
XN-NF-82-32 (NP)
Revision 2

Issue Oate: 3/3/84

PLANT TRANSIENT ANALYSIS FOR THE DONALD C. COOK UNIT 2

REACTOR AT 3425 Nwt

OPERATION WITH 5X STE GENERATOR TUBE PLUGGING

Prepared by:
~ am

PWR Safe,.iy Analysis

Reviewed by: ~ QA9/Ff
. K yser, anager

PWR Safety Analysis

Concur:
an er, ea ngineer

Reload Fuel Licensing

Concur:
organ, Nanager

Pro osals Im Customer Services Engineering

Approve:
. B. Stout, Nanager

Licensing E Safety Engineering

Approve g
G. A. Sofer, Nanager
Fuel Enaineerino E Technical Services

E@4oiM MUCLEAR COMPANY,In+.
Ba03080223 840302
PDR ADOCK 050003|h

'
"- ' 'DR



NUCLEAR REGULATORYCOMMISSION DISCLAIMER
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'LEASEREAD CAREFULLY

This technical report was derived through research and development
programs sponsored by Exxon Nuclear Company, Inc. It is being sub-
mined by Exxon Nuclear to the USNRC as part of a technical contri-
bution to facilitate safety analyses by licensees of the USNRC which
utilize Exxon Nudear-fabricated reload fuel or other technical services

provided by Exxon Nuclear for licht water power reactors and it is true
and correct to the best of Exxon Nuclear's knowledge, information,
and belief. The informadon contained herein may be used by the USNRC
in its review of this report, and by licensees or applicants before the
USNRC which are customers of Exxon Nuclear in their demonstration
of compliance with the USNRC's regulations.

Vflthout derogating from the foregoing, neither Exxon Nuclear nor
any person acting nn its behalf:

A. Makes any warranty, express or implied, with respect to
the accuracy, completeness, or usefulness of the infor-
mation contained in this document, or that the use of
any information, apparatus, method, or process disclosed
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1.0 INTRODUCTION

Plant transient analyses- are presented to support future cycle operation

of the D.C. Cook Unit 2 nuclear power plant at 3425 MWt with SX average steam

generator tube plugging. The major impacts of steam generator tube plugging

are a slight reduction in primary coolant flow rate and a slight degradation

of primary to secondary system heat transfer. These effects motivated a re-

analysis of those events previously demonstrated to be limiting with respect

to thermal margin and reactor vessel pressurization. An asymmetric tube

plugging distribution can adversely affect thermal margin in the locked rotor

accident and is therefore assumed as the basis for analysis in the simulation

of that event. Three of the steam generators were assumed 6.7X plugged, and

the steam generator with the locked rotor was assumed to be unplugged. Plant

transient analyses to support the 3425 MWt core power level have been reported

previously(>-).

Section 2.0 of this report provides a summary of the results for this

analysis. Section 3.0 describes the calculational methods and input

parameters employed. A more detailed description of individual event

simulations is given in Section 4.0. Those events which are considered in the

plant FSAR'(2) but not reanalyzed here're discussed in Section 5.0.
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2.0 SUMMARY

The plant transient analysis reported here has been performed to

evaluate the response of the Donald C. Cook Unit 2 reactor core and reactor

protection system (RPS) during anticipated operational occurrences (AOOs) and

postulated accidents (PAs). The analysis supports operation of ENC reload

fuel in D.C. Cook Unit 2 at a core power of 3425 MWt with an average steam

generator tube plugging level of 5X. The fuel and vessel design criteria to

be satisfied in the analysis are listed in Table 2.1. The key results of the

analysis are given in Table 2.2. The results confirm that applicable fuel and

vessel design criteria are met for the previously identified limiting FSAR

transients. The least MDNBR calculated for any AOO event occurred in a slow

rod withdrawal event and is well above the XNB correlation safety limit of

1.17. Peak pressure calculated for any event was 2575 psia, and occurred in

the loss of load event. This is well below the criteria at maximum system

pressure of 2750 psia. The MDNBRs for DNB-limiting transients reported in

Table 2.2 have been calculated using ENC's automated-crossflow core thermal

hydraulics simulation methodology(3); A confirmatory analysis of the locked

rotor with concurrent loss of offsite power has also been performed.

Radiological release for this postulated accident is within 10 CFR 100

limit.'(")

The transient events reanalyzed and reported here comprise an adequate

scope of analysis to assure the safe operation of D.C. Cook Unit 2 with 5X

steam generator tube plugging. Those anticipated operational occurrences and

postulated accidents whose results most closely approach specified acceptable
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fuel design limits or the vessel pressurization limit have been reanalyzed and

have been shown to satisfy applicable criteria. Section 5.0 demonstrates that

the results of the FSAR events are bounded by the results of events which have

been analyzed here or that the significant conclusions of the FSAR analyses of

these events remain valid under the conditions of this analysis.

Thermal margin for the Cycle 5 (XN-2) core is significantly greater than

that of the Cycle 4 core due to a reduction in the F<H which was analyzed andN

to the larger number of ENC fuel assemblies present in Cycle 5. An F~NH of 1.55

was analyzed which reduces the peak assembly power by 3.15, relative to the

previous analysis(1) value of 1.60. Further, the larger number of ENC

assemblies present in Cycle 5 significantly reduces the coolant mass flux

penalty suffered by ENC fuel in Cycle 4. The combined effect of these factors

on available thermal margin more than outweighs the effects of the calculated

1.1X RCS flow reduction due to tube plugging.

Core safety limits and the overtemperature AT (OT-AT) reactor trip
setpoint reported in the previous analysis(>) are conservatively applicable

to Cycle 5 and future cycles with an F~H of 1.55. Adequate functioning of the,N

OT-bT trip function has been demonstrated in the rod withdrawal analyses

presented in Section 4.1.

Of the FSAR events analyzed, the slow rod withdrawal is the most limiting

AOO. The calculated MDNBR for this event included allowances for uncer-

tainties in core operating conditions as discussed in Section 3.0. The event

tripped on OT-bT, which includes all applicable measurement and calibration

uncertainties. Thus, the reported MDNBR values in Table 2.2 for the events
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which tripped on OT- hT include a double accounting for 'ore parameter

uncertainties. Elimination of doubly accounting for these uncertainties in

the MDNBR evaluation results in the MDNBR increasing to 1.44 for the slow rod

withdrawal transient. The slow rod withdrawal transient remains the limiting

AOO analyzed.
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Table 2.1 Applicable Fuel and Vessel Oesign Limits

Event Class

Anticipated Operational
Occurrence

A 1 icable Criteria

Peak System Pressure < 2750 psia
MDNBR Calculated with XNB Critical
Heat Flux Correlation > 1.17

Postul ated Acc ident Radiological Release below 10
CFR 100 Limits
Peak System Pressure < 2750 psia



Table 2.2 Summary of Results

Transient

Max imum
Power Level

(MWt

Maximum
Core Average

Heat Flux
(Btu/hr-ft2)

Maximum
Pressurizer

Pressure
sia)

MDNBR

(XNB)

Initial Conditions
for Transients

Uncontrolled Rod
Withdrawal 9
8.4 x 10 3 hp/sec

Uncontrolled Rod
Withdrawal 8
7.4 x 10-6 gp/sec

Loss of Flow-
Locked Rotor
Locked Rotor*

Loss of Load

Decreased Feedwater Heating

3425.

4616.

4140.

3824.
3996.

3610.

3743.

197580.

220260.

234360.

199700.
198690.

200760.

215910.

2250.

2300.

2320.

2308.
2380.

2526.

2252.

1.878

1.625

1.265

1.276
0.698

1.878

1.679

Excessive Load Increase 4048.

Decreased Feedwater Heating
with Automatic Rod Control . 3767. 217130.

232630.

2260.

2252.

1.627

1.532

Excessive Load Increase
with Automatic Rod Control 4042. 229180. 2260. 1.569

* With concurrent loss of offsite power. Radiological release is within 10 CFR 100 limits.
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3.0 CALCULATIONAL METHODS AND INPUT PARAMETERS

The D.C. Cook Unit 2 plant transient analysis was performed using the

Exxon Nuclear Plant Transient Simulation Model for. Pressurized Water Reactors

(PTSPWR2)(5). The PTSPWR2 code is an Exxon Nuclear digital computer program

which models the behavior of pressurized water reactors under normal and

abnormal operating conditions. The computer code is based on the solution of

the basic transient conservation equations for the primary and secondary

coolant systems. The transient conduction equation is solved for the fuel

rods, and a point kinetics model is used to evaluate the core neutronics. The

program calculates fluid conditions such as flow, pressure, mass inventory

and steam quality, heat flux in the core, reactor power, and reactivity during

the transient. Various control and safety system components are included as

necessary to analyze postulated events. A hot channel model is included to

trace the departure from nucleate boiling (DNB) during transients. The DNB

evaluation is based on the hot rod heat flux in the high enthalpy rise

subchannel and uses the XNB correlation(<) to calculate the DNB heat flux.

Model features of the PTSPWR2 code are described in detail in Reference 5.

Calculational methodology employed in this analysis is in accordance with ENC

standard plant transient analysis methodology for PWRs(7).

A diagram of the system model used by PTSPWR2 is shown in Figure 3.1. As

illustrated, the PTSPWR2 code models the reactor, two independent primary

coolant loops including 'all major components: pressurizer, pumps, steam

generators, and the steam lines, including all major valves (turbine stop

valves, isolation valves, pressure relief valves, etc.). PTSPWR2 loop 2 is a

lumped loop model of D.C. Cook Unit 2 primary loops 2, 3 and 4.
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The present calculations were performed using the NOV76A version of

ENC's PTSPWR2 code with appropriate updates. Updates are included to describe

the D.C. Cook Unit 2 plant control systems.

Steady state measurement and instrumentation errors are taken into

account to ensure conservatively calculated values of MONBR. The corres-

ponding plant initial conditions in the MONBR calculations are as follows:

Reactor Power 3425 MWt + 2X (68.5 MWt) for
calor ometric error.

Inlet Coolant Temperature 542.2 + 4oF for deadband and
measurement error.

Primary Coolant System Pressure 2250 - 30 psia for steady state
fluctuation and measurement

'rrors.
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Primary Coolant Flow* 143.1 Mlbm/hr - 3.5X for
measurement uncertainty.

The simultaneous application of the above parameter uncertainties minimizes

the initial minimum ONB ratio in a bounding fashion. It is noted that the

above steady state errors are not generally included in the plant system

modeling, but rather are used to conservatively bound the calculated MDNBR.

Table 3.1 shows a list of operating parameters used in the analysis.

Unless otherwise noted, the transient simulations reported herein have

assumed that pressurizer spray and power-operated relief valves are fully

operable in order to maintain system pressure at a minimum value. This

results in the most conservative estimation of the MDNBR. These pressure

control functions are assumed inoperable in those events simulated for

comparison to the system pressurization criteria.

The trip setpoints incorporated into the PTSPWR2 model for D.C. Cook Un.it

2 are based on the Technical Specification limits. These limiting trip

setpoints are modeled in the plant transient analysis to demonstrate the

adequacy of the reactor protection system for operation at a 3425 MWt rating

with 55 steam generator tube plugging. Reactor trip setpoints and scram delay

times associated with them are listed in Table 3.2. Adequate allowance has

been made for trip instrument channel measurement uncertainties and cali-

bration errors.

The ENC fuel design parameters for O.C. Cook Unit 2 are summarized in

Table 3.3. Table 3.4 lists the neutronics parameter values which are

*Value includes a 1. 15 reduction from the current measured flow of 144.7
Mlbm/hr to account for increased loop resistance due to 5%%d steam generator
tube plugging.
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calculated to conservatively bound the D.C. Cook Unit 2 core for both the

beginning and end of cycle. A design axial power profile with a peaking factor

FZ = 1.55 was used in the analysis. This profile is shown in Figure 3.2.

The scram reactivity curve used in the analysis is shown in Figure 3.3.

This curve is taken from the O.C. Cook Unit 2 FSAR.(2) Scram delay times

employed in the plant transient simulations are sufficiently conservative

with respect to Technical Specif ication 1 imits on reactor trip system

performance to assure conservative simulation of reactor scram. In Figure

3.3, the scram reactivity is normalized to the total rod worth.



XN-NF-82-32(NP)
Revision 2

Table 3.1 Operating Parameters Used in PTSPWR2

Analysis of Donald C. Cook Unit 2

Core

Total Core Heat Output, MWt

Total Core Heat Output, MBtu/hr

Heat Generated in Fuel, X

System Pressure, psia

3425.

11,688

97.4

2250

Hot Channel Factors

Total Peaking Factor, Fq
T

Enthalpy Rise Factor, F~ H
N

Coolant Flow Rate, Mlbm/hr

Effective Core Flow Rate, Mlbm/hr

Coolant Average Temperature, oF

Heat Transfer

Average Heat Flux, Btu/hr-ft2

Steam Generators

Total Steam Flow Mlbm/hr, per lead

Steam Temperature, oF

Steam Pressure, psia

Feedwater Temperature, oF

Tube Plugging, X

2.47

1.55

„138.1

131.9

574.1

197,580

3.70

518.

799.

431.

5.0



Table 3.2 Oonald C. Cook Unit 2 Trip Setpoints

~Set oint Used- in Analysis ~oe1 a T ime

High Neutron Flux

Low Reactor Coolant Flow

High Pressurizer Pressure

Low Pressurizer Pressure

Low-Low Steam Generator
Water Level

Overtemperature hT*

109K

90K

2400 psia

1965 psia

21K of span

TAyE = 574.1oF

Po = 2250 psia

K] = 1.267

K3 = .000926
e

llSX

87K

2425 psia

1940 psia

OX of span

TAyE = 574.1oF

Po = 2250 psia

Kl = 1.452

K3 = .000744

0.5 sec

1.0 sec

2.0 sec

2.0 sec

2.0 sec

6.0 sec

* The overtemperature bT trip is a function of pressurizer pressure, coolant average temperature,
and axial offset. The TAyE and Po setpoints, and the setpoint bias Kl are contained within the
functional relationship.- The bias constant Kl employed in the analysis includes allowance
for applicable trip channel uncertainties. Other constants in the overtemperature hT setpoint
as it appears in the Technical Specification (gains, lead and lag constants) were incorporated
without change in the analysis.
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Table 3.3 Donald C. Cook Unit 2 Fuel Design Parameters-
Exxon Nuclear Fuel

Fuel Radius

Inner Clad Radius

Outer Clad Radius

Active Length

Number of Fuel Rods in Core

.1515 inches

.1550 inches

.1800 inches

144.0 inches

50,952
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Table 3.4 Donald C. Cook Unit 2 Kinetics Parameters
Supported by the Plant Transient Analysis

Parameter

Beginning-
~of-C cle

Value

End-of-
~Cc 1 e

-Moderator Coefficient
(~p/oF x 104) +0.5 -3e9

Doppler Coefficient
(lp/oF x 105) -1.0 -1.7

Pressure Coefficient
(hp/psia x 106) -.60 +4.3

Delayed Neutron Fraction (X) 0.61 0.510

Total Rod Worth (X gp) 4.00 4.00
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4.0 TRANSIENT ANALYSIS

4.1 UNCONTROLLED ROD WITHDRAWAL

The withdrawal of control rods adds reactivity to the reactor core

causing both the power level and the core heat flux to increase. Since the

heat extraction from the steam generator remains relatively constant, there

is an increase in primary coolant temperature. Unless terminated by manual or

automatic action, this power mismatch and the resultant coolant temperature

rise could eventually result in a DNB ratio of less than 1. 17. While the

inadvertent withdrawal of control rods is unlikely, the reactor protection

system is designed to terminate such a transient while maintaining an adequate

margin to DNB. Two potential causes for such an incident are: 1) operator

error; and 2) a malfunction in the reactor regulating system or rod drive

control system resulting in continuous withdrawal of a control rod group.

In this incident, the reactor may be tripped by an overtemperature

LT setpoint, the high nuclear overpower setpoint, or the overpower g T

setpoint. Additionally, the primary coolant temperature increase is limited

in magnitude by the steam generator safety valve setpoint. A series of rod

withdrawal simulations was performed at various reactivity insertion rates to

demonstrate the adequacy of the reactor protection system for this event.

Figure 4.1 summarizes the results of this study. Ample margin to DNB is

demonstrated for the range of possible rod withdrawal events.

Figures '.2 through 4.7 show plant responses for a fast rod

withdrawal from full power. The reactivity insertion rate is 8.42 x 10 3

AA'sec. A nuclear overpower trip (118K) occurs at 0.13 seconds. The DNB ratio
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drops from an initial value of 1.878 to 1.625. Pressure increases to a maximum

of 2300 psia, with core'verage temperature increasing 4.4oF. The event

sequence for the fast rod withdrawal is given in Table 4.1.

The system responses to a slow rod withdrawal of 7.42 x 10 6~sec

are depicted in Figures 4.8 through 4.14. The overtemperature LT trip

setpoint is reached at 67.3 seconds. The minimum DNB
- ratio during the

transient is 1.265. The event sequence for the slow rod withdrawal is given

in Table 4.2.

Part power rod withdrawal analyses are discussed in Section 5.0.

4.2 LOCKED ROTOR

In the unlikely event of a seizure of a primary coolant pump, flow

through the core is abruptly reduced. The reactor is tripped by the resulting

low flow signal. The coolant enthalpy rises, decreasing the margin to DNB.

The locked rotor transient was analyzed assuming four loop operation with

instantaneous seizure of one pump from 3425 NWt. This case was shown in the

reference cycle analysis to be more severe with respect to DNB penetration

than a locked rotor with three loop operation. A second case was analyzed

which assumed a concurrent loss of offsite power.

The transient responses for the Locked Rotor event are shown in

Figures 4. 15 to 4.20. The reactor is scrammed at 0.03 seconds by a low flow

signal. A 1.0 second scram delay time is conservatively assumed. Core

'veragetemperature increases 11.5oF with system pressure reaching 2308 psia

at 3.8 seconds. The MDNBR for the locked rotor is 1.276 at 1.9 seconds.
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A second locked rotor event which additionally assumes a loss of

offsite power is also simulated. The intact primary coolant pumps are assumed

to initiate a coastdown concurrently with the locked rotor. Calculated MDNBR

for the event is 0.698. Radiological release for this event is bounded by the

LOCA accident and is within 10'FR 100 limits. ( ) This event has not been

analyzed in the FSAR and is not considered to be part of the plant licensing

basis. Plant response to this event with maximum pressurization assumptions

is depicted in Figures 4.21 to 4.27. Pressurizer pressure control systems

have been assumed inoperable in order to maximize pressure response. The

MDNBR has been evaluated with minimum pressure response assumptions. The

event sequences for the locked rotor cases are given in Table 4.3.

4.3 LOSS OF EXTERNAL ELECTRICAL LOAD

This simulation considers plant behavior upon a trip of the

turbine-generator" without a direct reactor trip. The event is simulated to

assess the adequacy of the pressurizer safety valve capacity to maintain

reactor coolant system pressure below the ASME code limit of 1105 of design

pressure (2750 psia). Transient responses are evaluated from 3425 MWt for the

most severe pressurization accident: loss of load at beginning-of-cycle (BOC)

with a positive moderator coefficient and no automatic reactor control.

Figures 4.28 to 4.34 depict the plant responses following a loss of

load from full power. A high pressure trip occurs at 6.98 seconds, with peak

pressurizer pressure reaching 2526. 1 psia. The first set of steam line safety

valves opens at 11.9 seconds, relieving 45K of the steam flow. The setpoint

of the second set of safety valves is reached at 18 seconds. The average
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primary coolant temperature increases 24.5oF above the nominal value. The

MDNBR does not decrease below its initial value. The event sequence for the

loss of load is given in Table 4.4.

4.4 DECREASED FEEDWATER HEATING

Failure of bleed steam to any of the six pairs of feedwater heaters

could result in a 75 Btu/lb decrease in feedwater enthalpy. The event is

simulated by imposing a 15 second feedwater enthalpy ramp at a rate of -5

Btu/lb-second.

Results of the decreased feedwater heating event are given in

Figures 4.35 through 4.43. A new steady state is established relatively early

in the transient. The MDNBR of 1.679 characterizes this steady state. The

overtemperature hT reactor trip precludes penetration of the XNB critical

heat flux correlation safety limit during transients such as the decreased

feedwater heating event which are characterized by slow excursions in core

power, coolant temperature, and pressure.

A second case was simulated assuming automatic rod control. A

bounding EOC D-bank worth consistent with power dependent insertion limits

was employed (-1.2X hp). Primary side response is depicted in Figures 4.44

through 4.49. Figures 4.50 and 4.51 demonstrate RCCA control action. The

MDNBR for the event is 1.627 and occurs at 258 seconds. Secondary system

response is similar to that depicted in Figures 4.41 through 4.43. Event

sequences for these events are given in Table 4.5.

4.5 EXCESSIVE LOAD INCREASE INCIDENT

Excessive load incidents may be initiated by sudden opening of the

turbine control valves, steam dump valves, and/or the steam bypass to
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condenser valve. This results in rapid increase in steam flow which causes

cooldown of the primary system. Automatic Rod Control action or a large

negative (EOC) moderator coefficient can result in a power increase.

Protection against damage to the reactor core as a consequence of an excessive

load increase is provided by the high nuclear flux, low steam generator

pressure, and overtemperature 6 T setpoints.

A rapid 20K load increase is simulated at end-of-cycle conditions.

To minimize the calculated MONBR, the pressurizer heaters are assumed

inoperab le.

System responses to the 20K load increase are shown in Figures 4.52

through 4.60. The power increase dr iven by moderator cooldown continues until

the high nuclear overpower trip setpoint (118K of rated power) is reached at

56.5 seconds. At the time of trip, significant primary system depres-

surization has further reduced available thermal margin. The decreasing

primary coolant temperature mitigates the thermal margin decay, resulting in

an MONBR for the event of 1.532 shortly after reactor trip.
The case with automatic rod control is shown in Figures 4.61 through

4.66. Automatic Rod Control action is demonstrated in Figures 4.67 and 4.68.

Control action resulting largely from the temperature deviation channel

results in a more rapid power increase than observed in the uncontrolled case.

To maximize power response, the temperature control program employed a linear

gain between 0 and 120K of rated turbine demand. The reactor trips on high

nuclear flux at 21.2 seconds. The MONBR of .1.569 occurs shortly thereafter.

Event .sequences for the load increase transients are given in Table 4.6.
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Table 4. 1 Event Sequence for Fast Rod Withdrawal

Event Time (seconds)

Uncontrolled RCCA Bank Withdrawal begins

High Neutron Flux Setpoint reached

Scram Results in Rod Motion

0.0

0.13

0.63

Minimum DNBR occurs 1.55
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Table 4.2 Event Sequence for Slow Rod Withdrawal

Event

Uncontrolled RCCA Bank Withdrawal begins

Overtemperature hT Setpoint reached

Scram Results in Rod Motion

Minimum DNBR occurs

Time (seconds)

0.0

67.3

73.3

74.0
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Table 4.3 Event Sequence for Locked Rotor

Event Time (seconds)

CASE 1: Locked Rotor with Offsite Power Available

Single Primary Coolant Pump seizes

Loop Low Flow Trip 'Setpoint reached

Scram Results in Rod Motion

Minimum DNBR occurs

Peak RCS Pressure reached

0.

0.03

1.03

1.9

3.2

CASE 2: Locked Rotor with Concurrent Loss of Offsite Power

Single Primary Coolant Pump seizes

Loop Low Flow Trip Setpoint reached

Scram Results in Rod Motion

Minimum DNBR occurs

Peak RCS Pressure reached

0.

0.03

1.03

2.4

4.0
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Table 4.4 Event Sequence for Loss of External Load

Event Time (seconds)

Loss of Load

High Pressurized Pressure Setpoint reached

0.

6.98

Scram Results in Rod Motion 8.98

Peak Pressure reached 18.1
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Table 4.5 Event Sequence for Decreased Feedwater Heating

Event Time (seconds)

CASE 1: Uncontrolled

"Feedwater Enthalpy Begins to Decrease from
the Steady State Value at 5. Btu/lb/second 0.

Feedwater Enthalpy reaches Minimum Value 15.0

Minimum DNBR reached

(NOTE: Reactor scram does not occur.)
260.

CASE 2: Automatic Rod Control

Feedwater Enthalpy Begins to Decrease from
the Steady State Value at 5. Btu/lb/second 0.

Feedwater Enthalpy reached Minimum Value

Minimum DNBR reached

15.0

258.
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Table 4.6 Event Sequence for Excessive Load Increase

Event Time (seconds)

CASE 1: Uncontrolled

BOX Increase in Load Demand reached

High Neutron Flux Trip Setpoint reached

Scram Results in Rod Motion

10.

56.0

56.5

Minimum DNBR occurs 57.0

CASE 2: Automatic Rod Control

205 Increase in Load Demand reached

High Neutron Flux Trip Setpoint reached

Scram Results in Rod Motion

1.0

21.2

21.7

Minimum DNBR occurs 21.5
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Figure 4.42 Steam Generator Pressure for Decreased Feedwater Heating
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5. 0 DISCUSSION

The transient analysis as performed by ENC for Donald C. Cook Unit 2

nuclear power plant demonstrates adequate margin to applicable fuel and

vessel des ign 1 imits for a mixed ENC/West ing house core dur ing normal

operation, anticipated operational occurrences, and postulated accidents.

The following transients were analyzed using the ENC PTSPWR2 plant transient

simulation model at a core power of 3425 MWt.

1) Rod Withdrawals between 8.42 x 10-3 and 7.42 x 10-6~p/s

2) Locked Primary Coolant Pump Rotor

3) Locked Primary Coolant Pump Rotor with Concurrent Loss of

Offsite Power

4) Decreased Feedwater Heating

5) Excessive Load Increase

6) Loss, of Load

These transients were considered because they were shown in the D.C. Cook

Unit 2 FSAR(2) (reference analysis) to have the least margin to thermal margin

limits. The applicable fuel and vessel design limits for the transients are

a minimum DNB ratio of 1. 17 calculated with the XNB critical heat flux

correlation and a peak system pressure of 2750 psia. For the locked rotor

accident, the fuel design criterion is that a small fraction of the core may

experience boiling transition. For the locked rotor with concurrent loss of

offsite power, radiological release may not exceed 10 CFR 100 limits.

Other transient events considered in the reference analysis are not

reanalyzed here, either because the reference analysis results remain valid
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for those events under the conditions of this analysis, or because other

events which have been reanalyzed. here have been shown in the reference

analysis to be more limiting.

The reference analysis considered RCCA withdrawal transients initiated

from a variety of core power levels equal to or less than 3391 Ml<t. The full
i

power cases are shown to be the most limiting of the cases considered with

respect to MONBR. The analyzed 5X steam generator tube plugging level coupled

with the, loading of ENC fuel will not affect this fact, and the full power

cases will continue to be the most limiting of the RCCA withdrawal events

under the conditions of this analysis. Part power RCCA withdrawal cases are

therefore not reanalyzed.

The results of the full power RCCA withdrawal event also bound the

possible results of the Chemical and Volume Control System Malfunction

transient. During this transient, reactivity is added to the core by the

addition of unborated primary coolant makeup water. The system response is

similar to that for the slow rod withdrawal transient analyzed in Section 4.1,
r

with a reactivity insertion rate of about 1.0 x 10 5 dk/sec. This insertion

rate is bounded by the range of insertion rates included in this analysis.

The reference analysis of the RCCA drop transient demonstrated that,

neglecting radial power distribution effects associated with the event, the

MONBR monotonical ly increases in time from the initial value. The MONBR which

occurs during the event may therefore be conservatively evaluated by a steady
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state MDNBR calculation performed at rated initial conditions of core power,

temperature, pressure, and flow, and which employs a radial peaking factor

augmentation to account for the adverse core radial power distribution which

characterizes the event. The radial peaking augmentation factor at 3425 MWt

core power for the mixed core loading considered here is 1.2. A steady state

MDNBR calculation employing this peaking augmentation factor and performed as

described will result in an MDNBR well above the XNB correlation safety limit

of 1.17. Since the MDNBR calculated during the transient will not exceed the

steady state MDNBR thus obtained, it is concluded that the result of the RCCA

drop transient at 3425 MWt meets the fuel design limit on MDNBR.

The loss of normal feedwater simulation reported in the reference

analysis was performed at the Engineered Safety Features design thermal power

of 105K, of rated. This power level exceeds the 3425 MWt rated power assumed

in this analysis. Steam generator tube plugging of 5X will result in less than

3oF higher primary coolant temperatures than shown in the reference analysis.

Calculations indicate that this small increase in primary coolant temperature

will not result in the expulsion of primary liquid from the pressurizer safety

relief valves. Tube plugging will decrease the tendency for steam generator

dryout due to reduced heat transfer effectiveness. The result of the loss of

normal feedwater event presented in the reference analysis will not therefore

be significantly impacted by 5'A steam generator tube plugging.

The startup of an inactive loop was shown in the reference analysis to be

significantly less limiting than the uncontrolled RCCA withdrawal event.

Since neither the loading of ENC fuel nor the analyzed 5X steam generator tube
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plugging level will alter the relative severity of these two events, the

results of the uncontrolled RCCA withdrawal will continue to bound the results

of the inactive loop startup. The inactive loop startup event is therefore

not reanalyzed here.

The results of the loss of AC power event were shown in the reference

analysis to be enveloped by the results of the four pump coastdown and loss of

normal feedwater events. The flow degradation aspect of the loss of AC power

event has been reanalyzed here in Subsection 4.2 as a loss of flow transient

(locked rotor with loss of offsite power). Adequate long term decay heat

removal is demonstrated by the loss of normal feedwater simulation reported in

the reference analysis. Results of the loss of AC power event have therefore

been adequately bounded by the combination of the 4 pump coastdown event

reported in Subsection 4.2. The loss of normal feedwater event is discussed

above..

Results of the small steam line break reported in the reference analysis

are judged to remain valid for the conditions of this analysis. The event is

independent of rated power, since it is initiated from hot zero power

conditions. Core kinetics parameter tables employed in the reference

analysis bound the core configurations considered in this analysis. The

impact of steam generator tube plugging is to reduce primary to secondary heat

transfer, increasing primary to secondary system temperature differences. The

system temperature datum is established by the magnitude of the break flow,

which is conservatively considered to be independent of tube plugging level.

Primary system temperatures in this event will then be increased by tube
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plugging, with consequently lesser requirements for shutdown margin. The

small steam line break is therefore not reanalyzed since the reference

analysis is bounding.

The main feed line break (MFLB) event was shown in the reference analysis

to be independent of fuel type, since applicable fuel design limits are never

approached during the event (MDNBR increases monotonically). The loss of

normal feedwater (LONF) event results in greater volumetric expansion of the

primary liquid than occurs during the MFLB because primary coolant expansion

during the MFLB is mitigated by extraction of primary heat due to steam

generator blowdown. Adequate auxiliary feedwater system capacity to prevent

uncovery of the core was demonstrated in the reference analysis of the LONF

event. Since the conclusion of that analysis is judged to remain valid for the

3425 MWt rating with 5X tube plugging, and bounds the primary coolant

expansion and thus the potential for core uncovery in the MFLB, it is

concluded that the, core will remain covered throughout an MFLB initiated from

the 3425 MWt level. Analysis of the MLFB event is therefore not considered.

The- rod ejection transient is addressed in Reference 8.

The results of certain operational incidents are not significantly

dependent on fuel type or small changes in rated power level. These include:

RCCA Misalignment

~ Turbine Generator Overspeed

~ Fuel Handling Incident

~ . Accidental Waste Gas Release
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Radioactive Liquid Release

~ Steam Generator Tube Rupture

These incidents as discussed in the reference cycle analysis were shown to be

protected by administrative controls, redundancy of alarms, and/or integrity

of system components. The conclusions drawn for these incidents as given in

the reference analysis remain valid and these events are not reanalyzed here.
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