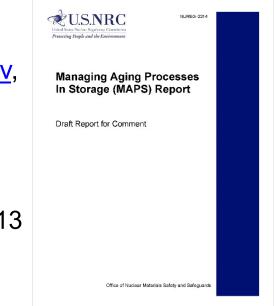


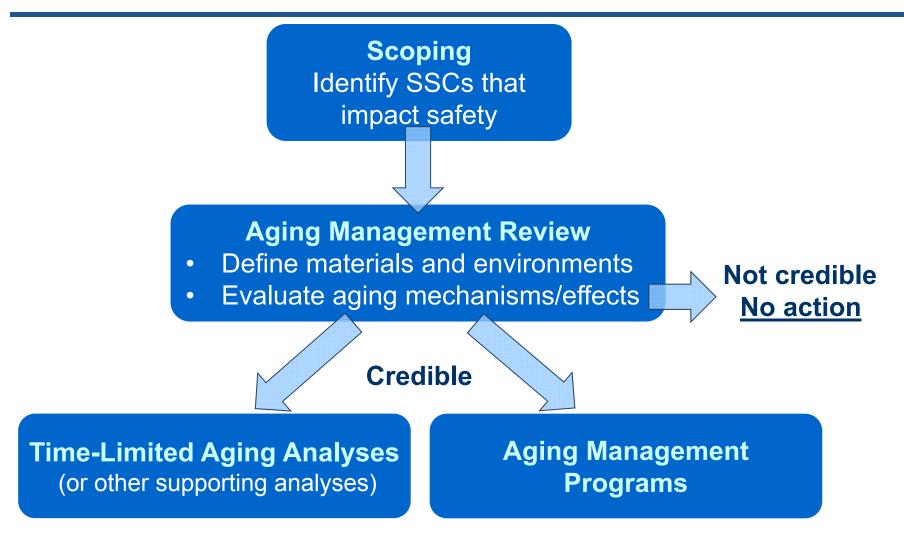
Protecting People and the Environment

NUREG-2214, Managing Aging Processes in Storage (MAPS) Report Draft Report for Comment


Darrell Dunn, Ricardo Torres, John Wise U.S. NRC December 7, 2017 U.S. NRC HQ, Rockville, MD

Protecting People and the Environment

NUREG-2214 Draft Report for Comment


- ADAMS ML17289A237
- Public comment period ends December 26
 - Comment via website: <u>http://www.regulations.gov</u>, Docket ID: NRC-2016-0238
 - Mail comments to:
 - May Ma Office of Administration, Mail Stop: OWFN-2-A13 U.S. Nuclear Regulatory Commission Washington, DC 20555-0001
 - Questions about material in NUREG-2214:
 - John.Wise@nrc.gov

NUREG-1927, Rev 1 Renewal Applications

Protecting People and the Environment

Purpose of NUREG-2214

- Clarity of NRC staff technical position
 - Technical bases for credible aging mechanisms
 - Acceptable aging management activities
- Efficiency in the preparation and review of storage renewal applications
 - Reference to NUREG-2214 in applications will allow the staff to focus its review on those areas where the applicant proposes an alternative approach

Purpose of NUREG-2214

- NUREG-2214 is not a new set of requirements; it is one acceptable approach to demonstrate compliance with existing requirements
- NUREG-2214 does not replace an applicant's independent review of its storage system and proposed aging management activities

Scoping

- In NUREG-2214, NRC staff identified in-scope SSCs of selected storage system designs by a review of safety analysis reports; *however*,
 - NUREG-2214 tabulations of SSCs are not a replacement for a renewal applicant's independent review of its design bases documents
- NUREG-2214 is a reference to assist the staff's review of an applicant's scoping evaluation

Aging Management Review Define materials and environments

- NRC staff identified materials and environments of each SSC of selected storage system designs by a review of safety analysis reports; *however*,
 - NUREG-2214 evaluations are not a replacement for a renewal applicant's independent review of its storage system and operating environment(s)
- NUREG-2214 is intended to be a reference to assist the staff's review of the applicant's evaluation

Aging Management Review Evaluate aging mechanisms

- Chapter 3 is a literature review and evaluation of material degradation mechanisms for the 20- to 60-year period of extended operation
- Those mechanisms that have the potential to challenge an important-to-safety function (if not managed) are defined as "credible"
- A renewal applicant may reference these evaluations in its bases for its aging management review

Aging Management Review Evaluate aging mechanisms

Protecting People and the Environment

Example of Chapter 3 evaluation

Material	Aging Mechanism	Credible Environments	Noncredible Environments
Steel	General corrosion	Outdoor (OD), Sheltered (SH), Demineralized water (DW), Groundwater/soil (GW), Embedded in concrete (E-C)	Helium (HE) Embedded in metal (E-M) Embedded in neutron shielding (E-NS)

Aging Management Review Evaluate aging mechanisms

Protecting People and the Environment

Excerpt of Chapter 3 summary table

able 3-2 Casks and internals aging mechanism evaluations							
Material	Aging Mechanism	Credible Environments	Noncredible Environments	Section			
Steel	General corrosion	OD, SH, DW, GW, E-C	E-M, E-NS, HE	3.2.1.1			
	Pitting and crevice corrosion	OD, SH, DW, GW, E-C	E-M, E-NS, HE	3.2.1.2			
	Galvanic corrosion*	OD, SH		3.2.1.3			
	Microbiologically influenced corrosion (MIC)	GW, E-C	OD, SH, DW, E-M, E-NS, HE	3.2.1.4			
	Stress corrosion cracking (SCC)		OD, SH	3.2.1.5			
	Creep		OD, SH, DW, GW, E-M, E-NS, HE	3.2.1.6			
	Fatigue	Evaluate design code TLAA, if applicable		3.2.1.7			
	Thermal aging		OD, SH, DW, GW, E-M, E-NS, HE	3.2.1.8			
	Radiation embrittlement		OD, SH, DW, GW, E-M, E-NS, HE	3.2.1.9			
	Stress relaxation	SH	OD	3.2.1.10			
	Wear	OD		3.2.1.11			

Protecting People and the Environment

Aging Management Review Results

- Chapter 4 combines the results of the scoping and aging mechanism reviews and identifies aging management activities for selected storage system designs
- Excerpt of Chapter 4 table

	Table 4-7 HI-STORM / HI-STAR multipurpose canister										
Structure, System, or	Intended Safety			Aging			Technical Basis				
Component	Function	Material	Environment	Mechanism	Aging Effect	Aging Management	(Section)				
Shell	CO, SH, SR,	Stainless steel	Sheltered	Stress corrosion	Cracking	Localized Corrosion	3.2.2.5				
	TH*	(welded)		cracking		and Stress corrosion					
						Cracking of Welded					
						Stainless Steel Dry					
						Storage Canisters					
						AMP					

• A renewal applicant may reference these tables; the staff will reference them as a check against the application

Time-Limited Aging Analyses

- Chapter 5 summarizes the recommendations of NUREG-1927 regarding the <u>re-evaluation of design</u> <u>bases calculations that are time-dependent</u>
 - demonstrate that existing analyses remain valid for the 20- to 60-year period, or
 - revise analyses to evaluate for 60 years, or
 - manage the aging via an aging management program
- Applicants can introduce new analyses to support the aging management review and aging management programs; however, those are not TLAAs as defined in 10 CFR 72.3

Aging Management Programs

- Chapter 6 provides example aging management programs (AMPs) that are considered acceptable to address the in-scope SSCs with credible aging mechanisms
- In the Chapter 4 aging management review tables, most SSCs with a credible aging mechanism reference one of the provided example AMPs
- An applicant may propose alternative approaches

Aging Management Programs

- Localized Corrosion and Stress Corrosion Cracking of Welded Stainless Steel Dry Storage Canisters
- Reinforced Concrete Structures
- External Surfaces Monitoring of Metallic Components
- Ventilation Systems
- Bolted Cask Seal Leakage Monitoring
- Transfer Casks
- High Burnup Fuel Monitoring and Assessment

Corrective Actions

- Example AMPs use the licensee's corrective action program to address monitoring and inspection results that do not meet acceptance criteria
- Licensees are responsible for determining appropriate corrective actions (e.g., analysis, mitigation, repair) to assure continued safe storage
- NRC oversight of corrective actions:
 - Daily resident inspector review of identified conditions
 - Periodic regional and resident inspections of storage sites
 - AMP-specific inspections (NRC Temporary Instruction \rightarrow Inspection Procedure)

Corrective Actions

- Example AMPs also include periodic evaluations of industry-wide operating experience and AMP effectiveness
- The staff is evaluating NEI 14-03, Rev. 2, "Format, Content, and Implementation Guidance for Dry Cask Storage Operations-Based Aging Management":
 - includes "tollgates", or periodic points within the period of extended operation when licensees evaluate operating experience and assess AMP effectiveness
 - references the ISFSI Aging Management INPO Database, which provides a clearinghouse of aging-related information

Next Steps

- Evaluate comments
- Publish final report and document comment resolution: May 2018

Abbreviations

- ADAMS Agencywide Documents Access and Management System
- AMP Aging Management Program
- INPO Institute of Nuclear Power Operations
- ISFSI Independent Spent Fuel Storage Installation
- MAPS Managing Aging Processes in Storage
- NEI Nuclear Energy Institute
- SSC Structure, System, and Component
- TLAA Time-Limiting Aging Analyses

Protecting People and the Environment

Backup Slides: Example AMPs

Localized Corrosion and Stress Corrosion Cracking of Welded Stainless Steel Dry Storage Canisters

<u>Scope</u>: External surfaces of the welded stainless steel canister confinement boundary, focused on areas near welds, crevices, where deposits may accumulate, and relatively cold surfaces

Detection of Aging Effects:

- Method: Visual examination for deposits and corrosion products (ASME Code Section XI VT-1, VT-3); Surface and volumetric methods to characterize extent and severity of localized corrosion and cracking
- Sample Size: Minimum of one canister per site (most susceptible)
- Frequency: site-specific determination, based on susceptibility

<u>Acceptance Criteria</u>: No indications of corrosion pits, etching, crevice corrosion, SCC, red-orange colored products at crevices or welds

Reinforced Concrete Structures

<u>Scope</u>: Above-grade and below-grade concrete areas; groundwater chemistry; radiation (shielding effectiveness)

Detection of Aging Effects:

- Method: Visual examinations; Chemical analysis of groundwater; Radiation surveys
- Sample Size: Visual: 100% of all readily accessible surfaces / subset of normally inaccessible surfaces
- Frequency: Visual per ACI 349.3R (at least once every 5 years for abovegrade / opportunistic for below-grade); chemistry and radiation survey as justified

<u>Acceptance Criteria</u>: Visual per ACI 349.3R (e.g., pop-outs/voids less than 20mm in diameter, cracks less than 0.4 mm in width); groundwater per ASME Code Section XI, IWL; radiation as justified

External Surfaces Monitoring of Metallic Components

<u>Scope</u>: External surfaces of metallic components (e.g., metallic overpack surfaces, canister support structures, heat shields)

Detection of Aging Effects:

- Method: Visual examination in accordance with ASME Code Section XI, VT-3
- Sample Size: All readily accessible surfaces of all casks and overpacks; extent of inaccessible surfaces sufficient to characterize their condition
- Frequency: Once every 5 years (readily accessible)

Opportunistic (normally inaccessible – within overpacks)

<u>Acceptance Criteria</u>: No detectable loss of material, red-orange colored corrosion products, coating defects, loose or displaced parts

Protecting People and the Environment

Ventilation Systems

Scope: Air inlet/outlet vents

Detection of Aging Effects:

- Method: Visual inspections for obstructions during periodic walkdowns; Temperature monitoring as an alternative to verifying thermal conditions
- Sample Size: All directly observable vent areas
- Frequency: Per the design bases (typically daily)

Acceptance Criteria: As defined in the approved design bases

Bolted Cask Seal Leakage Monitoring

Scope: Confinement boundary seal

Detection of Aging Effects:

- Method: Pressure monitoring; Visual (VT-3) examination under the protective weather cover
- Sample Size: Pressure monitoring of all casks; visual inspections as justified
- Frequency: Continuous monitoring of pressure; Visual inspections under the protective cover on an opportunistic basis – at a justified minimum frequency

<u>Acceptance Criteria</u>: Pressure within the range allowed by the design bases; visual inspections find no indications of coating degradation, corrosion, loose/missing/displaced parts.

Transfer Casks

<u>Scope</u>: Transfer cask subcomponents

Detection of Aging Effects:

- Method: Visual (VT-3) examination of accessible surfaces; Normally inaccessible surfaces (in contact with liquid neutron shield) assessed with ultrasonic techniques or inspections for leakage
- Sample Size: All transfer casks
- Frequency: At least once every 5 years, or prior to loading campaign

<u>Acceptance Criteria</u>: No detectable loss of material, red-orange colored corrosion products, or coating defects; no evidence of shield water leakage or loss of shield wall thickness beyond established limit

High-Burnup Fuel Monitoring and Assessment

Scope: Surrogate demonstration program

Acceptance Criteria:

- Maximum hydrogen content of cover gas less than the design-bases limit
- Moisture content less than the expected upper bound per the design-bases drying process
- No changes to the analyzed fuel configuration as defined in the design bases