
· J	REGULATORY	INFORMATION	DISTRIBUTION SYSTE	(RIDS)
FACIL: 50	0-251 Turkey Point AME AUTHOR A D. Florida F	Plant, Unit	3, Florida Power a 4, Florida Power a ; Co.	ND DOCKET.# nd Light C 05000250 nd Light C 05000251
DISTRIB	91986 Annual Radi Point Plant Units JTION CODE: IE25D Environmental Monit	3 & 4. W/87 COPIES RECE:	V426 1tr. USEL Churry IVED: LTR LENCL	J. Lepto 70 SIZE: 70
			,	,
NDTES:		ĩ		
يت الم	RECIPIENT ID CODE/NAME PD2-2 LA . McDONALD,D	COPIES LTTR ENCL 1 O 1 1	RECIPIENT ID CODE/NAME PD2-2 PD	COPIES LTTR ENCL 5 5
INTERNAL:	AEOD/DOA ARM TECH ADV NRR7DEST/ADE REG FILE 02 RGN2 FILE 01	1 1 1 1 1 1 1 1 1 1 1 1	AEOD/DSP/TPAB LPDR NRR/DREP/RPB RES SPEIS,T RGN2/DRSS/EPRPB	1 1 1 1 4 4 1 1 1 1
EXTERNAL:	NRC PDR	1 1		'n

TOTAL NUMBER OF COPIES REQUIRED: LTIR 21 ENCL 20

P, O, BOX 14000, JUNO BEACH, FL 33408

APRIL 26 1987

L-87-172

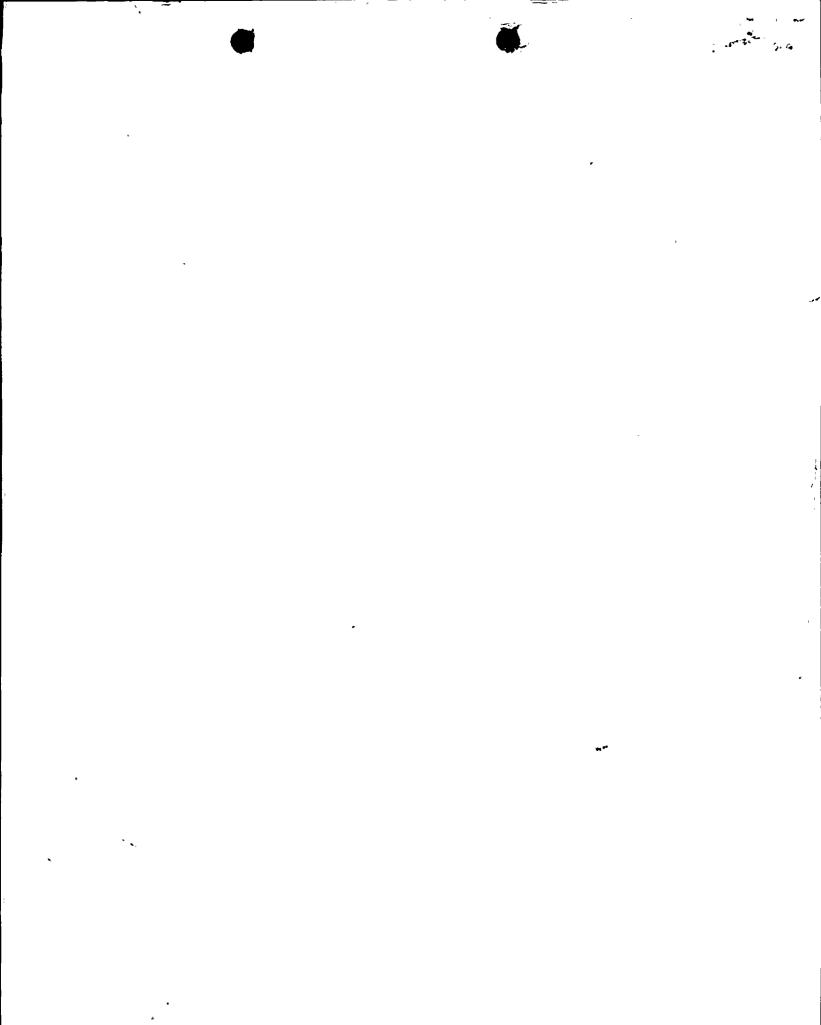
U. S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, D. C. 20555

Gentlemen:

Re: Turkey Point Units 3 and 4 Docket Nos. 50-250 and 50-251 1986 Annual Radiological Environmental Operating Report

This letter transmits the subject report in accordance with Technical Specification 6.9.4.b for Turkey Point Units 3 and 4.

Should there be any questions on this information, please contact us.


Very truly yours,

C. O. Woody Group Vice President Nuclear Energy

COW/SDF/gp

Attachment

cc: Dr. J. Nelson Grace, Regional Administrator, Region II, USNRC Senior Resident Inspector, USNRC, Turkey Point Plant

ANNUAL

RADIOLOGICAL ENVIRONMENTAL

OPERATING REPORT

TURKEY POINT PLANT

UNIT NOS. 3 AND 4

License Nos. DPR-31, DPR-41

Docket Nos. 50-250, 50-251

8705060244 PDR ADDCK 86 ÖÖÖŽ50 PDR

TE 25 1/1

ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT TURKEY POINT PLANT - UNITS NOS. 3 AND 4

TABLE OF CONTENTS

DESCRIPTION			PAGE
INTRODUCTION			1
RADIOLOGICAL ENVIRONMENTAL	MINITORING PROGRA	M	1
DISCUSSION AND INTERPRETATI	ON OF RESULTS		3
ENVIRONMENTAL RADIOLOGICAL ANNUAL SUMMARY	MONITORING PROGRA	M.	TABLE 1
DEVIATIONS/MISSING DATA			TABLE 1A
ANALYSES WITH LLDs ABOVE TA DETECTION CAPABILITIES	ABLE 4.12-3		TABLE 1B
LAND USE CENSUS			TABLE 2
KEY TO SAMPLE LOCATIONS		*	ATTACHMENT A
RADIOLOGICAL SURVEILLANCE (AND LIGHT COMPANY'S TURKEY			ATTACHMENT B
· ·	FIRST QUARTER, SECOND QUARTER, THIRD QUARTER, FOURTH QUARTER,	1986 1986	•
RESULTS FROM THE INTERLABOR PROGRAM, 1986	RATORY COMPARISON		ATTACHMENT C

HP3:1

5

(i)

ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT TURKEY POINT PLANT - UNITS NOS. 3 AND 4

I. INTRODUCTION

This report is submitted pursuant to Specification 6.9 of Turkey Point Units 3 & 4 Technical Specifications. The Annual Radiological Environmental Operating Report provides information, summaries and analytical results pertaining to the Radiological Environmental Monitoring Program for the calendar year indicated. This report covers surveillance activities meeting the requirements of Unit No. "3 and Unit No. 4. Technical Specifications.

II. RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

- A. <u>Purpose</u>: The purpose of the radiological environmental monitoring program is to provide representative measurements of radiation and of radioactive materials in those exposure pathways and for those radionuclides which lead to the highest potential radiation exposures of members of the public resulting from station operation. The radiological environmental monitoring program also supplements the radiological effluent monitoring program by verifying that the measureable concentrations of radioactive materials and levels of radiation are not higher than expected on the basis of the effluent measurements and the modeling of the environmental exposure.pathways.
- B. <u>Program Description</u>: The Radiological Environmental Monitoring Program for the Turkey Point Plant is conducted pursuant to Technical Specifications 4.12 of Turkey Point Units 3 & 4 Technical Specifications.
 - 1. Sample Locations, Types and Frequencies:
 - a. Direct radiation gamma exposure rate is monitored continuously at 21 locations by thermoluminescent dosimeters (TLD's). TLD's are collected and analyzed quarterly.
 - b. Airborne radioiodine and particulate samplers are operated continuously at five locations. Samples are collected and analyzed weekly. Analyses include Iodine-131, gross beta, and gamma isotopic measurements.
 - c. Surface water samples are collected from three locations.
 Samples are collected and analyzed monthly. Analyses include gamma isotopic and tritium measurements.
 - d. Shoreline sediment samples are collected from three locations coinciding with the locations for surface water samples. Samples are collected and analyzed semi-annually. Sediment samples are analyzed by gamma isotopic measurements.

.

ŀ

.

ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT TURKEY POINT PLANT - UNITS NOS. 3 AND 4

- e. Fish and invertebrate samples are each collected from the two locations coinciding with two of the locations for surface water samples. Samples are collected and analyzed semi-annually. Fish and invertebrate samples are analyzed by gamma isotopic measurements.
- f. Broad leaf vegetation samples are collected from three locations. Samples are collected and analyzed monthly. Broad leaf vegetation samples are analyzed by gamma isotopic measurements.

Attachment A provides specific information pertaining to sample locations, types and frequencies.

2. Analytical Responsibility:

Radiological environmental monitoring for the Turkey Point Plant is conducted by the State of Florida, Department of Health and Rehabilitative Services (HRS). Samples are collected and analyzed by HRS personnel. Samples are analyzed at the HRS Environmental Radiation Control Laboratory in Orlando, Florida.

- C. <u>Analytical Results:</u> <u>Table 1</u>, <u>Environmental Radiological</u> <u>Monitoring Program Annual Summary provides a summary for all</u> <u>specified samples collected during the referenced surveillance</u> period. Deviations from the sample schedule, missing data and/or samples not meeting the specified "A PRIORI" LLD, if any, are noted and explained in Tables 1A and 1B respectively. Analysis data for all specified samples analyzed during the surveillance period is provided in Attachment B.
- D. Land Use Census: A land use census out to a distance of 5 miles radius from the Turkey Point Plant is conducted annually to determine the location of the nearest milk animal, residence, and garden producing broad leaf vegetation in each of the sixteen meteorological sectors. A summary of the land use census for the surveillance year is provided in Table 2, Land Use Census Summary.

No locations yielding a calculated dose or dose commitment greater than the values currently being calculated were identified by the land use census.

No locations yielding a calculated dose or dose commitment (via the same exposure pathway) 20 % greater than locations currently being sampled in the radiological environmental monitoring program were identified by the land use census.

E. Interlaboratory Comparison Program: The State of Florida Environmental Radiation Control Laboratory participates in the Environmental Radioactivity Laboratory Intercomparison Studies Program conducted by the Environmental Protection Agency. Results from the Interlaboratory Comparison Program are provided in Attachment C.

1

ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT TURKEY POINT PLANT - UNITS NOS. 3 AND 4

111. DISCUSSION AND INTERPRETATION OF RESULTS

A. <u>Reporting of Results</u>: The Annual Radiological Environmental Operating Report contains the summaries, interpretations and information required by the Turkey Point Units 3 & 4 Technical Specifications. Table 1 provides a summary of the measurements made for the nuclides required by Technical Specifications, Table 4.12-2, for all samples specified by Table 4.12-1. In addition, summaries are provided for other nuclides identified in the specified samples, including those not related to station operation. These include nuclides such as 40K, 232Th, 226Ra, 228Ra, 7Be, 235U, 238U, and 210Pb which are common in the Florida environment.

B. Interpretation of Results

- 1. <u>Direct Radiation</u>: The results for direct radiation monitoring are consistent with past measurements for the specified locations. The exposure rate data shows no indication of any trends attributed to effluents from the plant. The measured exposure rates are consistent with exposure rates that were observed during the preoperational surveillance program. Direct radiation monitoring results are summarized in Table 1.
- 2. Air Particulates/Radioiodine: The results for radioactive airborne particulates and radiolodine were influenced by the passage of the plume resulting form the Chernobyl inicident. The annual average gross beta measurement is 40% higher than 1985. Twenty-Five out of 259 samples collected showed results in excess of ten times the historical average. These 25 samples were collected during the late May early June plume passage. Twelve of the 25 samples indicated radioiodine-131 in excess of MDA. The highest value, 0.47 pCi/m³, was 52% of the reporting level identified in the Technical Specifications. Additionally, radiocesium 134 & 137 were detected by gamma spectroscopy at a maximum level of 0.04% & 0.037% of the Technical Specification Reporting Levels. Ruthenium-103 was also identified. Samples collected before and after the plume passage yielded results consistent with past measurements.

1

(3)

ĸ

. .

r

4

.

·

•

ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT TURKEY POINT PLANT - UNITS NOS. 3 AND 4

- 3. Surface Water: The results for radioactivity measurements in surface water samples are consistent with past measurements. Tritium was reported as present in 11 of 21 of the surface water samples collected from Site T-81. These results are consistent with the known subsurface interchange that occurs between the closed cooling canal and its surrounding waters, and the pressure gradients caused by the flow of aquifer subsurface waters in South Florida. The highest reported tritium (690 pCi/1) is less than 4% of the concentration of tritium that is permitted in community drinking water systems and less than 3% of the reporting value specified by Technical Specifications Table 4.12-2.
- 4. Waterborne Sediment and Food Products: The results for radioactivity measurements in waterborne sediment and fish samples are consistent with past measurements and (except for Cs-137) with measurements made during the preoperational surveillance program. Three fish samples, of four collected, had a positive Cs-137 value reported. The maximum value, is 31% of the table 4.12-3 LLD and is about 1% of the table 4.12-2 reporting levels. Although the reported concentration was very low, future samples will be closely evaluated to determine any trends which might be attributed to station operation. Results for the waterborne sediment, fish and crustacea samples are summarized in Table 1.
- 5. Broad Leaf Vegetation: The results for radioactivity measurements were also influenced by the passage of the plume resulting from the Chernobyl incident. Cs-137 results were consistent with past measurements. Cs-134 was identified in 3 out of 36 samples collected along with Ru-103 and I-131 found in 6 out of 36 samples collected. All of the samples showing positive Cs-134, Ru 103 and I-131 results were collected during the plume passage. The remaining samples collected yeilded results consistent with past measurements.

C. Conclusions

The data obtained through the Turkey Point Plant Radiological Environmental Monitoring Program verifies that the levels of radiation and concentrations of radioactive materials in environmental samples, representing the highest potential exposure pathways to members of the public, are not being increased. The measurements verify that the dose or dose commitment to members of the public, due to operation of Turkey Point Units Nos. 3 & 4, during the surveillance year, are well within "as low as reasonably achievable (ALARA)" criteria established by 10 CFR 50, Appendix I. a.

D. Notes

J

1) Maximum values attributed to the Chernobyl incident are comparable to levels associated with the Chinese weapons test of 1980 & 1978 but occurred over a shorter period of time.

2) Measurement attributed to Chernobyl were reported to the NRC pursuant to I & E notice 86-32.

•

s.

-

•

.

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM ANNUAL SUMMARY

Name of Facility <u>Turkey Point Unit Nos. 3 and 4</u> Docket No.(s) <u>50-250 and 50-251</u> Location of Facility <u>Dade, Florida</u> Reporting Period <u>January 1 - December 31, 1986</u> (County, State)

Medium or Pathway Sampled (Unit of Measurement)	Type and Total Number of Analyses Performed	Lower Limit of Detection ^a (LLD)	All Indicator Locations Mean (f) Range	Location with Annual Ma Name ^C Distance & Direction	Highest C ean <u>Mean (f)^b</u> Range	ontrol Locations Mean (f) ^D Range	Number of Nonroutine Reported Measurements
DIRECT RADIATION							
TLD ; (micro-R/hr)	Exposure rate 83d)	-	5.4 (83/83) 4.6 - 7.6	NW-10 10 miles; NW ·	7.4 (4/4) 7.1 - 7.4		0
AIRBORNE	· ·	-	,		,	٩.	
Radioiodines (pCi/m ³).	1311 260	0.024	0.17 (12/260) 0.03-0.47	†-64 22 miles NNE	0.24 (2/52) 0.06-0.42	0.24 (2/52) 0.06-0.42	0 0
Air Particulates (pCi/m ³)	Gross Beta 25	9 0.0025	0.021 (259/259) 0.007-0.181	T-64 22 miles NNE	0.022 (52/52 0.007-0.181) 0.022 (52/52) 0.007-0.181	0
	Gamma Isotopi	c 20				•	
	7 _{Be}	0.0052	0.109 (20/20) 0.091-0.129	T-64 22 mile, NNE	0.115 (4/4) 0.100-0.129	0.115 (4/4) 0.100-0.129	0
	103 _{Ru}	-	0.0070 (5/20) 0.0062-0.0077	T-57 4 miles, №.	0.0077 (1/4)	0.0072 (1/4)	0
	134 _{Cs}	0.00069	0.0035 (5/20) 0.0033-0.0042	T-64 22 miles, NNE	0.0042 (1/4)	0.0042 (1/4)	. 0
	137 _{Cš}	0.00066	0.0069 (5/20) 0.0065-0.0075	T-64 22 miles, NNE	0.0075 (1/4)	0.0075 (1/4)	0

÷

⊁

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM ANNUAL SUMMARY

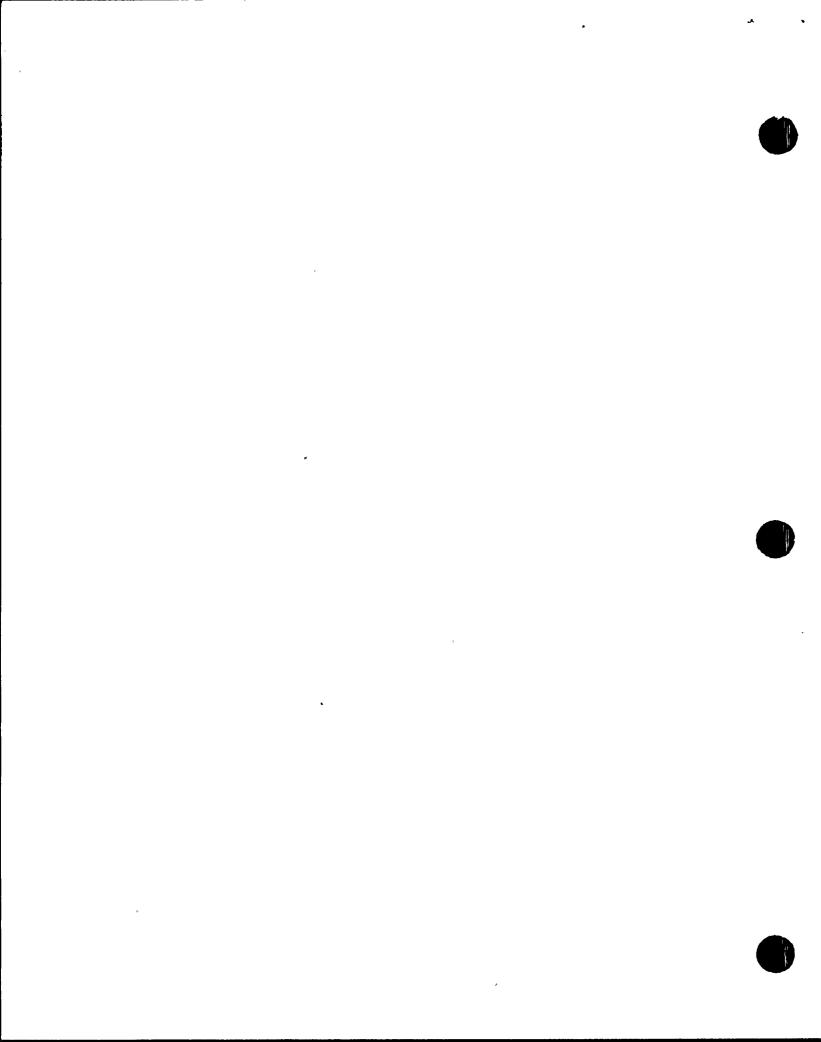
Name of Facility <u>Turkey Point Unit Nos. 3 and 4</u> Docket No.(s) <u>50-250 and 50-251</u> Location of Facility <u>Dade</u>, Florida Reporting Period <u>January 1 - December 31, 1986</u>

(County, State)

Medium or Pathway Sampled (Unit of Measurement)	Type and Total Number of Analyses Performed	Lower Limit of Detection ^a (LLD)	All Indicator Locations Mean (f) ^b Range	Location with Annual M Name Distance & Direction		Control Locations Mean (f) Range	Number of Nonroutine Reported Measurements
WATERBORNE						· · · · · ·	
Surface Water (pCi/l)	Tritium 45	230	376 (11/45) 140-690	T-81 6 miles, S	376 (11/21) 140-690	< MDA	0
	Gamma-Isotopi	c 45					
	⁴⁰ K	60	298(45/45) 150-390	T-81 6 miles, S	311 (21/21) 230-390	275 (12/12) 150-330	0
	54. Min	4	< MDA	-	_	< MDA	0
	⁵⁹ Fe	8	< MDA	-	-	< MDA	0
	⁵⁸ Co	4	< MDA	-	-	< MDA	0
	60 _{Co}	4	< MDA	-	-	< MDA	0
•	65 _{Zn}	8	< MDA	_	-	< MDA	0
	95 _{Zr-Nb}	7	< MDA	-	-	< MDA	. 0
	¹³¹ I	5	< MDA	_	-	< MDA	0
	¹³⁴ Cs	5	< MDA	-	-	< MDA	0

.

•


.

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM ANNUAL SUMMARY Name of Facility <u>Turkey Point Unit Nos. 3 and 4 Docket No.(s)</u> 50-250 and 50-251 Location of Facility <u>Dade, Florida</u> Reporting Period <u>January 1 - December 31, 1986</u> (County, State)

Medium or Pathway Sampled (Unit of Measurement)	Type and Total Number of Analyses Performed	Lower Limit of Detection ^a (LLD)	All Indicator Locations Mean (f) ^D Range	Location with Annual Me Name ^C Distance & Direction		Control Locations Mean (f) ^b Range	Number of Nonroutine Reported Measurements
Surface Water (pCi/1)	137 _{Cs}	4	< MDA	· · ·	-	< MDA	0
	140 _{Ba-La}	11	< MDA	-	-	< MDA	0
WATERBORNE		-		-		,	
Sediment	Gamma – Isot	opic 6					
(pCi/kg,dry)	40 _K	140	495 (6/6) 280-770	T-67 13 -18 miles, N, NNE	.750(2/2) 730-770	750(2/2) 730-770	0
	226 _{Ra}	49	588 (6/6) 270-850	T-42 [.] 1 mile, ENE	780(2/2) 710-850	580(2/2) 550-610	0
	7 _{Be}	71	220 (3/6) 140-320	T-81 6 mile, S	320 (1/2)	200 (1/3)	. 0

		ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM ANNUAL SUMMARY Name of Facility <u>Turkey Point Unit Nos. 3 and 4</u> Docket No.(s) <u>50-250 and 50-251</u> Location of Facility <u>Dade, Florida</u> Reporting Period <u>January 1 - December 31, 1986</u> (County, State)						
Medium or Pathway Sampled (Unit of Measurement)	Type and Total Number of Analyses Performed	Lower Limit of Detection ^a (LLD)	All Indicator Locations Mean (f) Range	Location with Annual N Name ^C Distance & Direction		Control Locations Mean (f) ^D Range	Number of Nonroutine Reported Measurements	
Sediment (pCl/kg, drý)	238ე	•	530(6/6) 190-1140	†-67 13-18 miles, N, NNE	760 (2/2) 380-1140	760 (2/2) 380-1140	0	
4	58 _{C0}	9	< MDA	4	- .	<mda< td=""><td>0</td></mda<>	0	
	60 _{C0}	12	< MDA	-	-	<mda< td=""><td>Ø</td></mda<>	Ø	
z ·	134 _{Cs}	14	< MDA	-	-	<mda< td=""><td>0</td></mda<>	0	
	137 _{Cs}	12	< MDA	*	-	< MDA	Ö	
	232 _{Th} '	52	47(4/6) 28-70	Ť-67 13-18 miles, Ñ, NE	70(1/2)	70(1/2)	D	
	235 _U	-	86(2/6) 68-103	†-67 13-18 miles, N,NE	103(1/2)	103(1/2)	· 0	

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM ANNUAL SUMMARY

Name of Facility <u>Turkey Point Unit Nos. 3 and 4</u> Docket No.(s) <u>50-250 and 50-251</u> Location of Facility <u>Dade, Florida</u> Reporting Period <u>January 1 - December 31, 1986</u> (County, State)

Medium or Pathway Sampled (Unit of Measurement)	Type, and Total Number of Analyses Performed	Lower Limit of Detection ^a (LLD)	All Indicator Locations Mean (f) Range	Location with Annual Ma Name ^C Distance & Direction	Highest` ean <u>Mean (f)^b</u> Range	Control Locations Mean (f) Range	Number of Nonroutine Reported Measurements
INCESTION			t				-
Crustacea	Gamma - Isoto	pic 4	-				
(pCi/kg,wet)	40 _K	130	1850 (4/4) 1600-2100	T-81 6 miles, S	1900 (2/2) 1700-2100	1800 (2/2) 1600-2000	0
	226 _{Ra}	20	555 (4/4) 340-890	T-67 13-18 miles, S	615(2/2) 340-890	615(2/2) 340-890	0
	228 _{Ra}	· _ -	150(2/4) 140-160	T-81 6 miles, S	160(1/2)	140(1/2)	0
	⁵⁴ Mn	9	< MDA	-	-	< MDA	0
	59 _{Fe}	16	< MDA	-	-	< MDA	0
	58 _{Co} .	9	< MDA	-	-	< MDA	0
	60 _{Co}	10	< MDA	-	-	< MDA	0
	65 _{Zn}	17	< MDA	_ 1	-	< iMDA	0
	134 _{Cs}	9	< MDA	-	-	< MDA	0
	137 _{Cs}	9	18 (1/5)	T-81 6 miles, S	18 (1/2)	< MDA	0

. .

·

• /*****

×

, 5

.

٨

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM ANNUAL SUMMARY

Name of Facility <u>Turkey Point Unit Nos. 3 and 4Docket No.(s)</u> <u>50-250 and 50-251</u> Location of Facility <u>Dade, Florida</u> Reporting Period <u>January 1 - December 31, 1986</u> (County, State)

Medium or Location with Highest Control Locations Number of Type and Lower Limit All Indicator Mean (f)^D of Locations Annual Mean Pathway Sampled Total Number Nonroutine Name^C Detection^a <u>Mean</u> (f)^b Mean $(f)^{D}$ Range Reported (Unit of of Analyses Performed (LLD) Range Distance & Range Measurement) Measurements Direction INCESTION Fish Gamma - Isotopic 4 (pCi/kg,wet) 40K 2850 (2/2) 2850 (2/2) 130 2850(4/4)T-81 0 2800-2900 2700-3000 6 miles, S 2700-3000 226_{Ra} 70(2/2) 20 63 (3/4) T-81 50(1/2) 0 6 miles, S 60-80 50-80 54M < MDA 9 < MDA 0 59_{Fe} < MDA < MDA 16 0 58Co < MDA < MDA 9 0 60_{Co} 10 < MDA < MDA 0 65_{Zn} 17 < MDA < MDA 0 134_{Cs} 9 < MDA < MDA 0 137_{Cs} 13(1/2) 9 20(3/4) T-81 23(2/2) 0 13-25 6 miles, S 21-25

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM ANNUAL SUMMARY

Name of Facility <u>Turkey Point Unit Nos. 3 and 4</u> Docket No.(s) <u>50-250 and 50-251</u> Location of Facility <u>Dade</u>, Florida Reporting Period <u>January 1</u> - December 31, 1986 (County, State)

Medium or Pathway Sampled (Unit of Measurement)	Type and Total Number of Analyses Performed	Lower Limit of Detection ^a (LLD)	All Indicator Locations Mean (f) Range	Location with Annual M Name ^C Distance & Direction		Control Locations Mean (f) ^D Range	Number of Nonroutine Reported Measurements
INCESTION				·····			
Broad leaf	Gamma - Isoto	pic 36				-	
vegetation (pCi/kg,wet)	7 _{Be}	71	1393 (36/36) 680-3000	T-40 3 miles, W	1634 (12/12 700-3000) 1329 (12/12) 680-2060	0
	40 _K	100	2937 (36/36) 1700-5300	T-67 13-18 miles, N, NNE	3336 (12/12 1930-5300) 3336(12/12) 1930-5300	0
	103 _{Ru}	-	20(6/36) 10-39	T-67 13-18 miles, N, NE	27(2/12) 15-39	27(2/12) 15-39	0
	1311	9_	359(6/36) 67-675	T-40 3 miles, W	371(2/12) 67-675	341(2/12) 128-554	0
	134 _{Cs}	8	17(3/36) 11-25	†-67 13-18 miles N, NNE	18(2/12) 11-25	18(2/12) 11-25	0
	137 _{Cs}	8	161 (34/36) 15-452	T-40 ∮miles, W	244 (12/12) 102-452	55 (10/12) 15-114	0

TABLE 1

NOTES

a. The LLD is an "a priori" lower limit of detection which establishes the smallest concentration of radioactive material in a sample that will yield a net count, above system background, that will be detected with 95% probability with only 5% probability of falsely concluding that a blank observation represents a real signal.

LLD's in this column are at time of measurement. The MDAs reported in attachment B for the individual samples have been corrected to the time of sample collection.

- b. Mean and range based upon detectable measurements only. Fraction of detectable measurements at specified locations is indicated in parentheses (f).
- c. Specific identifying information for each sample location is provided in Attachment \underline{A} .
- d. Results are based upon the average net response of two TLDs. (Thermoluminescent dosimeters).

MDA refers to minimum detectable activity

Page

1

TABLE 1A

DEVIATIONS/MISSING DATA

Date	Location	Description of Problem	Deviation(s)	Corrective Action
03/17/86 to 06/09/86	NNW-10	TLD's missing at time of collection/replacement. Unauthorized removal during interval.	Direct exposure data for second quarter at this location, 10 miles NNW of plant, is unavailable.	Replaced TLD's with a new set.
05/27/86	T-72	Missing particulate filter due to installation error.	Failure to collect par- ticulate sample at this location.	Review method with field personnel.
08/19/86	T-51	Circuit breaker on motor circuit tripped at about 118 hours into the 170 hour sampling period. Suspected cause is lightning.	Failure to provide contin- uous sampling during period.	
09/16/86	T-64	Air pump failure at about 73 hours into the 193 hour period. Cause unknown.	Failure to provide contin- uous sampling during period.	

HP3:1

1986 ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT ST. LUCIE PLANT, UNIT NOS. 1 & 2

TABLE 1B

ANALYSES WITH LLDs ABOVE TABLE 4.12-1 DETECTION CAPABILITIES 1/1/86 - 12/31/86

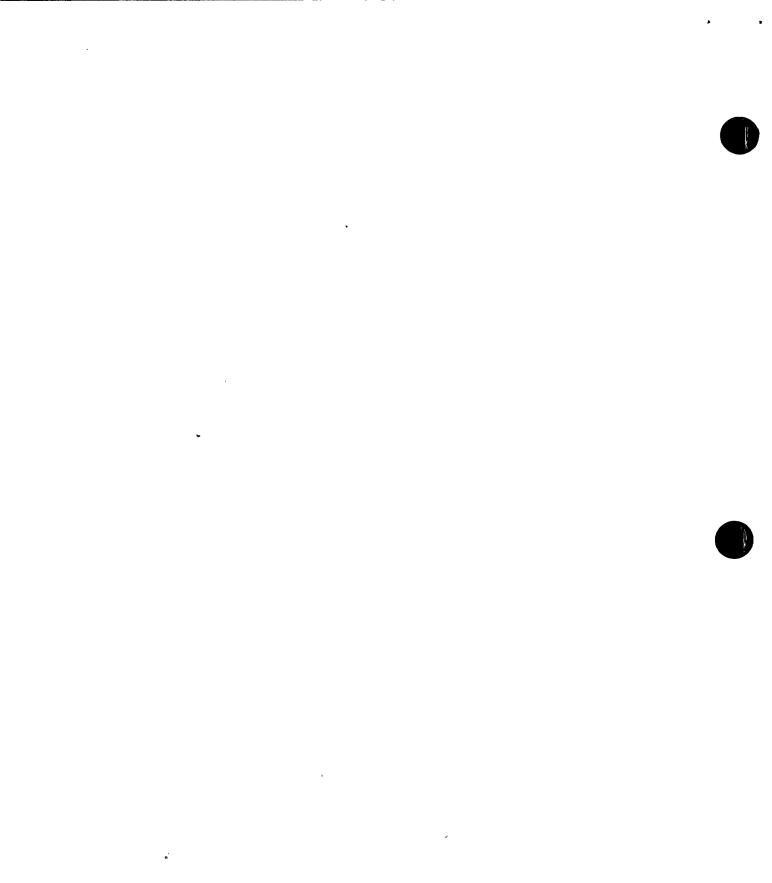
Date

Sample Type

• ¹

Location

Radionuclide


MDA

<u>Table 4.12-1 LLD</u>

Reason for Deviation

.

The values specified in Table 4.12-3, Detection Capalilities, were achieved for all samples.

-

ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT TURKEY POINT PLANT - UNITS NOS. 3 AND 4

TABLE 2

LAND USE CENSUS

DISTANCE TO NEAREST (a,b)

Sector	6/86 Milk (c) Animal	5/86 Residence	6/86 Garden (d)
N	L (e)	2.1/350 (g)	L
NNE	0 (f)	0	0
NE	0	0	0
ENE	0	0	0
E	0	0	0
ESE	0	0	0
	· 0	0	0
	0	0	0
S	L	L (g)	L
SSW	L	L	L
SW	L	L	L
WSW	L	L	L
W "	L	L	L
WNW	L .	1.6/303	3.9/303
NW	L	3.7/311	3.6/309
NNW	L	L (g)	4.5/328

£

1986 ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT TURKEY POINT PLANT - UNITS NOS. 3 AND 4

TABLE 2 NOTES

LAND USE CENSUS

- (a) All categories surveyed out to 5 miles radius from the Turkey Point Plant
- (b) The following format is used to denote the location:

distance (miles)/bearing (degrees)

For example, a residence located in the north sector at a distance of 2.1 miles bearing 350 degrees is recorded as 2.1/350.

- (c) Potential milk animal locations.
- (d) Gardens with an estimated growing area of 500 square feet or more.
- (e) L denotes that the sector area is predominently a land area unoccupied by the category type.
- (f) 0 denotes that the sector area is predominently an ocean area.
- (g) Non-residential occupied buildings in this sector include the following:

Sector	Distance ,	Description
N	1.8/349	24-hour Security Staffing building
S	4.9/171	Small building/boat dock-not considered a residence
NNW	4.5/327	2 mobile homes used for field offices
NNW	1.8/345	Security booth at park entrance.

1986 ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT TURKEY POINT PLANT - UNITS NOS. 3 AND 4

ATTACHMENT A

KEY TO SAMPLE LOCATIONS

RADIOLOGICAL ENVIRONMENTAL SURVEILLANCE TURKEY POINT PLANT Key to Sample Locations

	Location	Description	Samples Collected	Sanple Collection Frequency	Approximate Distance (miles)	Direction Sector
DIRECT RADIATION	N-1	Convoy Point	TLD .	Quarterly	2	N.
DIRECT RADIATION	N-5	North of Moody Dr.	TLD	Quarterly	6	N
DIRECT RADIATION	N-10	Old Cutler Rd. at S.W. 87th Ave.	TLD	Quarterly	12	N .
DIRECT RADIATION	NNW-1	Turkey Point ^ Entrance Road	TLD	Quarterly	` < 1	NNW
DIRECT RADIATION	NNW-10	Burr Rd. at Hainlin Mill Dr¢	TLD	Quarterly	9	NNW
DIRECT RADIATION	NW/WNW-1	Turkey Point Entrance Road	TLD .	Quarterly	1	WNW
DIRECT RADIATION	NW-5	Dolan's Fann on King's Highway	ĩlđ	Quarterly	4	NNW
DIRECT RADIATION	NW-10	Intersection of Fann Life Rd. and Coconut Palm Dr.	TLU	Quarterly	10 -	NW

RADIOLOGICAL ENVIRONMENTAL SURVEILLANCE TURKEY POINT PLANT Key to Sample Locations

• Pathway	Location	Description	Samples Coll	Sample Collection ected Frequency	Approximate Distance (miles)	Direction Sector
DIRECT RADIATION	W/WNW-5	Palm Drive at Tallahassee Rd.	TLO	Quarterly	5	W
DIRECT RADIATION	WNW-10.	Homestead near vehicle inspection station	TLD	Quarterly	9	WNW
DIRECT RADIATION	W-1	On site near cooling tower	. TLD	Quarterly	l	W
DIRECT RADIATION	W-10	Florida City near fire tower	TLD	Quarterly	10	W .
DIRECT RADIATION	WSW-10	Old Hawk missile site south of Florida City	. [•] TLD	Quarterly	12	WSW .
DIRECT RADIATION	SW/S SW-1	On site near land utilizaiton offices	TLD	Quarterly	l	2 SM
DIRECT RADIATION	SW-10	U.S. 1 south of Florida City	I TLD	Quarterly	10	S₩ ,
DIRECT RADIATION .	S'SW/SW-5	On site, southeast corner of cooling canal	TLD s	Quarterly	5	S SW ·

.

.

·

•

. .

,

•

.

RADIOLOGICAL ENVIRUNMENTAL SURVEILLANCE TURKEY POINT PLANT Key to Sample Locations

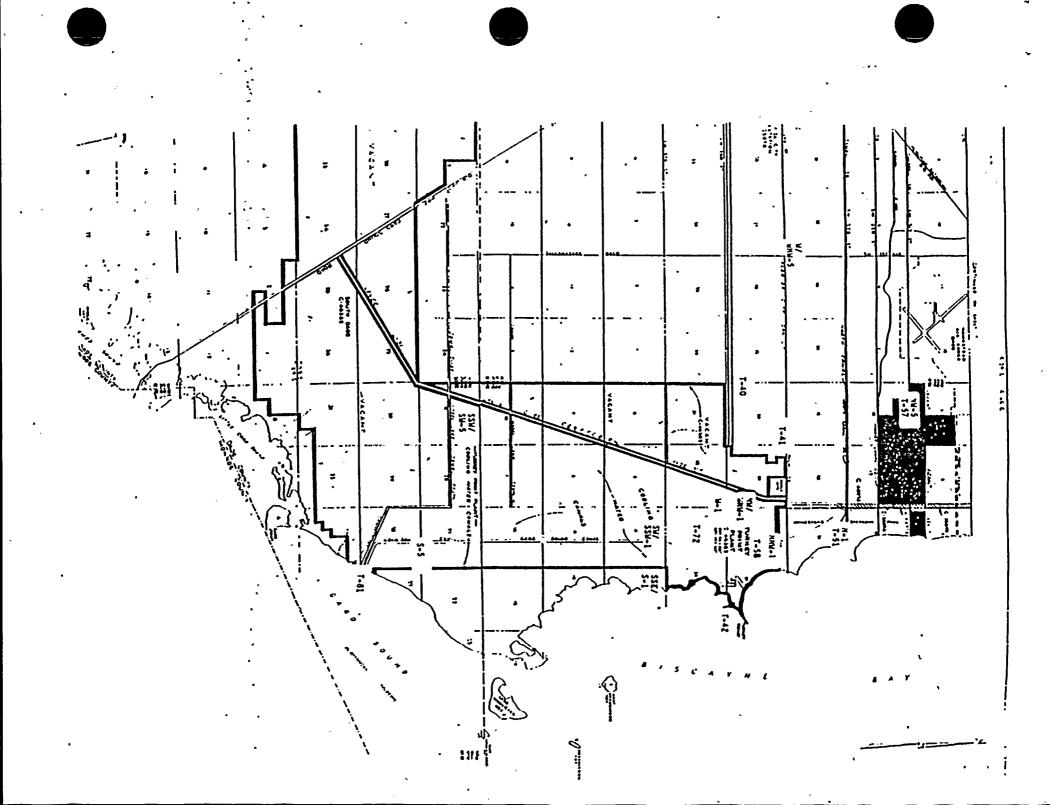
Pathway	Location	Description	Samples Collected	Sample Collection Frequency	Approximate Distance (miles)	Direction Sector
DIRECT RADIATION	SSW-10	At Card Sound Bridge	. TLD	Quarterly	10	SSW
DIRECT RADIATION	S-5	On site, south end of cooling canals	, TLD	Quarterly	5	\$
DIRECT RADIATION	S-10	Card Sound Rd. at Steamboat Creek	TLD .	Quarterly	10	S
DIRECT RADIATION	SSE/S-1	Turtle Point	TLD	Quarterly	• 1	SSE
DIRECT RADIATION	SSE - 10	Ocean Reef	TLD	Quarterly	8	SSE
AIRBORNE	Ţ51	Homestead Bayfront Park	Radioiodine : and particulates	Weekly	2	NNW
AIRBORNE	. T57	Tree Nursery 316th Street	Radioiodine and particulates	Weekly	4	184
AIRBORNE	T58	Turkey Point Entrance Rd.	Radioiodine and . particulates	Weekly	1	. NH

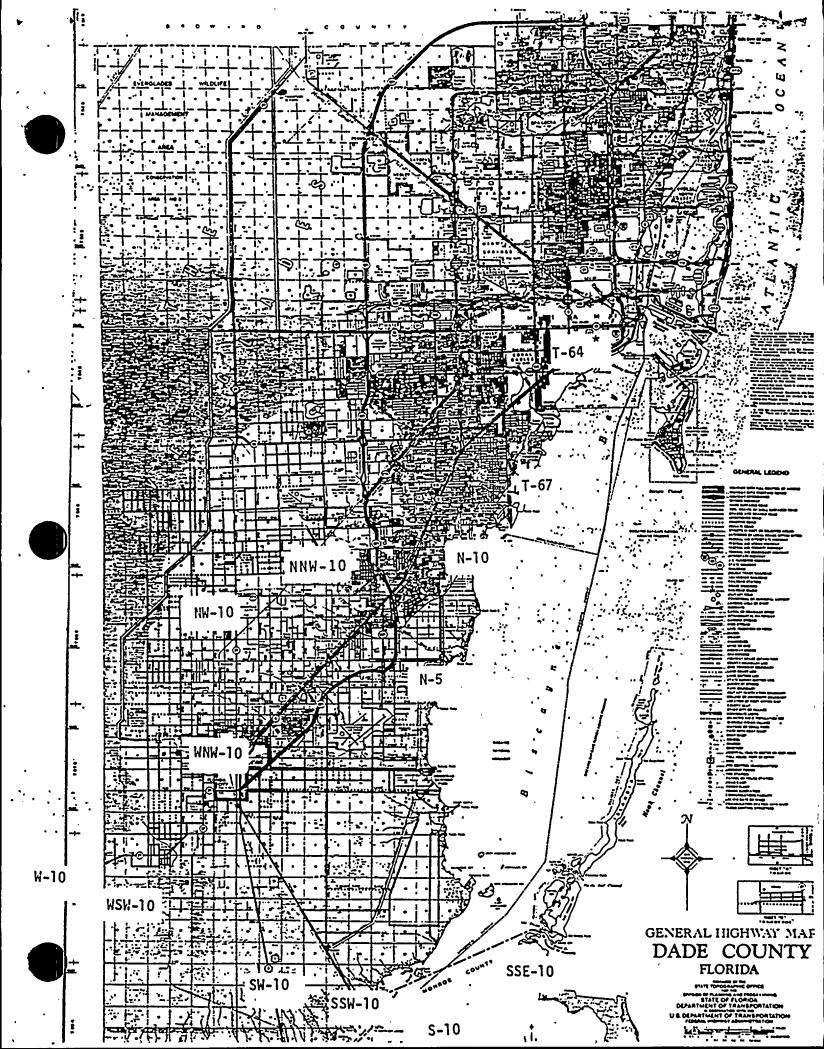
RADIOLOGICAL ENVIRONMENTAL SURVEILLANCE TURKEY POINT PLANT Key to Sample Locations

Pathway	Location	Description	Samples Collected	Sample Collection Frequency	Approximate Distance (miles)	Direction Sector
AIRBORNE	T64*	Natoma Substation	Radiolodine and particulates	Weekly	22	· NNE
AIRBORNE .	Ţ72	Turkey Point Boy Scout Camp	Radiolodine and particulates	Weekly	<1	WSW
WATERBORNE /	T42	Biscayne Bay, at Turkey Point	Surface water	Honthly .	<1	ENE
	· • •	· .	Sediment from shoreline	Semi- annually		٣
WATERBORNE .	T67*	Biscayne Bay, vicinity of	Surface water	Honthly	13-18	N, NNË
	• •	Cutler Plant, north to Matheson Hammock Park	- Sediment fran shoreline	Seni- annually		
WATERBORNE	T 81	Card Sound, near nouth of old	Surface water	Honthly	6	 S
		discharge canal	Sediment from shoreline	Semi- annually		

+ Denotes control sample.

RADIOLOGICAL ENVIRONMENTAL SURVEILLANCE TURKEY POINT PLANT Key to Sample Locations


.


Pathway	Location	Description	Samples Collected	Sample Collection Frequency	Approximate Distance (miles)	Direction Sector
FOOD PRODUCTS	167*	Biscayne Bay, vicinity of Cutler Plant north	Crustacea	Semi- annually	13-18	N, NNE
		to Matheson Hammock Park	Fish Seni- annually			
FOOD PRODUCTS	T8I	Card Sound, vicinity of Turkey Point	Crustacea	Seut- annually	6 -	. S
		Facility	Fish 	Seni- annually		
FOOD PRODUCTS	T4U	South of Palm Dr. on SW 117th St. extension	Broad¦leaf vegetation	Monthly	3	W
FOOD PRODUCTS	T41	Palm Dr. West of old missile site near the site boundary	Broad leaf veyetation	Monthly	2	MNM
FOOD PRODUCTS	167	Near Biscayne Bay, vicinity of Cutler Plant north to Matheson Hammock Park	Broad leaf vegetation	Honthly	13-18	N, NNE

.

* Denotes Control Sample.

.:

1986

ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT ST. LUCIE PLANT - UNITS NOS. 3 AND 4

ATTACHMENT B

RADIOLOGICAL SURVEILLANCE OF FLORIDA POWER AND LIGHT COMPANY'S

ST. LUCIE SITE

1986

1

First Quarter, 1986 Second Quarter, 1986 Third Quarter, 1986 Fourth Quarter, 1986

45

· · ·

.

¢

4

RADIOLOGICAL SURVEILLANCE OF FLORIDA POWER AND LIGHT COMPANY'S TURKEY POINT SITE

First Quarter, 1986

Office of Radiation Control

Florida Department of Health and Rehabilitative Services

TURKEY POINT SITE

Technical Specifications Sampling

First Quarter, 1986

Sample Type	Collection Frequency	Locations Sampled	Number of <u>Samples</u>
1. Direct Radiation	Quarterly	21	42
2. Airborne 2.a Air Iodines 2.b Air Particulates .	Weekly Weekly	5 5	60 64*
 Waterborne 3.a Surface Water 3.b Shoreline Sediment 	Monthly Semiannually	3 · 3	9 3
 4. Ingestion 4.a Fish and Invertebrates 4.a.1 Crustacea 4.a.2 Fish 	Semiannually Semiannually	2 2	2 2
4.b Food Products 4.b.l Broadleaf Vegetation	Monthly	3	9
			Total: 191

- * Includes DOE split samples.
- NOTE: Measurement results having magnitudes that are significantly above the background of the measurement system are reported as net values plus or minus a one-standard-deviation error term.

Measurement results that are <u>not</u> significantly above background are reported as "non-detectable" (ND) or as less than a Lower Limit of Detection (<LLD), which is an estimated upper limit (with at least 95% confidence) for the true activity in the sample.

· ·

•

e

4

TURKEY POINT TECHNICAL SPECIFICATIONS SAMPLING

FIRST QUARTER, 1986

1. DIRECT RADIATION - TLDs - (micro-R/hour)

Each result is the average net response of two dosimeters.

Sample Site	Deployed 12-09-85 Collected 3-17-86
N-1	4.6 <u>+</u> 0.2
N-5	5.6 ± 0.3
N-10	5.2 ± 0.3
NNW-1	5.8 ± 0.3
NNW-10	6.3 ± 0.3
NW/WNW-l	5.0 ± 0.3
NW-5	5.2 ± 0.3
NW-10	7.1 ± 0.4
W/WNW-5	$\begin{array}{c} 4.7 \pm 0.2 \\ 5.8 \pm 0.3 \\ 5.0 \pm 0.3 \\ 6.5 \pm 0.3 \\ 4.6 \pm 0.2 \\ \end{array}$
WNW-10	5.8 ± 0.3
W-1	5.0 \pm 0.3
W-10	6.5 <u>+</u> 0.3
WSW-10	4.6 ± 0.2
SW/SSW-1	
SW-10	5.0 \pm 0.3
SSW/SW-5	5.0 ± 0.3
SSW-10	5.3 ± 0.3
S-5	4.8 ± 0.3
S-10	5.5 ± 0.3
SSE/S-1	4.8 ± 0.3
SSE-10	4.6 ± 0.2

NOTES:

1.

- The error terms reported above are based on an empirical statistical analysis of the differences in the results from the individual dosimeters at each site. As such, these error terms are representative of the <u>typical</u> error for such measurements rather than accurately representing the error terms for <u>individual</u> measurements.
- 2. These results have been determined with the assumption that fading is negligible, although detailed testing to confirm this has not been done.
- 3. Testing to confirm compliance with NRC Reg. Guide 4.13 and ANSI N545-1975 performance standards has not been completed.

Each result is the average net response of two dosimeters.

Sample	Deployed	12-09-85
Site	Collected	3-17-86

N-1 Due to failure of the TLD reader normally used, these dosimeters were read out on a new instrument. Final results for these readings cannot be determined until the behavior of these dosimeters (i.e., net response, self-exposure rate, and NW-1 net response, self-exposure rate, and fading) can be determined on this new NW-10 instrument. This could not be completed for this report. This data will be included as an addendum to a future report.

NNW-10
NW/WNW-1
NW-5
NW-10
W/WNW-5
WNW-10
W-1
W-10
WSW-10 -
SW/SSW-1
SW-10
SSW/SW-5
SSW-10
S-5
S-10
SSE/S-1
SSE-10

2.a IODINE-131 IN WEEKLY AIR FILTERS - (pCi/m³)

Collection		5	Sample Si	te	۰
Date	T51	<u>T57</u>	T58	<u>T64</u>	<u>T72</u>
1-07-86	<0.02	<0.02	<0.02	<0.02	<0.02
1-14-86	<0.02	<0.02	<0.02	<0.02	<0.02
1-21-86	<0.04	<0.04	<0.04	<0.04	<0.04
1-28-86	<0.06	<0.06	<0.06	<0.05	<0 [.] 06
2-04-86	<0.03	<0.03	<0.03	<0.03	<0.03
2-11-86	<0.04	<0.04	<0.03	<0.04	<0.03
2-18-86	<0.03	<0.03	<0.03	<0.03	<0.03
2-25-86	<0.03	.<0.03	<0.03	<0.03	<0.03
3-04-86	<0.05	<0.05	<0.05	<0.05	<0.05
3-11-86	<0.03	<0.03	<0.03	<0.03	<0.03
3-18-86	<0.03	<0.03	<0.03	<0.03	<0.03
3-25-86	<0.03	<0.03	<0.03	<0.03	<0.03

, 1

.

•

•

¢

						. 3
2.b	AIR	PARTICULATES	 GROSS	BETA	-	(pCi/m ³)

Collection	-		Sample Site	-		
Date	T51	T57	T58	<u>T64</u>	<u> </u>	
1-07-86 1-14-86 1-21-86 1-28-86 2-04-86 2-11-86 2-18-86 2-25-86 3-04-86 3-11-86 3-18-86 3-25-86	$\begin{array}{c} 0.018 \pm 0.002 \\ 0.010 \pm 0.002 \\ 0.013 \pm 0.002 \\ 0.013 \pm 0.002 \\ 0.014 \pm 0.002 \\ 0.016 \pm 0.002 \\ 0.012 \pm 0.002 \\ 0.010 \pm 0.002 \\ 0.010 \pm 0.002 \\ 0.010 \pm 0.002 \\ 0.009 \pm 0.001 \end{array}$	$\begin{array}{c} 0.016 \pm 0.002 \\ 0.010 \pm 0.002 \\ 0.015 \pm 0.002 \\ 0.015 \pm 0.002 \\ 0.015 \pm 0.002 \\ 0.015 \pm 0.002 \\ 0.013 \pm 0.002 \\ 0.020 \pm 0.002 \\ 0.009 \pm 0.001 \\ 0.014 \pm 0.002 \\ 0.015 \pm 0.002 \\ 0.015 \pm 0.002 \\ 0.010 \pm 0.001 \\ 0.014 \pm 0.002 \\ 0.014 \pm 0.002 \\ 0.014 \pm 0.002 \\ 0.014 \pm 0.002 \end{array}$	$\begin{array}{c} 0.016 \ \pm \ 0.002 \\ 0.014 \ \pm \ 0.002 \\ 0.015 \ \pm \ 0.002 \\ 0.012 \ \pm \ 0.002 \\ * 0.018 \ \pm \ 0.002 \\ * 0.010 \ \pm \ 0.001 \\ * 0.018 \ \pm \ 0.002 \\ * 0.015 \ \pm \ 0.002 \\ * 0.015 \ \pm \ 0.002 \\ 0.014 \ \pm \ 0.002 \\ 0.014 \ \pm \ 0.002 \\ 0.007 \ \pm \ 0.001 \\ 0.010 \ \pm \ 0.001 \\ \end{array}$	$\begin{array}{c} 0.018 \pm 0.002 \\ 0.011 \pm 0.002 \\ 0.014 \pm 0.002 \\ 0.012 \pm 0.002 \\ 0.018 \pm 0.002 \\ 0.018 \pm 0.002 \\ 0.011 \pm 0.002 \\ 0.017 \pm 0.002 \\ 0.013 \pm 0.002 \\ 0.016 \pm 0.002 \\ 0.015 \pm 0.002 \\ 0.007 \pm 0.001 \\ 0.012 \pm 0.002 \end{array}$	$\begin{array}{r} 0.010 \pm 0.001 \\ 0.008 \pm 0.001 \\ 0.013 \pm 0.002 \\ 0.018 \pm 0.002 \\ 0.016 \pm 0.002 \\ 0.016 \pm 0.002 \\ 0.011 \pm 0.002 \\ 0.015 \pm 0.002 \\ 0.015 \pm 0.002 \\ 0.015 \pm 0.002 \\ 0.015 \pm 0.002 \\ 0.011 \pm 0.002 \\ 0.007 \pm 0.001 \\ 0.001 \pm 0.002 \\ 0.011 \pm 0.002 \\ \end{array}$	
Means:	0.013 <u>+</u> 0.001	0.014 ± 0.001	0.014 ± 0.001	0.014 ± 0.001	0.012 ± 0.001	
* - DOE spl:	it samples.					

						2
2.b	AIR PARTICULATES	 GAMMA SCANS	OF	QUARTERLY	COMPOSITES	 (pCi/m ³)

First Quarter, 1986

Sample Site	Be-7	к-40	<u>Cs-134</u>	<u>Cs-137</u>	Pb-210
T51	0.108 + 0.008	<0.026	<0.0008	<0.0009	<0.037
т57	0.126 + 0.010	<0.027	<0.0009	<0.0008	<0.045
Т58	0.124 + 0.011	<0.015	<0.0009	<0.0008	<0.040
т64	0.129 + 0.010	<0.029	<0.0008	<0.0009	0.044 + 0.016
т72	0.106 ± 0.010	<0.016	<0.0008	<0.0009	<0.044

3.a SURFACE WATER - (pCi/l)

Sample _Site_	Collection 	<u>H-3</u>	<u>K-40</u>	<u>Mn-54</u>	<u>Fe-59</u>	<u>Co-58</u>	<u>Co-60</u>	<u>2n-65</u>	Zr-95 <u>Nb-95</u> (A)	<u>1-131</u>	<u>Cs-134</u>	<u>Cs-137</u>	Ba-140 <u>La-140</u> (B)
Т42	1-14-86 2-10-86 3-17-86	<190 <190 <200	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	<4 <5 <4	<9 <13 <11	<4 <6 <4	<4 <6 <5	<7 <12 <9	<6 <8 <8	<4 <9 <7	<5 <4 <4	<4 <5 <4	<7 <7 <5
т67	1-14-86 2-10-86 3-17-86	<190 <190 <190	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	<4 <5 <4	<11 <11 <11	<4 <5 <5	<5 <6 <2	<10 <10 <9	<5 <8 <9	<5 <9 <8	<3 <5 <4	<4 <4 <4	<6 <6 <6
T81	1-14-86 2-10-86 3-17-86	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	<5 <4 <4	<10 <10 <10	<4 <5 <5	<5 <5 <5	`<11 <9 <10	<9 <8 <8	<6 <10 <8	<4 <5 <5	<4 <5 <4	<6 <6 <7

- (A) These tabulated LLD values for Zr/Nb-95 are the higher of the individual parent or daughter LLDs.
- (B) These tabulated LLD values are for Ba-140, either based on direct measurement of Ba-140 or based on ingrowth of La-140, whichever method yields the greater sensitivity for a given sample.

3.b SEDIMENT - (pCi/kg, dry weight)

Sample <u>Site</u>	Collect Date		<u>K</u>	40	<u>Co-58</u>	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-13</u>	<u>87 Ra-</u>	-226	<u>Th-232</u>	<u>U-238</u>	<u>U-235</u>
Т42	1-21-8	36 <140	280	<u>+</u> 70	<11	<10	<12	<10	710	<u>+</u> 20	55 <u>+</u> 9	440 <u>+</u> 20	<170
т67	1-21-8	86 <140	730	<u>+</u> 90	<13	<14	<12	<13	610	<u>+</u> 60	<33	1140 <u>+</u> 120	103 <u>+</u> 8
T81	1-16-8	86 <120	300	<u>+</u> 60	<11	<11	<9	<10	540	<u>+</u> 30	<23	330 <u>+</u> 30	<150
<u>4.a.l</u>	CRUSTAC	:EA -	Blue	Crab		()	pCi/kg	wet	weight	:)			
Sample Collection													
	ite	Date	<u> </u>	40	<u>Mn-</u>	54 <u>Fe</u>	<u>-59 Cc</u>	<u>-58</u>	<u>Co-60</u>	<u>2n-65</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Ra-226</u>
	т67 3-	-06-86	2000	<u>+</u> 100	<12	2 <	31 <	:15	<10	<26	<15	<12 3	40 <u>+</u> 20
	Т81 3-	-11-86	2100	<u>+</u> 100	<12	2 <	33 <	:13	<14	<31	<15	<12 4	90 <u>+</u> 40
<u>4.a.2</u>	FISH	- Mix	ed Spe	<u>cies</u>	(1	oCi/kg	, wet	weight	:)				·
Sai	mple Co	ollection			,					•		ı	
	ite	Date	K	-40	<u>Mn-</u>	<u>-54</u> <u>F</u>	<u>e-59</u> <u>C</u>	<u>:0-58</u>	<u>Co-60</u>	<u>Zn-65</u>	<u>Cs-13</u>	<u>4</u> <u>Cs-137</u>	<u>Ra-226</u>
	т67 З	8-06-86	2700	<u>+</u> 20	0 <1	L3 ·	<40	<13	<14	<33	<14	<13	50 <u>+</u> 10
	T81 2	2-05-86	2800	<u>+</u> 10	0 <1	L2 ·	<35	<12	<14	<28	<12	21 <u>+</u> 6	80 <u>+</u> 10

4

~

- 5 -

4.b.1 BROADLEAF VEGETATION - Brazilian Pepper - (pCi/kg, wet weight)

Sample <u>Site</u>	Collection Date	Be-7	<u>K-40</u>	<u>1-131</u>	<u>Cs-134</u>	<u>Cs-137</u>
T40	1-14-86	3000 <u>+</u> 80	1750 <u>+</u> 90	<8	<7	145 <u>+</u> 7
	2-10-86	1410 <u>+</u> 70	2300 <u>+</u> 100	<15	<8	249 <u>+</u> 9
	3-17-86	1540 <u>+</u> 60	2900 <u>+</u> 100	<12	<7	132 <u>+</u> 7
T41	1-14-86	1130 <u>+</u> 60	2900 <u>+</u> 100	<7	<8	72 <u>+</u> 6
	2-10-86	1160 <u>+</u> 60	3100 <u>+</u> 100	<15	<10	85 <u>+</u> 7
	3-17-86	1310 <u>+</u> 60	1960 <u>+</u> 90	<10	<6	108 <u>+</u> 6
т67	1-14-86	2 <u>010 +</u> 70	2400 <u>+</u> 100	<8	<6	55 <u>+</u> 5
	2-10-86	980 <u>+</u> 60	3800 <u>+</u> 100	<13	<10	15 <u>+</u> 4
	3-17-86	1020 <u>+</u> 60	3800 <u>+</u> 100	_ <15	<8	30 <u>+</u> 5

- 6 -

•

• .

,

RADIOLOGICAL SURVEILLANCE OF FLORIDA POWER AND LIGHT COMPANY'S TURKEY POINT SITE

э

Second Quarter, 1986

Office of Radiation Control

Florida Department of Health and Rehabilitative .Services

.

۲

ø

1

÷

TURKEY POINT SITE

Technical Specifications Sampling

Second Quarter, 1986

	Sample Type	Collection Frequency	Locations Sampled	Number of Samples
1.	Direct Radiation	Quarterly	21	40
	Airborne 2.a Air Iodines 2.b Air Particulates	Weekly Weekly	5 5	70 73*
	Waterborne 3.a Surface Water 3.b Shoreline Sediment	Monthly Semiannually	3 0	12 0
	Ingestion 4.a Fish and Invertebrates 4.a.l Crustacea 4.a.2 Fish	Semiannually Semiannually	0 0	0 0
સ	4.b Food Products 4.b.l Broadleaf ' Vegetation	Monthly	3	10*

Total: 205

Includes DOE split samples.

í.

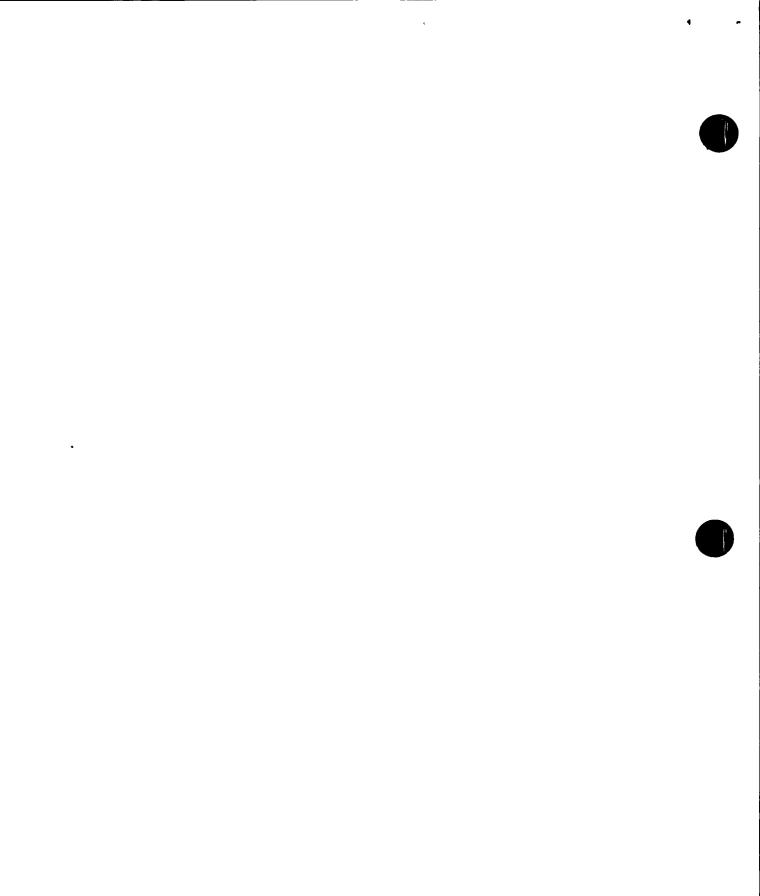
NOTE: Measurement results having magnitudes that are significantly above the background of the measurement system are reported as net values plus or minus a one-standard-deviation error term.

Measurement results that are <u>not</u> significantly above background are reported as "non-detectable" (ND) or as less than a Lower Limit of Detection (<LLD), which is an estimated upper limit (with at least 95% confidence) for the true activity in the sample.

- 1 -

TURKEY POINT TECHNICAL SPECIFICATIONS SAMPLING

SECOND QUARTER, 1986


1. DIRECT RADIATION - TLDS - (micro-R/hour)

Each result is the average net response of two dosimeters.

Sample	Deployed 3-17-86 Collected 6-09-86
N-1 N-5	4.9 ± 0.3 5 5 ± 0 3
N-10	5.5 ± 0.3 5.1 ± 0.3
NNW-1	6.0 + 0.3
NNW-10	Note 4
NW/WNW-1	5.3 + 0.3
NW-5	5.2 ± 0.3
NW-10	7.3 ± 0.4
W/WNW-5	4.9 <u>+</u> 0.3
WNW-10	6.3 ± 0.3
W-1	5.2 ± 0.3
W-10	6.2 ± 0.3
WSW-10	4.8 <u>+</u> 0.3
SW/SSW-1	4.8 ± 0.3
SW-10	5.2 ± 0.3
SSW/SW-5	4.9 ± 0.3
SSW-10	5.4 ± 0.3
S-5	4.7 ± 0.2
S-10	5.8 <u>+</u> 0.3
SSE/S-1	4.6 ± 0.2
SSE-10	4.8 ± 0.3

NOTES:

- 1. The error terms reported above are based on an empirical statistical analysis of the differences in the results from the individual dosimeters at each site. As such, these error terms are representative of the <u>typical</u> error for such measurements rather than accurately representing the error terms for <u>individual</u> measurements.
- 2. These results have been determined with the assumption that fading is negligible, although detailed testing to confirm this has not been done.
- 3. Testing to confirm compliance with NRC Reg. Guide 4.13 and ANSI N545-1975 performance standards has not been completed.
- 4. The Dosimeters from site NNW-10 were missing when collection was attempted.

Each result is the average net response of two dosimeters.

Sample Deployed 3-17-86	
Site Collected 6-09-86	
N-1 Due to failure of the TLD reader not	rmally
N-5 used, these dosimeters were read of	out on
N-10 a new instrument. Final results	for
NNW-1 these readings cannot be determined	until
NNW-10 (A) the behavior of these dosimeters (i.e.,
NW/WNW-1 net response, self-exposure rate,	and
NW-5 fading) can be determined on this	new
NW-10 instrument. This could not be compl	
W/WNW-5 for this report. This data will	l be
WNW-10 included as an addendum to a future	report.
W-1	
W-10	
WSW-10	
SW/SSW-1	
SW-10	
SSW/SW-5	
SSW-10	
S-5 (B)	
S-10	
SSE/S-1	
SSE-10	

.

A - The dosimeters for site NNW-10 were missing when collection was attempted.

B - The dosimeters for site S-5 and their holder were found on the ground upon collection.

2

.

۰ ۲

-

_

2.a IODINE-131 IN WEEKLY AIR FILTERS - (pCi/m³)

Collection			Sample Site		
<u>Date</u>	T51	<u>T57</u>	T58	<u>T64</u>	T72
4-01-86	<0.04	<0.04	<0.04	<0.04	<0.04
4-08-86	<0.06(A)	<0.04	<0.04	<0.04	<0.04
4-15-86	<0.03	<0.03	<0.03	<0.03	<0:03
4-23-86	<0.04	<0.04	<0.04	<0.04	<0.04
4-29-86	<0.03	<0.03	<0.03	<0.03	<0.04
5-06-86	<0.03	<0.04	<0.03	<0.03	<0.03
5-13-86	0.47 <u>+</u> 0.04	0.17 <u>+</u> 0.01	0.21 <u>+</u> 0.01	0.42 <u>+</u> 0.04	0.22 <u>+</u> 0.0
5-19-86	0.11 <u>+</u> 0.01	0.06 <u>+</u> 0.01	0.09 <u>+</u> 0.01	0.06 <u>+</u> 0.01	0.12 <u>+</u> 0.0
5-27-86	0.03 <u>+</u> 0.01	<0.03	<0.03	<0.05	0.04 + 0.0
6-03-86	<0.03	<0.03	<0.03	<0.03	<0.03
6-10-86	<0.05	<0.05	<0.04	<0.04	<0.04
6-16-86	<0.04	<0.04	<0.04	<0.04	<0.04
6-24-86	<0.02	<0.02	<0.02	<0.02	<0.02
6-30-86	<0.05	<0.05	<0.05	<0.05	<0.05

A - This sample had a low volume due to a low flowrate setting.

NOTE: Detectable concentrations of I-131 in these samples are attributed to releases from the 4-26-86 disaster at the nuclear facility at Chernobyl, U.S.S.R.

- 3 -

• . ÷

GROSS BETA - (pCi/m^3) 2.b AIR PARTICULATES

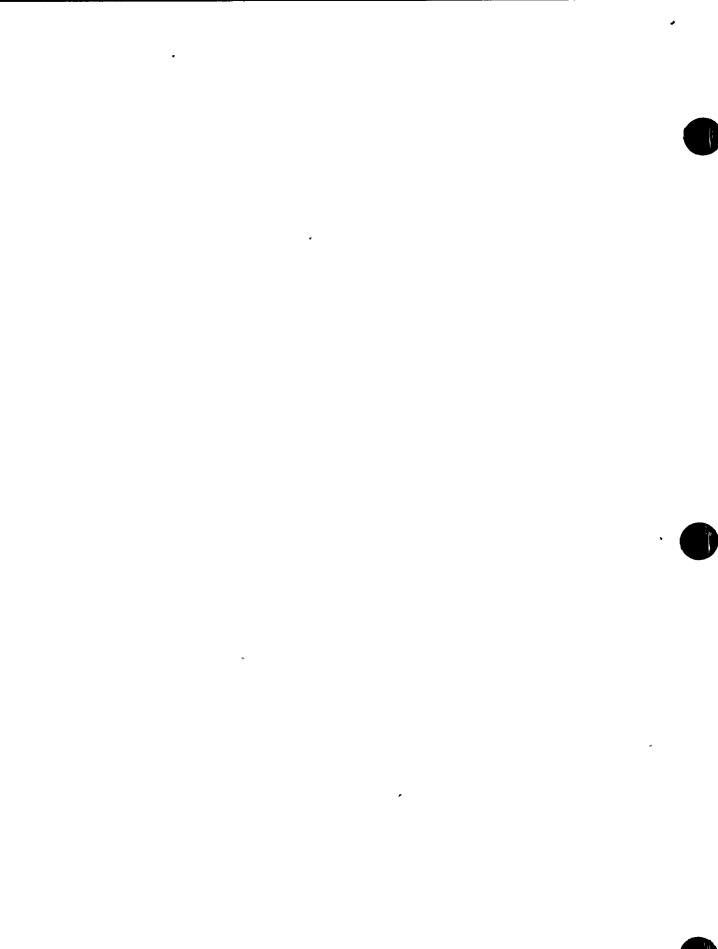
Collection			Sample Site		
Date	<u>T51</u>	T57	<u>T58</u>	т64	Т72
$\begin{array}{r} 4-01-86\\ 4-08-86\\ 4-15-86\\ 4-23-86\\ 4-29-86\\ 5-06-86\\ 5-13-86\\ 5-19-86\\ 5-27-86\\ 6-03-86\\ 6-10-86\\ 6-10-86\\ 6-16-86\\ 6-24-86\\ 6-30-86\end{array}$	$\begin{array}{c} 0.009 \pm 0.001 \\ (A0.015 \pm 0.002 \\ 0.016 \pm 0.002 \\ 0.013 \pm 0.002 \\ 0.020 \pm 0.002 \\ 0.017 \pm 0.002 \\ 0.157 \pm 0.005 \\ 0.077 \pm 0.005 \\ 0.077 \pm 0.003 \\ 0.068 \pm 0.004 \\ 0.030 \pm 0.002 \\ 0.013 \pm 0.002 \\ 0.013 \pm 0.002 \\ 0.009 \pm 0.001 \\ 0.034 \pm 0.003 \end{array}$	$\begin{array}{c} 0.010 \ \pm \ 0.001 \\ 0.023 \ \pm \ 0.002 \\ 0.017 \ \pm \ 0.002 \\ 0.015 \ \pm \ 0.002 \\ 0.027 \ \pm \ 0.002 \\ 0.025 \ \pm \ 0.002 \\ 0.025 \ \pm \ 0.002 \\ 0.061 \ \pm \ 0.004 \\ 0.066 \ \pm \ 0.003 \\ 0.030 \ \pm \ 0.002 \\ 0.014 \ \pm \ 0.002 \\ 0.012 \ \pm \ 0.002 \\ 0.012 \ \pm \ 0.002 \end{array}$	$\begin{array}{c} 0.010 \ \pm \ 0.001 \\ 0.023 \ \pm \ 0.002 \\ 0.017 \ \pm \ 0.002 \\ 0.011 \ \pm \ 0.001 \\ 0.023 \ \pm \ 0.002 \\ * 0.024 \ \pm \ 0.002 \\ * 0.024 \ \pm \ 0.002 \\ * 0.148 \ \pm \ 0.005 \\ * 0.053 \ \pm \ 0.003 \\ * 0.067 \ \pm \ 0.003 \\ 0.054 \ \pm \ 0.003 \\ 0.031 \ \pm \ 0.002 \\ 0.011 \ \pm \ 0.002 \\ 0.008 \ \pm \ 0.001 \end{array}$	$\begin{array}{c} 0.014 \ \pm \ 0.002 \\ 0.018 \ \pm \ 0.002 \\ 0.020 \ \pm \ 0.002 \\ 0.022 \ \pm \ 0.002 \\ 0.022 \ \pm \ 0.002 \\ 0.022 \ \pm \ 0.002 \\ 0.181 \ \pm \ 0.006 \\ 0.075 \ \pm \ 0.004 \\ 0.074 \ \pm \ 0.003 \\ 0.061 \ \pm \ 0.003 \\ 0.036 \ \pm \ 0.003 \\ 0.016 \ \pm \ 0.001 \\ 0.001 \ \pm \ 0.001 \\ \end{array}$	$\begin{array}{c} 0.012 \ \pm \ 0.002\\ 0.020 \ \pm \ 0.002\\ 0.017 \ \pm \ 0.002\\ 0.015 \ \pm \ 0.002\\ 0.022 \ \pm \ 0.002\\ 0.025 \ \pm \ 0.002\\ 0.157 \ \pm \ 0.005\\ 0.071 \ \pm \ 0.005\\ 0.071 \ \pm \ 0.004\\ (B)\\ 0.072 \ \pm \ 0.004\\ 0.029 \ \pm \ 0.002\\ 0.019 \ \pm \ 0.002\\ 0.009 \ \pm \ 0.001\\ \end{array}$
6-30-86 Means:	0.034 <u>+</u> 0.003 0.039 <u>+</u> 0.001	0.018 = 0.002 0.041 ± 0.001	0.020 ± 0.002 0.036 ± 0.001	$\begin{array}{r} 0.019 \pm 0.002 \\ 0.042 \pm 0.001 \end{array}$	$\begin{array}{r} 0.022 \pm 0.001 \\ 0.038 \pm 0.001 \end{array}$

4

٢

- * DOE split samples.
- '(A) This sample had a low volume due to a low flowrate setting.
- (B) There was no particulate filter upon collection due to a procedural error the operator failed to install one upon collection of the previous sample.
- NOTE: Elevated radioactivity levels in the samples collected on or after 4-29-86 are attributed to releases from the 4-26-86 disaster at the nuclear facility at Chernobyl, U.S.S.R.

- 4 -


Second Quarter, 1986

e

Sample <u>Site</u>	Be-7	<u>к-40</u>	<u>Ru-103</u>	<u>Cs-134</u>	Cs-137	Pb-210
T51	0.110 <u>+</u> 0.008	<0.022	0.0076 ± 0.0010	0.0036 <u>+</u> 0.0003	0.0065 ± 0.0006	0.03 + 0.01
T57	0.110 <u>+</u> 0.009	<0.022	0.0077 ± 0.0010	0.0033 ± 0.0003	0.0069 <u>+</u> 0.0006	<0.03
T58	0.110 <u>+</u> 0.008	<0.021	0.0062 <u>+</u> 0.0011	0.0033 ± 0.0003	0.0070 <u>+</u> 0.0006	<0.03
т64	0.124 <u>+</u> 0.008	<0.024	0.0072 <u>+</u> 0.0011	0.0042 ± 0.0004	0.0075 <u>+</u> 0.0006	<0.03
T72	0.124 <u>+</u> .0.009	<0.025	0.0062 <u>+</u> 0.0011	0.0033 ± 0.0003	0.0068 <u>+</u> 0.0005	<0.07

NOTE: Detectable concentrations of Ru-103, Cs-134, and Cs-137 in these samples are attributed to releases from the 4-26-86 disaster at the nuclear facility at Chernobyl, U.S.S.R.

- 5 -

•

-3.a SURFACE WATER - (pCi/l)

Sample _Site_	Collection Date	<u>H-3</u>	<u>K-40</u>	<u>Mn-54</u>	<u>Fe-59</u>	. <u>Co-58</u>	<u>Co-60</u>	<u>2n-65</u>	Zr-95 <u>Nb-95</u> (A)	<u>1-131</u>	<u>Cs-134</u>	<u>Cs-137</u>	Ba-].40 <u>La-140</u> (B)
T42	4-14-86 5-12-86 6-09-86	<180 ~<190 <190	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	<3 <4 <4	<8 <10 <12	<3 <4 <4	<3 <5 <4	<9 <9 <11	<7 <8 <7	<11 <7 <8	<5 <5 <5	<4 <5 <5	<7 <4 <8
T67	4-14-86 · 5-12-86 6-09-86	<180 <190 <190	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	<4	<11 <11 <12	<4 <5 <4	<5 <5 <4	<11 <10 <11	<8 <8 <6	<11 <7 <11	<4 <5 <5	<5 <5 <5	<5 <6 <7
T81	4-14-86(C) 4-14-86(D) 5-12-86(C) 5-12-86(D) 6-09-86(C) 6-09-86(D)	<180 <210 <190 390.+ 60 <190 <190	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	<4 <3 <4 <4	<10 <11 <9 <13 <13	<5 <4 <4 <4 <4 <4 <4	<5 <5 <4 <5 <5 <5	<11 <10 <9 <12 <11 <12	<pre>< <9 < <7 < <8 < <8 < <8 < <8 < <8 < <8 < <8</pre>	<12 <12 <9 <7 <11 <11	<5 <5 <6 <4 <4 <5	<4 <4 <5 <4 <5 <5	<8 <9 <6 <5 <7 <7

- (A) These tabulated LLD values for 2r/Nb-95 are the higher of the individual parent or daughter LLDs.
- (B) These tabulated LLD values are for Ba-140, either based on direct measurement of Ba-140 or based on ingrowth of La-140, whichever method yields the greater sensitivity for a given sample.
- (C) Collected at the normal location in the old discharge canal about 200' west of the mouth.
- (D) Collected at a comparison location at the mouth of the old discharge canal on the south side of the prominent embankment in this area.

- 6 -

<u>4.b.1</u> B	ROADLEAF VEG	ETATION -	Brazilian Per	oper - (p	Ci/kg, we	t weight:)
Sample _Site_	Collection Date	Be-7	K-40		<u> </u>	<u>Cs-134</u>	<u>Cs-137</u>
T40	4-14-86	1860 <u>+</u> 80	3900 <u>+</u> 100	<11	<34	<8	332 <u>+</u> 10
	5-12-86	700 <u>+</u> 50	2000 <u>+</u> 100	<10	675 <u>+</u> 19	<10	140 <u>+</u> 7
	*6-10-86	1150 <u>+</u> 70	2600 <u>+</u> 100	26 <u>+</u> 4	67 <u>+</u> 14	<10	372 <u>+</u> 11
т41	4-14-86	1100 <u>+</u> 60	2500 <u>+</u> 100	<8	<30	. <7	95 <u>+</u> 6
	5-12-86	870 <u>+</u> 60	1700 <u>+</u> 100	<12	655 <u>+</u> 19	<10	212 <u>+</u> 9
	6-10-86	760 <u>+</u> 60	2700 <u>+</u> 100	18 <u>+</u> 5 [°]	75 <u>+</u> 12	<10	215 <u>+</u> 8
т67	4-14-86	1730 <u>+</u> 70	3400 <u>+</u> 100	<9	<27	<8	71 <u>+</u> 6
	5-12-86	1020 <u>+</u> 60	2200 <u>+</u> 100	<9	554 <u>+</u> 18	<9	36 <u>+</u> 4
	6-09-86	1480 <u>+</u> 60	2400 <u>+</u> 100	39 <u>+</u> 5	128 <u>+</u> 11	25 <u>+</u> 3	53 <u>+</u> 6

¢

* - DOE Split Sample.

NOTE: Detectable concentrations of Ru-103, I-131, and Cs-134 in these samples are attributed to releases from the 4-26-86 disaster at the nuclear facility at Chernobyl, U.S.S.R. Some of the Cs-137 may also be attributable to residual activity from the testing of nuclear weapons.

- 7 -

RADIOLOGICAL SURVEILLANCE OF FLORIDA POWER AND LIGHT COMPANY'S

TURKEY POINT SITE

Third Quarter, 1986

Office of Radiation Control

Florida Department of Health and Rehabilitative Services

¢

TURKEY POINT SITE

Technical Specifications Sampling

Third Quarter, 1986

<u> </u>	Sample Type	Collection Frequency	Locations Sampled	Number of Samples
1.	Direct Radiation	Quarterly	21	42
2.	Airborne 2.a Air Iodines 2.b Air Particulates	Weekly Weekly	5 5	65 69*
3.	Waterborne 3.a Surface Water 3.b Shoreline Sediment	Monthly Semiannually	3 3	12 3
4.	Ingestion 4.a Fish and Invertebrates 4.a.1 Crustacea 4.a.2 Fish	>> Semiannually Semiannually	2 2	2 2
	4.b Food Products 4.b.l Broadleaf Vegetation	Monthly	3	9

Total: 204

Includes DOE split samples.

NOTE: Measurement results having magnitudes that are significantly above the background of the measurement system are reported as net values plus or minus a one-standard-deviation error term.

1 -

Measurement results that are <u>not</u> significantly above background are reported as "non-detectable" (ND) or as less than a Lower Limit of Detection (<LLD), which is an estimated upper limit (with at least 95% confidence) for the true activity in the sample.

THIRD QUARTER, 1986

1. DIRECT RADIATION - TLDs - (micro-R/hour)

Each result is the average net response of two dosimeters.

Sample Site	Deployed 6-09-86 Collected 9-23-86
N-1	4.9 <u>+</u> 0.3
N-5	5.9 ± 0.3
N-10	5.4 ± 0.3
NNW-1	5.7 ± 0.3
NNW-10	6.1 ± 0.3
NW/WNW-1	5.0 ± 0.3
NW-5	5.5 ± 0.3
NW-10	7.6 ± 0.4
W/WNW-5	4.9 ± 0.3
WNW-10	6.5 ± 0.3
W-1	5.5 ± 0.3
W-10	6.5 ± 0.3
WSW-10	4.7 ± 0.2
SW/SSW-1	5.4 ± 0.3
SW-10	5.2 ± 0.3
SSW/SW-5	5.4 ± 0.3
SSW-10	5.5 ± 0.3
S-5	4.8 <u>+</u> .0.3
S-10	5.6 + 0.3
SSE/S-1	4.8 ± 0.3
SSE-10	4.7 ± 0.2

NOTES:

- 1. The error terms reported above are based on an empirical statistical analysis of the differences in the results from the individual dosimeters at each site. As such, these error terms are representative of the <u>typical</u> error for such measurements rather than accurately representing the error terms for <u>individual</u> measurements.
- 2. These results have been determined with the assumption that fading is negligible, although detailed testing to confirm this has not been done.
- 3. Testing to confirm compliance with NRC Reg. Guide 4.13 and ANSI N545-1975 performance standards has not been completed.

Each result is the average net response of two dosimeters.

N-1Due to failure of the TLD reader normally used, these dosimetersN-5normally used, these dosimetersNNW-10were read out on a new instru- ment. Final results for these readings cannot be determined until the behavior of these dosimeters (i.e., net response, NW-10NW-10self-exposure rate, and fading) can be determined on this new instrument. This could not be completed for this report. This W+10WWNW-10instrument. This could not be completed for this report. This data will be included as an addendum to a future report.SW/SW-5SSW-10 S-5 S-10	Sample Site	Deployed 6-09-86 Collected 9-23-86
SSE/S-1 SSE-10	N-5 N-10 NNW-1 NNW-10 NW/WNW-1 NW-5 NW-10 W/WNW-5 WNW-10 W-1 W-10 WSW-10 SW/SSW-1 SW/SW-1 SW/SW-1 SSW/SW-5 SSW-10 SSW/SW-5 SSW-10 SSS/SW-10 SSS/SW-10 SSS/SSW-10 SSS/SSW-10 SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	normally used, these dosimeters were read out on a new instru- ment. Final results for these readings cannot be determined until the behavior of these dosimeters (i.e., net response, self-exposure rate, and fading) can be determined on this new instrument. This could not be completed for this report. This data will be included as an

9

- 2 -

2.a IODINE-131 IN WEEKLY AIR FILTERS - (pCi/m³)

		Sample Site		
T51	T57	T58	<u></u>	T72
<0.02	<0:02	<0.02	<0.02	<0.02
<0.03	<0.03	<0.03	<0.03	<0.03
<0.03	<0.03	<0.03	<0.03	<0.03
<0.03	<0.03	<0.03	<0.03	<0.03
<0.03	<0.03	<0.03	<0.03	<0.02
<0.02	<0.02	<0.02	<0.03	<0.02
<0.05(A)	<0.04	<0.03	<0.03	<0.03
<0.04	<0.04	<0.03	<0.04	<0.04
<0.02	<0.02	<0.02	<0.02	<0.03
<0.03	<0.03	<0.03	<0.03	<0.03
<0.02	<0.02	<0.02	<0,06(B)	<0.02
<0.02	<0.02	<0.02	<0.02	<0.02
<0.03	<0.03	.<0.03	<0.03	<0.02
	<0.02 <0.03 <0.03 <0.03 <0.03 <0.02 <0.05(A) <0.04 <0.02 <0.03 <0.02 <0.03 <0.02 <0.02	< 0.02 < 0.02 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.02 < 0.02 < 0.05 (A) < 0.04 < 0.02 < 0.02 < 0.03 < 0.03 < 0.02 < 0.02 < 0.03 < 0.03 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02	T51T57T58<0.02	T51T57T58T64 <0.02 <0.02 <0.02 <0.02 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.02 <0.02 <0.02 <0.03 <0.05 (A) <0.04 <0.03 <0.03 <0.02 <0.02 <0.02 <0.02 <0.03 <0.03 <0.03 <0.03 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02

- (A) A circuit breaker had tripped at this location during this sample, possibly due to lightning. The equipment is estimated to have run for 118 hours out of the 170 total hours for this sample interval.
- (B) The air pump had failed at this location. The equipment is estimated to have run for 73 hours out of the 193 total hours for this sample interval.

- 3 -

-

2.b AIR PARTICULATES - GROSS BETA - (pCi/m³)

- * DOE split samples.
- (A) A circuit breaker had tripped at this location during this sample, probably due to lightning. The equipment is estimated to have run for 118 hours out of the 170 total hours for this sample interval.
- (B) The air pump had failed at this location. The equipment is estimated to have run for 73 hours out of the 193 total hours for this sample interval.

2.b AIR PARTICULATES - GAMMA SCANS OF QUARTERLY COMPOSITES - (pCi/m³)

Third Quarter, 1986

Sample <u>Site</u>	Be-7	<u>K-40</u>	<u>Cs-134</u>	<u>Cs-137</u>	<u>Pb-210</u>
т51	0.098 <u>+</u> 0.007	<0.023	<0.0007	<0.0009	<0.034
т57	0.092 <u>+</u> 0.008	<0.013	<0.0009	<0.0009	<0.030
T58	0.091 <u>+</u> 0.008	<0.016	<0.0009	<0.0008	<0.035
т64	0.100 <u>+</u> 0.009	<0.024	<0.0008	<0.0008	<0.035
т72	0.111 <u>+</u> 0.008	<0.023	<0.0009	<0.0008	<0.033

3.a SURFACE WATER - (pCi/1)

Sample Site	Collection Date	<u>H-3</u>	K-40	<u>Mn-54</u>	<u>Fe-59</u>	<u>Co-58</u>	<u>Co-60</u>	<u>2n-65</u>	Zr-95 <u>Nb-95</u> (A)	<u>1-131</u>	<u>Cs-134</u>	<u>Cs-137</u>	Ba-140 <u>La-140</u> (B)
т42	7-17-86 8-11-86 9-10-86	<210 <210 <210	$\begin{array}{r} 240 + 50 \\ 360 + 50 \\ 340 + 50 \end{array}$	<4 <5 <4	<10 <9 <9	<4 <4 <4	<5 <5 <4	<9 <9 <11	<8 <9 <7	<5 <5 <5	<5 <6 <5	<5 <5 <5	<6 <4 <7
T67	7-17-86 8-12-86 9-10-86	<210 <210 <210	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	<4 <5 <4	<10 <10 <9	<4 <5 <4	<5 <5 <5	<9 <11 <11	<8 <8 <8	<6 <7 <6	<4 <4 <5	<5 <4 <5	<4 .<5 <8
T81	7-17-86(C) 7-17-86(D) 8-11-86(C) 8-11-86(D) 9-10-86(C) 9-10-86(D)	$\begin{array}{r} 350 \ \pm \ 60 \\ 340 \ \pm \ 60 \\ 560 \ \pm \ 70 \\ 690 \ \pm \ 70 \\ < 210 \\ < 210 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	<5 <5 <3 <4 <5 <4	<11 <10 <11 <12 <8 <8	<4 <4 <4 <4 <4 <3	<4 <5 <5 <4 <5 <5	<12 . <10 <11 <12 <11 <8	<8 <8 <9 <8 <7 <8	<6 <8 <7 <5 <4 .	<6 <5 <5 <5 <5 <5	<5 <5 <5 <4 <4	<8 <6 <5 <8 <10 <8

ê

- (A) These tabulated LLD values for Zr/Nb-95 are the higher of the individual parent or daughter LLDs.
- (B) These tabulated LLD values are for Ba-140, either based on direct measurement of Ba-140 or based on ingrowth of La-140, whichever method yields the greater sensitivity for a given sample.
- (C) Collected at the normal location in the old discharge canal about 200' west of the. mouth.
- (D) Collected at a comparison location at the mouth of the old discharge canal on the south side of the prominent embankment in this area.

- 6 -

.

*

*

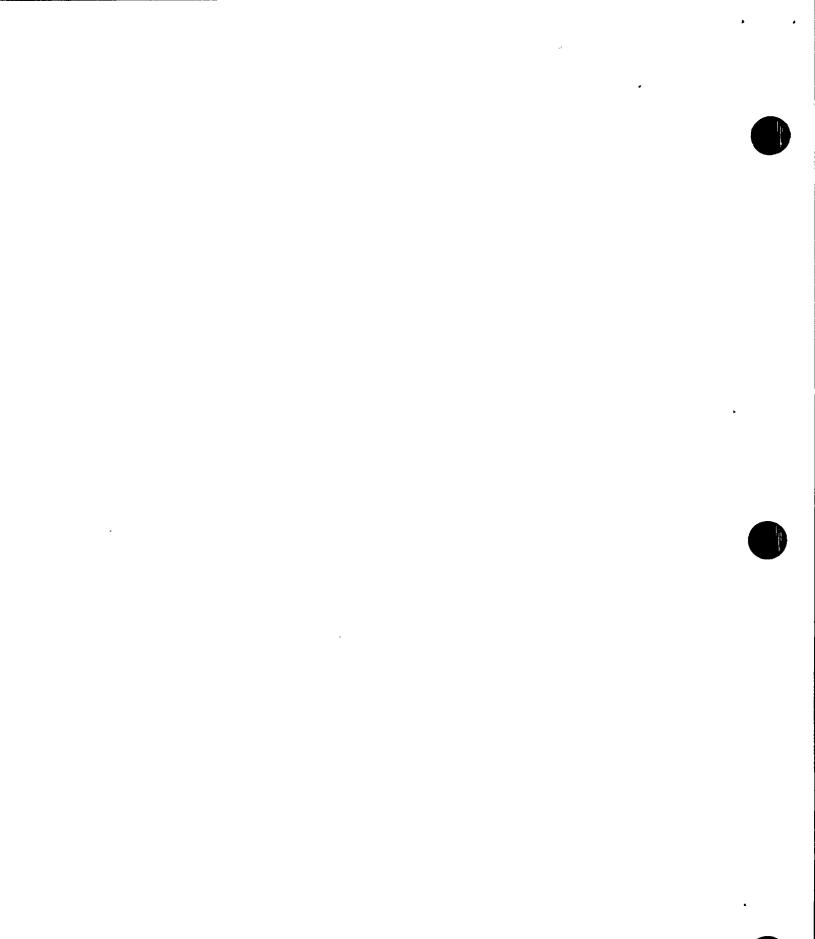
. . .

3.b SEDIMENT - (pCi/kg, dry weight)

.

Sample Site	Collection Date	Be-7	K-40	<u>Mn-54</u>	<u>Co-58</u>	<u>Co-60</u>	<u>Cs-134</u>	<u>Cs-137</u>	Others
Т42	7-17-86	140 <u>+</u> 40	420 <u>+</u> 70	<13	<15	<14	<14	<14	Ra-226: 850 ± 20 Th-232: 33 ± 7 U-235: 68 ± 7 U-238: 700 ± 100
т67	7-17-86	200 <u>+</u> 60 ·	770 <u>+</u> 90	<11	<12	<14	<14	<12	Ra-226: 550 ± 30 Th-232: 70 ± 30 U-238: 380 ± 90
T81	7-17-86	320 <u>+</u> 60	470 <u>+</u> 70	<11	<11	<9	<11	<10	Ra-226: 270 \pm 20 Th-232: 28 \pm 7 U-238: 190 \pm 60

4.a.1	CRUSTACEA	- Blue	Crab	<u> </u>	(pCi/kg	<u>,`wet</u>	weight)		<u>,</u> _	
Sample Site	Collection 	<u> </u>	<u>Mn-54</u>	<u>Fe-59</u>	<u>Co-58</u>	<u>Co-60</u>	<u>Zn-65</u>	<u>Cs-134</u>	<u>Cs-137</u>	Others
T67	9-10-86	1600 <u>+</u> 10	0 <13	<36	<13	<16	<33	<17	<15	Ra-226: 890 <u>+</u> 30 Ra-228: 140 <u>+</u> 30
T81	7-31-86	1700 <u>+</u> 20	0 <14	<39	<15	<14	<39	<16	<18	Ra-226: 500 <u>+</u> 20 Ra-228: 160 <u>+</u> 30


4.a.2 FISH - Mixed Species - (pCi/kg, wet weight)

e

Sample Site	Collection Date	к-40	<u>Mn-54</u>	<u>Fe-59</u>	<u>Co-58</u>	<u>Co-60</u>	<u>Zn-65</u> ,	<u>Cs-134</u>	<u>Cs-137</u>	Others
Т 67 _.	9-08-86	3000 <u>+</u> 200	<10	<46	<15	<13	<32	<13	13 <u>+</u> 5	Ra-226: <220 Ra-228: <60
T81	8-06-86	2900 <u>+</u> 200 _.	<14	<38	<12	<15	<33	<15	25 <u>+</u> 5	Ra-226: 60 <u>+</u> 10 Ra-228: <60

4.b.1 BROADLEAF VEGETATION - Brazilian Pepper - (pCi/kg, wet weight)

Sample Site	Collection Date	Be-7	к-40	<u>Ru-103</u>	<u>1-131</u>	<u>Cs-134</u>	<u>Cs-137</u>
T40	7-17-86 8-12-86 9-10-86	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{r} 2900 + 100 \\ 2500 + 100 \\ 2900 + 100 \\ \end{array}$	11 + 4 <10 <10	<13 <16 <16	<11 <10 <10	204 <u>+</u> 9 386 <u>+</u> 11 102 <u>+</u> 6
T41	7-17-86 8-12-86 9-10-86	1730 <u>+</u> 60 1480 <u>+</u> 70 1520 <u>+</u> 70	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	10 <u>+</u> 4 <10 <10	<11 <14 <16	14 <u>+</u> 6 <10 <11	108 <u>+</u> 7 147 <u>+</u> 8 425 <u>+</u> 11
т 6 7	7-17-86 8-12-86 9-10-86	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{r} 4100 + 100 \\ 5300 + 200 \\ 2800 + 100 \end{array}$	15 <u>+</u> 4 <10 <9	<13 <13 <16	11 + 2 <11 <9	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

•

RADIOLOGICAL SURVEILLANCE OF FLORIDA POWER AND LIGHT COMPANY'S TURKEY POINT SITE

Fourth Quarter, 1986

Office of Radiation Control

Florida Department of Health and Rehabilitative Services . .

• •

.

.

.

.

•

Technical Specifications Sampling

Fourth Quarter, 1986

Sample Type	Collection Frequency	Locations Sampled	Number of <u>Samples</u>
1. Direct Radiation	Quarterly	21	42
2. Áirborne 2.a Air Iodines 2.b Air Particulates	Weekly Weekly	5 5	65 69*
 Waterborne 3.a Surface Water 3.b Shoreline Sediment 	Monthly Semiannually	3 0	. 12 0
 4. Ingestion 4.a Fish and Invertebrates 4.a.1 Crustacea 4.a.2 Fish 	Semiannually Semiannually	0 0	0 0
4.b Food Products 4.b.1 Broadleaf Vegetation	Monthly	3	10*

Total: 198

- Includes DOE split samples.

NOTE: Measurement results having magnitudes that are significantly above the background of the measurement system are reported as net values plus or minus a one-standard-deviation error term.

Measurement results that are <u>not</u> significantly above background are reported as "non-detectable" (ND) or as less than a Lower Limit of Detection (<LLD), which is an estimated upper limit (with at least 95% confidence) for the true activity in the sample.

- 1 -

TURKEY POINT TECHNICAL SPECIFICATIONS SAMPLING

FOURTH QUARTER, 1986

1. DIRECT RADIATION - TLDs - (micro-R/hour)

Each result is the average net response of two dosimeters.

Sample Site	Deployment Collection	
N-1 N-5 N-10 NNW-1 NNW-10 NW/WNW-1	$\begin{array}{c} 4.9 + 0.3 \\ 5.6 + 0.3 \\ 5.0 + 0.3 \\ 5.7 + 0.3 \\ 5.9 + 0.3 \\ 5.9 + 0.3 \\ 5.9 + 0.3 \\ 5.2 + 0.3 \\ 5.2 + 0.3 \\ 7.4 + 0.4 \\ 4.7 + 0.2 \\ 6.6 + 0.3 \\ 5.1 + 0.3 \\ 5.1 + 0.3 \\ 6.6 + 1 + 0.3 \\ 4.8 + 1 + 0.2 \\ 4.9 + 1 + 0.3 \\ 5.2 + 0.3 \\ 5.3 + 1 + 0.3 \\ 5.3 + 0.3 \\ 5.3 + 0.3 \\ 5.3 + 0.3 \\ 5.3 + 0.3 \\ 5.3$	12 13 00
NW-1 NW-5 NW-10 W/WNW-5 WNW-10 W-1	5.2 + 0.3 7.4 + 0.4 4.7 + 0.2 6.6 + 0.3 5.1 + 0.3	
W-10 WSW-10 SW/SSW-1 SW-10 SSW/SW-5	6.6 + 0.3 4.8 + 0.3 4.7 + 0.2 4.9 + 0.3 5.2 + 0.3	
SSW-10 S-5 S-10 SSE/S-1 SSE-10	5.3 + 0.3 5.0 + 0.3 5.3 + 0.3 4.8 + 0.3 4.7 + 0.2	

NOTES:

- 1. The error terms reported above are based on an empirical statistical analysis of the differences in the results from the individual dosimeters at each site. As such, these error terms are representative of the <u>typical</u> error for such measurements rather than accurately representing the error terms for <u>individual</u> measurements.
- 2. These results have been determined with the assumption that fading is negligible, although detailed testing to confirm this has not been done.
- 3. Testing to confirm compliance with NRC Reg. Guide 4.13 and ANSI N545-1975 performance standards has not been completed.

1. DIRECT RADIATION - TLDs - (micro-R/hour)

Each result is the average net response of two dosimeters.

Sample Deployment 9-23-86 Site Collection 12-15-86

Due to failure of the TLD reader normally used, these dosimeters were read out on a new instrument. Final results for these readings cannot be determined until the behavior of these dosimeters (i.e., net response, self-exposure rate, and fading) can be determined on this new instrument. This could not be completed for this report. This data will be included as an addendum to a future report.

N-1
N-5
N-10
NNW-1
NNW-10
NW/WNW-1
NW-5
NW-10
W/WNW-5
WNW-10
W-1
W-10
WSW-10
SW/SSW-1
SW-10
SSW/SW-5
SSW-10
S−5
S-10
SSE/S-1
SSE-10

NT 1

- 2 -

.

r

,

. .

.

2.a IODINE-131 IN WEEKLY AIR FILTERS - (pCi/m³)

.)

Collection		S	ample Site		
Date				T64	T72
4		<u> </u>			
10-07-86	<0.03	<0.03	<0.03	<0.03	<0.03
10-14-86	<0.03	<0.03	<0.03	<0.03	<0.03
10-21-86	<0.03	<0.03	<0.03	<0.03	<0.03
10-28-86	<0.02	<0.02	<0.02	<0.02	<0.02
11-04-86	<0.03	<0.03	<0.03	<0.02	<0.02
11-12-86	<0.06(A)	<0.06(A)	<0.06(A)	<0.06 (Å)	<0.06(A)
11-18-86	<0.03	<0.02	<0.02	<0.02	<0.02
11-25-86	<0.03	<0.03	<0.03	<0.03	<0.03
12-02-86	<0.02	<0.02	<0.02	<0.02	<0.02
12-09-86	<0.03 .	<0.03	<0.03	<0.03	<0.03
12-16-86	<0.02	<0.02	<0.02	<0.02	<0.02
12-22-86	<0.02	<0.02	<0.02	<0.02	<0.02
12-30-86	<0.03 ·	<0.03	<0.03	<0.03	<0.03

 (A) - These samples became misdirected in the mail, which resulted in a longer than usual delay before they could be analyzed.

ŧ

3 –

. .

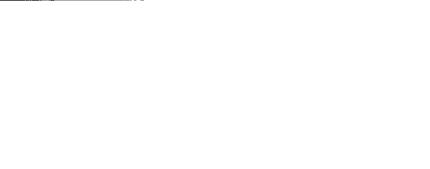
s . . . 6,

. .

٠

4.

'n



2.b AIR PARTICULATES - GROSS BETA - (pCi/m³)

Collection			Sample Site		
Date	T51	T57	T58	T64	т72
10-07-86	0.017 <u>+</u> 0.002	0.016 ± 0.002	0.014 ± 0.002	0.017 ± 0.002	0.013 <u>+</u> 0.002
10-14-86	0.015 <u>+</u> 0.002	0.013 <u>+</u> 0.002	0.011 ± 0.002	0.010 <u>+</u> 0.002	0.012 <u>+</u> 0.002
10-21-86	0.015 <u>+</u> 0.002	0.013 <u>+</u> 0.002	0.016 <u>+</u> 0.002	0.013 <u>+</u> 0.002	0.016 <u>+</u> 0.002
10-28-86	0.012 <u>+</u> 0.002	0.012 ± 0.002	0.014 ± 0.002	0.013 <u>+</u> 0.002	0.013 <u>+</u> 0.002
11-04-86	0.010 <u>+</u> 0.002	0.008 ± 0.001	*0.009 <u>+</u> 0.001	0.011 <u>+</u> 0.002	0.010 <u>+</u> 0.001
11-12-86 (A)	0.011 <u>+</u> 0.002	0.014 ± 0.002	*0.012 <u>+</u> 0.002	0.010 <u>+</u> 0.001	0.007 <u>+</u> 0.001
11-18-86	0.011 <u>+</u> 0.002	0.009 <u>+</u> 0.002	*0.011 <u>+</u> 0.002	0.009 <u>+</u> 0.002	0.012 <u>+</u> 0.002
11-25-86	0.008 ± 0.001	0.012 + 0.002	*0.011 <u>+</u> 0.002	0.009 <u>+</u> 0.001	0.010 <u>+</u> 0.002
12-02-86	0.011 <u>+</u> 0.002	0.007 <u>+</u> 0.001	0.008 ± 0.001	0.008 <u>+</u> 0.001	0.007 <u>+</u> 0.001
12-09-86	0.011 ± 0.002	0.013 + 0.002	0.018 <u>+</u> 0.002	0.015 <u>+</u> 0.002	0.016 <u>+</u> 0.002
12-16-86	0.012 ± 0.002	0.010 ± 0.002	0.009 <u>+</u> 0.001	0.012 <u>+</u> 0.002	0.010 <u>+</u> 0.002
12-22-86	0.015 <u>+</u> 0.002	0.016 ± 0.002	0.016 <u>+</u> 0.002	0.012 <u>+</u> 0.002	0.014 <u>+</u> 0.002
12-30-86	0.010 <u>+</u> 0.001	0.016 <u>+</u> 0.002	. 0.012 <u>+</u> 0.002	0.013 ± 0.002	0.020 <u>+</u> 0.002
Means:	0.012 + 0.001	0.012 <u>+</u> 0.001	0.012 <u>+</u> 0.001	0.012 <u>+</u> 0.001	0.012 ± 0.001
		1			(

* - DOE split samples.

(A) - These samples became misdirected in the mail, which resulted in a longer than usual delay before they could be analyzed.

.

•

•

. .

\$

2.b AIR PARTICULATES - GAMMA SCANS OF QUARTERLY COMPOSITES - (pCi/m³)

Fourth Quarter, 1986

Sample <u>Site</u>	Be-7	K-40	<u>Cs-134</u>	<u>Cs-137</u>
T51	0.097 <u>+</u> 0.009	<0.023	<0.0007	<0.0008
T57	0.102 <u>+</u> 0.008	<0.025	<0.0008	<0.0007
T58	0.112 <u>+</u> 0.009	<0.024	<0.0008	<0.0007
т64	0.105 <u>+</u> 0.008	<0.023	<0.0007	<0.0007
T72	0.104 <u>+</u> 0.007	<0.016	<0.0009	<0.0007

. .

\$

•

`

3.a SURFACE WATER - (pCi/1)

Sample Site	Collection Date	Н-3	K-40	<u>Mn-54</u>	<u>Fe-59</u>	<u>Co-58</u>	<u>Co-60</u>	<u>Zn-65</u>	2r-95 <u>Nb-95</u> (A)	<u>1-131</u>	<u>Cs-134</u>	<u>Cs-137</u>	Ba-140 <u>La-140</u> (B)
Т42	10-13-86 11-18-86 12-15-86	<190 <180 <260	$\begin{array}{r} 270 + 50 \\ 240 + 50 \\ 280 + 50 \end{array}$		<9 <11 <11	<4 <4 <5	<6 <5 <5	<10 <11 <12	<9 <7 <7	<6 <7 <5	<4 <5 <5	<5 <5 <4	<8 <8 <4
T67	10-13-86 11-18-86 12-16-86	<190 <180 <260	$\begin{array}{r} 280 \ \pm \ 50 \\ 320 \ \pm \ 50 \\ 310 \ \pm \ 50 \end{array}$		<12 <11 <8	<4 <4 <4	<4 <5 <4	<10 <10 <10	<7 <9 <9	<5 <8 <5	<pre><5 <5 <5</pre>	<4 <4 <5	<5 <6 <7
T81	10-13-86(C) 10-13-86(D) 11-18-86(C) 11-18-86(D) 12-15-86(C) 12-15-86(D)	$\begin{array}{r} 140 \ + \ 60 \\ < 190 \\ 150 \ + \ 60 \\ 570 \ + \ 60 \\ < 260 \\ < 260 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	<5 <4 <4 <4	<11 <12 <8 <10 <9 <10	<4 <5 <4 <4 <4 <4	<4 <6 <5 <4 <5 <5	<8 <10 <11 <9 <9 <7	<9 <9 <6 <8 <7	<9 <9 <6 <5 <5	<5 <5 <4 <5 <5 <5	<5 <5 <4 <6 <5 <4	<7 <8 <5 <7 <7 <6

- (A) These tabulated LLD values for Zr/Nb-95 are the higher of the individual parent or daughter LLDs.
- (B) These tabulated LLD values are for Ba-140, either based on direct measurement of Ba-140 or based on ingrowth of La-140, whichever method yields the greater sensitivity for a given sample.
- (C) Collected at the normal location in the old discharge canal about 200' west of the mouth.
- (D) Collected at a comparison location at the mouth of the old discharge canal on the south side of the prominent embankment in this area.

- 6 -

				×		
Sample Site	Collection Date	Be-7	<u>K-40</u>	<u>1-131</u>	<u>Cs-134</u>	Cs-137
т40	10-13-86	1550 <u>+</u> 80	3500 <u>+</u> 100	<17	<11	452 <u>+</u> 13
	*11-18-86	1100 <u>+</u> 60	3600 <u>+</u> 100	<8	<7	214 <u>+</u> 9
	12-16-86	1790 <u>+</u> 70	2500 <u>+</u> 100	<12	<9	201 <u>+</u> 9
T41	10-13-86	1540 <u>+</u> 70	2700 <u>+</u> 100	<16	<9	312 <u>+</u> 10
	11-18-86	720 <u>+</u> 40	3000 <u>+</u> 100	<6	<7	77 <u>+</u> 6
	12-16-86	1260 <u>+</u> 60	3100 <u>+</u> 100	· <10	<11	134 <u>+</u> 8
T67	10-13-86	780 <u>+</u> 50	1930 <u>+</u> 90	<10	<6	60 <u>+</u> 5
	11-18-86	1080 <u>+</u> 50	3500 <u>+</u> 100	<8	<9	<9
	12-16-86	1630 <u>+</u> 60	4400 <u>+</u> 100	<11	<9	<10

(pCi/kg, wet weight)

4.b.1 BROADLEAF VEGETATION - Brazilian Pepper

DOE split sample.

- 7 -

v

1986 • ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT ST. LUCIE PLANT - UNITS NOS. 3 AND 4

ATTACHMENT C '

RESULTS FROM THE INTERLABORATORY COMPARISON PROGRAM 1986

FLORIDA DEPT. OF HRS - EPA INTERLABORATORY CROSS-CHECK PROGRAM DATA

January through June, 1986

	Media	Nuclide				EPA Known	Units	Normal. Range	Mean of Analyses	N.D.K.	Action Level
	FILTER	Alpha	04	25	86	15	pCi/F		16	0.34	
•	FILTER	Beta	04	25	86	47	pCi/F	0.474	46	-0.34	
	FILTER	Cs-137	04	25	86	10	pCi/F	0.118	12.66	0.92	
	FILTER	Sr-90	04	25	86	18	pCi/F	0.395	15.33	-3.08	(1)
	FOOD	I-131	01	31	86	20	pCi/Kg		20.66	0.19	
	FOOD	Cs-137	01	31	86	15	pCi/Kg	0.118	14.33	-0.23	,
	FOOD	K	01	31	86	950	pCi/Kg	. 0.248	1013.33	0.77	
		Sr-89	01	31	86	25	pCi/Kg			-4.85	(2)
		Sr-90	01	31	86	10	pCi/Kg	0.395	11.66	1.92	
		I-131	10	25	85	42	pCi/L	0.197	49.66	2.21	
		I-131	06	27	86		pCi/L		4	NA	•
		Cs-137	10	25	85	56	pCi/L	0.355	58.67	0.92	
		'Cs - 137	06	27	.86		pCi/L			NA	
	MILK	K	10	25	85	1540	pCi/L	0.23	1596.66	1.27	
	MILK	K	06	27	86		pCi/L			NA	
	MILK	Sr-89	10	25	85	48	pCi/L	0.237	46.66	-0.46	
	MILK	Sr-89	06	27	86		pCi/L			NA	
÷	MILK	Sr-90	10	25	85	26		0	24	-2.31	
	MILK	Sr-90	06	27	86		pCi/L			NA	
	WATER	Alpha	11	22	85	10		0.118	11.66	0.58	
	WATER	Alpha	01		86	3	pCi/L	0.118	3.66	0.23	
	ATER	Alpha	03	21	86	15	pCi/L	0.118	12.33	-0.92	
	WATER	Alpha	05	23	86	8	pCi/L	0.118	6.67	-0.46	
	WATER	Beta	11	22	85	13	pCi/L	0	16	1.03	7
	WATER	Beta	01	24	86	7	pCi/L	0.118	7.67	0.23	
	WATER	Beta	03	21	86	8	pCi/L	0.118	9.33	0.46	
	WATER	Beta	05	23	86	15	pCi/L	0.118	16.66	0.58	
	WATER	Cr-51	02	07	86	38	pCi/L	0.576	44	2.07	
	WATER	Cr-51	06	06	86	0	pCi/L	0	0	0	
	WATER	Co-60	02	07	86	18	pCi/L	0.118	19.66	0.58	
^	WATER	Co-60	06	06	86	66	pCi/L	0.118	66.67	0.23	
	WATER	Zn-65	02	07	86	40 -		0.237	43	1.03	
-	WATER	Zn-65	06	06	86	86	pCi/L	0.592	90.67	1.61	
	WATER	Ru-106	02	07	86	Ō	pCi/L	0	0	0	
	WATER	Ru-106	06	06	86	50	pCi/L	0.711	50.33	0.11	
	WATER	Cs-134	02	07	86	30	pCi/L	0.118	28.66	-0.46	
	WATER	Cs-134	06	06	86	49	pCi/L	0.237	47	-0.69	
	WATER	Cs-137	02	07	86	22	pCi/L	0.237	22	0	
	WATER	Cs-137	06	06	86	10	pCi/L	0	11	0.34	
	WATER	H-3	02	14	86	5227	pCi/L	0.091	5183.33	-0.14	
	WATER	H-3	06	13	86	3125	pCi/L	0.362	3143.33	0.09	
	WATER	I-131	12	06	85	45	pCi/L	0.197	50	1.44	
	WATER	Sr-89	01	10	86	31	pCi/L	0.355	29.66	-0.46	
	WATER	Sr-89	05	09	86	5	pCi/L	0.237	5	0	
	WATER	Sr-90	01	10	86	15	pCi/L	0.237	15	õ	
	WATER	Sr-90	05	09	86	5	pCi/L	0.395	4.66	-0.38	
	WATER	91-20	, 05	09	00	J	PCT/1	0.000			

э

.

•

•

٠

•

۰

. **. . .**

L

.

NOTES:

- Normal .: Normalized range. As defined in "Environmental Radioactivity Laboratory Intercomparison Studies Program Fiscal Year 1981 - 1982", Range Environmental Monitoring Systems Laboratory, U.S. Environmental Protection Agency, P. O. Box 15027, Las Vegas, Nevada, 89114. EPA-600/4-81-004, February, 1981.
 - Normalized deviation of the mean from the known value. As defined N.D.K.: in EPA-600/4-81-004.
 - No data provided. No data was provided to EPA for inclusion in NDP: their report.
 - Report containing this data has NA: Not available. not yet been received from EPA, Las Vegas.
 - Cause: Chemical recovery too low. Corrective action: Try to improve (1)recovery.


ŧ

Cause: Unknown. Corrective action: None at this time. (2)

.

.

.

.

ټ

/0

FLORIDA DEPT. OF HRS - EPA INTERLABORATORY CROSS-CHECK PROGRAM DATA

June through December, 1986

Media	Nuclide	Collect Mon Day		EPA Known	Units	Normal. Range	Mean of Analyses	N.D.K.	Action Level
FILTER FOOD FOOD FOOD FOOD	Beta Cs-137 Sr-90 I-131 Cs-137 K Sr-89	09 12 09 12 09 12 09 12 07 25 07 25 07 25 07 25	86 86 86 86 86 86 86	66 22 22 30 20 1150 30	pCi/F pCi/F pCi/F pCi/F pCi/Kg pCi/Kg mg/Kg pCi/Kg	0.829 0.237 0.237 0.395 0.197 0.118 0.817	17.33 64.67 25.00 21.33 29.00 21.66 1173.33	-1.61 -0.46 1.03 -0.77 -0.29 0.58 0.70 NDP	
FOOD MILK MILK MILK	Sr-90 I-131 I-131 Cs-137	07 25 06 27 10 31 06 27	86 86 ·86 86	. 41	pCi/Kg pCi/L pCi/L pCi/L	0.197 0.000	44.00 4.00	NDP 0.87 NA -9.35	(1)
MILK MILK MILK MILK	Cs-137 K K Sr-89	10 31 06 27 10 31 06 27	86 86 86 86		pCi/L mg/L mg/L pCi/L	0.296 0.237	1616.66 0.67	NA 0.36 NA 0.23	
MILK MILK MILK	Sr-89 Sr-90 Sr-90	10 31 06 27 10 31	86 86 86	16	pCi/L pCi/L pCi/L	0.395	12.33	NA -4.23 NA	(2)
WATER WATER WATER WATER	Alpha Alpha Alpha Beta	07 18 09 19 11 21 07 18	86 86 86 86	15 20 18	pCi/L pCi/L pCi/L pCi/L	0.118 0.000 0.237 0.000	5.67 26.00 13.66 18.00	-0.11 0.34 -2.19 0.00	(3)
WATER WATER WATER WATER	Beta Beta Cr-51 Cr-51	09 19 11 21 06 06 10 10	86 86 86 86	20 0	pCi/L pCi/L pCi/L pCi/L	0.000 0.000 0.000 0.592	10.00 22.00 0.00 55.33	0.69 0.69 0.00 -1.27	-
WATER WATER WATER	Co-60 Co-60 Zn-65	06 06 10 10 06 06	86 86 86	66 31 86	PCi/L pCi/L pCi/L	0.118 0.118 0.592	66.67 31.66 90.67	0.23 0.23 1.61	
WATER WATER WATER WATER	Zn-65 Ru-106 Ru-106 Cs-134	10 10 06 06 10 10 06 06	86 86 86 86	50 74 49	pCi/L pCi/L pCi/L pCi/L	0.576 0.711 1.927 0.237	89.33 50.33 72.00 47.00	1.50 0.11 -0.69 -0.69	
WATER WATER WATER WATER	Cs-134 Cs-137 Cs-137 H-3	10 10 06 06 10 10 06 13	86 86 86 86	10 44	pCi/L pCi/L pCi/L pCi/L	0.237 0.000 0.237 0.362	26.00 11.00 44.66 3143.33	-0.69 0.34 0.23 0.09	
WATER WATER	H-3 I-131	10 17 08 08	86 86	5973	pCi/L pCi/L	0.197	41.33	NDP -1.05	

· ·

. .

.

NOTES:

- Normal.: Normalized range. As defined in "Environmental Radioactivity Lab-Range oratory Intercomparison Studies Program Fiscal Year 1981 - 1982", Environmental Monitoring Systems Laboratory, U. S. Environmental Protection Agency, P. O. Box 15027, Las Vegas, Nevada, 89114. EPA-600/4-81-004, February, 1981.
 - N.D.K.: Normalized deviation of the mean from the known value. As defined in EPA-600/4-81-004.
 - NDP: No data provided. No data was provided to EPA for inclusion in their report.
 - NA: Not available. Report containing this data has not yet been received from EPA, Las Vegas.
 - (1) Cause: Decimal point in wrong position. Corrective action: Use more care in recording data.
 - (2) Cause: Poor chemical recovery of strontium carrier. Corrective action: Try to improve chemical recovery.
 - (3) Cause: Unknown. Corrective action: None at this time.

