

. 1 . 1. 1. 18 nter en la companya de la companya d Na companya de la comp

в с

1 21

CHANGES ASSOCIATED WITH RdF RTDs

n yr yr Tyf y yr yr

PROPOSED TECHNICAL SPECIFICATION

ATTACHMENT TO AEP:NRC:0942A

-3-

• "

.

ь

λ.

p

, n

.

, .

a setting a setting a set

NAME AND A REAL PROPERTY AND A DECIMAL

•

.

.

•

.

,

•

, , ,

-- - - -

.

₹°. →

TABLE 2.2-1

REACTOR TRIP SYSTEM INSTRUMENTATION TRIP SETPOINTS

,				2	
)	FUNCTIONAL UNIT		TRIP SETPOINT	ALLOHABLE VALUES	
	1.	Manual Reactor Trip	Hot Applicable	Not Applicable	
	2.	Power Range, Neutron Flux	Low Setpoint $- \leq 25x^{H}$ of RATED THERMAL POWER	Low Setpoint - < 26 tof RATED THERMAL POWER	
•			High Setpoint - <u><</u> 109% of RATED THERMAL POWER	High Setpoint - \leq 110 % of RATED THERMAL POWER	
	3.	Power Range, Neutron Flux, High Positive Rate	\leq 5% of RATED THERMAL POWER with a time constant \geq 2 seconds	\leq 5.5 % of RATED THERMAL POWER with a time constant \geq 2 seconds	
	4.	Power Range, Neutron Flux, High Negative Rate	\leq 5% of RATED THERMAL POHER with a time constant \geq 2 seconds	\leq 5.5 $\frac{1}{2}$ of RATED THERMAL POHER with a time constant \geq 2 seconds	•
ວ ກ	5.	Intermediate Range, Neutron Flux	< 25% of RATED THERMAL POWER	< 30 % of Rated Thermal Power	•
	6.	Source Range, Neutron Flux	\leq 10 ⁵ counts per second .	\leq 1.3 x 10 ⁵ counts per second	
	7.	. Overtemperature 🗚 🦾	See Note 1	See Note 3	
	8.	Overpower sT	See Note 2	Sce Note 4	j
	9.	Pressurizer PressureLow	<u>></u> 1065 psig	≥ 1855 psig	•
	10.	Pressurizer PressureIIIgh	<u><</u> 2305 psig	<u><</u> 2395 psig	
	11.	Pressurizer Hater LevelHigh	< 92% of instrument span	≤93% of instrument span	
2	12.	Loss of Flow	≥ 90% of design flow per loop*	≥[]of design flow per Toop*	
,					

*Design flow is 91,600 gpm per loop.

C. COOK - UNIT

0.

(~

2-5

Amendment No.

TABLE 2.2-1 (Communed)

REACTOR TRIP SYSTEM INSTRUMENTATION TRIP SETPOINTS

NOTATION (Continued)

Note 2: Overpower $\Delta T \leq \Delta T_0 \left[K_4 - K_5 \left[\frac{\tau_3 S}{1 + \tau_3 S}\right] T - K_6 (T - T'') - f_2(\Delta I)\right]$

where: ΔT_0 = Extrapolated ΔT at DESIGN THERMAL POWER

= Average temperature, "F

Indicated Tava at DESIGN THERMAL POWER 577.1 F

K₄ = 1.089

 $p \in$

T

T"

K5

Kn

т3

D. C.

COOK -

UNIT

2-9

Amendment

No

 0.0177/°F for increasing average temperature and 0 for decreasing average temperature

■ 0.0011 for T > T"; K₆ = 0 for T < T"

 The function generated by the rate lag controller for T dynamic compensation

= Time constant utilized in the rate lag controller for T_{avg} . $\tau_3 = 10$ secs.

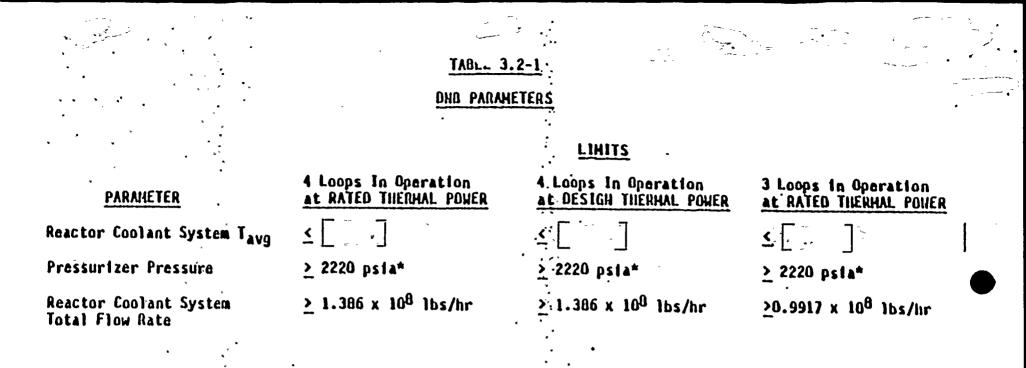
S = Laplace transform operator

 $f_2(\Delta I) = f_1(\Delta I)$ as defined in Note 1 above.

Note 3: The channel's maximum trip point shall not exceed its computed trip point by more than jpercent.

Note 4: The channel's maximum trip-point shall not exceed its computed trip point by more than [] percent.

: • · · · ۰ ۳ ۲ ۲


а Ар е

1 : • • ,

¢

. • • • • . ** • •

• • *

*Limit not applicable during either a THERHAL POHER ramp increase in excess of 5 percent RATED THERHAL POHER per minute or a THERHAL POWER step increase in excess of 10 percent RATED THERHAL POWER.

5

٠. ٠

• .

•

.

k.

.

TABLE 3.3-3 (Continued)

ENGINEERED SAFETY FEATURE ACTUATION SYSTEM INSTRUMENTATION

FUNCTIONAL UNIT		TOTAL NO. OF CHANNELS	CHANNELS TO TRIP	MINIMUM CHANNELS <u>OPERABLE</u>	APPLICABLE MODES	ACTION
f.	Steam Flow in Two Steam Lines-High				1, 2, 3 ^{##}	
	Four Loops Operating	2/steam line	l/steam line any 2 steam lines	l/steam line		14
	Three Loops Operating	2/operating steam line	l ^{###} /any operating steam line	l/operating steam line		15
	COINCIDENT WITH EITHER					
	T _{avg} Low-Low				1, 2, 3 ^{##} **	
	Four Loops Operating	l T _{avg} /loop	2 T _{avg} any loops	l T _{avg} any 3 loops		14
·	Three Loops Operating	l T _{avg} / operating loop	l ^{###} T _{avg} in any operating loop	l T _{avg} in any two operating loops		15

TABLE 3.3-3 (Continued)

ENGINEERED SAFETY FEATURE ACTUATION SYSTEM INSTRUMENTATION

FUNC	TIONAL UNIT	TOTAL NO. OF CHANNELS	CHANNELS TO TRIP	MINIMUM CHANNELS OPERABLE	APPLICABLE MODES	ACTION
	COINCIDENT WITH EITHER T _{avg} Low-Low	•			1, 2, 3 ^{## **}	
	Four Loops Operating	1 T _{avg} /loop	2 T _{ạvg} any loops	1 T _{avg} any 3 loops	5	14
	Three Loops Operating	l T _{åvg} /oper- - ating loop	l ^{###} T _{avg} in any operating loop	l T _{avg} in any two operating loops		15
	OR, COINCIDENT WITH					
	Steam Line Pressure- Low		-		1, 2, 3 ^{##}	
	Four Loops Operating	l pressure/ loop	2 pressures any loops	l pressure any 3 loops		14
	Three Loops Operating	l pressure/ operating loop	l ^{###} pressure in any oper- ating loop	l pressure in any 2 oper- ating loops		15
5.	TURBINE TRIP & FEEDWATER ISOLATION		••			
,	a. Steam Generator Water Level High-High	3/1oop	2/loop in any oper- ating loop	2/loop in each oper- rating loop	1, 2, 3	14

D. C. COOK-UNIT 1

3/4 3-21

Amendment No.

•

. . . •

м в м

, , . . .

TABLE 3.3-3 (Continued)

[#]Trip function may be bypassed in this MODE below P-11.

^{##}Trip function may be bypassed in this MODE below P-12.

The channel(s) associated with the protective functions derived from the out of service Reactor Coolant Loop shall be placed in the tripped mode.

*The provisions of Specification 3.0.4 are not applicable.

**Rod drop testing in accordance with specification 4.1.3.3, Rod Position Indication Calibration, and hot. zero power physics testing may proceed prior to the correction of RTD Calibration Curves for cross-calibration results at the beginning of cycle.

ACTION STATEMENTS

- ACTION 13 With the number of OPERABLE Channels one less than the Total Humber of Channels, be in HOT STAHDBY within 6 hours and in COLD SHUTDOWN within the following 30 hours; however, one channel may be bypassed for up to, 1 hour for surveillance testing per Specification 4.3.2.1.1.
- ACTION 14 With the number of OPERABLE Channels one less than the Total Number of Channels:
 - a. Below P-11 or P-12, place the inoperable channel in the tripped condition within 1 hour; restore the inoperable channel to OPERABLE status within 24 hours after exceeding P-11 or P-12; otherwise be in at least HOT STANDBY within the following 6 hours.
 - b. Above P-11 and P-12, place the inoperable channel in the tripped condition within 1 hour; operation may continue until performance of the next required CHANNEL FUNCTIONAL TEST.
- ACTION 15 With a channel associated with an operating loop inoperable, restore the inoperable channel to OPERABLE status within 2 hours or be in HOT SHUTDOWN within the following 12 hours; however, one channel associated with an operating loop may be bypassed for up to 2 hours for surveillance testing per Specification 4.3.2.1.1.
- ACTION 16 With the number of OPERABLE Channels one less than the Total Number of Channels:
 - a. Below P-11 or P-12, place the inoperable channel in the bypass condition; restore the inoperable channel to OPERABLE status within 24 hours after exceeding P-11 or P-12; otherwise be in at least HOT SHUTDOWN within the following 12 hours.

D. C. COOK-UNIT 1'

Amendment No.

.

e² .

.

, • 、 · .
