02	5.32E+05	Te-131m	5.41E+03	1.03E+07
Kr-85m	6.17E+03	1.18E+07	Te-132	3.81E+04	7.28E+07
Kr-87	1.23E+04	2.35E+07	Xe-131m	3.65E+02	6.98E+05
Kr-88	1.70E+04	3.25E+07	Xe-133	5.43E+04	1.04E+08
La-140	4.91E+04	9.39E+07	Xe-133m	1.72E+03	3.29E+06
La-141	4.33E+04	8.28E+07	Xe-135	1.42E+04	2.72E+07
La-142	4.21E+04	8.05E+07	Xe-135m	1.15E+04	2.20E+07
Mo-99	5.30E+04	1.01E+08	Xe-138	4.56E+04	8.72E+07
Nb-95	4.50E+04	8.60E+07	Y-90	2.45E+03	4.68E+06
Nd-147	1.75E+04	3.35E+07	Y-91	3.17E+04	6.06E+07
Np-239	5.69E+05	1.09E+09	Y-92	3.26E+04	6.23E+07
Pr-143	3.96E+04	7.57E+07	Y-93	2.52E+04	4.82E+07
Pu-241	4.26E+03	8.15E+06	Zr-95	4.44E+04	8.49E+07
Rb-86	5.29E+01	1.01E+05	Zr-97	4.23E+04	8.09E+07

CALC NO. NEE-323-CALC-002

REV. 00

5.4 Material Compositions

The following compositions used in the MCNP model are taken or developed from the SCALE standard composition library [Reference 3.1] and are shown in Table 6.

Table 6 – Scale Standard Compositions used in MCNP Model

Material	Isotope	Weight Fraction
Zry-4	Zr	0.9823
(6.56 g/cm^3)	Sn	0.0145
	Cr	0.0010
	Fe	0.0021
	Hf	0.0001
UO ₂	U-235	0.0348
(10.412 g/cm ³)	U-238	0.8466
	O	0.1186
Air	C	0.0001
(1.21E-03 g/cm ³)	N	0.7651
	0	0.2348
Water	Н	0.1111
(0.9982 g/cm^3)	0	0.8889
SS-304	Fe	0.6838
(7.94 g/cm^3)	Cr	0.1900
	Ni	0.0950
	Mn	0.0200
	Si	0.0100
	C	0.0008
	P	0.0004
Concrete	0	0.5320
(2.30 g/cm^3)	Si	0.3370
[KENO Regular	Ca	0.0440
Concrete Standard	Al	0.0340
Mix]	Na	0.0290
	Fe	0.0140
	Н	0.0100
Carbon Steel	C	0.0100
(7.82 g/cm^3)	Fe	0.9900

CALC NO. NEE-323-CALC-002

REV. 00

5.5 Upper Internals

The following weights are used in the MCNP model for the region between the active fuel and the reactor vessel head [Reference 3.9, Appendix 8.9]:

- The weight of stainless steel for the moisture separator is 83,000 lbs.
- The weight of stainless steel for the steam dryer is 50,000 lbs.
- 5.6 The drywell (9184 A/B) and torus (9185 A/B) radiation monitor ranges (1 to 10⁷ R/hr) are taken from Reference 3.6.
- 5.7 ANSI/ANS-1977 Flux to Dose Factors

Flux to dose conversion factors are taken from ANSI/ANS-6.1.1-1977 [Reference 3.4] and are shown in Table 7.

Table 7 - ANSI/ANS-6.1.1-1977 Flux to Dose Factors

MeV	mrem/hr/(γ/cm ² /s)	MeV	$mrem/hr/(\gamma/cm^2/s)$		
0.01	3.96E-03	0.8	1.68E-03		
0.03	5.82E-04	1	1.98E-03		
0.05	2.90E-04	2.2	3.42E-03		
0.07	2.58E-04	2.6	3.82E-03		

CALC NO. NEE-323-CALC-002

REV.

00

6.0 Methodology

The reactor source terms are decayed to 50 hours with ORIGEN-S of the SCALE 6.1 code package, Reference 3.2. The results are used to bin design input isotope specific activities into energy dependent photon bins. These energy specific photon emission bins are used as input for the energy distribution described by the MCNP source definitions.

The MCNP6, Reference 3.3, Monte Carlo transport code is used to determine the dose rates via the flux to dose conversion factors in Table 7, while accounting for shielding and particle transport.

The detailed engineering drawings are converted into MCNP surface and cell cards in the dimensions shown in Table 3 and Table 4. The radiation monitors of interest are modeled as point detectors to determine the expected dose rate for those detectors. The dose rates are calculated for two reactor refueling conditions:

- With Head the reactor is modeled with a 3.9375 inch carbon steel plate as indicated in Table 3, which is additional attenuation between the source and detector. The mass of the moisture separator and steam dryer is homogenized between the active fuel region and the vessel head.
- 2. Without head the reactor is modeled with air between the active fuel zone and containment.
- A sensitivity case is run with a mirror surface at the top of the drywell to ensure the modeling of the drywell cap would not significantly affect the response at the detector locations due to scattering.

Variance reduction is accomplished with a geometric importance map that is imposed on the homogenized core. In addition, cell based importance weighting and source biasing (see Section 7.5) are utilized to improve the variance reduction of the simple geometric scheme. A superimposed weight window mesh is utilized where necessary to improve variance. The weight windows are iteratively generated using the MCNP weight windows generator card. All final dose rates presented in this calculation include weight windows variance reduction.

CALC NO. NEE-323-CALC-002

REV. 00

7.0 Calculation

7.1 Source Terms

The ORIGEN-S input deck, *DAECEAL.inp*, is provided in Appendix C. This input produces a simple case where the isotopic composition from Table 5 is decayed. The isotope is specified in the 73\$\$ card using the special identifier described in Section F7.6.2 of the ORIGEN-S manual, and the activity in curies is specified in the 74** card. The time steps for the decay are given on the 60** card in hours. Although multiple time steps are calculated, the source term with 50 hours decay time is used in this calculation to model the core shortly after shutdown. The output of the decay is given in terms of photons/s/Energy-Group, which is automatically normalized in the MCNP input. The results of this calculation are summarized below in Table 8. These values are used in the MCNP input source definition.

Table 8 - Binned Total Core Source Term

Energy Group	Energy Boundaries (MeV)	Photons/sec
1	0.01-0.05	2.028E+19
2	0.05-0.1	6.572E+18
3	0.1-0.2	1.557E+19
4	0.2-0.3	9.672E+18
5	0.3-0.4	3.582E+18
6	0.4-0.6	7.837E+18
7	0.6-0.8	1.373E+19
8	0.8-1	2.132E+18
9	1-1.33	4.942E+17
10	1.33-1.66	3.579E+18
11	1.66-2	6.576E+16
12	2-2.5	7.518E+16
13	2.5-3	1.110E+17
14	3-4	8.689E+14
15	4-5	1.553E+10
16	5-6.5	2.568E+08
17	6.5-8	3.792E+07
18	8-10	8.041E+06
19	10-11	4.352E+05
totals		8.37E+19

CALC NO. NEE-323-CALC-002

REV. 00

7.2 MCNP Model Core Homogenization

The source term is given for the entire core, therefore, the self-shielding from the assemblies is an important part of the dose rate response. For simplicity, the core is modeled as a three dimensional cylinder with a uniformly distributed spatial particle distribution. The calculations for determining the mass of fuel, cladding and water for the core and the resulting density are shown below. The inputs are based on the dimensions in Table 2.

Assembly Width =
$$(Array Size - 1) \times pitch + Rod OD = (10 - 1)(0.51in) + 0.395in$$

= 4.985 in

Active Fuel Region Area = $(Assembly Width)^2 \times Number of Assemblies in Core$ = $(4.985in)^2 \times 368 = 9144.883 in^2$

Active Fuel Equivalent Radius =
$$\sqrt{\text{Active Fuel Region Area}/_{\pi}} = \sqrt{9144.883 \text{ in}^2/_{\pi}}$$

= 53.953 in

$$Rod\ Volume_{UO_2} = \pi(Pellet\ Radius)^2 \times Active\ Length = \pi(0.168\ in)^2(144\ in)$$

= 12.768 in³

$$Rod\ Mass_{UO_2} = \rho \times V = \left(10.412 \frac{g}{cc}\right) (12.7682\ in^3) \left(2.54 \frac{cm}{in}\right)^3 = 2178.54\ g$$

Assembly
$$Mass_{UO_2} = Rod \ Mass \times \frac{Number \ of \ Fuel \ Rods}{Assembly} = (2178.54 \ g)(92)$$

= 200.43 kg

Clad Volume =
$$\pi \left(\frac{OD^2}{4} - \frac{ID^2}{4} \right) \times Active \ Length$$

= $(\pi) \left[\frac{(0.395 \ in)^2}{4} - \frac{(0.343 \ in)^2}{4} \right] (144 \ in) = 4.34 \ in^3$

$$Rod\ Mass_{Zry-4} = \rho \times V = \left(6.56\ \frac{g}{cc}\right)(4.34\ in^3)\left(2.54\frac{cm}{in}\right)^3 = 466.5\ g$$

CALC NO. NEE-323-CALC-002

REV. 00

Assembly
$$Mass_{Zry-4} = Rod\ Mass \times \frac{Number\ of\ Fuel\ Rods}{Assembly} = (466.5g)(92) = 42.92\ kg$$

Assembly
$$H_2O$$
 Volume

 $= [(Assembly Width)^2]$

 $-\pi (Rod\ Radius)^2 \times Number\ of\ Fuel\ Rods] \times Active\ Length$

= $[(4.985 in)^2 - (\pi)(0.1975 in)^2(92)](144 in) = 1955 in^3$

Assembly
$$Mass_{H_2O} = \rho \times V = \left(0.9982 \frac{g}{cc}\right) {1955 \choose in^3} \left(2.54 \frac{cm}{in}\right)^3 = 31.98 \ kg$$

Assembly Volume = Active Length \times (Assembly Width)² = (144 in)(4.985 in)² = 3578.4 in³

$$Density = \frac{Total\; Mass}{Volume} = \frac{1000g/kg(200.43 + 42.92 + 31.98)\; kg}{3578.4\; in^3 \left(2.54\frac{cm}{in}\right)^3} = 4.70\; g/cc$$

The corresponding isotopic composition for the homogenized active fuel region is calculated based on the compositions in Table 6. An example calculation for the mass fraction of U-235 is included below.

$$\begin{aligned} \textit{Mass Fraction U235} &= \frac{\textit{Assembly Mass}_{\textit{U0}_2}}{\textit{Total Mass}} \times \textit{weight fraction U235} \\ &= \frac{200.43 \ kg}{(200.43 + 42.92 + 31.98) \ kg} \times 0.0348 = 0.0253 \end{aligned}$$

The remaining calculations for the homogenization are done in the worksheet Compositions of the EXCEL workbook DAEAL.xlsx and are shown in Appendix B. The isotopic compositions are calculated with the water level above the top of the fuel. Note that the EXCEL workbook uses additional significant figures.

	CALC NO.	NEE-323-CALC-002
١		

REV. 00

Table 9 – Homogenization of Active Fuel Region

ZAID Number	Atom	Mass Fraction Active Fuel Region Homogenized
92235	U-235	0.0253
92238	U-238	0.6163
8016	0	0.1896
40000	Zr	0.1531
50000	Sn	0.0023
24000	Cr	0.0002
26000	Fe	0.0003
72000	Hf	0.0000
1001	Н	0.0129

7.3 MCNP Model Upper Internals Homogenization

For the case with the reactor vessel head in place, the steam dryer and moisture separator region are modeled as a discrete cylinder with a uniformly distributed homogenized material to account for the mass of stainless steel between the active fuel height and reactor vessel head. The homogenization accounts for the mass of metal from Section 5.5 (assumed stainless steel type 304 per Assumption 4.5) distributed evenly across the volume between the active fuel height (Z=1071.73 cm) and the head (Z=1985.01 cm).

Mass Upper Internals =
$$(83000 \ lb + 50000 \ lb) \left(453.59 \frac{g}{lb}\right) = 6.033 \times 10^7 \ g$$

The mass is divided by the volume of the region between the active fuel height and the reactor vessel head to determine the density.

Density Upper Internals = Mass Upper Internals ÷ V
=
$$6.033 \times 10^7 g \div (913.28cm \times (\pi(235.43cm)^2)) = 0.379 \frac{g}{cc}$$

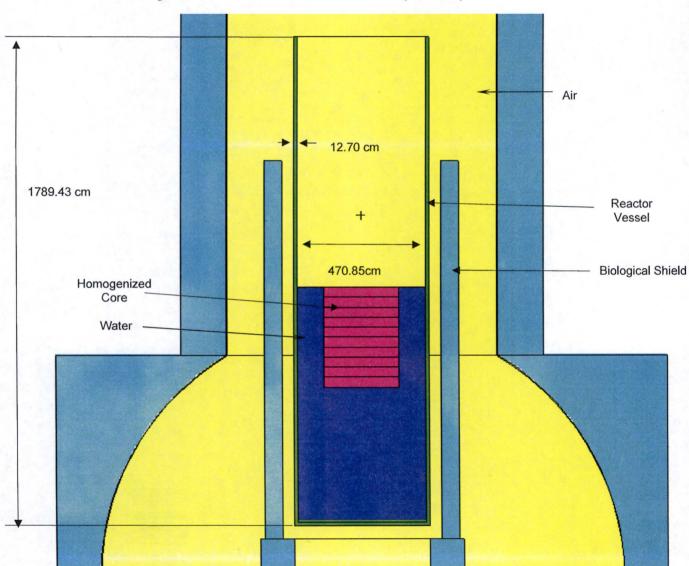
7.4 MCNP Model Geometry

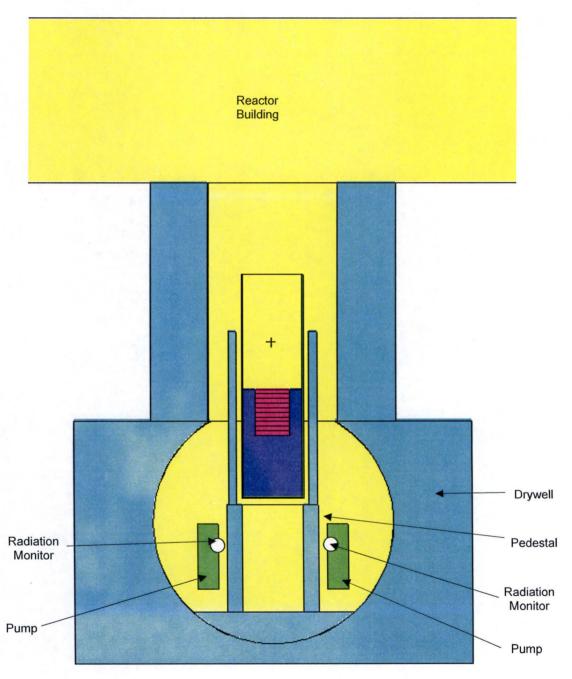
The following MCNP model geometry is based on the containment dimensions summarized in Table 3 and Table 4. The model only focuses on the primary systems and components that provide shielding or reflection from the core to the radiation monitors. These components include the reactor vessel, recirculation pumps, pedestal, biological shield and drywell. VISED plots of the model geometry are provided in Figures 1-3. The MCNP surface cards with the model dimensions (cm) are shown in Figure 4, and the cell cards are shown in Figure 5 for the cases with no reactor vessel head. A VISED plot of the model with the reactor vessel head is shown in Figure 6. Areas that are not of interest

CALC NO. NEE-323-CALC-002

REV. 00

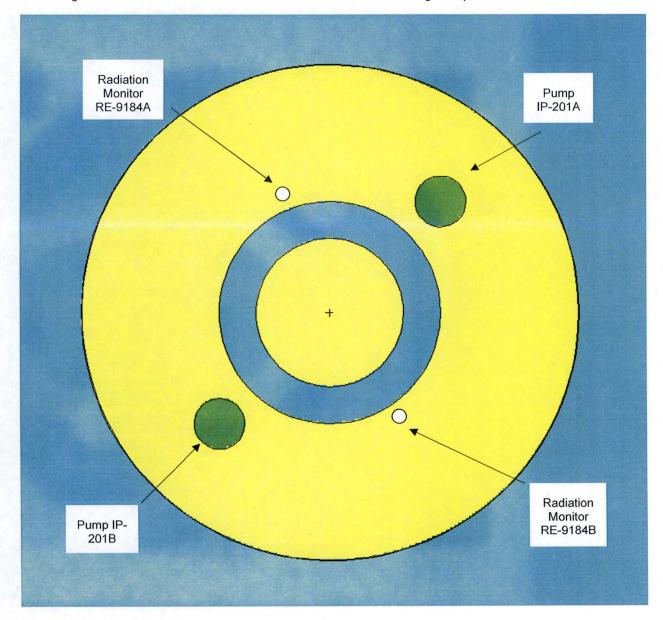
are given an importance of zero (white areas) so MCNP will not track particles in locations that will not contribute to the detector response.




Figure 1 X-Z VISED Plot of Reactor Vessel (No Head)

CALC NO. NEE-323-CALC-002

REV. 00


³ Radiation monitors are not on the same plane shown above. They are included for visualization purposes only. The VISED Plot was rotated around the Z axis until the Recirculating Pumps were visible.

CALC NO. NEE-323-CALC-002

REV. 00

Figure 3 X-Y Vised Plot of Detectors and Reactor Recirculating Pumps at Elevation 760'-0" 4

⁴ Detectors are included for visualization purposes only.

CALC NO. NEE-323-CALC-002

REV. 00

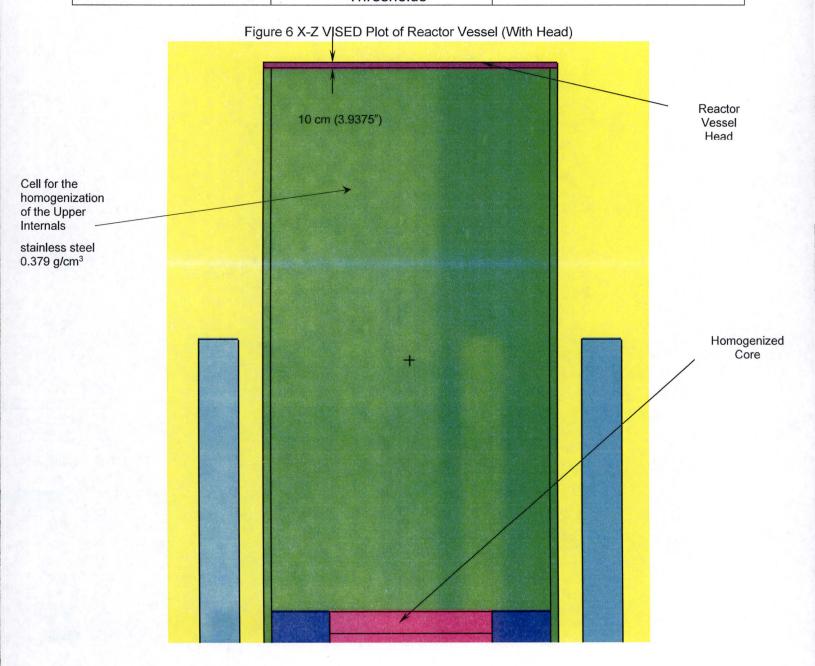
Figure 4 MCNP Model Surface Cards⁵

c surfaces 1 rcc 0 0 705.97 0 0 365.76 137.045 \$ Active Fuel Region 2 rcc 0 0 208.28 0 0 1776.73 235.43 \$ Reactor Pressure Vessel Inner Surface 3 rcc 0 0 195.58 0 0 1789.43 248.13 \$ Reactor Pressure Vessel Outer Surface 4 rpp -1120.14 1120.14 -1120.14 1120.14 -1120.14 821.86 \$ Concrete Spher port drywell outer 5 so 960.12 \$ Spher portion of drywell outer surface 6 so 958.21 \$ Spher portion of drywell liner surface 7 pz -709.93 \$ Bottom of Pedestal Elevation 8 rcc 0 0 -709.93 0 0 857.25 243.84 \$ Pedestal Inner Surface 9 rcc 0 0 -709.93 0 0 857.25 365.76 \$ Pedestal Outer Surface 81 rcc 0 0 147.32 0 0 1383.67 290.20 \$ Bio Shield Inner Surface \$ Bio Shield Outer Surface 91 rcc 0 0 147.32 0 0 1383.67 356.24 82 rcc 365.76 365.76 -528.32 0 0 523.24 83.82 \$ Recirc Pump IP-201A 92 rcc -365.76 -365.76 -528.32 0 0 523.24 83.82 \$ Recirc Pump IP-201B 10 pz 195.58 \$ Vessel 0 11 pz 821.86 \$ Transition Spherical to Cylindrical 12 rcc 0 0 821.86 0 0 1889.59 518.16 \$ cylin port drywell concrete surface 13 rcc 0 0 821.86 0 0 1889.59 516.25 \$ cylin port drywell liner surface 14 rpp -693.42 693.42 -693.42 693.42 821.86 2711.45 \$ Concrete cylin port drywell outer 15 pz 1071.73 \$ Water Elevation Surface 16 pz 1985.01 \$ Top of RPV (head level) 17 rpp -4267.2 4267.2 -4267.2 4267.2 2711.45 4006.85 \$ Reactor building above drywell 18 rpp -4267.2 4267.2 -4267.2 4267.2 4006.85 4008.12 \$ Reactor building roof 19 pz 147.32 \$ Top of Ped Elevation/Bottom Bio Shield 20 pz 1530.99 \$ Top of Ped Elevation/Bottom Bio Shield 28 rcc 0 0 1985.01 0 0 10.00 248.13 \$ Reactor Head 101 pz 742.546 102 pz 779.122 103 pz 815.698 104 pz 852.274 105 pz 888.85 106 pz 925.246 107 pz 962.002 108 pz 998.578 109 pz 1035.154 110 pz 1071.73

⁵ The surface card for the MCNP model without the reactor vessel head does not have surface 28.

CALC NO. NEE-323-CALC-002

REV. 00


Figure 5 MCNP Model Cell Cards (No Head)

c cells		
101 1 -4.49 -1 -101	imp:p=256	\$ Active Fuel Region
102 1 -4.49 -1 101 -102	imp:p=128	\$ Active Fuel Region
103 1 -4.49 -1 102 -103	imp:p=64	\$ Active Fuel Region
104 1 -4.49 -1 103 -104	imp:p=32	\$ Active Fuel Region
105 1 -4.49 -1 104 -105	imp:p=16	\$ Active Fuel Region
106 1 -4.49 -1 105 -106	imp:p=8	\$ Active Fuel Region
107 1 -4.49 -1 106 -107	imp:p=4	\$ Active Fuel Region
108 1 -4.49 -1 107 -108	imp:p=3	\$ Active Fuel Region
109 1 -4.49 -1 108 -109	imp:p=2	\$ Active Fuel Region
110 1 -4.49 -1 109 -110	imp:p=1	\$ Active Fuel Region
2 2 -0.9982 1 -2 -15	imp:p=256	\$ Water Region
3 3 -1.21E-03 15 -2	imp:p=256	\$ Air Region inside vessel
4 4 -7.94 2 -3 -16	imp:p=256	\$ RPV Shell
7 5 -2.3 5 -4	imp:p=256	\$ Concrete Surrounding RPV spherical
8 5 -2.3 -14 12	imp:p=256	\$ Concrete Surrounding RPV cylindrical
9 5 -2.3 -9 8 7 -19	imp:p=256	\$ Pedestal
91 5 -2.3 -91 81 19 -20	imp:p=256	\$ Bio Shield
10 5 -2.3 -6 -7	imp:p=256	<pre>\$ Concrete at bottom of pedestal</pre>
11 3 -1.21E-03 -8	imp:p=256	\$ Inside Pedestal Air
12 3 -1.21E-03 -6 7 -11 9 3		
#18 #19 #91	imp:p=256	\$ Inside Spherical portion Air
13 3 -1.21E-03 -13 3 #91	imp:p=256	\$ Inside Cylindrical portion Air
14 3 -1.21E-03 -17	imp:p=256	\$ Reactor Building above drywell Air
15 4 -7.94 2 -18	imp:p=256	\$ Reactor Build Roof Stainless Steel
16 4 -7.94 6 -5 -11	imp:p=256	\$ Containment Liner Spherical portion
17 4 -7.94 13 -12	imp:p=256	<pre>\$ Containment Liner Cylin portion</pre>
18 4 -7.94 -82	imp:p=256	\$ Recirc Pump IP-201A
19 4 -7.94 -92	imp:p=256	\$ Recirc Pump IP-201B
999 0 1 #2 #3 #4 #7 #8 #9 #10 #11 #	12 #13 #14	
#15 #16 #17 #18 #19 #9	91 imp:p=0	\$ Problem Boundary

CALC NO. NEE-323-CALC-002

REV. 00

7.5 MCNP Source Definition

The core source term is modeled as uniformly distributed throughout the homogenized core, and has an energy spectra based on the decayed core inventory (Section 7.1). Only the gamma source term is taken into account for this evaluation. The source term is generated shortly after shutdown, therefore, the fuel gamma source term will predominate, and the neutron-gamma and hardware activation source terms can be neglected (Assumption 4.7). The source is defined on the MCNP sdef card using

CALC NO. NEE-323-CALC-002

REV. 00

distributions to define the particle location and energy. The radius of the core is defined with the rad parameter, which automatically creates a uniform distribution based on a cylindrical geometry. The ext and axs parameters define the direction and distance of the cylinder axis. These parameters combined define the core where the particles can be born. The erg parameter defines the energy spectrum of source particles, and is based on the results of the ORIGEN-S calculation discussed previously. This distribution is a histogram of energies represented by activities. These are automatically normalized by MCNP to create a probability distribution. The total activity is preserved in the tally multiplier. The MCNP source definition cards are shown below in Figure 7. The sb card is a source biasing card, which in this case biases the particle generation to the lower end of the core. This is a variance reduction technique to improve the statistical certainty in the results.

Figure 7 MCNP Source Definition Cards

```
sdef rad=d1 ext=d2 axs=0 0 1 erg=d8
                                                                    ←Source Definition Card
                                                                           -Radius = d1
                                                                           -Extent = d2
                                                                           -Axis = +Z
                                                                           -Energy = d8
sil 137.045
                                                                    ←Core Radius Distribution
si2 h 0 742.546 779.122 815.698 852.274 888.85 925.246 962.002
                                                                    ←Core Axial Distribution
      998.578 1035.154 1071.73
sp2 0 1 1 1 1 1 1 1 1 1 1
                                                                    ←Actual Uniform Distribution
sb2 0 1 1 0.1 0.1 0.1 0.01 0.01 0.01 0.001 0.001
                                                                    ←Biased to Bot Distribution
c Fuel Gamma Spectra
si8 h 1.000e-002 5.000e-002 1.000e-001 2.000e-001 3.000e-001 4.000e-001
                                                                           ←Source Energy Groups
     6.000e-001 8.000e-001 1.000e+000 1.330e+000 1.660e+000 2.000e+000
    2.500e+000 3.000e+000 4.000e+000 5.000e+000 6.500e+000 8.000e+000
    1.000e+001 1.100e+001
      0.00E+00 2.028E+19 6.572E+18 1.557E+19 9.672E+18 3.582E+18 7.837E+18 ←Source Emission on
sp8
                                                                              Energy Basis
      1.373E+19 2.132E+18 4.942E+17 3.579E+18 6.576E+16 7.518E+16 1.110E+17
      8.689E+14 1.553E+10 2.568E+08 3.792E+07 8.041E+06 4.352E+05
```


CALC NO. NEE-323-CALC-002

REV. 00

7.6 MCNP Tally Specification

The tallies used in this evaluation are point detectors placed at approximate locations of radiation monitors RE-9184A, and RE-9184B. Point detectors are chosen because they use quasi-deterministic dose calculations that will provide better results than surface or cell based tallies that require the particles to enter those regions. The inputs to this card are the coordinates of the dose points followed by an exclusion zone to reduce variance, as well as a multiplier card, which represents the total core activity in photons/sec. The tally cards are shown in Figure 8.

Figure 8 MCNP Tally Cards

```
f5c RE-9184A, and 9184B
f5:p -121.92 406.29 -184.15 20
182.88 -365.76 -184.15 20
fm5 8.370E+19
```

```
←Tally Comment Card
←Tally 5 (point detector)
x y z exclusion
← Tally Multiplier
(Total Activity)
```

In addition, the flux is multiplied by ANSI/ANS flux-dose conversion factors [Reference 3.4]. This is specified in MCNP using the de/df cards. These are shown in Figure 9.

Figure 9 ANSI/ANS-6.1.1-1977 Gamma Flux to Dose Conversion Factors

CALC NO. NEE-323-CALC-002

REV.

00

7.7 MCNP Material Cards

The MCNP material cards are provided in Figure 9. These are based on the compositions described in Table 6 or calculated in Section 7.2.

Figure 10 MCNP Material Cards

m1	92235 -0.0253 92238 -0.6163	\$ Homogenized Active Fuel Region
	8016 -0.1896	
	40000 -0.1531	
	50000 -0.0023	
	24000 -0.0002	
	26000 -0.0003	
	1001 -0.0129	
m2	1001 2 8016 1	\$ Water
m3	6012 -0.000126	\$ Air
	7014 -0.76508	
	8016 -0.234793	
m4	6000 -0.0008	\$ SS 304
	14000 -0.01	
	15031 -0.00045	
	24000 -0.19	
	25055 -0.02	
	26000 -0.68375	
	28000 -0.095	
m5	26000 -0.014	\$ Reg-Concrete
	1001 -0.01	
	13027 -0.034	
	20000 -0.044	
	8016 -0.532	
	14000 -0.337	
	11023 -0.029	
m6	6012 -0.01	\$ Carbon Steel
	26056 -0.99	

CALC NO. NEE-323-CALC-002

REV. 00

7.8 Results

The dose rates are provided in Table 10 for the water level at the top of the fuel assemblies. The dose rate is slightly above the detectable response of 1 R/h (1E+03 mrem/h) for the no head configuration, and below the detectable response for the configuration with the reactor vessel head in place for one of the detectors. The sensitivity case shows that there is no significant impact due to reflection from the drywell cap.

Table 10 – Dose Rate Response (mrem/h)

Configuration	Dose Rate 1	fsd ⁶	Dose Rate 2	fsd	Tally File
	RE-9184A		RE-9184B		
No Head	1.81E+03	10.81%	1.68E+03	7.31%	d0ndm
With Head	1.11E+03	10.16%	7.41E+02	8.24%	d0hgm
With Head (Sensitivity Case)	1.07E+03	15.27%	7.67E+02	15.51%	d0rdm

8.0 Computer Software

This calculation uses ORIGEN-S of the SCALE Version 6.1.2 code package [Reference 3.2] and MCNP Version 6.1.0 [Reference 3.3] in accordance with CSP 3.09.

⁶ Fraction standard deviation.

CALC NO. NEE-323-CALC-002

REV. 00

9.0 Impact Assessment

This calculation is based on "realistic" assumptions for the purpose of declaring EALs, rather than typical conservative "bounding" type design basis analyses. The calculation results are intended to provide order of magnitude dose rates to assist Operations and Emergency Response personnel in determination of core uncovery in accordance with NEI 99-01 Rev. 6.

Appendix A Electronic File Listing

CALC NO. NEE-323-CALC-002 REV. 00

Origen output: 07/26/2017 04:19 PM

82,114 DAECEAL.OUT

MCNP output:

Directory of \No head\ 08/16/2017 09:13 AM

327,680 d0nao

Directory of \With Head\
08/16/2017 10:01 AM

1,269,760 d0hgo

Directory of \sensitivity\
08/16/2017 03:54 AM

286,720 d0rdo

Appendix B DAEAL.xlsx Sheets

CALC NEE-323-CALC-002 REV. 00

AA	В	С	D	E	F G	Н	I J	K	L
2	Material	Isotope	Weight Fraction	Reference	Material	Mas s (KG)	ZAID Number	Atom	Mass Fraction Active Fuel Region Homogenized
3	Zry- 4	Zr	0.9823	[1]	UO ₂	200.4	92235	U-235	0.0253
4	(6.56 g/cm ³)	Sn	0.0145		Zry- 4	42.92	92238	U-238	0.6163
5		Cr	0.001	Make 1	Water	31.98	8016	0	0.1896
6		Fe	0.0021				40000	Zr	0.1531
7		Hf	0.0001				50000	Sn	0.0023
8	UO ₂	U-235	0.0348	[1]			24000	Cr	0.0002
9		U-238	0.8466				26000	Fe	0.0003
10		0	0.1186				72000	Hf	0.0000
11	Air	С	0.0001	[1]			1001	Н	0.0129
12	(1.21E-03 g/cm ³)	N	0.7651						1.0000
13		0	0.2348						
14	Water	Н	0.1111	[1]					
15	(0.9982 g/cm ³)	0	0.8889						
16	SS-304	Fe	0.6838	[1]					
17	(7.94 g/cm ³)	Cr	0.19	100					
18		Ni	0.095					***************************************	
19		Mn	0.02						
20		Si	0.01						
21		С	0.0008	B. W. L.					
22		P	0.0004						
23	Concrete	0	0.532	[1]					
24	(2.30 g/cm ³)	Si	0.337						
25		Ca	0.044		***************************************		-	***************************************	***************************************
26		A1	0.034	7. E.15					
27		Na	0.029	Carl Carles					
28	100 100 100	Fe	0.014						
29		Н	0.01						
30	Carbon Steel	С	0.01	[1]					
31	(7.82 g/cm ³)	Fe	0.99						

Appendix B DAEAL.xlsx Sheets

CALC NEE-323-CALC-002 REV. 00

A	В	С	D	E	F	G	Н	I	J	K	L
	Material	Isotope	Weight Fraction	Reference		Material	Mass (KG)		ZAID Number	Atom	Mass Fraction Active Fuel Region Homogenized
3	Zry- 4	Zr	0.9823	[1]		UO ₂	200.42		92235	U-235	=(H3/SUM(H3:H5))*D8
4	(6.56 g/cm ³)	Sn	0.0145			Zry- 4	42.92		92238	U-238	=(H3/SUM(H3:H5))*D9
5	,	Cr	0.001	e		Water	31.98		8016	0	=((H3/(SUM(H3:H5)))*D10)+((H5/(SUM(H3:H5))))*D15
6		Fe	0.0021						40000	Zr	=(\$H\$4/SUM(\$H\$3:\$H\$5))*D3
7		Hf	0.0001						50000	Sn	=(\$H\$4/SUM(\$H\$3:\$H\$5))*D4
8	UO ₂	U-235	0.0348	[1]					24000	Cr	=(\$H\$4/SUM(\$H\$3:\$H\$5))*D5
9		U-238	0.8466				A distribution of the state of		26000	Fe	=(\$H\$4/SUM(\$H\$3:\$H\$5))*D6
10		0	0.1186						72000	Hf	=(\$H\$4/SUM(\$H\$3:\$H\$5))*D7
11	Air	С	0.0001	[1]					1001	Н	=(H5/SUM(H3:H5))*D14
12	(1.21E-03 g/cm ³)	N	0.7651								=SUM(L3:L11)
13		0	0.2348								
14	Water	H	0.1111	[1]							
15	(0.9982 g/cm ³)	0	0.8889								
16	SS-304	Fe	0.6838	[1]		-					
17	(7.94 g/cm ³)	Cr	0.19								
18	(111 / 8 1111 /	Ni	0.095								
9		Mn	0.02								
20		Si	0.01					**********		*******************************	
21		С	0.0008								
22		P	0.0004								
23	Concrete	0	0.532	[1]							
24	(2.30 g/cm ³)	Si	0.337								
25		Ca	0.044								
6		A1	0.034								
7		Na	0.029								
8		Fe	0.014								
29		H	0.01								
30	Carbon Steel	С	0.01	[1]					İ		
31	(7.82 g/cm ³)	Fe	0.99								

Appendix C SCALE Input

CALC NO.

NEE-323-CALC-002

REV. 00

```
=origens
0$$ all 71 e t
BWR Source Term DAEC EAL Analysis
3$$ 21 1 1 a4 27 a16 4 a33 19 e t
35$$ 0 t
54$$ a8 0 a11 2 e
56$$ 0 6 a6 1 a10 0 a13 63 3 3 0 2 0 e
57** 0 a3 1-16 e
95$$ 0 t
DAECEAL
Ci Source Terms
60** 0 24 40 50 60 70
61** 5r1-8 1+6 1+4
65$$
                            WATTS-ALL WATTS-GAMMA
'GRAM-ATOMS GRAMS CURIES
                   1 0 0
                            1 0 0
                                      3Z
    3Z 0 1 0
                     1 0 1
    37
          1 1 1
                                1 1 1
                                             37
          1 1 1
                     1 1 1
                                1 1 1
                                             3Z
    37
81$$ 2 0 26 1 e
82$$ f2
83** 1.10E+07 1.00E+07 8.00E+06 6.50E+06 5.00E+06 4.00E+06 3.00E+06
    2.50E+06 2.00E+06 1.66E+06 1.33E+06 1.00E+06 8.00E+05 6.00E+05
    4.00E+05 3.00E+05 2.00E+05 1.00E+05 5.00E+04 1.00E+04 e
84** 2.00E+07 6.43E+06 3.00E+06 1.85E+06 1.40E+06 9.00E+05 4.00E+05
    1.00E+05 1.70E+04 3.00E+03 5.50E+02 1.00E+02 3.00E+01 1.00E+01
    3.05E+00 1.77E+00 1.30E+00 1.13E+00 1.00E+00 8.00E-01 4.00E-01
    3.25E-01 2.25E-01 1.00E-01 5.00E-02 3.00E-02 1.00E-02 1.00E-05 e
73$$ 561390 561400 581410 581430 581440 962420 551340 551360
   551370 531310 531320 531330 531340 531350 360831 360850
   360851 360870 360880 571400 571410 571420 420990 410950
   601470 932390 591430 942410 370860 451050 441030 441050
   441060 511270 511290 380890 380900 380910 380920 430991
   521270 521271 521290 521291 521311 521320 541311 541330
   541331 541350 541351 541380 390900 390910 390920 390930
   400950 400970
74** 9.06E+07 9.10E+07 8.39E+07 7.65E+07 6.77E+07 2.14E+06 8.99E+06
   2.85E+06 6.21E+06 5.11E+07 7.42E+07 1.04E+08 1.14E+08 9.90E+07
   5.83E+06 5.32E+05 1.18E+07 2.35E+07 3.25E+07 9.39E+07 8.28E+07
   8.05E+07 1.01E+08 8.60E+07 3.35E+07 1.09E+09 7.57E+07 8.15E+06
   1.01E+05 5.37E+07 8.30E+07 5.85E+07 2.96E+07 4.57E+07 1.66E+07
   4.61E+07 4.57E+06 5.76E+07 6.19E+07 8.36E+07 4.51E+06 7.59E+05
   1.58E+07 3.21E+06 1.03E+07 7.28E+07 6.98E+05 1.04E+08 3.29E+06
   2.72E+07 2.20E+07 8.72E+07 4.68E+07 6.06E+07 6.23E+07 4.82E+07
   8.49E+07 8.09E+07
56$$ f0 t
end
```

E3	E	N	E	R	C	0	N
		Excell	ence-	-Every	v proje	ct. Ever	ry day.

Attachment 1 **CALCULATION PREPARATION** CHECKLIST

CALC NEE-323-CALC-002 NO.

REV. 0 YES CHECKLIST ITEMS¹ NO N/A **GENERAL REQUIREMENTS** If the calculation is being performed to a client procedure, is the procedure being \boxtimes used the latest revision? The Calculation is performed in accordance with ENERCON procedures. X 2. Are the proper forms being used and are they the latest revision? The Calculation is performed in accordance with ENERCON procedures. Have the appropriate client review forms/checklists been completed? \boxtimes OAR will be performed after calculation submittal Are all pages properly identified with a calculation number, calculation revision and \boxtimes \Box page number consistent with the requirements of the client's procedure? 5. Is all information legible and reproducible? \boxtimes 6. Is the calculation presented in a logical and orderly manner? \boxtimes \Box 7. X Is there an existing calculation that should be revised or voided? There is no existing calculation that should be revised or voided. Is it possible to alter an existing calculation instead of preparing a new calculation for 8. \boxtimes this situation? No existing calculation would be applicable. If an existing calculation is being used for design inputs, are the key design inputs, \boxtimes assumptions and engineering judgments used in that calculation valid and do they apply to the calculation revision being performed. No existing calculation is used for design inputs 10. Is the format of the calculation consistent with applicable procedures and \boxtimes expectations? Were design input/output documents properly updated to reference this calculation? \boxtimes 11. There are no design output documents. 12. Can the calculation logic, methodology and presentation be properly understood X without referring back to the originator for clarification? **OBJECTIVE AND SCOPE** 13. Does the calculation provide a clear concise statement of the problem and objective \boxtimes of the calculation? X 14. Does the calculation provide a clear statement of quality classification? \boxtimes Is the reason for performing and the end use of the calculation understood? 15. 16. Does the calculation provide the basis for information found in the plant's license X basis? This does not provide basis for license basis \boxtimes 17. If so, is this documented in the calculation? \Box

ASSUMPTIONS

Attachment 1 CALCULATION PREPARATION CHECKLIST

CALC NO.

NEE-323-CALC-002

Excellence—Every project. Every day. REV. 0 CHECKLIST ITEMS1 YES NO N/A See above 18. Does the calculation provide the basis for information found in the plant's design \boxtimes basis documentation? This does not provide basis for design basis If so, is this documented in the calculation? \boxtimes See above 20. Does the calculation otherwise support information found in the plant's design basis \boxtimes documentation? This does not provide support for information found in design basis documentation If so, is this documented in the calculation? \boxtimes 21. See above Has the appropriate design or license basis documentation been revised, or has the 22. \Box \boxtimes change notice or change request documents being prepared for submittal? See above **DESIGN INPUTS** 23. Are design inputs clearly identified? \bowtie 24. Are design inputs retrievable or have they been added as attachments? \boxtimes 25. If Attachments are used as design inputs or assumptions are the Attachments \boxtimes traceable and verifiable? 26. Are design inputs clearly distinguished from assumptions? \boxtimes 27. Does the calculation rely on Attachments for design inputs or assumptions? If yes, are the attachments properly referenced in the calculation? The Design Information Transmittal is included as an Attachment is properly referenced in the calculation 28. Are input sources (including industry codes and standards) appropriately selected \boxtimes and are they consistent with the quality classification and objective of the calculation? 29. Are input sources (including industry codes and standards) consistent with the plant's \boxtimes \Box design and license basis? 30. If applicable, do design inputs adequately address actual plant conditions? X \bowtie 31. Are input values reasonable and correctly applied? \boxtimes П 32. Are design input sources approved? The Design Information Transmittal contains information from a superseded calculation. Does the calculation reference the latest revision of the design input source? \Box The calculation uses information from a superseded calculation. This information is provided in a Design Information Transmittal. \boxtimes 34. Were all applicable plant operating modes considered?

CALC

NEE-323-CALC-002

CHECKLIST REV. O N/A 35. Are assumptions reasonable/appropriate to the objective? S NO N/A 36. Is adequate justification/basis for all assumptions provided? S S S 37. Are any engineering judgments used? S S S S 38. Are engineering judgments used as design input. S S S S 39. If engineering judgments are utilized as design input. S S S S S 39. If engineering judgments are utilized as design input. S S S S S 39. If engineering judgments are utilized as design input. S S S S S S 40. Is the methodology used in the calculation described or implied in the plant's licensing basis? S S S S S S S S S	-	Excellence—Every project. Every day.	CALCULATION PREPARATION CHECKLIST	NO.				
35. Are assumptions reasonable/appropriate to the objective?				REV.		0		
36. Is adequate justification/basis for all assumptions provided? 37. Are any engineering judgments used? 38. Are engineering judgment to used as design input. 38. Are engineering judgment is not used as a design input. 39. If engineering judgments are utilized as such? 39. If engineering judgments are utilized as design inputs, are they reasonable and can they be quantified or substantiated by reference to site or industry standards, engineering judgment is not used as a design input. METHODOLOGY 40. Is the methodology used as a design input. METHODOLOGY 41. If the methodology used in the calculation described or implied in the plant's licensing basis? The scope of calculation is outside of plant licensing basis 41. If the methodology used differs from that described in the plant's licensing basis, has the appropriate license document change notice been initiated? 42. Is the methodology used consistent with the stated objective? 43. Is the methodology used appropriate when considering the quality classification of the calculation and intended use of the results? BODY OF CALCULATION 44. Are equations used in the calculation consistent with recognized engineering practice and the plant's design and license basis? 45. Is there reasonable justification provided for the use of equations not in common use? There are no uncommon equations used in the calculation. 46. Are the mathematical operations performed properly and documented in a logical fashion? 47. Is the math performed correctly? 48. Have adjustment factors, uncertainties and empirical correlations used in the analysis been correctly applied? 49. Has proper consideration been given to results that may be overly sensitive to very small changes in input? SOFTWARE/COMPUTER CODES 50. Are computer codes or software languages used in the preparation of the		CHECKLIST ITEMS ¹			YES	NO	N/A	
37. Are any engineering judgments used? Engineering judgment not used as design input. 38. Are engineering judgments clearly identified as such? Engineering Judgment is not used as a design input. 39. If engineering judgments are utilized as design input. Engineering judgments are utilized as design input. 80. Engineering judgments are utilized as design inputs, are they reasonable and can they be quantified or substantiated by reference to site or industry standards, engineering principles, physical laws or other appropriate criteria? Engineering Judgement is not used as a design input. METHODOLOGY 40. Is the methodology used in the calculation described or implied in the plant's licensing basis? The scope of calculation is outside of plant licensing basis 41. If the methodology used differs from that described in the plant's licensing basis, has the appropriate license document change notice been initiated? see above. 42. Is the methodology used differs from that described in the plant's licensing basis, has the appropriate license document change notice been initiated? 43. Is the methodology used appropriate when considering the quality classification of the calculation and intended use of the results? BODY OF CALCULATION 44. Are equations used in the calculation consistent with recognized engineering practice and the plant's design and license basis? 45. Is there reasonable justification provided for the use of equations not in common use? There are no uncommon equations used in the calculation. 46. Are the mathematical operations performed properly and documented in a logical fashion? 47. Is the math performed correctly? 48. Have adjustment factors, uncertainties and empirical correlations used in the analysis been correctly applied? 49. Has proper consideration been given to results that may be overly sensitive to very small changes in input? 60. Are computer codes or software languages used in the preparation of the	35.	Are assumptions reasonable/appropriate to the objective?						
Engineering judgement not used as design input. 38. Are engineering judgement is not used as a design input. 39. If engineering judgement is not used as a design input. 39. If engineering judgement is not used as a design input. 39. If engineering judgement is not used as a design inputs, are they reasonable and can they be quantified or substantiated by reference to site or industry standards, engineering principles, physical laws or other appropriate criteria? Engineering Judgement is not used as a design input. METHODOLOGY 40. Is the methodology used in the calculation described or implied in the plant's licensing basis? The scope of calculation is outside of plant licensing basis 41. If the methodology used differs from that described in the plant's licensing basis, has the appropriate license document change notice been initiated? \$\text{see above.}\$ 42. Is the methodology used consistent with the stated objective? 43. Is the methodology used appropriate when considering the quality classification of the calculation and intended use of the results? \$\text{BODY OF CALCULATION} 44. Are equations used in the calculation consistent with recognized engineering practice and the plant's design and license basis? 45. Is there reasonable justification provided for the use of equations not in common use? 46. Are the mathematical operations performed property and documented in a logical fashion? 47. Is the math performed correctly? 48. Have adjustment factors, uncertainties and empirical correlations used in the analysis been correctly applied? 49. Has proper consideration been given to results that may be overly sensitive to very small changes in input? SOFTWARE/COMPUTER CODES 50. Are computer codes or software languages used in the preparation of the	36.	Is adequate justification/basis for all assumptions provided?						
38. Are engineering judgments clearly identified as such? Engineering Judgement is not used as a design input. 39. If engineering judgments are utilized as design inputs, are they reasonable and can they be quantified or substantiated by reference to site or industry standards, engineering principles, physical laws or other appropriate criteria? Engineering Judgement is not used as a design input. METHODLOGY 40. Is the methodology used in the calculation described or implied in the plant's licensing basis? The scope of calculation is outside of plant licensing basis 41. If the methodology used differs from that described in the plant's licensing basis, has the appropriate license document change notice been initiated? 42. Is the methodology used consistent with the stated objective? 43. Is the methodology used appropriate when considering the quality classification of the calculation and intended use of the results? BODY OF CALCULATION 44. Are equations used in the calculation consistent with recognized engineering practice and the plant's design and license basis? 45. Is there reasonable justification provided for the use of equations not in common sus? There are no uncommon equations used in the calculation. 46. Are the mathematical operations performed properly and documented in a logical fashion? 47. Is the math performed correctly? 48. Have adjustment factors, uncertainties and empirical correlations used in the analysis been correctly applied? 49. Has proper consideration been given to results that may be overly sensitive to very small changes in input? SOFTWARE/COMPUTER CODES 50. Are computer codes or software languages used in the preparation of the	37.	Are any engineering judgm	nents used?	\$10 A				
Engineering Judgement is not used as a design input. 39. If engineering judgments are utilized as design inputs, are they reasonable and can they be quantified or substantiated by reference to site or industry standards, engineering principles, physical laws or other appropriate criteria? Engineering Judgement is not used as a design input. METHODOLOGY 40. Is the methodology used in the calculation described or implied in the plant's licensing basis? The scope of calculation is outside of plant licensing basis 41. If the methodology used differs from that described in the plant's licensing basis, has the appropriate license document change notice been initiated? \$\text{see above.}\$ 42. Is the methodology used consistent with the stated objective? 43. Is the methodology used appropriate when considering the quality classification of the calculation and intended use of the results? \$\text{BODY OF CALCULATION}\$ 44. Are equations used in the calculation consistent with recognized engineering practice and the plant's design and license basis? 45. Is there reasonable justification provided for the use of equations not in common by the calculation and intended use of the calculation. 46. Are the mathematical operations performed properly and documented in a logical fashion? 47. Is the math performed correctly? 48. Have adjustment factors, uncertainties and empirical correlations used in the analysis been correctly applied? 49. Has proper consideration been given to results that may be overly sensitive to very small changes in input? \$\text{SOFTWARE/COMPUTER CODES}\$ 50. Are computer codes or software languages used in the preparation of the	Engine	eering judgement not used as	design input.					
If engineering judgments are utilized as design inputs, are they reasonable and can they be quantified or substantiated by reference to site or industry standards, engineering principles, physical laws or other appropriate criteria? Image: Engineering Judgment is not used as a design input. Image: Engineering Judgment is not used as a design input. Image: Engineering Judgment is not used as a design input. Image: Engineering Judgment is not used as a design input. Image: Engineering Judgment is not used as a design input. Image: Engineering Judgment is not used as a design input. Image: Engineering Judgment is not used as a design input. Image: Engineering Judgment is not used as a design input. Image: Engineering Judgment is not used as a design input. Image: Engineering Judgment is not used as a design input. Image: Engineering Judgment is not used as a design input. Image: Engineering Judgment is not used in the calculation described or implied in the plant's licensing basis, has the appropriate license document change notice been initiated? Image: Engineering Judgment is not used above. Image: Engineering Judgment is not used above. Image: Engineering Judgment is not described in the plant's licensing basis, has the appropriate license document with the stated objective? Image: Engineering Judgment is not used above. Image: Engineering Judgment is not used in the calculation of the calculation and intended use of the results? Image: Engineering Judgment is not used in the calculation of the calculation and intended use of the results? Image: Engineering Judgment is not used in the calculation of the late of the results is not used in the calculation in a logical fashion? Image: Engineering Judgment is not used in the analysis and license basis? Image: Engineering Judgment is not used in the analysis and license basis? Image: Engineering Judgment is not used in the analysis and license document is not used in the engineering properior is not used in the enginee	38.	Are engineering judgments	s clearly identified as such?	Part of the second			\boxtimes	
they be quantified or substantiated by reference to site or industry standards, engineering principles, physical laws or other appropriate criteria? Engineering Judgement is not used as a design input. METHODLOGY 40. Is the methodology used in the calculation described or implied in the plant's licensing basis? The scope of calculation is outside of plant licensing basis 41. If the methodology used differs from that described in the plant's licensing basis, has the appropriate license document change notice been initiated? see above. 42. Is the methodology used consistent with the stated objective? 43. Is the methodology used appropriate when considering the quality classification of the calculation and intended use of the results? BODY OF CALCULATION 44. Are equations used in the calculation consistent with recognized engineering practice and the plant's design and license basis? 45. Is there reasonable justification provided for the use of equations not in common use? 46. Are the mathematical operations performed properly and documented in a logical fashion? 47. Is the math performed correctly? 48. Have adjustment factors, uncertainties and empirical correlations used in the analysis been correctly applied? 49. Has proper consideration been given to results that may be overly sensitive to very small changes in input? SOFTWARE/COMPUTER CODES 50. Are computer codes or software languages used in the preparation of the	Engine	eering Judgement is not used	as a design input.					
METHODOLOGY 40. Is the methodology used in the calculation described or implied in the plant's licensing basis? The scope of calculation is outside of plant licensing basis 41. If the methodology used differs from that described in the plant's licensing basis, has the appropriate license document change notice been initiated? see above. 42. Is the methodology used consistent with the stated objective? 43. Is the methodology used appropriate when considering the quality classification of the calculation and intended use of the results? BODY OF CALCULATION 44. Are equations used in the calculation consistent with recognized engineering practice and the plant's design and license basis? 45. Is there reasonable justification provided for the use of equations not in common use? There are no uncommon equations used in the calculation. 46. Are the mathematical operations performed properly and documented in a logical fashion? 47. Is the math performed correctly? 48. Have adjustment factors, uncertainties and empirical correlations used in the analysis been correctly applied? 49. Has proper consideration been given to results that may be overly sensitive to very small changes in input? SOFTWARE/COMPUTER CODES 50. Are computer codes or software languages used in the preparation of the	39.	they be quantified or substantiated by reference to site or industry standards,						
40. Is the methodology used in the calculation described or implied in the plant's licensing basis? The scope of calculation is outside of plant licensing basis 41. If the methodology used differs from that described in the plant's licensing basis, has the appropriate license document change notice been initiated? see above. 42. Is the methodology used consistent with the stated objective? 43. Is the methodology used appropriate when considering the quality classification of the calculation and intended use of the results? BODY OF CALCULATION 44. Are equations used in the calculation consistent with recognized engineering practice and the plant's design and license basis? 45. Is there reasonable justification provided for the use of equations not in common were encounted in the calculation. 46. Are the mathematical operations performed properly and documented in a logical fashion? 47. Is the math performed correctly? 48. Have adjustment factors, uncertainties and empirical correlations used in the analysis been correctly applied? 49. Has proper consideration been given to results that may be overly sensitive to very small changes in input? SOFTWARE/COMPUTER CODES 50. Are computer codes or software languages used in the preparation of the calculation?	Engine	eering Judgement is not used	as a design input.					
licensing basis?	METH	ODOLOGY						
41. If the methodology used differs from that described in the plant's licensing basis, has the appropriate license document change notice been initiated? see above. 42. Is the methodology used consistent with the stated objective? 43. Is the methodology used appropriate when considering the quality classification of the calculation and intended use of the results? BODY OF CALCULATION 44. Are equations used in the calculation consistent with recognized engineering practice and the plant's design and license basis? 45. Is there reasonable justification provided for the use of equations not in common use? There are no uncommon equations used in the calculation. 46. Are the mathematical operations performed properly and documented in a logical fashion? 47. Is the math performed correctly? 48. Have adjustment factors, uncertainties and empirical correlations used in the analysis been correctly applied? 49. Has proper consideration been given to results that may be overly sensitive to very small changes in input? SOFTWARE/COMPUTER CODES 50. Are computer codes or software languages used in the preparation of the calculation?	40.		the calculation described or implied in the pl	ant's				
the appropriate license document change notice been initiated? see above. 42. Is the methodology used consistent with the stated objective? 43. Is the methodology used appropriate when considering the quality classification of the calculation and intended use of the results? BODY OF CALCULATION 44. Are equations used in the calculation consistent with recognized engineering practice and the plant's design and license basis? 45. Is there reasonable justification provided for the use of equations not in common use? There are no uncommon equations used in the calculation. 46. Are the mathematical operations performed properly and documented in a logical fashion? 47. Is the math performed correctly? 48. Have adjustment factors, uncertainties and empirical correlations used in the analysis been correctly applied? 49. Has proper consideration been given to results that may be overly sensitive to very small changes in input? SOFTWARE/COMPUTER CODES 50. Are computer codes or software languages used in the preparation of the calculation?	The so	ope of calculation is outside	of plant licensing basis					
see above. 42. Is the methodology used consistent with the stated objective?	41.			ng basis, has			\boxtimes	
Substitution Subs	see ab							
the calculation and intended use of the results? BODY OF CALCULATION 44. Are equations used in the calculation consistent with recognized engineering practice and the plant's design and license basis? 45. Is there reasonable justification provided for the use of equations not in common use? There are no uncommon equations used in the calculation. 46. Are the mathematical operations performed properly and documented in a logical fashion? 47. Is the math performed correctly? 48. Have adjustment factors, uncertainties and empirical correlations used in the analysis been correctly applied? 49. Has proper consideration been given to results that may be overly sensitive to very small changes in input? SOFTWARE/COMPUTER CODES 50. Are computer codes or software languages used in the preparation of the calculation?	42.	Is the methodology used co	onsistent with the stated objective?		\boxtimes			
BODY OF CALCULATION 44. Are equations used in the calculation consistent with recognized engineering practice and the plant's design and license basis? 45. Is there reasonable justification provided for the use of equations not in common use? There are no uncommon equations used in the calculation. 46. Are the mathematical operations performed properly and documented in a logical fashion? 47. Is the math performed correctly? 48. Have adjustment factors, uncertainties and empirical correlations used in the analysis been correctly applied? 49. Has proper consideration been given to results that may be overly sensitive to very small changes in input? SOFTWARE/COMPUTER CODES 50. Are computer codes or software languages used in the preparation of the calculation?	43.			ification of	\boxtimes			
Are equations used in the calculation consistent with recognized engineering practice and the plant's design and license basis? 45. Is there reasonable justification provided for the use of equations not in common use? There are no uncommon equations used in the calculation. 46. Are the mathematical operations performed properly and documented in a logical fashion? 47. Is the math performed correctly? 48. Have adjustment factors, uncertainties and empirical correlations used in the analysis been correctly applied? 49. Has proper consideration been given to results that may be overly sensitive to very small changes in input? SOFTWARE/COMPUTER CODES 50. Are computer codes or software languages used in the preparation of the calculation?	MC No.	the calculation and intende	ed use of the results?	*		100		
and the plant's design and license basis? 45. Is there reasonable justification provided for the use of equations not in common use? There are no uncommon equations used in the calculation. 46. Are the mathematical operations performed properly and documented in a logical fashion? 47. Is the math performed correctly? 48. Have adjustment factors, uncertainties and empirical correlations used in the analysis been correctly applied? 49. Has proper consideration been given to results that may be overly sensitive to very small changes in input? SOFTWARE/COMPUTER CODES 50. Are computer codes or software languages used in the preparation of the calculation?	BODY	OF CALCULATION						
There are no uncommon equations used in the calculation. 46. Are the mathematical operations performed properly and documented in a logical fashion? 47. Is the math performed correctly? 48. Have adjustment factors, uncertainties and empirical correlations used in the analysis been correctly applied? 49. Has proper consideration been given to results that may be overly sensitive to very small changes in input? SOFTWARE/COMPUTER CODES 50. Are computer codes or software languages used in the preparation of the calculation?	44.			ering practice	\boxtimes			
46. Are the mathematical operations performed properly and documented in a logical fashion? 47. Is the math performed correctly? 48. Have adjustment factors, uncertainties and empirical correlations used in the analysis been correctly applied? 49. Has proper consideration been given to results that may be overly sensitive to very small changes in input? SOFTWARE/COMPUTER CODES 50. Are computer codes or software languages used in the preparation of the calculation?	45.		ation provided for the use of equations not in	common				
47. Is the math performed correctly? 48. Have adjustment factors, uncertainties and empirical correlations used in the analysis been correctly applied? 49. Has proper consideration been given to results that may be overly sensitive to very small changes in input? SOFTWARE/COMPUTER CODES 50. Are computer codes or software languages used in the preparation of the calculation?	There	are no uncommon equations	used in the calculation.					
48. Have adjustment factors, uncertainties and empirical correlations used in the analysis been correctly applied? 49. Has proper consideration been given to results that may be overly sensitive to very small changes in input? ■ □ □ SOFTWARE/COMPUTER CODES 50. Are computer codes or software languages used in the preparation of the calculation? □ □	46.		ations performed properly and documented in	n a logical				
49. Has proper consideration been given to results that may be overly sensitive to very small changes in input? SOFTWARE/COMPUTER CODES 50. Are computer codes or software languages used in the preparation of the calculation?	47.	Is the math performed corr	rectly?					
SOFTWARE/COMPUTER CODES 50. Are computer codes or software languages used in the preparation of the calculation?	48.		uncertainties and empirical correlations used i	n the analysis	\boxtimes			
50. Are computer codes or software languages used in the preparation of the calculation?	49.		peen given to results that may be overly sens	itive to very				
50. Are computer codes or software languages used in the preparation of the calculation?	COET	WARE/COMPUTED CORE		1 1 1 10		Ī		
	50. Are computer codes or software languages used in the preparation of the							
INICINE and ocale are used	MCNF	and Scale are used						

Attachment 1 FNERCON CALCULATION PREPARATION

CALC NO.

NEE-323-CALC-002

	Excellence—Every project. Every day.	CHECKLIST	REV.		0	
		CHECKLIST ITEMS ¹		YES	NO	N/A
51.	Have the requirements of CSP 3.09 for use of computer codes or software languages, including verification of accuracy and applicability been met?		\boxtimes			
52.	Are the codes properly ider level?	tified along with source vendor, organization	n, and revision			
53.	Is the computer code applic	able for the analysis being performed?				
54.	If applicable, does the comp	outer model adequately consider actual plan	t conditions?			
55.	Are the inputs to the compute and assumptions document	ter code clearly identified and consistent wit ed in the calculation?	h the inputs			
56.	Is the computer output clea	ly identified?				
57.	Does the computer output of	learly identify the appropriate units?		\boxtimes		
58.	Are the computer outputs re expected?	easonable when compared to the inputs and	what was			
59.	Was the computer output re invalidate the results?	viewed for ERROR or WARNING messages	s that could			
RESUL	TS AND CONCLUSIONS	86. 5	1 3.5			
60.	Is adequate acceptance cri	eria specified?				
There i	s no acceptance criteria as d					
61.	Are the stated acceptance intended use?	criteria consistent with the purpose of the cal	lculation, and			\boxtimes
See ab	ove					
62.		criteria consistent with the plant's design bas industry codes, and standards?	sis, applicable			\boxtimes
See ab	oove					
63.		nd conclusions meet the stated acceptance	criteria?			
See ab	oove.		100			
64.	Are the results represented applicable?	in the proper units with an appropriate toler	ance, if			
65.	Are the calculation results a stated inputs and objective	and conclusions reasonable when considere s?	d against the			
66.	Is sufficient conservatism a	pplied to the outputs and conclusions?				

CALC

	ENERCON Excellence—Every project. Every day.	Attachment 1 CALCULATION PREPARATION CHECKLIST	NO.	NEE-323-CALC-002		
			REV.		0	
		CHECKLIST ITEMS ¹		YES	NO	N/A
67. Do the calcu	Do the calculation results and conclusions affect any other calculations?				\boxtimes	
No other calculations	are affected b	by this calculation.				
68. If so, have the	If so, have the affected calculations been revised?					
No other calculations	are affected b	by this calculation.				
	Does the calculation contain any conceptual, unconfirmed or open assumptions requiring later confirmation?				\boxtimes	
There are no open as	sumptions red	quiring confirmation later.				
70. If so, are the	y properly ide	ntified?				\boxtimes
There are no open as	ssumptions red	quiring confirmation later.				
DESIGN REVIEW						
71. Have alterna	te calculation	methods been used to verify calculation resu	lts?		\boxtimes	
No a Design Review	was performe	d.				
Note:						
		rification/justification for answers to the ques equired for any questions answered as "No' o		pace provide	ed below	each
Originator:	Jay Bhatt					
	Print Na	me and Sign			Date	