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“NUCLEAR REGULATORY COMMISSION DISCLAIMER

IMPORTANT NOTICE REGARDING CONTENTS AND USE OF THIS DOCUMENT -
PLEASE READ CAREFULLY

This mhmcal report was derived through research and development
programs sponsored by Exxon Nuclear Company, Inc. It is being sub-
mitted by  Exxon Nuclear to the USNRC as part of a technical contri-
bution to facilitate safety analyses by licensees of the USNRC which -
utilize Exxon Nuclear-fabricated reload fuel or other technical services
provided bly Exxon Nuclear for licht water power reactors and it is true
and correct to the best of Exxon Nuclear’s knowledge, information,
and belief. The information contained herein may be used by the USNRC
in its review of this report, and by licensees or applicants before the
USNRC thich are customers of Exxon Nuclesr in their demonstration
of comnliancs with the USNRC's regulations.

Withouﬁ derogating from the foregoing, neither Exxon Nuclear nor
any person acting on its behalf: ~

A. Makes any warmanty, express or implied, with respect to
the accuracy, completeness, or usefulness of the infor-
ma’tion contained in this document, or that the use of i
any information, apparatus, method, or process disclosed
in this document will not infringe privately owned rights;
or.
\
B. Assumas any liabilities with respect to the use of, or for
dan'ages resulting from the use of, any information, ap- .
paratus, method, of process disclosed in this document,

XN- NF- FQO, 766
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1.0 INTRODUCTION

Plant transient analyses are presented to supporf future cycle operation
of the D.C. Cook Unit 2 nuclear power plant at 3425 MWt with 5% average steam

generator tube plugging. The major impacts of steam generator tube plugging

are a slight reduction in primary coolant flow rate and a slight degradation
of primary to secondary system heat transfer. These effects motivated a re-
analysis of those events previously demonstrated to be 1imiting with respect
to thermal margin and reactor vessel pressurization. An asymmetric tube
plugging distribution can adversely affect thermal margin in the locked rotor
accident and is therefore assumed as the basis for analysis in the simulation
of that event. Three of the steam generaﬁors were assumed 6.7% plugged, and
the steam generator with the 1ocked@rotor was assumed to be unplugged. Plant
transient analyses to support the 3425 MWt core power level have been reported
previously(1l). .

Section 2.0 of this report provides a summary of the results for this
analysis. Section 3.0 describes the calculational methods and input
parameters employed. A more detailed description of individual event
simulations is given in Section 4.0. Those events which are considered in ;he

plant FSAR(2) but not reanalyzed here are discussed in Section 5.0.
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2.0 SUMMARY

The plant transient analysis reported here has been performed to
evaluate the response of the Donald C. Cook Unit 2 reactor core and reactor
protection s&stem (RPS) during anticipated operational occurrences (A0Os) and
postu]ate& accidents (PAs). The analysis supports operation of ENC reload
fuel in D.C. Cook Unit 2 at a core power of 3425Hth with an average steam

generator tube plugging level of 5%. The fuel and vessel design criteria to

be satisfied in the analysis are listed in Table 2.1. The key results of the

analysis are givenvkn Table 2.2. The results confirm that applicable fuel and
vessel design criteria are met for the previously identified 1imiting FSAR
transients. The least MDNBR calculated for any AOO event occurred in a slow
rod withdrawal event and is well above the XNB correlation safety limit of
1.17. Peak pressure calculated for any event was 2575 psia, and occurred in
the loss of load event. This is well below the criteria at maximum systey
pressure of 2750 psia. The MDNBRs for DNB-limiting transients reported in
Table 2.2 have been calculated using ENC's automated-crossflow core thermal
hydraulics simulation methodo1ogy(3)z A confirmatory analysis of the locked
rotor with concurrent loss of offsite power has also been performed.
Radiological release for this postulated accident is within 10 CFR 100
limit.(4) |

The transient events reanalyzed and reported here comprise an adequate
scope of analysis to assure the safe operation of D.C. Cook Unit 2 with 5%
steam generator tube plugging. Those anticipated operational occurrences and

postulated accidents whose results most closely approach specified acceptable
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fuel design 1imits or the vessel pressurization 1imit have been reanalyzed and

have been shown to satisfy applicable criteria. Section 5.0 demonstrates that

the results of the FSAR events are bounded by the results of events which have
been analyzed here or that the significant conclusions of the FSAR analyses of
these events remain valid under the conditions of this analysis.

Thermal margin for the Cycle 5 (XN-2) core is significantly greater than
that of the Cycle 4 core due to a reduction in the FXH which was analyzed and
to the Targer number of ENC fuel assemblies present in Cycle 5. An Fiy of 1.55
was analyzed which reduces the peak assembly power by 3.1%, relative to the
* previous ana1ysis(1) value of 1.60. Further, the larger number of ENC
assemblies present in Cycle 5 significantly reduces the coolant mass flux
penalty suffered by ENC fuel in Cycle 4. The combined effect of these factors
on available thermal margin more than outweighs the effects of the calculated
1.1% RCS flow reduction due to tube plugging.

Core safety 1limits and the overtemperature AT (0T-AT) reactor trip
setpoint reported in the previous analysis(l) are conservatively applicable
to Cycle 5 and future cycles with an FRH of 1.55. Adequate functioning of the
OT-AT trip function has been demonstrated in the rod withdrawal analyses
presented in Sectioq 4.1.

Of the FSAR events analyzed, the slow rod withdrawal is the most 1imiting
A00. The calculated MDNBR for this event included allowances for uncer-
tainties in core operating conditions as discussed in Section 3.0. The event
tripped on OT-AT, which includes all applicable measurement and calibration

uncertainties. Thus, the reported MDNBR values in Table 2.2 for the events
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which tripped on OT-AT include a double accounting for ' core )parameter
uncertainties. E]imination of doubly accounting for these uncertainties in
| the MDNBR evaluation results in the MDNBR increa§ing to 1.44 for the slow rod
withdrawal transient. The slow rod withdrawal transient remains the 1imitihg

A0O anaiyzed.
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Table 2.1 'Applicable Fuel and Vessel Design Limits

Event Class

Anticipated Operational
Occurrence

Postulated Accident

Applicable Criteria

Peak System Pressure < 2750 psia

MDNBR Calculated with XNB Critical
Heat Flux Correlation > 1.17

Radiological Release below 10
CFR 100 Limits

Peak System Pressure < 2750 psia

'




Table 2.2

Summary of Results

Max imum Max imum
Max imum Core Average Pressurizer
Power Level Heat Flux Pressure MDNBR

Transient (MWt) (Btu/hr—ftz) (psia) ( XNB)
Initial Conditions

for Transients 3425. 197580. 2250. 1.878
Uncontrolled Rod

Withdrawal @

8.4 x 10-3 Ap/sec 4616. 220260. 2300. 1.625
Uncontrolled Rod

Withdrawal @ -

7.4 x 10-6 Ap/sec 4140. 234360. 2320. 1.265
Loss of Flow -

Locked Rotor 3824. 199700. 2308. 1.276

Locked Rotor* 3996. 198690. 2380. 0.698
Loss of Load 3610. 200760. 2526. 1.878
Decreased Feedwater Heating 3743. 215910. 2252. 1.679
Decreased Feedwater Heating

with Automatic Rod Control . 3767. 217130. 2260. 1.627
Excessive Load Increase 4048. 232630. 2252. 1.532
Excessive Load Increase

with Automatic Rod Control 4042. 229180. 2260. 1.569

* With concurrent loss of offsite power. Radiological release is within 10 CFR 100 1imits.

2 uoLSLAdY

(dN)2g-28-AN-NX
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3.0 CALCULATIONAL METHODS AND INPUT PARAMETERS

The D.C. Cook Unit 2 plant transient analysis was performed using the
Exxon Nuclear Plant Transient Simulation Model for Pressurized Water Reactors
(PTSPWRZ)(S). The PTSPWR2 code is an Exxon Nuclear digital computef program
which models the behavior of pressurized water reactors under normal and
abnormal operating conditions. The computer code is based on the solution of
the basic transient conservation equations for the primary and secondary
coolant systems. The transient conduction equation is solved for the fuel
rods, and a point kinetics model is used to evaluate the core neutronics. The
program calculates fluid conditions such as flow, pressure, mass inventory
and steam qua&ity, heat flux in the core, reactor power, and reactivity during
the transient. Various cdhtro] and safety system components are included as
necessary to analyze postulated events. A hot channel model is inc]yded to
trace the departure from nucleate boiling (DNB) during transients. The DNBR
evaluation is based on the hot rod heat flux in the high enthalpy rise
subchannel and uses the XNB correlation(6) to calculate the DNB heat flux.
Model features of the PTSPWR2 code are described in detail in Reference 5.
Calculational methodology employed in this analysis is in accordance with ENC
standard plant transient analysis methodology for PHRs(7).

A diagram of the system model used by PTSPWR2 is shown in Figure 3.1. As
i1lustrated, the PTSPWR2 code models the reactor, two independent primary
coolant loops including all major components: pressurizer, pumps, steam
generators; and the steam lines, including all major valves (turbine stop
valves, isolation valves, pressure relief valves, etc.). PTSPWR2 loop 2 is a

lumped loop model of D.C. Cook Unit 2 primary loops 2, 3 and 4.
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‘The present calculations were performed using the NOV76A version of
ENC's PTSPWR2 code with appropriate updates. Updates are included to describe
the D.C. quk Unit 2 plant control systems.

Steady state measurement and instrumentation errors are taken into
account to ensure conservatively calculated values of MDNBR. The co;res-
ponding plant initial conditions in the MDNBR calculations are as follows:

Reactor Power = 3425 MWt + 2% (68.5 MWt) for
calorometric error.

Inlet Coolant Temperature = 542.2 + 4OF for deadband and
measurement error.

2250 - 30 psia for steady state :
fluctuation and measurement °
errors.

Primary Coolant System Pressure
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Primary Coolant Flow” 143.1 Mibm/hr - 3.5% for
measurement uncertainty.

The simultaneous application of the above parameter uncertainties minimizes

the initial minimum DNB ratio in a bounding fashion. It is noted that the

above steady state errors are not generally included in the plant system
modeling, but rather are used to conservatively bound the ca]cu]éted MDNBR.
Table 3.1 shows a 1list of operating parameters used in the analysis.

Unless otherwise noted, the transient simulations reported heéein have
assumed that pressurizer spray and powerfoperated relief valves ére fully
operable in order to maintain system pressure at a minimum value. This
resu]ps in the most conservative estimation of the MDNBR. These pressure
control functions are assumed inoperable in those events simulated for
comparison to the system pressurization criteria.

The trip setpoints incorporated into the PTSPWR2 model for D.C. Cook Unit
2 are based on the Technica] Specification limits. These limiting trip
setpoints are modeled in the plant transient analysis to demonstrate the
adequacy of the feactor protection system for operation at a 3425‘th rating
with 5% steam generator tube plugging. Reactor trip setpoints and scram delay
times associated with them are listed in Table 3.2. ‘Adequate allowance has
been made for trip instrument channel measurement uncertainties and cali-
bration errors. |

The ENC fuel design parameters for D.C. Cook Unit 2 are summarized in

Table 3.3. Table 3.4 1lists the neutronics parameter values which are

*Value includes a 1.1% reduction from the current measured flow of 144.7
Mibm/hr to account for increased loop resistance due to 5% steam generator
tube plugging.
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calculated to conservatively bound the D.C. Cook Unit 2 core for both the
beginning and end of cycle. A design axial power profile with a peaking factor
Fz ='1.55 was used in the analysis. This profile is shown in Figure 3.2.
The scram reactivity curve used in the analysis is shown in Figure 3.3.
This curve is taken from the D.C. Cook Unit 2 FSAR.(Z) Scram delay times
employed in the plant transient simulations are sufficiently conservative
with respect to Technical Sbecification limits on reactor trip system
performance to assure conservative simulation of reactor scram. In Figure

3.3, the scram reactivity is normalized to the total rod worth.
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Table 3.1 Operating Parameters Used in PTSPWR2
Analysis of Donald C. Cook Unit 2

Core
Total Core Heat Output, MWt
Total Core Heat Output, MBtu/hr
Heat Generated in Fuel, %

System Pressure, psia

Hot Channel Factors
Total Peaking Factor, Fa
| Enthalpy Rise Factor, F% H

Coolant Flow Rate, Mlbm/hr
Effective Core Flow Rate, Mibm/hr
Coolant Average Temperature, OF
Heat Transfer

Average Heat Flux, Btu/hr-ft2

Steam Generators
Total Steam Flow Mibm/hr, per lead
Steam Temperature, OF
Steam Pressure, psia
Feedwater Temperature, OF

Tube Plugging, %

3425.
11,688
97.4
2250

2.47
1.55

.138.1

131.9
574.1

197,580

3.70
518.
799.
431.
5.0



Table 3.2 Donald C. Cook Unit 2 Trip Setpoints

Setpoint Used-in Analysis Delay Time

High Neutron Flux 109% 118% 0.5 sec
Low Reactor Coolant Flow 90% 87% 1.0 sec
High Pressurizer Pressure 2400 psia 2425 psia 2.0 sec
Low Pressurizer Pressure 1965 psia 1940 psia 2.0 sec

Low-Low Steam Generator ,
Water Level 21% of span 0% of span 2.0 sec

574.10F 6.0 sec

et

Overtemperature AT* TAvE, = 574.19F TAVE,

2250 psia
1.452

)
o
n

2250 psia Po
1.267 Ky

~
P
n

.000744

=
W
n

.000926 K3

L4

<

=2

< 1

--------------------------------- -—te =
2

* The overtemperature AT trip is a function of pressurizer pressure, coolant average temperature, S
and axial offset. The Tayg. and Py setpoints, and the setpoint bias Ky are contained within the o o
functional relationship.- The bias constant Ki employed in the analysis includes allowance PAY
for applicable trip channel uncertainties. Other constants in the overtemperature AT setpoint f§

as it appears in the Technical Specification (gains, lead and lag constants) were incorporated
without change in the analysis. -

L} .
- ] N o
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Table 3.3 Donald C. Cook Unit 2 Fuel Design Parameters -

Exxon Nuclear Fuel

Fuel Radius

inner Clad Radius
Outer Clad Radius
Active Length

., Number of Fuel Rods in Core

.1515 inches
.1550 inches
.1800 inches
144.0 inches
50,952

XN-NF-82-32(NP)
Revision 2
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Table 5.4 Donald C. Cook Unit 2 Kinetics Parameters
Supported by the Plant Transient Analysis

Parameter | “ Value
Beginning- End-of-

of-Cycle Cycle

‘ -Moderator Coefficient '
(ap/OF x 104) 0.5 -3.9

Doppler Coefficient ,
| (Ap/9F x 105) -1.0 -1.7

Pressure Coefficient '
(ap/psia x 106) -.60 +4.3

Delayed Neutron Fraction (%) 0.61 0.510

Total Rod Worth (% ap) 4.00 4.00

'y
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4.0 TRANSIENT ANALYSIS
4.1 UNCONTROLLED ROD WITHDRAWAL

The withdrawal of control rods adds reactivity to the reactor core
causing both the power level and the core heat flux to increase. Since the
heat extraction from the steam generator remains relatively constant, there
is an increase in primary coolant temperature. Unless terminated by manual or
automatic action, this power mismatch and the resultant coolant temperature
rise could eventually result in a DNB ratio of Tless ihan 1.17. While the
inadvertent withdrawal of control rods is unlikely, the reactor protéﬁtion
system is designed to terminate such a transient while maintaining an adequate
margin to DNB. Two potential causes for such an incident are: 1) operator
error; and 2) a malfunction in the reactor regulating system or rod drive
control system resulting in continuous withdrawal of a control rod group.

In this incident, the reactor may be tripped by an o;ertempérature
AT setpoint, the high nuclear overpower setpoint, or the overpéwer AT
setpoint. Additionally, the primary coolant temperature increase is 1limited
in magnitude by the steam generator safety valve setpoint. A series of rod
withdrawal simu]ééions was performed at various reactivity insertion rates to
demonstrate the adequacy of the reactor protection system for this event.
Figure 4.1 summarizes the results of this study. Ample margin to DNB is
demonstrated for the range of possible rod withdrawal events.

Figures '4.2 through 4.7 show plant responses for a fast rod
withdrawal from full power. The reactivity insertion rate is 8.42 x 10-3

Ag/sec. A nuclear Qverpdwer trip (118%) occurs at 0.13 seconds. The DNB ratio
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drops from an initial value of 1.878 to 1.625. Pressure increases to a maximum
Pf 2300 psia, with core“averagé temperature increasing 4.40F. The event
sequence for the fast rod withdrawal is given in Table 4.1.

The systemiresponses to a slow rod withdrawal of 7.42 x 10-6ag/sec
are depicted in Figures 4.8 through 4.14.{ The overtemperature AT trip
setpoint is reached at 67.3 seconds. The minimum DNB-ratio during the
transient is 1.265. The event sequence for the slow rod withdrawal is given
in Table 4.2.

Part power rod withdrawal analyses are discussed in Section 5.0.

4.2 LOCKED ROTOR " .
| In the unlikely event of a seizure of a primary coolant pump, flow
through the core is abruptly reduced. The reactor is tripped by the resulting
low flow signal. The coolant enthalpy rises, decreasing the margin to DNB.
The locked rotor transient was analyzed assuming four loop operation with
instantaneous seizure of one pump from 3425 MWt. This case was shown in the
reference cycle analysis to be more severe with respect to'DNB penetration
than a locked rotor with three loop operation. A second case was analyzed
which assumed a concurrent loss of offsite power.
The transient responses for the Locked Rotor évent are shown in

Figures 4.15 to 4.20. The reactor is scrammed at 0.03 seconds by a low flow

signal. A 1.0 second scram delay time is_conservatively assumed. Core’

average temperature increases 11.59F with system pressure reaching 2308 psia

at 3.8 seconds. The MDNBR for the locked rotor is 1.276 at 1.9 seconds.

M
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A second locked rotor event which additionally assumes a loss of
offsite power is also simulated. The intact primary coolant pumps are assumed
to initiate a coastdown concurrently with the locked rotor. Calculated MDNBR
for the event is 0.698. Radiological release for this event is bounded by the
LOCA accident and is within 10° CFR 100 limits. (4)  This event has not been
analyzed in the-FSAR and is not considered to be part of the plant licensing
basis. Plant response to this event with maximum pressurization assumptions
is depicfed in Figures 4.21 to 4.27. Pressurizer pressure control systems
have beéen assumed inoperable in order to maximize pressure response. The‘
MDNBR has been evaluated with minimum pressure response assumptions. The
event sequences for the 1ockéd rotor cases are given in Table 4.3.:

4.3 - LOSS OF EXTERNAL ELECTRICAL LOAD

This simulation considers plant behavior upon a trip of the
turbine-generator-without a direct reactor trip. The event is sjmu]ated to
assess the adequacy of the pressurizer safety valve capacity to maintain
reactor coolant system pressure below the ASME code 1imit of 110% of design
pressure (2750 psia). Transient responses are evaluated from 3425 MWt for the
most severe pressurization accident: loss of load at beginning-of-cycle (BOC)
with a positive moderator coefficient and no automatic reactor control.

Figures 4.28 to 4.34 depict the plant responses following a loss of
load from full power. A high pressure trip occurs at 6.98 seconds, with peak
pressurizer pressure reaching 2526.1 psia. The first set of steam 1ine safety
valves opens at 11.9 seconds, relieving 45% of the steam flow. The setpoint

of the second set of safety valves is reached at 18 seconds. The average
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primary coolant temperature increases 24.59F above the nominal value. The

MDNBR does not decrease below its initial value. The event sequence for the
loss of load is given in Table 4.4.

4.4 DECREASED FEEDWATER HEATING

Failure of bleed steam to any of the six pairs of feedwater heaters
could result in a 75 Btu/1b decrease in feedwater enthalpy. The event is
simulated by imposing a 15 second feedwater enthalpy ramp at a rate of -5
Btu/1b-second.

Results of the decreased feedwater heating event are given in
Figures 4.35 through 4.43. A new steady state is established relatively early
in the transient. The MDNBR of 1.679 characterizes this steady state. The‘
overtemperature AT reactor trip precludes penetration of the XNB critical
heat flux correlation safety limit during transients such as the decreased
feedwater heating event which are characterized by slow excursions in core
power, coolant temperature, and pressure.

A second case was simulated assuming automatic rod coﬂtro]. A
bounding EOC D-bank worth consistent with power dependent insertion 1limits
was employed (-1.2%Ap). Primary side response 1is depicted in Figures 4.44
through 4.49. Figures 4.50 and 4.51 demonstrate RCCA control action. The
MDNBR for the event is 1.627 and occurs at 258 seconds. Secondary system
response is similar to that depicted in Figures 4.41 through 4.43. Event
sequences for these events are given in Table 4.5.

4.5 EXCESSIVE LOAD INCREASE INCIDENT

Excessive load incidents may be initiated by sudden opening of the

turbine control valves, steam dump valves, and/or the steam bypass to
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condenser valve. This results in rapid increase in stéam flow which causes
cooldown of the primary system. Automatic Rod Control action or a large
negative (EOC) moderator coefficient can result in a power increase.
Protection against damage to the reactor core as a consequence of an excessive
load increase is provided by the high nuclear flux, low steam generator
pressure, and overtemperature AT setpoints.

A rapid 20% load increase is simulated at end-of-cycle condit%ons.
To minimize the calculated MDNBR, the pressurizer heaters are assumed
inoperable. :

System responses to the 20% load increase are shown in Figures 4.52
through 4.60. The power increase driven by moderator cooldown continues until
the high nuclear overpower trip setpoint (118% of rated power) is reached at
56.5 seconds. At the time of trip, significant primary system depres-
surization has further reduced available thermal margih. The decreasing
primary coolant temperature mitigates the thermal margin decay, resulting in
an MDNBR for the event of 1.532 shortly after reactor trip._ é

The case with automatic rod control is shown in Figﬁres‘4.61 through
4.66. Automatic Rod Control action is demonstrated in Figures 4.67 and 4.68.
Control action resulting largely from the temperature deviation channel
results in a more rapid power increase than observed in the uncontrolled case.
To maximize power response, the temperature control program employed a 1inear

gain between 0 and 120% of rated turbine demand. The reactor trips on high

nuclear flux at 21.2 seconds. The MDNBR of .1.569 occurs shortly thereafter.

Event .sequences for the load increase transients are given in Table 4.6.
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Table 4.1 Event Sequence for Fast Rod Withdrawal

Event

Time (seconds)

Uncontrolled RCCA Bank Withdrawal begins
High Neutron Flux Setpoint reached
Scram Results in Rod Motion

Minimum DNBR occurs

0.0
0.13
0.63

1.55
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Table 4.2 Event Sequence for Stow Rod Withdrawal

Event Time (seconds)
Uncontrolled RCCA Bank Withdrawal begins | 0.0
Overtemperature AT Setpoint reached . 67.3
Scram Results in Rod Motion . 73.3

Minimum DNBR occurs 74.0
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Table 4.3 Event Sequence for Locked Rotor

Event ; Time

XN-NF-82-32(NP)
Revision 2

(seconds)

CASE

CASE

1: Locked Rotor with Offsite Power Available

Single Primary Coolant Pump seizes
Loop Low Flow Trip‘Setpoinf reached
Scram Results in Rod Motion
Minimum DNBR occurs

Peak RCS Pressure reached

2: Locked Rotor with Concurrent Loss of Offsite Power

Single Primary Coolant Pumpiseizes
Loop Low Flow Trip Setpoint reached
Scram Results in Rod Motion
Minimum DNBR occurs

Peak RCS Pressure reached

0.03
1.03
1.9
3.2

0.03
1.03
2.4
4.0

o
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Table 4.4 Event Sequence for Loss of External Load

Event . Time (seconds)
Loss of Load . 0.
High Pressurized Pressure Setpoint reached 6.@8
Scram Results in Rod Motion o 8.98 :

s Peak Pressure reached ( 18.1

(Y
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Table 4.5 Event Sequence for Decreased Feedwater Heating

Event

CASE 1: Uncontrolled

*Feedwater,Enfha]py Begins to Decrease from
the Steady State Value at 5. Btu/1b/second

]

Feedwater Enthalpy reaches Minimum Value

Minimum DNBR reached
(NOTE: Reactor scram does not occur.)

CASE 2: Automatic Rod Control

Feedwater Enthalpy Begins to Decrease from
the Steady State Value at 5. Btu/1b/second

Feedwater Enthalpy reached Minimum Value

Minimum DNBR reached

Time (seconds)

15.0

260.

15.0

258.

1]
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Table 4.6 Event Sequence for Excessive Load Increase

Event

Time (seconds)

CASE 1: Uncontrolled

20% Increase in Load Demand reached
High Neutron Flux Trip Se;point reached
Scram Results in Rod Motion

Minimum DNBR occurs

CASE 2: Automatic Rod Control

20% Increase in Load Demand reached
High Neutron Flux Trip Setpoint reached
Scram Results in Rod Motion

Minimum DNBR occurs

10.
56.0
56.5

57.0

1.0
21.2
21.7

21.5
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5.0 DISCUSSION
The transient analysis as performed by ENC for Donald C. Cook Unit 2

nuclear power plant demonstrates adequate margin to applicable fuel and
vessel design limits for a mixed ENC/Westinghouse core during normal
operation, anticipated operational occurrences, and postulated accidents.
The following transients were analyzed using the ENC PTSPWR2 plant transient
simulation model at a core power of 3425 MWt.

1) Rod Withdrawals between 8.42 x 10-3 and 7.42 x 10'éAp/S

2) Locked Primary Coolant Pump Rotor

3) Locked Primary Coolant Pump Rotor with Concurrent Loss of

Offsite Power .

4) Decreased Feedwater Heating

5) Excessive Load Increase

6) Loss.of Load

These transients wére cons idered because they were shown in the D.C. Cook
Unit 2 FSAR(2) (reference analysis) to have the least margin to thermal margin
1jmjts. The applicable fuel and vessel design limifs for the transients are
a minimuﬁhDNB ratio of 1.17 calculated with the XNB critical heat flux
correlation and a peak system pressure of 2750 psia. For the locked rotor
accident, the fuel designacriterion is that a small fraction of the core may
experience boiling transition. For the locked rotor with concurrent loss of
offsite power, radiological release may not exceed 10 CFR 100 Timits.
Other transient events considered in the reference analysis are not

réanalyzed here, either because the reference analysis results remain valid
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for those events under the conditions of this analysis, or because other
events which have been reanalyzed. here have been shown in the reference
analysis to be more 1imiiing.

The reference analysis considered RCCA withdrawal transients initiated
from a variety of core power levels equal to or less than 3391 MWt. The full
power cases ére shown to be the most 1imiting of the cases considered with
respect to MDNBR. The analyzed 5% steam generator tube plugging level coupled
with the loading of ENC fuel will not affect this fact, and the full power
cases will continue to be the most limiting of the RCCA withdrawal events
under the conditions of this ana]&sis. Part power RCCA withdrawal cases are
therefore not reanalyzed. |

The results of the full power RCCA withdrawal event also bound the
possible results of the Chemical and Volume Control System Malfunction
trans%ent. During this transient, reactivity is added to the core by the
addition of unborated primary coolant makeup water. The sjstem response is
s{milar to that for the slow rod withdrawal transient analyzed in Section 4.1,
with a reactivity insertion rate of about 1.0 x 10-5 Ak/sec. This insertion
rate is bounded by the range of insertion rates included in this analysis.

The refereﬁce analysis of the RCCA drop transient demonstrated that,
neglecting radial power distribution effects associated with the event, the
MDNBR monotdnica]ly increases in time ffom the initial va]ue.AThe MONBR which

occurs during the event may therefore be conservatively evaluated by a steady
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state MDNBR calculation performed at rated initial conditions of core power,
temperature, pressure, and flow, and which employs a radial peaking factor

augmentation to account for the adverse core radial power distribution which

' characterizes the event. The radial peaking augmentation factor at 3425 MWt

core power for the mixed core loading considered here is 1.2. A steady state
MDNBR calculation employing this peaking augmentation factor and performed as
described:will result in an MDNBR well above the XNB correlation safety limit
of 1.17. Since the MDNBR calculated during the transient will not exceed the
steady state MDNBR thus obtained, it is concluded that the result of the RCCA
drop transient at 3425 MWt meets the fuel design 1imit on MDNBR.

The loss of normal feedwater simulation reported in the reference
analysis was performed at the Engineered Safety Features design thermal power
of 105% of rated. This power level exceeds the 3425 MWt rated power assumed
in this analysis. Steam generator tube plugging of 5% will result in less than
30F higher primary coolant temperatures than shown in the reference analysis.
Calculations indicate that -this small increase in primary coolant temperature
will not result in the expulsion of primary 1iquid from the pressurizer safety
relief valves. Tube plugging will decrease the tendency for steam generator
dryout due to reduced heat transfer effectiveness. The result qf the loss of
normal feedwater event presented in the reference analysis will not therefore
be significantly impacted by 5% steam generator tube plugging.

The stértup of an inactive loop was shown:in the reference analysis to be
significantly less limiting than the uncontrolled RCCA withdrawal event.

Since neither the loading of ENC fuel nor the apalyzed 5% steam generator tube
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plugging level will alter the relative severity of these two events, the
results of the uncontrolled RCCA withdrawal will continue to bound the results
of the inactive loop startup. The inactive ]oop‘startup event is therefore
not reanalyzed here.

The results of the loss of AC power event were shown in the reference
analysis to be enveloped by the results of the four pump coastdown and loss of
normal feedwater events. The flow degradation aspect of the loss of AC power
event has been reanalyzed here in Subsection 4.2 as a loss of flow transient
(locked rotor with loss of offsite power). Adequate long term decay heat
removal is demonstrated by the loss of normal feedwater simulation reported in
the reference analysis. Results of the loss of AC power event have therefore
been adequately bounded by the combination of the 4 pump coastdown event
reported in Subsection 4.2. The loss of normal feedwater event is discussed
above..

Results of the small steam line break reported in the reference analysis
are judged to remain valid for the conditions of this analysis. The event is
independent of rated power, since it is initiated from hot zero power
conditions. Core kinetics parameter tables employed in the reference
analysis}bound the core configurétions considered in this analysis. The
impact of steam generator tube plugging is to reduce primary to secondary heat
transfqr, increasing primary to secondary system temperature differences. The
system temperature datum is estab1ished‘by the magnitude of the break fiow,
which is conservatively considered to be independent of tube plugging level.

Primary system temperatures in this event will then be increased by tube

[
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plugging, with consequently lesser requirements for shutdown margin. The
small steam line break 1is therefore not reanalyzed since the reference
analysis is bounding.

The main feed 1ine break (MFLB) event was shown in the reference analysis
to be independent of fuel type, since applicable fuel design limits are never

approached during-the event (MDNBR increases monotonically). The loss of

_normal feedwater (LONF) event results in greater volumetric expansion of the

primary liquid than occurs during the MFLB becauée primary coolant expansion
during the MFLB is mitigated by extraction of primary heat due to steam
generator blowdown. Adequate aux%liary feedwater system capacity to prevent
uncovery of the core was demonstrated in the reference analysissof the LONF
event. Since the conclusion of that analysis is judged to remain valid for thé
3425 MWt rating with 5% tube plugging, and bounds the primary coolant
expansion and thus the potential for core uncovery in the MFLB, it is
concluded that the,core will remain-covered throughout an MFLB initiated from
the 3425 MWt level. Analysis of the MLFB event is therefore not considered.
The- rod ejection transient is addressed in Reference 8.
The results of certain operational incidents are not significantly
dependent on fuel type or small changes in rated power level. These include:
. RCCA Misalignment
. ' Turbine Generator Overspeed
. Fuel Handling Incident

[

o’ Accidental Waste Gas Release
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. Radioactive Liquid Release

o Steam Generator Tube Rupture
These incidents as discussed in the reference cycle analysis were shown to be
protected by administrative controls, redundancy of alarms, and/or integrity
of system components. The conclusions drawn for these incidents as given’in

the reference analysis remain valid and these events are not reanalyzed here.
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