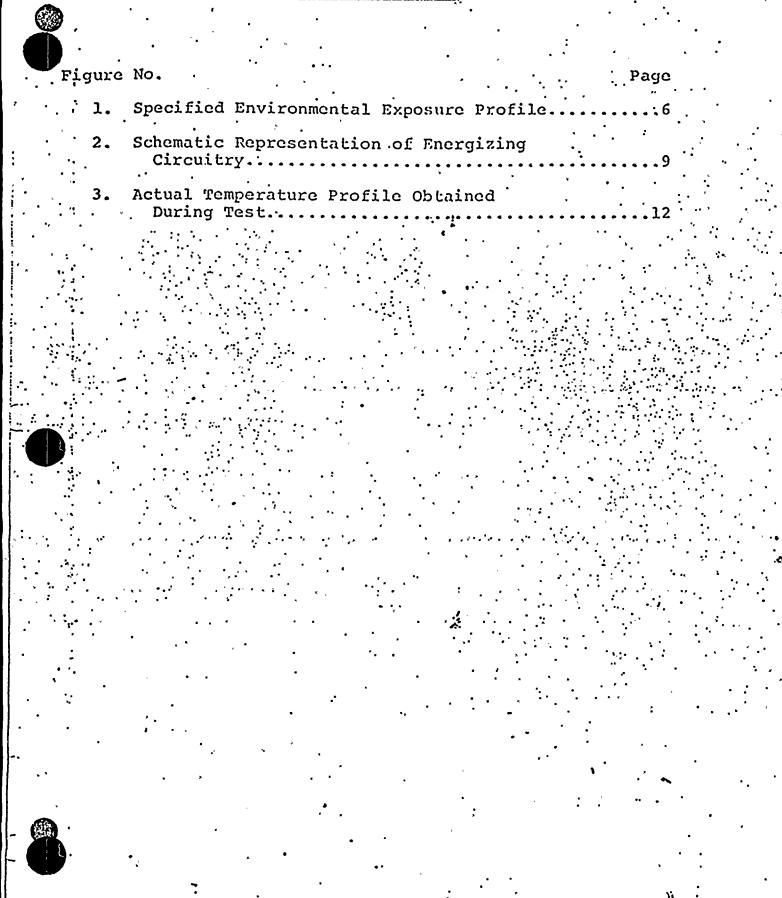


TABLE OF CONTENTS

.


		•	
	Sectio	n.	Page
	1.	Intr	duction and Summaryl
• •	2.	Desc	iption of Cable Samples2
	3.	Test	Program
	•	3.1	Purpose4
•	•	.3.2	Discussions4
	•	۰ ۱	3.2.1 Phase 1. Thermal/Radiation Aging4
			3.2.2 Phases II and III - LOCA Simulation and Post-LOCA Cooldown
	••	• •	3.2.3 Post-LOCA Tests
	4,		Procedure
* * * * * *		4.1	Cable Mounting
	4. 4	4.2	Electrical Energizing and Interconnections7
		4.3	Dose Uniformity
	\	4.4	leasurements of Insulation Resistance (IR)8
		4.5	High Voltage Withstand Tests (Hi-Pot)10
•	5.	Test	Results
•	۰ <u>،</u>		Actual Temperature Profile
		· ·	5.1.1 Thermal/Radiation Aging
•••	•	•	5.1.2 Phases II and III - LOCA Simulation and Post-LOCA Cooldwon
٩		5.2	Performance of Test Cables15
f .	•	5.3	Insulation Resistance Measurements
		5.4	High Voltage Withstand Tests (Hi-pot)
	6.	Certi	lication
Å.	Арро	endix	A - Radiation Certification

7

2

i'. "

LIST OF FIGURES

r

•

, ,

, ,

LIST OF TABLES

Œ

Table No. Page 1. Description of Cable Samples..... Summary of Cable Removal From Energizing 2. Circuitry.....16 3'. 1. . 1 Results of Hi-pot Tests Performed at Conclusion of 37 Day Environmental Exposure 18

SECTION 1. INTRODUCTION AND SUMMARY

A qualification test on electric cables was performed in accordance with the suggestions contained in IEEE 323-1974, "IEEE Standard for Qualifying Class IE Equipment for Nuclear Power Generating Stations", and IEEE 383-1974, "IEEE Standard for Type Test of Class IE Electric Cables, Field Splices, and Connections for Nuclear Power Generating Stations."

Twenty-five 1/c-12 Awg cable samples were subjected to a 7 day simultaneous thermal/radiation aging exposure, followed by a 30 day simultaneous exposure to environments of radiation steam and chemical-spray, while electrically energized at rated voltage and current loading. This loading consisted of a potential of 600 volts (a.c.) between conductors and to ground and current loading of 15-20 Amps on each conductor.

Approximately 50 feet of each cable sample was subjected to the exposure environments. The samples were irradiated in a Cobalt-60 field of gamma radiation at a rate resulting in a total accumulated exposure of 200 megarads, air equivalent, over the entire test period.

7

٩

. . ъ,

\$

, ,

.

-,

e

1

Measurements of insulation resistance were made periodically during the exposure period at 500 volts (d.c.). High voltage withstand tests were conducted at the end of the exposure period following a 40 diameter mandrel bend test with the cables immersed in water.

Thirteen cable samples withstood the entire test exposure and successfully completed the high-pot test performed at the end of the program. The high-pot test was conducted at a voltage level of 2.2 KVAC corresponding to twice the rated voltage plus a 1000 volts A.C. Current leakage measured during the high-pot test varied between 1.2 milliamps and 5.5 milliamps.

The test program was conducted during October and November of 1975 at the test facilities of Isomedix, Inc.

in Parsippany, New Jersey.

SECTION 2. DESCRIPTION OF CABLE SAMPLES

Twenty-five cable samples were received from Essex, ranging in sizes from .1620D to .230"OD. The following table describes the samples as they were received from Essex with the sample numbers as affixed to the cable by Essex and the corresponding tag number affixed by Isomedix.

· · · .

•

۰. ۲

.

•

a

.

· .

1

TABLE 1 ·

DESCRIPTION OF SAMPLE

5

Isomedix Tag No.	Essex Tag No.	Description of Sample
	2	White, brittle
2	3	Brown, brittle
→ 3	35	White, brittle
4	4	Brown, brittle
5	27	White, brittle
6	6	White, flexible
7	7	Black, flexible
8	8	Black, flexible
,	26	White, flexible
10	10	Black, flexible
11	· 11 · ·	Black, flexible
12	. 12	Black, flexible
13	13	Grey, spongy
14	14	Brown, brittle
15 ···	15	Brown, brittle
. 16	16 .	Purple, brittle
17	17	Black, flexible
18	18 -	Black, flexible
19	. 19	Black, flexible
• •		1

. بولاً

٦.

- 3

• -

a contraction of the second .

•

.

Isomedix Tag No.	Essex Tag No.	· Description of Sample
· · · ·		
20	. 20	Yellow, brittle
21	21	Black, flexible
22	22	Brown, flexible
23		Black, flexible
24	24	Brown, flexible
25	25	Grey, spongy

SECTION 3. TEST PROGRAM

PURPOSE.

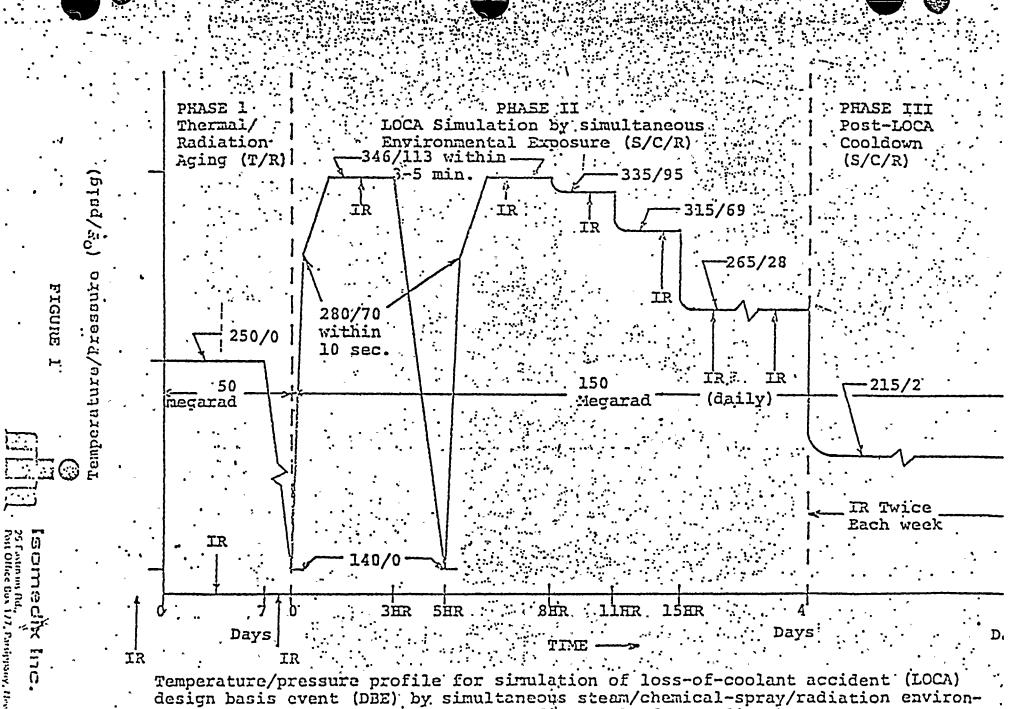
The purpose of the program was to provide qualification tests on electric cables in accordance with the suggestions contained in IEEE 323-1974, "IEEE Standards for Qualifying Class IE Equipment for Nuclear Powered Generating Stations", and IEEE 383-1974, "IEEE Standard for Type Test of IE Electric Cables, Field Splices and Connections for Nuclear Powered Generating Stations".

DISCUSSIONS.

3.2.1 PHASE 1. THERMAL/RADIATION AGING

The cable samples were installed inside of pressure vessel and placed in a radiation chamber and subjected to a 7 day thermal/radiation aging environment with the temperature inside the vessel maintained at 250°F. Radiation was from

a Cobalt-60 source of gamma radiation at an exposure rate resulting in an accumulated equivalent air dose of 50 megarads during this period.


3.2.2 PHASES II AND III - LOCA SIMULATION AND POST-LOCA COOLDOWN

At the conclusion of this simulated installed-life aging cycle, the samples were exposed to a simulated loss-of-coolant accident (LOCA) environment by simultaneou application of radiation/steam and chemical-spray for a period of 30 days in accordance with the temperature profile shown in Figure AL of Appendix A of IEEE 323 and as shown on Figure 1. The samples were continuously sprayed with a chemical solution consisting of 3000 ppm boron as boric acid in solution with 0.064 molar sodium thiosulfate buffered with sodium hydroxide to a pH between 9 and 11 at room temperature. The spray rate was approximately 2 gpm corresponding to 0.15 gpm/ft² of the surface area of the mandrel.

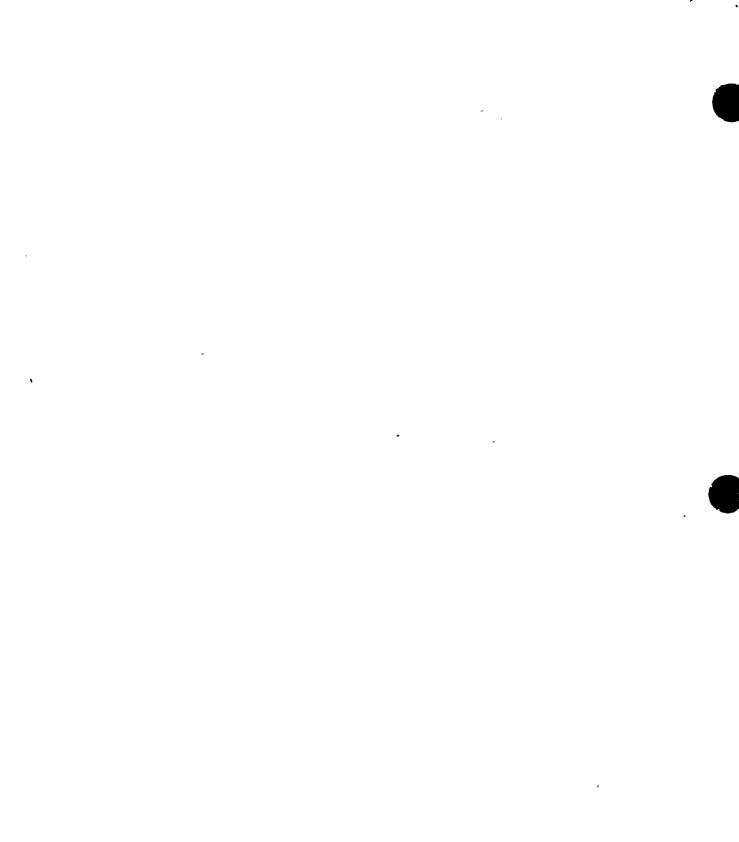
The cable samples received an additional radiation dose of 150 megarads, air equivalent, during this portion of the test program.

3.2.3 POST-LOCA TESTS

At the conclusion of the simulated LOCA event, the vessel was taken out of the radiation chamber. The samples

mental exposure (after IEEE 323-1974 figure Al of Appendix A)

 \sim


were removed from the mandrel, straightened and recoiled around a mandrel whose diameter was 40 times the cable diameter. While so wound, the cables were inspected for cracks, immersed in water and subjected to high voltage withstand tests at 80v/mil (a.c.) of insulation.

SECTION 4. TEST PROCEDURE 4.1 CABLE MOUNTING

> The cable samples were mounted on holding rods positioned between two end cap flanges of a vertically held metal mandrel, approximately 20 inches in diameter. Steel wire was used to secure the cables in position relative to the vertical rods. Approximately four feet of each cable end was brought up through the middle of the mandrel. These ends were brought through head penetrations in the pressure vessel, sealed and connected to the energizing lead wire. Sealing was effected by securing the cable ends in aluminum tubes with an epoxy compound. The tubes were secured to the vessel by standard tube fittings.

4.2 ELECTRICAL ENERGIZING AND INTERCONNECTIONS

The cable ends were secured to terminal blocks mounted on the vessel head. The lead wire, supplied by Essex International, connected the energizing switch box with the test cables at the terminal block on the vessel

.

٠

head. The switch box consisted of knife switches arranged so that each cable could be individually monitored, removed from the circuit if a failure occured, or isolated during measurements of insulation resistance.

Figure 2 is a schematic diagram showing the energizing circuitry and cable connections.

DOSE UNIFORMITY

Dose uniformity was obtained by repositioning the Cobalt-60 source at various stages throughout the exposure cycle and by rotating the vessel. Rotation was performed 34 days after initiating the seven day thermal/radiation aging and again fifteen days after the initiation of the steam exposure cycle.

Appendix A contains the certification of radiation exposure and describes the dose distribution and source positioning.

4.4 MEASUREMENTS OF INSULATION RESISTANCE (IR)

IR measurements were made periodically during the exposure cycle as a means of monitoring the relative degradation of the test samples.

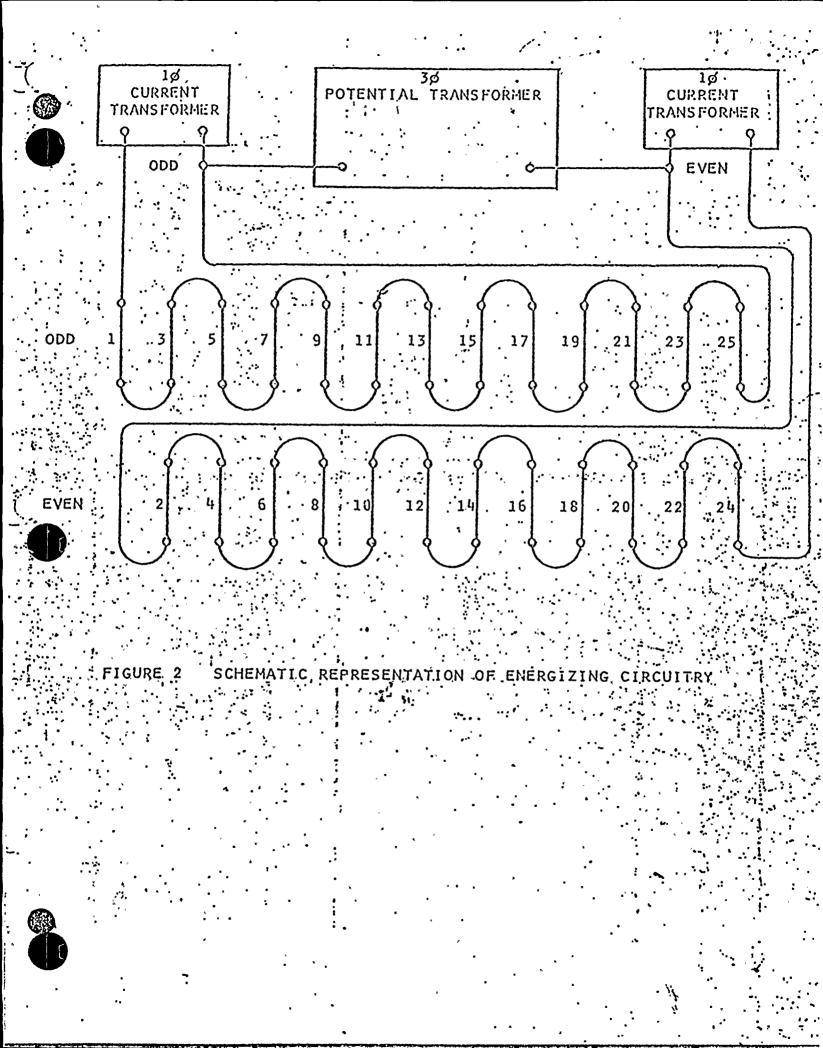
Specifically, the IR measurements were made at the following times during the program:

. Upon receipt of samples, prior to radiation aging,

while wrapped on the mandrel and immersed in water.

.

^


· · ·

a. The second second

.

.

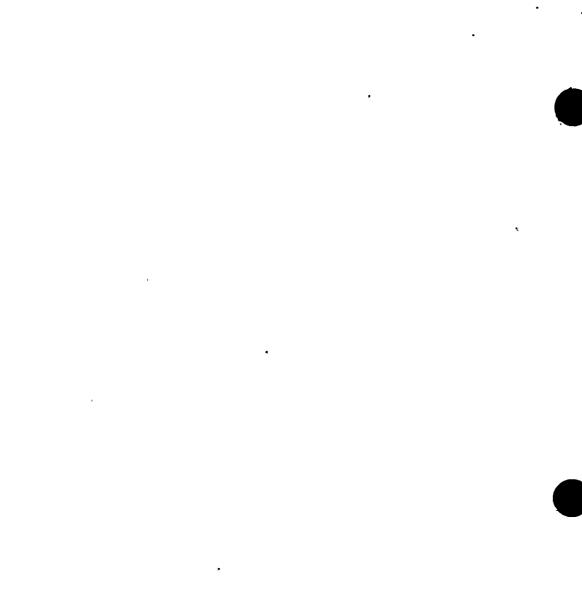
I

 Halfway through the seven day thermal/radiation aging period.
 At the end of the thermal/radiation aging period.
 At each dwell during the high temperature phases of the Steam/Chemical/Radiation exposure period.
 Once each day during the four day dwell at 265°F.
 Twice per week during the balance of the 30 day period and at the conclusion of the exposure cycle.
 The measurements were made after application of
 Vdc held for one minute, unless specifically noted otherwise by reading between the conductor directly to ground.
 Prior to actually making the measurements, the

ten to fifteen minutes. At the conclusion of the IR measurements, all cables were put back into the circuiting unless excessive leakage was observed that prohibited the application of the full potential load or if short-circuit to ground had occured.

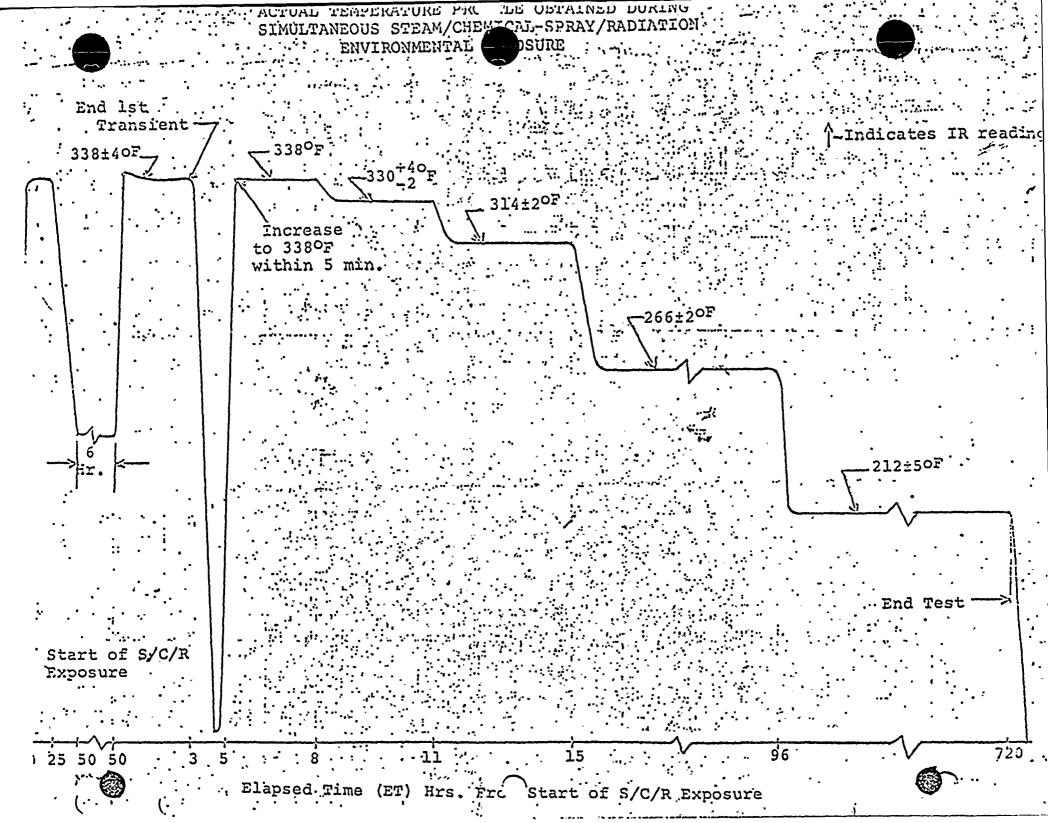
HIGH VOLTAGE WITHSTAND TESTS (HI-POT)

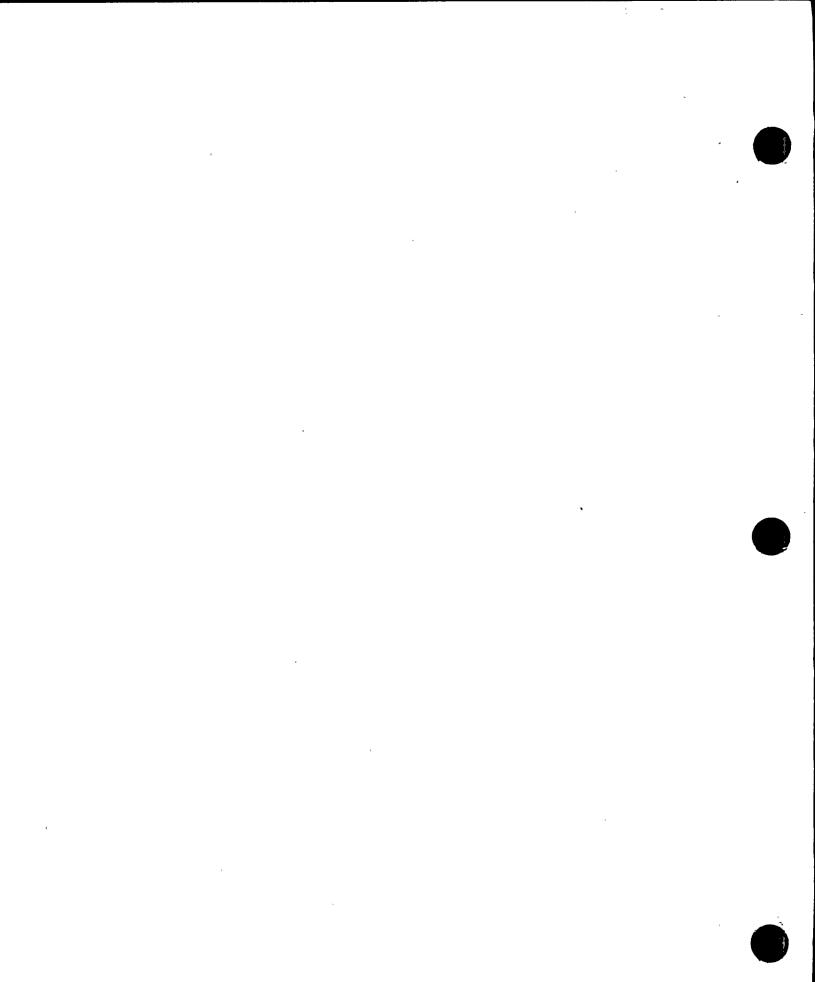
Samples that performed satisfactorily during the environmental exposure period were removed from the vessel, straightened and wound around a mandrel having a diameter 40 times the cable diameter.


The samples, while wound on the mandrel, were immersed in water with the ends free. The conductor was connected to the high voltage lead and the ground wire inserted directly in the water. The required test voltage was 2200 Vac, or twice rated voltage, plus 1000V.

The specified voltage level was applied for a period of 5 minutes after which time the charging current was recorded.

SECTION 5. TEST RESULTS 5.1 ACTUAL TEMPERATURE PROFILE 5.1.1 Thermal/Radiation Aging


> The temperature profile obtained during the actual test phases is shown in Figure 3. The test was initiated by energizing the cables and placing the cobalt source in position.

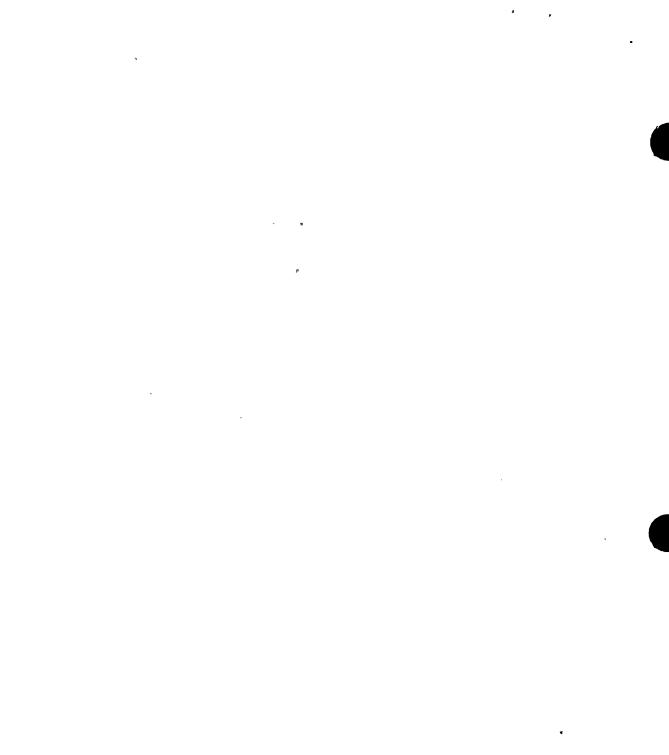

Strip heaters on the vessel were utilized in conjunction with the cable current heating loads to raise the temperature from room ambient to the aging level. Heater controls and current loads were adjusted so that the temperature remained at $250 \pm 10^{\circ}$ F throughout the remainder of the seven day

7 I

·

period. Four and one-half days after starting,

the system was shut down so that IR measurements could be made.


Phases II and III - LOCA Simulation and Post-LOCA Cooldown

5.1.2

At the start of the steam exposure, the cables were energized and the ambient temperature was 140°F. The cobalt source remained down until the exposure was underway. To initiate the exposure, steam was rapidly admitted raising the temperature and pressure to 338°F and 112 psig within 10 minutes. Approximately fifteen minutes later, a leak was detected in a pressure fitting that necessitated a drop in pressure to atmospheric during the next twenty-five minutes.

The steam remained off for a period of 6 hours, while the temperature was maintained at 240°F using electric heaters to avoid a severe thermal shock when the steam was reinitiated.

The necessary repairs were made to the fitting and the exposure was resumed by reintroducing steam that increased the temperature from 260°F to 340°F during the next five minutes. The temperature was maintained at 338±4°F for the remainder of the three . hour period of the transient.

.

• •

At the onl of this period, a controlled temperature drop was initiated that reduced the temperature to 1,24° over the next 1.5 hours. The suconi transient was then initiated by introducing plan that raised the temperature to 338°F within flve minutes and held it at that point for the mixt three hours The Lamperature was then reduced to 3300F and held for three hours before reducing to 314°F and held for an additional four ho At that time, a controlled drop was initiated that reduced the temperature to 268°F over the next lwanty minutes and was maintained at 266±2°F for the balance of four days at which time the temporature was reduced over the next half hour to 2120F, nominal, for the remainder of the exposure pariod.

The mining solution was injected into the chamber within one minute of starting the exposure at a rate of approximately 1.5 gpm and was recirculated within the next seven minutes. The mining solution pH was between 9.5 and 10.5. The spray was turned off during the six hour repair period and turned back on when the exponing was reinitiated. The spray remained on throughout the remainder of the spray

-.14

" exposure.

At an Elapsed Time (ET) of 539 hours, the system was shut down and the vessel rotated 180° to maintain uniformity of the dose distribution.

At a total test time of 37 days, the last set of readings were made and the system shut down. The vessel was removed from the cell, the samples removed from the vessel, inspected and measurements of withstand voltage made.

.2 PERFORMANCE OF TEST CABLES

The cables were electrically energized at a potential of 600 Vac between conductors throughout the entire exposure period except during vessel rotation and periods when IR measurements were made.

The current loads were maintained within 15.5 and 19.5 Amps during the entire test period. Table 2 shows the times when the cables were removed from the energizing circuitry.

5.3 , INSULATION RESISTANCE MEASUREMENTS

Measurements of IR were made at the times previously mentioned and the results are shown in Table as a function of the environmental parameters.

	,		
i Bi	· ·		
,	••	- 16 -	•
		· · · · · · · · · · · · · · · · · · ·	C.
		TABLE 2	
	SUMMARY OF CABLE	REMOVAL FROM ENERGIZING	CIRCUITRY
	· · · · ·		
• • • •			
Sample	No.	Elapsed Time (hours)	Phase of Test
· 3, 18,	24*	185.3	During 1st transient of S/C
la la		191.2	simultaneous phase.
23*	· · · · · ·	226.5	During 2nd transient. During dwell at 265°F.
20			. During Post-LOCA Cooldown.
4, 2 · 14		285.1	During Post-LOCA Cooldown. During Post-LOCA Cooldown.
5,15,	16	325.7	During Post-LOCA Cooldown.
		355.1	During Post-LOCA Cooldown. During Post-LOCA Cooldown.
13		778.0	During Post-LOCA Cooldown.
	موجع مرجع مرجع مرجع مرجع مرجع مرجع مرجع مر		
*Put ba	ick into circuit a	t elapsed time of 253.0	hours
		• • • •	
	• •	· · · · ·	
	· , ·	•	
	· · .		
• • • •		· .	
· ` خد ا		· · ·	
		•	
	•		
	7	•	<i>, ب</i> ۴
		•	
•	· . •	• • 1 • 1	

- 17 -

TABLE 3(1).

MEASUREMENTS OF INSULATION RESISTANCE (1)

				• ,			
Elapsed (2) Time (hrs.)	Phase (3)	Temp °F	Press psig.	1	2	3	į
91.7 184.5 END 187.3 192.9 197.5 204.1 227.3 -251.2 Post 282.5 Post 325.4 Post 420.0 Post 15.3 Post	Pre TIR TIR LOCA LOCA LOCA LOCA LOCA LOCA LOCA LOCA	70 240 101 339 336 316 268 266 268 268 214 218 206 194	0 0 110 105 74 25 30 0 2 0 0	16 (7) 13 (7) 13 (7) 17 (7)	1.4x10 ¹² 0.78x10 ⁹ 1.8x10 ⁹ 1.1x10 ⁷ 1.2x10 ⁷ 3.1x10 ⁷ 1.3x10 ⁸ 1.5x10 ⁸ 1.5x10 ⁸ 1.3x10 ⁴ (7) 400(7) 480(7) 1300(7)	$\begin{array}{c} & 3 \\ 0.68 \times 10^{12} \\ 3.5 \times 10^{7} \\ 2.4 \times 10^{7} \\ 4000 (7) \\ 2000 (7) \\ 7.5 \times 10^{2} (7) \\ 2.8 (7) \\ 800 (7) \\ 900. (7) \\ 900. (7) \\ 800 (7) \\ 75 (7) \\ 1000 (7) \\ 1200 (7) \end{array}$	
5 92.1 Post 683.1 Post 756.4 Post 906.6 Post Test	LOCA LOCA LOCA LOCA	216 205 204 70	0 0 0 0	13 (7) 12 (7) 13 (7) 1.9x10 ¹¹	550 (7) 600 (7) 500 (7) 0.55x10 ¹¹	1.10 ⁴ (7) 0.9 _{x10} 11	ŗ
·'(1) All measur	emens ma	ade at 500 V nless otherv	Vdc, he	ld for 1 minu	ute, and all	resistance	• •
(2) Elapsed Ti(3) Test phase	me (ET); s per ou	; total tėst	t time :	from the star n section.	rt of Therma	1 Radiation	
 (5) Measuremen (6) Measuremen (7) Measuremen 	it made a it made a it made a	at 100 Vdc. at 75 Vdc. at 3 Vdc.	,			•	
(8) Measuremen		at 200 Vdc.			1	-	

(9) Measurement made at 10 Vdc.

4 •

١

3

ı

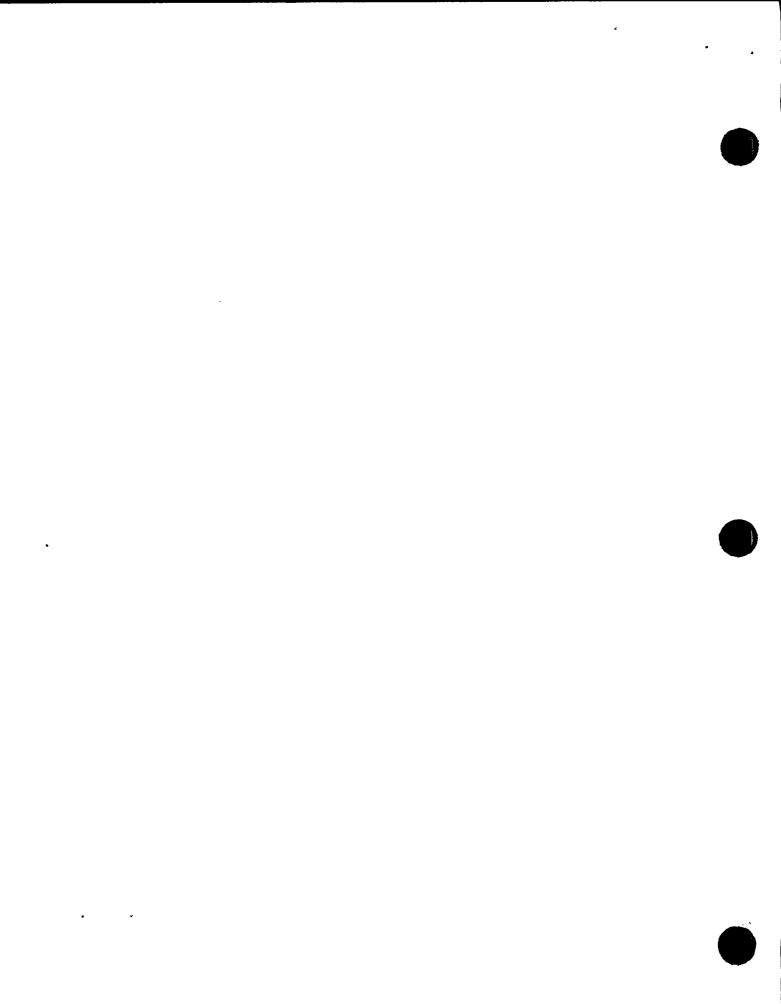
-

•

•

,

· ·


•

μ ı.

.

	* • • • • •	-17a -		· · · · · · · · · · · · · · · · · · ·	•	•••••••••••••••••••••••••••••••••••••••
4	5	6	7	8	9	×× .
$\begin{array}{c} 0.7 \times 10^{12} \\ 0.8 \times 10^9 \\ 3.2 \times 10^9 \\ 0.7 \times 10^7 \\ 0.7 \times 10^7 \\ 0.7 \times 10^7 \\ 0.68 \times 10^8 \\ 0.68 \times 10^8 \\ 0.68 \times 10^8 \\ 0.58 \times 10^8 \\ 2.8 \times 10^7 \\ 1700 \\ (7) \\ 2200 \\ (7) \\ 100 \\ (7) \\ 2200 \\ (7) \\ 2200 \\ (7) \\ 4.3 \times 10^{10} \end{array}$	3x10 ¹¹ 5x10 ⁷ 0.74x10 ⁷ 0.52x10 ⁶ (5) 0.58x10 ⁶ (5) 1x10 ⁶ (5) 5.2x10 ⁷ (5) 2.1x10 ⁶ (6) 1.1x10 ⁶ 6 (7) 7 (7) 10 (7) 7 (7) 8 (7) 1.5x10 ⁷	$\begin{array}{c} 0.88 \times 10^{12} \\ 4.4 \times 10^{7} \\ 1.8 \times 10^{7} \\ 1.3 \times 10^{6} \\ 1.7 \times 10^{6} \\ 3.5 \times 10^{6} \\ 1.3 \times 10^{7} \\ 1.3 \times 10^{7} \\ 1.7 \times 10^{7} \\ 2.1 \times 10^{7} \\ 5.0 \times 10^{7} \\ 5.0 \times 10^{7} \\ 1.6 \times 10^{8} \\ 0.54 \times 10^{9} \\ 2.0 \times 10^{8} \\ 4.6 \times 10^{8} \\ 0.64 \times 10^{9} \\ 4 \times 10^{11} \end{array}$	4.5x107 2.4x108 5.0x107 1.0x108 1.1x108	0.64x10 ¹² 1.25x10 ⁸ 1.5x10 ⁹ 1.2x10 ⁶ 0.56x10 ⁶ (8) 0.61x10 ⁶ (8) 2.4x10 ⁶ 2.2x10 ⁶ 1.5x10 ⁷ 1.5x10 ⁷ 1.3x10 ⁸ 3.0x10 ⁷ 4.5x10 ⁷ 0.52x10 ⁸ 4x10 ¹⁰	2. $2x10^{11}$ 4. $9x10^{6}$ 1. $57x10^{8}$ 1. $2x10^{5}(6)$ 1. $3x10^{5}(6)$ 2. $2x10^{5}(6)$ 1. $1x10^{5}(6)$ 1. $1x10^{5}(6)$ 1. $1x10^{5}(6)$ 1. $2x10^{5}(6)$ 1. $2x10^{5}(6)$ 1. $2x10^{5}(6)$ 2. $2x10^{5}(6)$ 0. $76x10^{5}(6)$ 3x10 ¹¹	Ĩ
r/R) aging.						

....

		- 17	6-		:	· · · · ·
	· · ·	· · ·	· · · · · ·	· · · · ·	······	· · · ·
10	,					
10	11	12	13	•	14	15
.66x10 ¹² .4x10 ⁹ .0x10 ⁹ .8x10 ⁷ .5x10 ⁶ .82x10 ⁶ .0x10 ⁷ .2x10 ⁷ .25x10 ⁷ .1x10 ⁸ .0x10 ⁷ 5 (7) 5 (7) 5 (7) 5 (7) 5 x10 ¹⁰	0.78x1012 2.2x108 1.7x109 5.0x106 5.0x106 6.8x107 3.5x107 2.1x107 1.56x107 1.2x108 0.82x108 0.83x108 4.0x108 0.8x108 1.4x108 1.3x108 4.4x107	4.5x1011 5.2x109 2.2x109 1.2x107 1.3x107 1.7x107 1.6x108 2.0x108 2.0x108 0.94x109 0.9x109 0.9x109 1.8x109 1.05x109 240 (7) 300 (7) 0.95x1011	3.5x101 3.2x108 4.0x106 1.2x106 1.2x106 3.0x107 1.1x107 1.3x107 0.60x107 0.60x107 0.84x10 4.0x106 0.92x10 280 (7) 2200 (7	8 7 6)	1.7x1012 1.2x109 1.5x1010 1.7x107 2 x107 5x107 2.4x105(6) 3.4x108 3.4x108 1.4x109 14 (7) 24 (7) 40 (7) 34 (7) 36 (7) 35 (7) 2.*8x10 ¹⁰	1.1x10 ⁸ 1.1x10 ⁸ 1.1x10 ⁸ 1.1x10 ⁸ 12 (7) 12 (7) 10 (7) 13 (7) 7.5 (7) 8 (7) 8.3 (7) 5x10 ¹⁰
	· · · ·	• • • •	× • ,	••, •	•••,•	• • • • •
• • • •		• • •			· · ·	
	· · · · ·	· · · · · ·	• •	•		; ,*
· · ·		•		•	•	н 'уг)
· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	. 		• • • • • • • • • • • • • • • • • • •	·
· · · · ·	· · · · · ·	· · · · · · · · · · · · · · · · · · ·		·· · · ·	· · · · · · · · · · · · · · · · · · ·	े.

	•			· .				•
· · ·			- 17c-	• •	· · · · ·	•	• •	•
		· ·	· · · · · · · · · · · · · · · · · · ·		•		•	••
		•	••••	. • .	. 1	-	• •	•
÷.	1		•	•		•	<i></i> .	:
•		۰ ۰	•	۲ ۲	·	·		.• .•
*	Y	· .	-		•	•	•	
16	17	18	1		20	•	21	-
6500(7) 1 1.5x10 ⁴ (7) 0 : 1	.8x10 ¹² .2x10 ⁹ .7x10 ⁹ .4x10 ⁶ .8x10 ⁶ .1x10 ⁶	$\begin{array}{c} 0.9 \times 10^{12} \\ 1.1 \times 10^{7} \\ 1.0 \times 10^{7} \\ 8000 (7) \\ 1.2 \times 10^{4} \\ 1.5 \times 10^{3} \\ 15 \times 10^{3} \end{array}$	1.2x 0.6x 2.6x 2.1x 7) 1.5x 7) 1.5x 1.3x	107 107 107	1.59x10 ¹ 1.7x10 0.64x10 ⁸ 9000 (7) 1.x10 ⁴ (7) 42 x10 ³ (x10 ¹¹ x10 ⁶ .6x10 ⁸ .7x10 ⁶ .5x10 ⁵ (6) .1x10 ⁵ (6) .6x10 ⁵ (6)	
$\begin{array}{ccc} \cdot 2.4 \times 10^{3} (6) & 0 \\ 2.1 \times 10^{5} (6) & 0 \\ 4.5 \times 10^{6} & 5 \\ 5.5 \times 10^{6} $.7x107 .7x107 .56x107 .0x107 .5x107 .0x107 .0x107 .6x108	16 x10 - ((7) 1.4x 7) 1.4x 7) 1.1x 1.4x 2.1x 0.88	107 107 108 108 108 108 108 108 108	30 x10 ³ (28 x10 ³ (120 (7) 120 (7) 150 (7) 500 (7)	7.): 27): 27): 27): 20 0 1 2 0 0	1x10 ⁵ (6) 2x10 ⁵ (6) .52x10 ⁶ (5 .6x10 ⁵ (6) .1x10 ⁵ (6) .82x10 ⁶)
5.4 (7) 4	.5x10/	70 (7) 70 (7) 65 (7) 3.5x10 ¹⁰	4.5x	108	300 (7) 100 (7) 90 (7)	2	.7x105(6) .2x105(6) .5x105(6) .9x10 ¹¹	ж. Г
	. A [.]	•	4 <i>,</i> , ,	** **		• •	· • • •	
		•			• ,	• •	F 1	· ·
ale franz ser an a			•••••••					• • •
			•		•	:		•
		.'•	. •		i i			•
	•					• •	•	•
. ·		•					• • • *	
				• .	•	• .		
	•	• • • • •	х н	•••••	•• •• •• •• •	• • • •		
	:*	•	× ••••••••••••••••••••••••••••••••••••		· · · · · · · · · · ·	•		

		- 17d-	,	.• • •	• :
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	···.:
•	•		• • •		· · . ·
	• •	. •	· ·	•	, · ·
	$\frac{22}{1.5 \times 10^{12}}$	$ \begin{array}{r} 23 \\ 0.9x10^{12} \\ 3x10^{7} \\ 3x10^{7} \end{array} $	<u>24</u> · . 5x10 ¹¹	25 1.8x10 ¹⁰	
	$\begin{array}{c} 0.53 \times 10^9 \\ 1.1 \times 10^{10} \\ 0.96 \times 10^7 \\ 1.05 \times 10^7 \\ 2.5 \times 10^7 \\ 1.4 \times 10^8 \\ 1.35 \times 10^8 \\ 1.35 \times 10^8 \\ 1.3 \times 10^8 \\ 3.6 \times 10^8 \\ 3.6 \times 10^8 \\ 1.35 \times 10^9 \\ 3.0 \times 10^8 \\ 0.51 \times 10^9 \\ 0.54 \times 10^9 \\ 0.54 \times 10^9 \\ 0.7 \times 10^{11} \end{array}$	$\begin{array}{c} 0.72 \times 10^{\circ} \\ 0.8 \times 10^{\circ} (6) \\ 0.71 \times 10^{\circ} (6) \\ 1.4 \times 10^{\circ} (6) \\ 2.\times 10^{4} (7) \\ 1.15 \times 10^{5} (6) \\ 2.8 \times 10^{5} (6) \\ 2.6 \times 10^{5} (6) \\ 1.6 \times 10^{6} \\ 2.6 \times 10^{5} (6) \\ 1.4 \times 10^{5} (6) \\ 1.4 \times 10^{5} (6) \\ 3.0 \times 10^{5} (6) \\ 5 \times 10^{10} \end{array}$	0.8x10 ⁷ 2.8x10 ⁷ 1.5x10 ⁵ (6) 1.2x10 ⁵ (5) 55 x10 ³ (7) 2.0x10 ⁵ (6) 3.5x10 ⁵ (6) 1.8x10 ⁵ (6) 1.1x10 ⁶ 0.88x10 ⁵ (6) 0.9x10 ⁵ (6) 0.9x10 ⁵ (6)	$1.4x10^{7}$ $0.52x10^{9}$ $1.3x10^{5}(6)$ $0.8x10^{5}(6)$ $1.2x10^{5}(6)$ $1.6x10^{5}(6)$ $1.8x10^{5}(6)$ $1.8x10^{5}(6)$ $1.8x10^{5}(6)$ $1.8x10^{5}(6)$ $1.8x10^{5}(6)$ $2.0x10^{6}$ $2.8x10^{5}(6)$ $1.7x10^{5}(6)$ $2.0x10^{5}(6)$	
	e e e e e e e e e e e e e e e e e e e			• • • • • •	
		ر . بر . بر .	· · · ·		
	e in griedel e jage 2002			ali ta ang ting tanang aga sa	2 7 . 1 • • • • •
	:	•••	••••••••••••••••••••••••••••••••••••••		•
				· . ·	• •
	• •••••		•	•	
and the second s	i an an an an an an a' a	· · · · · · · · · · · · · · · · · · ·	·	· · · · · · · · · · · · · · · · · · ·	

HIGH VOLTAGE WITHSTAND TESTS (HI-POT)

Table 4 presents the results of the hi-pot tests

performed at the conclusion of the test program.

TABLE 4

Results of Hi-pot Tests Performed at Conclusion of 37 Day Environmental Exposure

				<u>ar Exposure</u>
Sample No.	Required	Actual	Current(mA)	Comments
3 5 6 7 8 9 11 .17 .17 .19 .21 .22 23 24 25	2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2	2.2 1.5 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2	1.6 1.9 2.1 2.0 1.9 2.4 1.9	Held for 5 min. Did not hold. Held for 5 min. Held for 5 min.

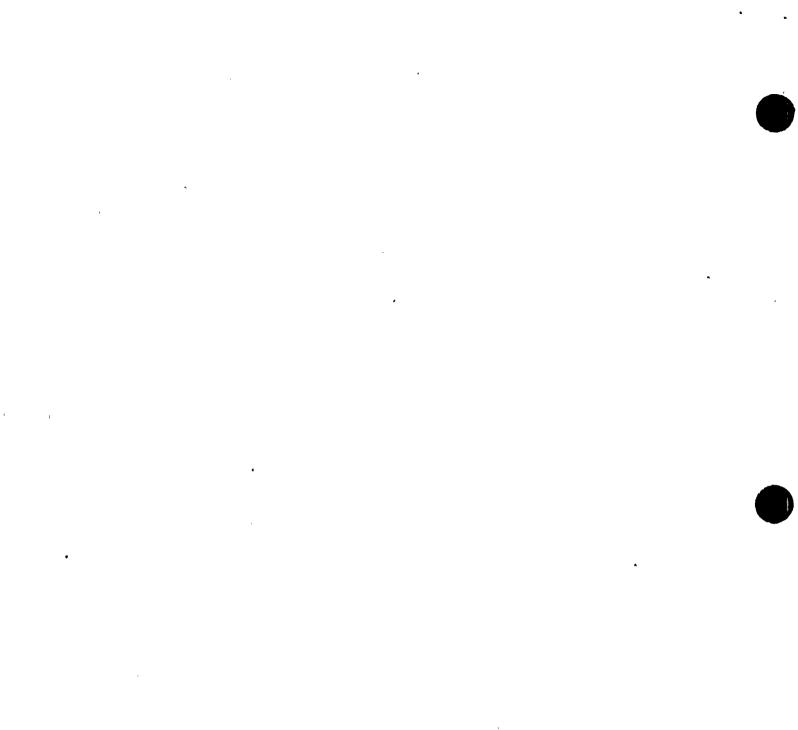
h.

a

•

.

.


.

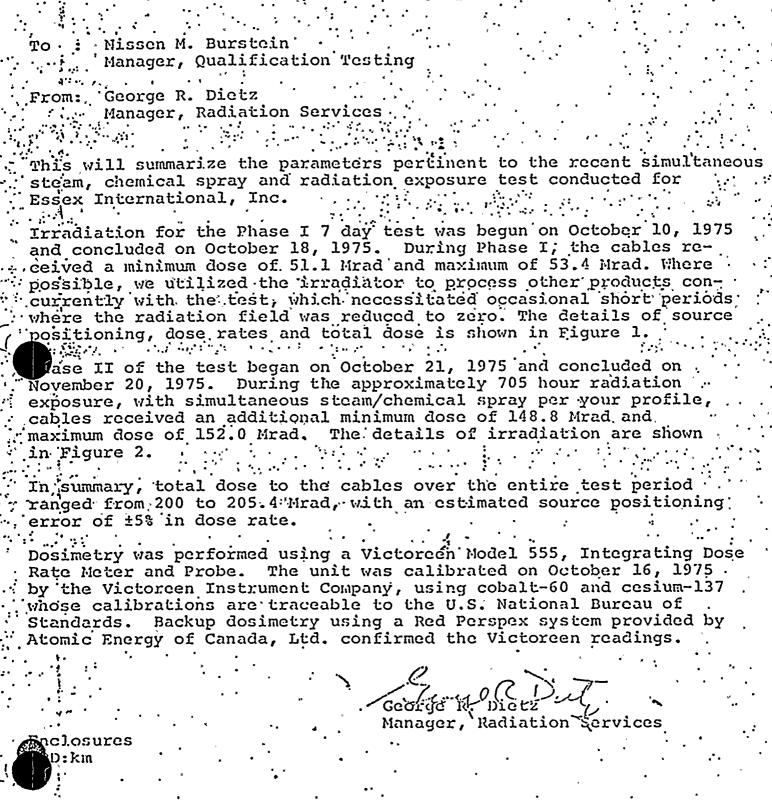
CTION 6. CERTIFICATION

true account of the test conducted and the results obtained.

Ressen M. Burstoin

Nissen M. Burstein Manager, Component Testing

• , .



APPENDIX A RADIATION CERTIFICATION

November 21, 1975

Inter Company Memo

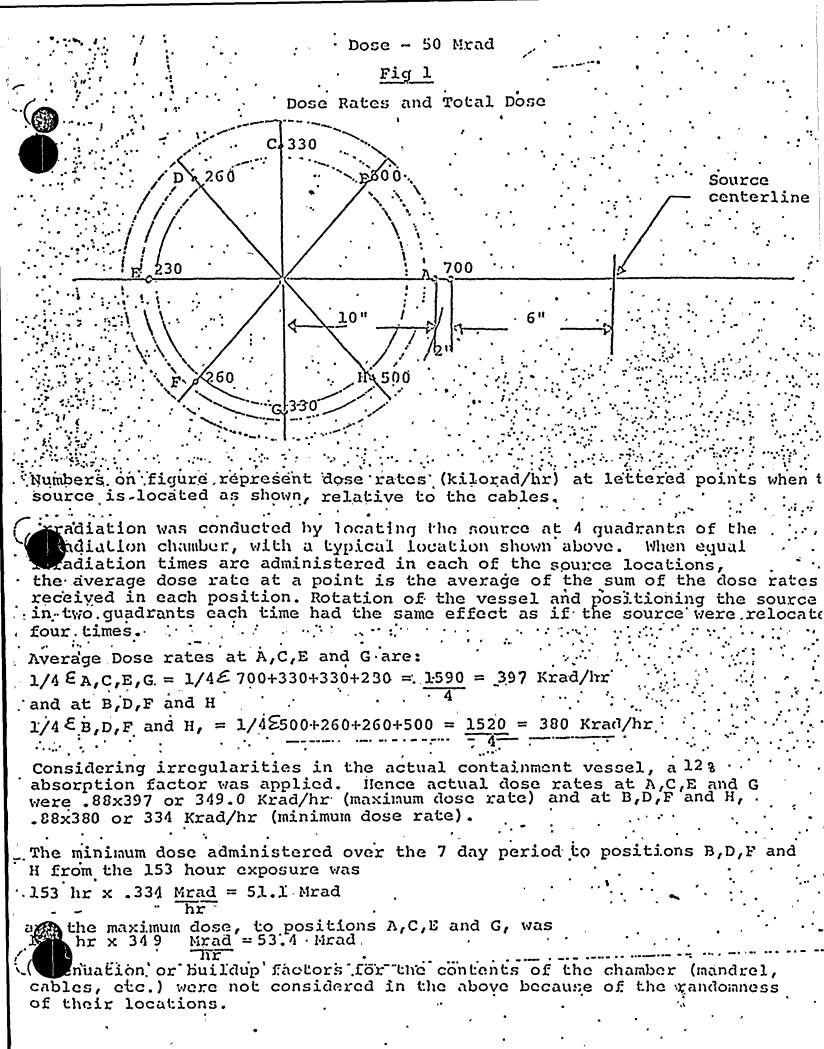
Isomodix Inc. . 25 Eastmans Road, Parsippany, New Jersey (201) 887-4700 Malling Address: Past Ollico Box 177, Parsippany, New Jersey 070,54 • •

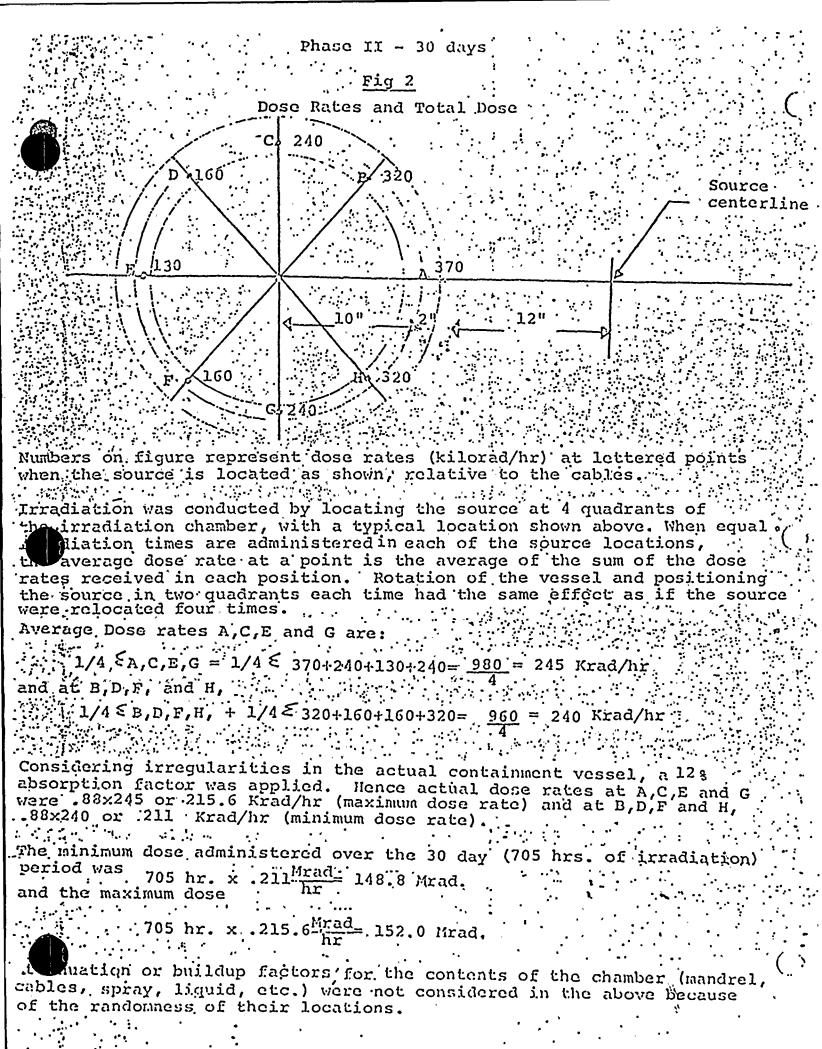
۸ ۲ •

· · ·

, ,

.


.

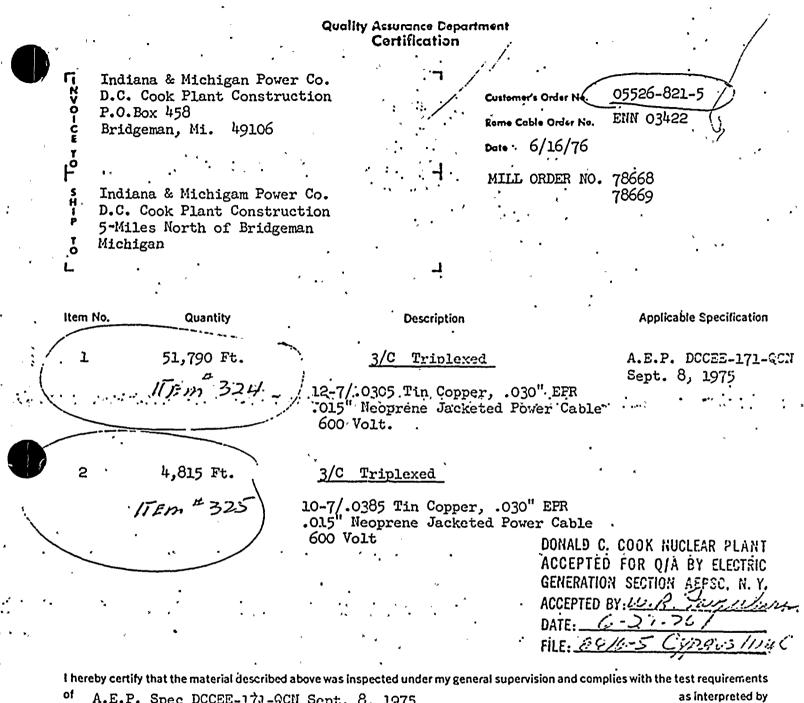


ų

•

۰. ۰

, . .


. .

-

-

e

Cyprus Wire & Cable Company

of A.E.P. Spec DCCEE-171-9CN Sept. 8, 1975 Rome Cable Quality Assurance Procedures prior to being placed into stock or released for shipment.

Test records will be kept on file Two years from date of test, and will be made available for examination by authorized persons upon request.

· • • • •

QA DOC. INDEX SER. # <u>FQ0038</u>	ļ
DATE GIIL/76	ĺ
KEYWORDS	
1. 055268215	
2	•
3	•
4	•
5	-
REF. <u>PE</u>	•
EXP	•

Sianed. Title Sandar

Q A -- 733

*

,

. . . .

.

Cyprus Wire & Cable Company

421 Ridge Street Rome, New York 13440 Telephone 315) 337-3000

June 16, 1976

Post Ollice Box 71 TWX 510) 243-9732

Indiana & Michigan Power Co. D.C. Cook Plant Construction P.O. Box 458 Bridgeman, Mi. 49106

Gentlemen:

We certify that a radiation registance qualification test has been performed on cable samples of similar construction employing identical insulating materials to the cables on this order. The test procedure used was that in IEEE Std. 383-1974 Para. 2.3.3 but with a 2 X 10^8 rd radiation dose rather than 5 X 10^7 rd. All cable samples passed the test. The radiation qualification test conducted was more severe than that required in Para. VI.A.3 of Specification DCCEE-171-QCN.

L.A. Dovlé

Senior Analyst, Q.A.

LAD: cs

DONALD C. COOK NUCLEAR PLANT ACCEPTED FOR Q/A BY ELECTRIC GENERATION SECTION ANNOLS. H. Y.A ACCOMPTED BY:

•	
Q A	- 240

: Ref. 40

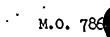
M.O. 78668

• •

CTERUS:		* 			surance Department Test Data	SHEET 1 OF 5	6/16/76 . Power Co.
DESCRIPTION 3/c Triplexe Jucketed Poy	ed, 12-7/.(ver Cable	0305 Ťin C 600 Volt	opper, .C	30" EPR,	.015" Neoprene	SPECIFICATION A.E.P. DCCEE-171-	QCN- Sept. 8, 1
	PHYSICAL PR	OPERTIES *			:	ACCELERATED WATER ABSORPTION TESTS	
······································	ואגעו	ATION	JA	CKET ·	ELECTRICAL METHOD: Immerse	d at C at an average stress .	TEST
	TEST 1- SUE	SPECIFIED MIN	IEST VALUE	SPECIFIED MIN	of volt: and volts per	mil, cycles	VALUE SPE
	ONG	IAL :	ন		INCREASE IN LIC. 1-14 days, INCREASE IN SIC. 7-14 days,		
761382, svi		700:		1	STABILITY ANCTOR AFTER 14 D	AYS, %	·
Series a. S. D'S M gallon, pil							
elono.pr.s. T	300	250	,,		GRAYD-FIRE METHOD: has a	sion for 7 signs at 70°C	,
SLT = That a was been to the		h mox	j	· (nax		grams por solvare lach Insulation	1 2.47 10.
	AFTER A	GIMG	, , ,	· · ·		CAPACITY AND POWER FACTORS TESTS	angan dang dang di kanan panan dan pa
ONY CRH 27:2831-16 7251:	,	و جدالت الله ، و با التالي و ال			Measured at 60 sector after	Day(s) in water at C	
in or ind pri					SPECIFIC INDUCTIVE CAPACIT	······································	
T'Nhit, to of cognat					POWER FACTOR, %	•	
HOURAHON, TA Hariginal				-		· · · · · · · · · · · · · · · · · · ·	
						MISCELLANEOUS TESTS	•
ala cyen test:		4			INSULATION	•	
1 <u>18 hn. att 21 'C</u>					· · · · · · · · · · · · · · · · · · ·		•
Ittistic, Test or Small	04.1	75.0			3 Hr. Ottone Rest	stance @ .030% - No Crackin	
ElCidiAllON, Se of original	83.3	75.0	•			isounce o to job - no oracki	¹ 8
					JACKET		•
AIR PRESSURE HEAT TEST:		±			· · · · · · · · · · · · · · · · · · ·		
hes, at Cond psi			•		Vertical Flame	Test Passed Per Para VI-A-2	of Spec DCCEF
tersite, Statur List				·	171-QCN	· · · · · · · · · · · · · · · · · · ·	or opect boom
ACHGANON, Sout original		,				· .	
					· · · · · · · · · · · · · · · · · · ·	DONALD C. COOK NUCLEAR P	
المتعموه المتع	OIL IMMERS	ION TEST		REF. EXP.	SERVICE SERVICE	ACCEPTED FOR OTA BY FU	CTDIC.
hrs of		•			SIZEN.	SEACHAHUN SECTION AFPSC	N V.
Istime, W of engine						ACCEPTED BY: CU. R. Fry	recharm
ELCHGATION, Coloriginal				- lu	11582	DATE: 6-21-76/	
		Ť	*		0004	FILE: 68 16-5 CV	
							PRUS WYC
		•	·		05	<[//	
				L			

.

state fiste from constant of the cable discribed above.



ĩ

x

•, • •

.

786

\$

Piom. Cable Division of CYPRUS MINES CORPORATION : DESCRIPTION 3/C Triplexed 12-7/.0305 Tin Copper, Jucketed Power Cable 600 Volts						Quality Assurance Department Electrical Test Data , .030" EPR, .015" Neopreue				tment Data :e	SHEET 2 OF 5 CUSTOMER Indiana & Michigan Power Co. ORDER NO. ENN 03422 C. O. NO. 05526-821-5 SPECIFICATION A.E.P. DCCEE-171-QCN Sept.			
REEL NUMJER		CONSTR		<u></u>	LENGTH	A-C VO	LTAGE	D.C YOLT	AGE	- (60	(1)		ONA VEL	MISCELLANEOUS TESTS
	SIZE	NO. STDS.	DIA. STDS.	WALL	FEET ,	kv	TIME	kv	TIME	megohm AÇTUAL	s - 1000' SPEC	ACTUAL	SPEC .	MISCELEAREOUS TESTS
73639 73251 37251 37507 73249 73306 73250 73245 73245 73245 73245 73250 37508 37508 37508 37508	12 3/C	7	.0305	.030 .015	4040 2525 2065 1385 660 340 1500 465 420 450 810 1520 920. 1820 425 710 2085.	4.0	. 5			12435(3) 17693(3) 5832(3) 7456(3) 8045(3) 18108(3) 18312(3) 15300(3) 8818(3) 47538(3)			G	CONFINUITY OK DONALD C. COOK NUCLEAR PLANT CCEPTED FOR Q/A BY ELECTRIC ENERATION SECTION AEPSC, N. Y. CCEPTED BY: $\underline{Co \cdot R \cdot \mathcal{F}_{acculated}}$ ATE: $\underline{C \cdot \mathcal{P}_{I} - > C}$ TE: $\underline{C \cdot \mathcal{P}_{I} - > C}$

61

6/16/76 Rom > Cable REPORT NO. 3525 DATE SHEET 3 OF 5 CUSTOMER Indiana & Michigan Power Co. CYPRUS MINES CORPORATION **Quality Assurance Department** ORDER NO. ENN 03422 с. о. но. 05526-821-5 Ι. **Electrical** .Test Data SPECIFICATION A.E.P. DCCEE-171-QCN Sept 8, 1975 DESCRIPTION 3/C Triplexed, 12-7/.0305 Tin Copper, .030" EPR, .015 Neoprene Jacketed Power Cable 600 Volt INSULATION RESISTANCE CORONA CONSTRUCTION A-C VOLTAGE D-C VOLTAGE REEL (60F) LEVEL LENGTH NUMBER MISCELLANEOUS TESTS FEET megohms -- 1000' NO. k٧ DIA. SIZE WALL TIME STDS. k٧ kv TIME STDS. ACTUAL SPEC SPEC ACTUAL • • 37543.1 2855 12 .0305 .030 4.0 2617 7 5 3/0 .015 6182(3) 37505 3545 73540 4040 93324(3) .37503 1740 28752(3) 37505 (510) 540 37295 1730 37510 1610 27311(.3) -37296 1970 73307 1260 49140(3) 37294 2775 37506 (3500) 3580 21588(3) 73244 4005 CONTINUITY OK . DONALD C. COOK NUCLEAR PLANT ACCEPTED FOR Q/A BY ELECTRIC 11 GENERATION SECTION AEPSC, N.Y. بتمورية ACCHPTED BY: U.R. Jurilles DATE: 6-21.76 15-5 CIPROS W&C G FILE 82 - × v .

*Not required by applicable specification.

	yprus Wire Cable Company	y į	•	Quality As	surance Depurtment Test Data REPORT NO. 3525 SHEET 4. OF 5 CUSTOMER Indiana & Michigan Power Co. ORDER NO. ENN 03422 C. O. NO. 05526-821-5			
DESCRIPTION 3/C Triplexe Jacketed Powe	d 10-7/.03 r Cable 60	385 Tin Coj 00 Volts	pper, .0	30" EPR, .(30" Neoprene SPECIFICATION A.E.P. DCCEE-171-QCN Sept. 8			
	PHYSICAL P	OPERTIES	• •	•	ACCELERATED WATER ABSORPTION TESTS			
		LATION		CKET	ELECTRICAL METHOD: Immorsed at C at an average stress TEST			
	TESTATUE	SPECIFIED MIN.	TEST VALUE	SPECIFIED MIN	of volts and voits per mil. cycles			
-	OsiGI	HAL		-	INCREASE IN SIC. 1-14 days, %			
		1	·		INICREASE IN SIC, 7-14 days, %			
TENTILI, pai SLIES an SILE Strepation, pai	<u>1104_</u> _	700			STABILITY FACTOR AFTER 11 DAYS. %			
SUSSECTOR STREET	1 250		•·		GRANUMETRIC ANTIMOD: Immersion for 7 days at 70°C			
2.7 (a Rizzi : 200 lui : 10, inia		250	, ,		1951922 2020721902, 2011grams our source inch			
		i most	<u> </u>					
•	AFTER A	ging "			··· CAPACITY AND POWER FACTORS YES75			
OXYGEN PRESSURE TEST			همینانده بر پین و مدهندهاند هم		Measure's at 50 cycles alter Day(s) in water at C			
bes, of C and psi		* •			SPECIFIC INDUCTIVE CAPACITY			
ICHSILE, % of original		<u> </u>			POWER FACTOR, %			
BORGAHON, St of original				ļ				
		<u>ii</u>		1	MISCELLANEOUS TESTS			
AIR GVEN IEST:					INSULATION			
1:20. 017 11 V	- <u>_</u>	<u>, </u>						
TENSILE, "A a louiginal	<u> </u>	75.0 75.0 ·			3 Hr. Ozone Resistance @ .030% No Cracking			
Election (Con, V) of original	60.6	<u>75.0</u>	*					
AIR PRESSURE HEAT TEST:		· · · · ·			JACKET			
hrs at C and psi		•	•	•				
TENSILE, So of original		1		1	Vertical Flame Test Passed per Para VI-A-2 of Spec. DCC			
ILONGATION, 10 of criginal					171-QCN			
The second s					DONALD C ODOX			
	OIL IMMER	SION TEST	· ·	DONALO C. COOK NUCLEAR PLANT ACCEPTED FOR Q/A BY ELECTRIC				
hrs at	1	1		1	ACHERALIUN SECTION ACDOM IN M			
		1		1	ACCEPTED BY CO. G. Traisullarin			
TENSILE, to all original			· · · · · · · · · · · · · · · · · · ·	_1	1 VIGVA I VIGVA I VIGVA			
ILIISILE, Sol original LIONGANON, Sol original	-				DATE: <u>6-21.76</u> FILE: <u>EE. 16-5</u> CUPOS CUGC 6			

Q.A 247	•

•

RON CYPRUS A DESCRIPTION	MINES CO	ORPOR	ATION	0-7/.03 ble 6	85 Tin Ca 00 Volt	opper	• •		Ele	ince Depar ectrical Test 15" Neopre	tment Data	ORDER NO. C. O. NO.	of Indian ENN 05526	na & Michigan Power Co. 03422
REEL		CONSTR	UCTION		LENGTH	A.C.VC	, ĮTAGE	D.C VOL	AGE	INSULATION (60			RONA VEL	
	SIZE	NO. STDS.	DIA. STDS.	WALL	FEET	kv	TIME	^{**} kv	TIME	megohm ACTUAL	- 1000' SPEC		SPEC	MISCELLANEOUS TESTS
37293 37252 37502 88860	10 3/C	7	.0335	.030 .015	1580 1365 510 1360	4.0	5			33180(3) 26128(3)	2173			CONTINUITY OK DONALD C. COOK NUCLEAR PLANI ACCEPTED FOR Q/A BY ELECTRIC GENERATION SECTION AEPSC, N.Y. ACCEPTED BY: $U-B$. Technology DATE: $b-2i-7c^{O}$ FILE: $b-2i-7c^{O}$ FILE: $b-2i-7c^{O}$ FILE: $b-2i-7c^{O}$ FILE: $b-2i-7c^{O}$

		_ •
* * *	A.,	*See also Ref. #7
		DONALD C. COOK NUCLEAR PLANT
		EQUIPMENT QUALIFICATION FILE UPDATE TRANSMITTAL FORM
	۰ı	. TO BE COMPLETED BY COGNIZANT AEPSC SECTION RFC DC
		Attached Forms checked: $EGQ_{96=1}$, $EGQ_{96=2}$, $EGQ_{97=1}$, $EGQ_{97=2}$, L_{CC}
		ORIGINATED BY: A CAF DATE: 11/20/81
		(System Engineer Signature)
		APPROVED BY : Marine DATE: //208/.
	٠	(Cog. Elgitter Signature) : JAL algantica DATE: //ZE:1.
	•	(JEGS Manager Signature)
	2	.TO BE COMPLETED BY AEPSC NS&L SECTION
***		ACCEPTED-TRANSMIT TO AEPSC QUALITY ASSURANCE
		REJECTED- RETURN TO COGNIZANT AEPSC SECTION MANAGER
•		REASON FOR REJECTION:
		AEADON FOR REDECTION:
		· · · · · · · · · · · · · · · · · · ·
•	•	IS NRC SUBMITTAL REQUIRED? YES NO IF YES, GIVE SUBMITTAL LETTER NUMBER AEP:NRC:
		APPROVED BY:DATE:
	3	.TO BE COMPLETED BY AEPSC QUALITY ASSURANCE
		TRANSMITTAL FORM AND DATA RECEIVED BY: DATE:
		CEEQF FILE INDEX UPDATED BY: Date Date
		DATA FILED BY: Date Date
	9	CEEQF FILE NUMBER OF DOCUMENT:
	4	. COPY OF COMPLETED FORM TO BE RETURNED TO ORIGINATOR ELEC.
		GENERATION SECTION.
		To be incorporated in RFC file at close-out.

AMERICAN ELECTRIC POWER SERVICE CORPORATION

DATE: November 20, 1981

JBJECT: Addendum to Environmental Qualification for Electrical Cables Outside the Reactor Containment (Ref. #65)

FROM: L. F. Caso

TO: NRC IE Bulletin 79-01B Central File

In reference to Table I in the original document, we have contacted the cable manufacturers therein listed (Anaconda, Continental, and Essex); our request for information and their responses are attached to this addendum.

In summary, Anaconda advised that their cable was qualified under FIRL test report F-C4350-3 (200 Mrads); Essex advised that their cable was qualified for 100 Mrads; Continental answered that they did not have radiation data on the subject cable.

The Cyprus Company cable listed in Table II is used for applications outside the reactor containment. It has been qualified for radiation to the extent of 200 Mrads and it has passed an air over test of 250°F for seven days and an immersion test for seven days. The arguments developed in the original issue of this reference #65 fully applies as well to the Cyprus Company cable. Therefore, we conclude that this cable is fully qualified for its application outside the reactor containment.

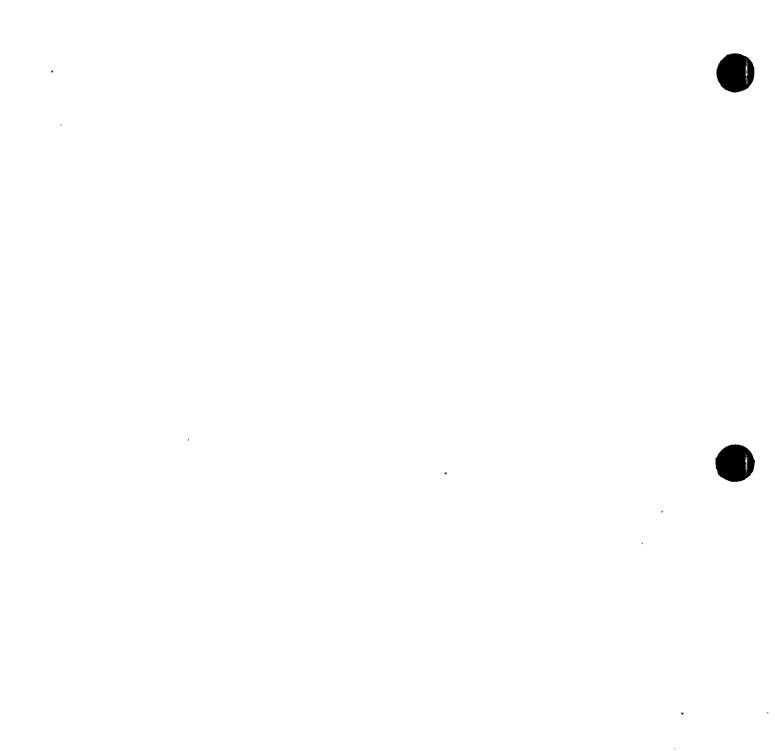

L. F. Caso LFC/jal APPROVED

TABLE II

ţ

تموه ية ا

Cable . Description .	Location in Plant	Cable Insulation/ Jacket Material	Cable Qualification
Cyprus Cable 3 1/C #12 Item #324 600 Volt	Outside Containment	EPR/Neoprene	Cyprus Report #3525 Cyprus statement of 6/16/76
Cyprus Cable 7 3 1/C #10 Item #325 600 Volt		EPR/Neoprene	Cyprus Report #3525 Cyprus statement of 6/16/76
Cyprus Cable 3 1/C #2 Item #3102 5 kV	,n u	EPR/CSPE	Cyprus Report #3658 Cyprus statement of 8/14/76
		·	

ſ

AMERICAN ELECTRIC POWER Service Corporation

2 Broadway, New York, N. Y. 10004 (212) 440-9000

Cable for Cook Nuclear Plant

September 16, 1981

Mr. J. L. Steiner, Chief Engineer Essex Group Power Conductor Division P.O. Box 1000 Lafayette, Indiana 47902

Dear Mr. Steiner:

Cable which we purchased from Essex some time ago is installed in our D. C. Cook Nuclear Plant. The cable is outside the containment and, thus, was not required to be qualified in accordance with our nuclear environment for containment use.

However, due to recent directives from the NRC, we now must provide additional test or engineering data to confirm qualification of the cable for outside containment service for the following conditions: 250°F for 10 seconds, plus 18.26 megarads of radiation, total accumulated dose.

We would be most grateful if you would review your records and files, and furnish test or engineering data which meets or exceeds the above criteria, for the cable listed on the attached sheet.

Your prompt attention to this request and earliest reply would be greatly appreciated.

Very truly yours,

nassar

Electrical Engineering Division

T. J. Massar

TJM/jal ·

cc: H. N. Scherer, Jr. - Columbus S. H. Horowitz J. M. Intrabartola T. E. King L. F. Caso A. Volk

R. F. Kroeger

K. Shiu

.

ıl

.

AEP PO#03694-821-3 dated 5/29/73

Essex Order #114-2548

Essex Certification of Compliance dated 2/13/74, 2/28/74, 5/31/74, 11/18/74, 12/20/74 and 6/11/75

100,000 ft. 3-1/C twisted #12 AWG stranded copper .030" EPR insulation, .015" Neoprene jacket, 600 V. AEP Item 324.

and here in the second sec

East Union St. & Sagamore Parkway P.O. Box 7000 Lafayette, Indiana 47903 317/447-9464

Power Conductor Division

October, 8, 1981

American Electric Power 2 Broadway New York, N.Y. 10004

ハハリ ヒレ

TECHNOLOGIES

Attn: Mr. T. J. Massar-EE Div.

Subj: Cable Radiation & Thermal Resistance

Ref: Cook Nuclear Plant AEP Ord. 03694-821-3, item 324 Essex Ord. 114-2548

Dear Mr. Massar:

We are in receipt of your letter of 9-16-81 requesting radiation and thermal resistance data on the 3 x 1/C #12 EP insulated/neoprene jacketed subject cable.

Attached to and made a part of this letter are data generated on the insulation material and the jacketing material "used on this cable. These data show suitability for use after 100 Megarads (gamma) radiation plus 7d at 136C (276F) for the EP insulation and 50 Megarads (gamma) radiation plus 7 days at 121C (250F) for the neoprene. These test levels readily envelope the requirements of 20 Mrads and 10 seconds at 121C(250F).

We trust this material will be adequate for your present needs.

Very truly yours, .

Doseph L. Steiner Chief Engineer

JLS/fb

cc: E.K. Duffy J.C. Rose A.W. Reczek P. Bernard

TEST DATA

ESSEX GROUP INC

EP (TO35)

DC Cook Plant AEP/EP-Neoprene (non-containment)

Unaged	
Tensile Strength (psi)	1200
Elongation (%)	350
Aged 7d at 136C	•
Tensile Strength (psi)	1000
Elongation (%)	350
Aged 100 M Rads	
Tensile Strength (psi)	900
Elongation (%)	30
Aged 7d at 136C and	
100 M Rads	-
Tensile Strength (psi)	L100
Elongation (%)	24
	••

Actual data typical values

X Steiner

يد د

J. L. Steiner

TEST DATA

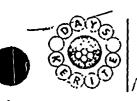
ESSEX GROUP INC

DC Cook Plant

AEP/EP-Neoprene (non-containment)

•	Neoprene (T 450) _.
Unaged	
Tensile Strength (psi)	. 1800
Elongation (%)	450
Aged 7á at 121C	
Tensile Strength (psi)	1500
Elongation (%)	110
, Aged 50.M Rads Tensile Strength (psi)	1300
Elongation (%)	. 120
Aged 7d at 136C and 50 M Rads	•
Tensile Strength (psi)	, 2000
Elongation (%)	35

Actual data typical values


L. Steiner

REF # 70

•	
DONALD C. COOK NUCLEAR PLANT	_
EQUIPMENT QUALIFICATION FILE UPDATE TRANSMITTAL FORM	-
1.TO BE COMPLETED BY COGNIZANT AEPSC SECTION .	
	•
SUBJECT: Kerite Progr Cable Environmental Give ORIGINATED BY: <u>FELSE</u> DATE: <u>5/2.5/</u>	Selicition
ORIGINATED BY:	82
APPROVED BY : THE DATE: 052.58	2.
(Signature) (Signature) (Signature)	
2. TO BE COMPLETED BY AEPSC NS&L SECTION	
ACCEPTED-TRANSMIT TO AEPSC QUALITY ASSURANCE	÷
· *	
REJECTED- RETURN TO COGNIZANT AEPSC SECTION MANAGER	
BERCON FOR DETECTION.	¥
REASON FOR REJECTION:	
IS NRC SUBMITTAL REQUIRED? YES NO	
IF YES, GIVE SUBMITTAL LETTER NUMBER AEP:NRC:	·
APPROVED BY: DATE:	
3. TO BE COMPLETED BY AEPSC QUALITY ASSURANCE	
TRANSMITTAL FORM AND DATA RECEIVED BY:	
(Initials)	_DATE:
``	
CEEQF FILE INDEX UPDATED BY:(Initials)	Date
(Initials)	
· ·	Date
DATA FILED BY:(Initials)	Date
CILLS FILE NUMBER OF DOCUMENT:	
	ĸ
	• •

* * *

49 Day Street Seymour, Connecticut 06483 (203) 888-2591

the kerite company

April 18, 1980

American Electric Power Service Corporation 2 Broadway New York, New York 10004

Attention: L. F. Caso

Re: A.E.P. Purchase Order No. 05601-821-2 A.E.P. Cable No. 3127 Kerite No. B-3230 Radiation Qualification D.C. Cook Nuclear Generating Station

Gentlemen:

Per the request of your Mr. W. R. Farquharson and your telephone conversation with our Mr. J.M. Parks, we are enclosing the documentation for the above referenced item.

If we may be of any further assistance, please do not hesitate to call.

Yours truly,

THE KERITE COMPANY

Robert J. Henry Customer Service Representative

RJH:sal Enc.

> () (HUBBELL

a subsidiary of HARVEY HUBBELL INCORPORATED

. •

. •

· •

μ , 1

.

•

ie kerite company

REF/lc

AMERICAN ELECTRIC POWER SERVICE CORPORATION

DONALD C. COOK NUCLEAR GENERATING STATION

RADIATION QUALIFICATION

Samples of Kerite unaged and aged 600 volt and 1000 volt HTK, FR jacketed power cables, with and without splices, have been type-tested to 200 megarads at a rate of less than 1.0 megarads per hour in a Cobalt 60 Gamma Field.

On the basis of this testing, it is concluded that the Kerite 1000 volt HTK FR jacketed cables, as supplied for the subject installation, will operate after exposure to radiation levels up to the severity of those simulated in the test. The 200 megarad test level is 1.33 times the 150 megarad level given in the May 30, 1979 letter to the Kerite Company from William R. Farquharson, American Electric Power.

R. E. Fleming

Nuclear Development Engineer

APPROVED irdner.

Subscribed and sworn to before me this 27^{th} day of July, 1979.

Onne Hell

Explice marine and a

AMERICAN FLECTRIC POWER Service Corporation

2 Broadway, New York, N. Y. 10004 (212) 422-4800

AEP PO#05601-821-2 AEP Cable #3127 (Kcrite B-3230)

May 30, 1979

The Kerite Company 49 Day Street Seymour, Conn. 06483

Attention: Mr. J. W. Campbell, Jr.

Gentlemen:

Subject power cable, 3-1/C twisted #2 AWG stranded copper with H.T.K. insulation and FR jacket was qualified to 120 Mrads of radiation in your report of April 30, 1970 entitled, "Report on the Effects of Gamma Radiation and Autoclaving on Kerite Power and Control Cables".

We would very much like to have in our file an additional report which will qualify the subject cable to 150 Mrads of radiation. Do you have such a report available? If so, please respond by forwarding a copy at your earliest convenience. If not, please advise.

Your prompt attention to this correspondence will be much appreciated.

Very truly yours, Eller. R. -toran

William R. Farquharson Electrical Engineering Division WRF/jal APPEOVED.

cc: L. F. Caso

8 ·

ж.

,

с. . .

*****, ۶

•

.

AMERICAN ELECTRIC POWER Service Corporation

2 Broadway, New York, N. Y. 10004 (212) 440-9000

AEP PO#05601-821-2 AEP Cable #3127 (Kerite B-3230)

July 23, 1979

The Kerite Company 49 Day Street Seymour, CN 06483

Attention: Mr. C. A. Lundy

Gentlemen:

On May 30, 1979, I wrote you (copy of that correspondence attached).

On June 19, 1979, you called re my letter and advised "you would get back to me".

I wonder if at this time you are in a position to forward either a report (as requested in attached) or an "offical" Kerite statement (letter) attesting that the cable identified above will, or will not, withstand 150 Mrads of radiation.

Your response one way or the other is critical to a research project being conducted by us (AEPSC), therefore a prompt reply from you will be very much appreciated.

Thanking you in advance, I am,

Very truly yours W joleoner.

William R. Farguharson Electrical Engineering Division

WRF/jal APPROVED cc: L. Caso

.

. •

.

.

.

•

.

ı

6

. .

.

3

AMERICAN ELECTRIC POWER Service Corporation

2 Broadway, New York, N. Y. 10004 (212) 440-9000

Previous Correspondence on Kerite Power Cable Environmental Qualifications

April 10, 1980

Mr. C. A. Lundy The Kerite Company 49 Day Street Seymour, CT 06483

Dear Mr. Lundy:

Attached for your reférence, find our communications of 5/30/79 and 7/23/79 that Mr. S. H. Horowitz refers to in his recent telephone conversation with you.

Very truly yours,

T. . Caso

F. Electrical Engineering Division LFC/jal APPROVEL

cc: S. H. Horowitz T. E. King

REF# 70 DONALD C. COOK NUCLEAR PLANT EQUIPMENT QUALIFICATION FILE UPDATE TRANSMITTAL FORM 1. TO BE COMPLETED BY COGNIZANT AEPSC SECTION (Signature) APPROVED BY : TEKING DATE: 092882 DATE: 3/28/80/ Johnt macura) 2. TO BE COMPLETED BY REPSC NS&L SECTION ACCEPTED-TRANSMIT TO AEPSC QUALITY ASSURANCE REJECTED- RETURN TO COGNIZANT AEPSC SECTION MANAGER REASON FOR REJECTION: IS NRC SUBMITTAL REQUIRED? YES NO IF YES, GIVE SUBMITTAL LETTER NUMBER AEP:NRC: APPROVED BY: DATE: 3. TO BE COMPLETED BY AEPSC QUALITY ASSURANCE TRANSMITTAL FORM AND DATA RECEIVED BY: DATE (Initials) CEEQF FILE INDEX UPDATED BY:______(Intrials) Date s' DATA FILED BY: ______ (Inicials) Date 1

Jan States and States

AMERICAN ELECTRIC POWER SERVICE CORPORATION

September 28, 1982

SUBJECT: The Kerite Company Cable Environmental Qualification

FROM: L.

TO:

L. F. Caso

79-Ø1B Central File

The attached letter from the Kerite Company dated 9/21/82 should be made part of our equipment qualification document reference numbers 63,68. (70) and 72.

F. Caso

2.4/LFC:jal APPROVED J.M. INTRABARTOLA

• ;

· · .

,

,

•

٠

.

.

49 Day Street Seymour, Connecticut 06483 (203) 888-2591

Mail All Correspondence To: P.O. Box 452 Seymour, Connecticut 06483

١.

1975 per N. Dule 9/27/82

HUBBEL

September 21, 1982

American Electric Power Service Corporation 2 Broadway New York, NY 10004

the kerite company

ATTENTION: T.J. MASSAR -ELECTRICAL ENGINEERING DIVISION

Dear Sir:

SUBJECT: DONALD C. COOK NUCLEAR PLANT

REFERENCE: QUALIFICATION UPDATE

We have enclosed LOCA profile (excerpted from "Tests of Electrical Cables Under Simultaneous Exposure to Gamma Radiation, Steam and Chemical Spray While Electrically Energized" - March, 1985; Final Report #F-C4020-2; Figure 1) which describes a 100-day test conducted by the Franklin Institute Research Laboratories. This test provided a sodium borate chemical spray with a pH of 10.5 for 100 days continuously. The attached profile and the following results are offered as documentation of Kerite insulation and Jacket materials! "Long-Term" (three months) Immersion performance in a sodium borate solution.

The two cable samples (tested in referenced report) are representative of each 1/C which form the 3/C cable. Both samples (aged and unaged) are described as follows:

1/C, #6 AWG, 65 mil HTK (N-98) insulation and 65 mil FR (HC-711) jacket.

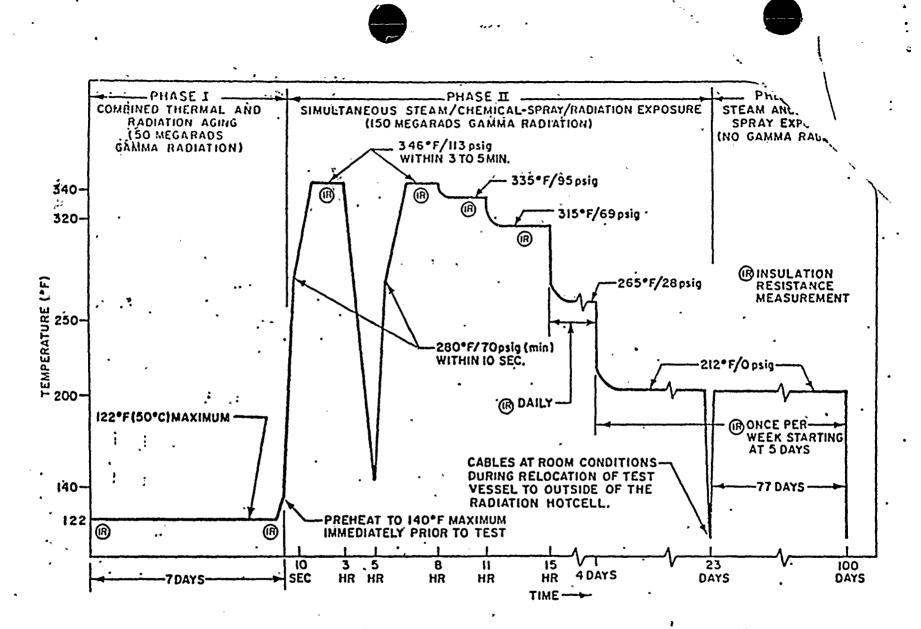
Each sample was irradiated to 200 megarads while installed in the autoclave. In summary, both cables maintained their electrical loading (1000v ac, 50 amps) throughout the test. Each cable passed the 5 minute voltage withstand test of 80 volts ac per mil of conductor insulation. This test was performed after completion of the LOCA exposure and prior to di assembly of the test vessel while the cables were still on the mandrel. American Electric Power Corp.

We trust that this is sufficient information to enable you to answer the " inquiry of the NRC.

Very truly yours,

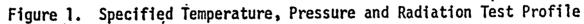
THE KERITE COMPANY

From the office of:


C.A. Lundy Metropolitan Sales Manager

I. Dulie .

Signee: Norma H. Dube Administrative Sales Assistant


CAL/NHD/ss Enclosure

÷

.:

منفزه يرم

Υ.

	• • • • •	
	DONALD C. COOK NUCLEAR PLANT RE	纤 #72
1	EQUIPMENT QUALIFICATION FILE UPDATE TRANSMITTAL FORM	-
	1. TO BE COMPLETED BY COGNIZANT AEPSC SECTION	*
	SUBJECT: Kerite Company Cable Envernmenter	Buchtucatura
•	ORIGINATED BY: A CAST DATE: 9/28	
	(Signature)	
1	APPROVED BY : TURING. DATE: 0978	<u>B2</u>
	(Signature) : DATE: 9/23/	
	(Signature)	3 /
*	2. TO BE COMPLETED BY AEPSC NS&L SECTION	
	ACCEPTED-TRANSMIT TO AEPSC QUALITY ASSURANCE	
•	REJECTED- RETURN TO COGNIZANT AEPSC SECTION MANAGER	
		,
	REASON FOR REJECTION:	
	· · · · · · · · · · · · · · · · · · · ·	s
	· · · · · · · · · · · · · · · · · · ·	
••.	IS 'NRC SUBMITTAL REQUIRED? YES NO IF YES, GIVE SUBMITTAL LETTER NUMBER AEP:NRC:	*
×		
•	APPROVED BY:DATE:	·
	3. TO BE COMPLETED BY AEPSC QUALITY ASSURANCE	
•	TRANSMITTAL FORM AND DATA RECEIVED BY:	DATE:
	(Initials)	·····
-	CEEQF FILE INDEX UPDATED BY:	_ Date
•	(Initials)	•
· · ·	DATA FILED BY:	Date
	(Inicials)	
	CIECT FILE WURDER OF DOLUMENT:	
	Carla Cal. I a tata a bila and ta ta ba i an an an an an an an an ang ang ang ang	
U		· .
		· •
· •	· ·	· · · ·
	· · ·	

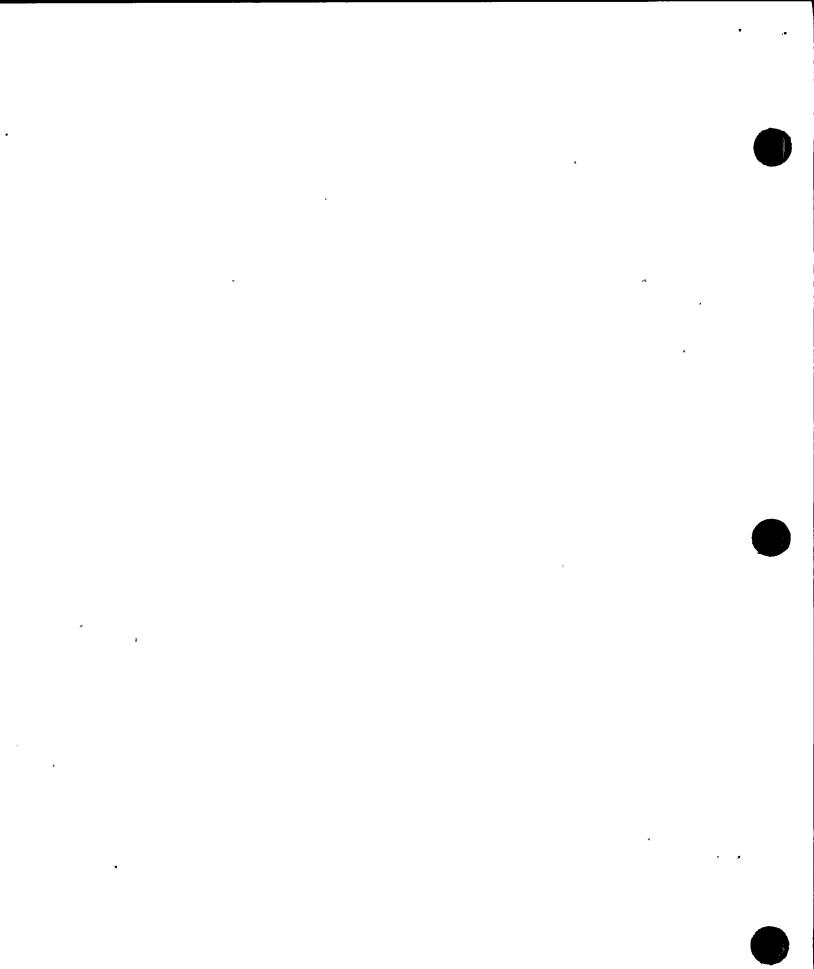
AMERICAN ELECTRIC POWER SERVICE CORPORATION

١

TO:

September 28, 1982

. subject: The Kerite Company Cable Environmental Qualification


FROM: L. F. Caso

79-ØlB Central File

The attached letter from the Kerite Company dated 9/21/82 should be made part of our equipment qualification document reference numbers 63,68,70 and (72.)

F. Caso L.

2.4/LFC:jal APPROVED INTRABARTOLA J...M.

49 Day Street Seymour, Connecticut 06483 (203) 888-2591

Mail All Correspondence To: P.O. Box 452 Seymour, Connecticut 06483

124 T.M

1975 per N. Dube 9/27/82

September 21, 1982

American Electric Power Service Corporation 2 Broadway New York, NY 10004

the kerite company

ATTENTION: T.J. MASSAR -ELECTRICAL ENGINEERING DIVISION

Dear Sir:

.SUBJECT: DONALD C. COOK NUCLEAR PLANT

REFERENCE: QUALIFICATION UPDATE

We have enclosed LOCA profile (excerpted from "Tests of Electrical Cables Under Simultaneous Exposure to Gamma Radiation, Steam and Chemical Spray While Electrically Energized" - March, 1985; Final Report #F-C4020-2, Figure 1) which describes a 100-day test conducted by the Franklin Institute Research Laboratories. This test provided a sodium borate chemical spray with a pH of 10.5 for 100 days continuously. The attached profile and the following results are offered as documentation of Kerite insulation and jacket materials' "Long-Term" (three months) immersion performance in a sodium borate solution.

The two cable samples (tested in referenced report) are representative of each 1/C which form the 3/C cable. Both samples (aged and unaged) are described as follows:

1/C, #6 AWG, 65 mil HTK (N-98) insulation and 65 mil FR
(HC-711) jacket.

Each sample was irradiated to 200 megarads while installed in the autoclave. In summary, both cables maintained their electrical loading (1000v ac, 50 amps) throughout the test. Each cable passed the 5 minute voltrge withstand test of 80 volts ac per mil of conductor insulation. Thi test was performed after completion of the LOCA exposure and prior to di assembly of the test vessel while the cables were still on the mandrel. American Electric Power Corp.

September 21, 1982

We trust that this is sufficient information to enable you to answer the 'inquiry of the NRC.

Very truly yours,

THE KERITE COMPANY

From the office of:

C.A. Lundy Metropolitan Sales Manager

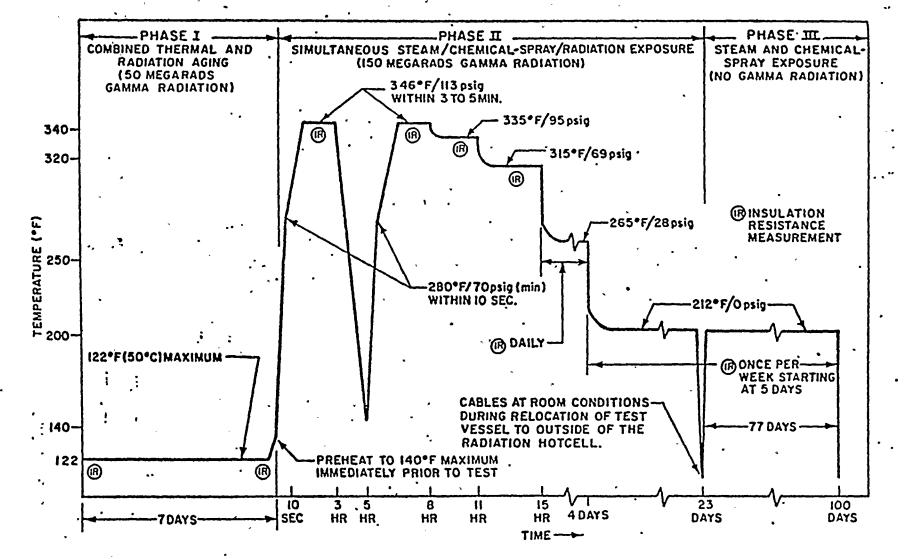
H. Dale . Norma H. Dube

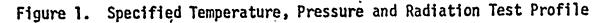
Signee:

 \mathbf{N}

Administrative Sales Assistant

CAL/NHD/ss Enclosure


۰ ۲ . . .


. .

.

•	Ket. 1 EGQ	#98
	· · · ·	Chemical
	DONALD C. COOK NUCLEAR PLANT	Sprange Envi
_	EQUIPMENT QUALIFICATION FILE UPDATE TRANSMITTAL FORM	quality
	1. TO BE COMPLETED BY COGNIZANT AEPSC SECTION RFC DC	Rf# 72
	Attached Forms checked: _EGQ-96-1-EGQ-96-2EGQ-97-1EGQ	-97-2 .
	ORIGINATED BY: DATE: DATE:	· .
e	(System Engineer Signature) APPROVED BY : THANK DATE: 0/2082	-
	(Coor Engineer Signature)	<u> </u>
	(EGS Manager Signature)	
	2. TO BE COMPLETED BY AEPSC NS&L SECTION	
:	ACCEPTED-TRANSMIT TO AEPSC QUALITY ASSURANCE	
*	REJECTED- RETURN TO COGNIZANT AEPSC SECTION MANAGER	
	REASON FOR REJECTION: "	
		، در ۱۹۹۵ و ۱۹۹ ۵ و ۱۹۹۵ و ۱۹۹۵ و ۱۹۹۵ و ۱
. ·	IS NRC SUBMITTAL REQUIRED? YES NO	
*	TE TES, GIVE SOBMITIRE ESTER NOMBER ALL MACT	
	APPROVED BY:DATE:	
	3. TO BE COMPLETED BY AEPSC QUALITY ASSURANCE	
	TRANSMITTAL FORM AND DATA RECEIVED BY: (Initials)	_DATE:
-	CEEQF FILE INDEX UPDATED BY:(Initials)	Date
		Date
	DATA FILED BY:(Initials)	
	י ג א א א א א א א א א א א א א א א א א א א	
V	4. COPY OF COMPLETED FORM TO BE RETURNED TO ORIGINATOR E GENERATION SECTION.	LEC.
	To be incorporated in RFC file at close-out.	1

14.N 8 1982

AMERICAN ELECTRIC POWER SERVICE CORPORATION

January 7, 1982

SUBJECT: 79-01B Submittal Equipment Qualification Containment Spray pH

FROM: P. A. Fisher

To: 1 = R. F. Dodd 176 1/5/52 2 = S. It strinburt SHE 1/d/f23. J. Gist Sma/S. Toth

> We have reviewed the attached list of electrical materials with respect to the stated test report pH's <u>vs</u> the postulated 8.5 to 11 pH range for the containment spray following a LOCA. The postulated pH brackets all but three of the thirty five pH values listed. Of the three items, one was tested at a pH range of 7.67 to 10.5. The upper value, falls within the postulated pH range. The other two items tested at a stated pH of 7.67, are listed as "steel or cast Iron enclosure". These materials would definitely not be affected anymore significantly at a postulated upper pH limit of the spray solution than at the lower 7.67 pH test value.

C.C. SHS C/P, 18/82

Therefore it is the Chemical Engineering Section's considered opinion that the differences between the pH's listed for the test reports and that postulated for the spray are insignificant. Consequently, for all practical purposes, the pH values listed meet the postulated spray pH criterion.

M. O'Keefe's memo of November 3, 1981 addressed the subject of electrical and mechanical materials in more detail. This memo, therefore, is to be considered as pertinent reference information on this subject, particularly in regard to instrument component materials' compatability with the postulated pH range of the containment spray.

INTRA-SYSTER

DONALD C. COOK NUCLEAR PLANT: ACCEPTED FOR Q/A BY JULE OF ELECT. CEN. SUCT. ANTOC, N. K. DOMETERS TO DOCUMPTATION

DATE: 012082	
E. G. SECT. FILE: I	EBUL. 79-01B (* 1172)

PAF: mm

cc: L. Caso

•	, c	£ , í	• • •	'	· ·
Ref.	Device		Qual -	Test Chemi	cal Spray Qual
pg.# .	Description	Material	Doc. A	2.eport	

	1g.# '	Description	Malerial	Doc. Ref#	Keport #	PPMB	PH
		Continental 3119	XLPE/Asbestos braid	8	IPS-348	2500	9-10
-			XLPE/Asbectos brand		IPS-348		9-10
		GE- 3120 ·	Vulkene/Asbestos brid		IPS-348	2500	9-10
		Anaconda 3120	EPR/CSPE	: 5	F-C 3341	3000	9.5
		Continental 3121	XLPE/Asbestos braid	8	<i>IP</i> S [.] -348	2500	9-10
		GE 3121	vulkene/aspestos	8	μ		u
	-	Continental 3122	XLPE/Asbestos braid EPR CSPE	8	11	n	11
	CC-8	G.E 3122	Vulkene/Asbests braid	8	11	- - 11	11
		Boston 3064	XLPE/CSPE	32	Baston test # 73C 212	2000	8-8-5
۰ م ۲	CI-2	Rockbestos 3064	Firewall III	34	Rockbesters qual of Furewall III	3000	9-11
	CI-5	Samuel Moorte 3075	CSPE/CSPE	11	Isomedix report of 5/76	3000	9-11
•	<i>CI-7</i>	Boston 3075	CSPE /CSPE	8	IPS-348	2500	9-10
	CJ-:8	Cotro 3077	XLPE/Hypalon	12	cerro reprit 8 5/1976	3000	.9-11
•	CI-9	Samuel Moore 3077	EPDM - Hypalon/Hypalon	//	F-C 3683	3000	9-11
	CI-11	Boston 3077	CSPE CSPE	8	IPS-348	2500	9-10
		*		2	-		

• *

r **-** .

· · ·		• •	• • • • • •			, , ,	
	<u>Ref.</u> þg:#	- Device Description	Material	qual Doc. Ref.#	report	Chemic PPM B	P.H
	CP-2	i okonite 324	OKonité / OKo prene		0konitz Qua(0f 7/3/78	3000	10.5
	CP-4	Cylinia 347	EPR/Hypalon	35	F-C 3016	2000	9.0
	CP-5	Anaconda. 347	EPR/Hypalose	5	F-C. 3=+/	3000	9.5
	CP-6	Okonite 399	OKogard/Okolon	6	F-C 36:14	2000	9-11.
× .	1	Anaconda 3116	EPR/CSPE Hybalon Dutasheath/EPTriplened		F-C 3341		9.5
	CP-10	ESSCX 3116	EP/ Hypalion	25	Isomedix report of 11/75	3000	9.5-10.5
unit 1	CP-11	Kerite 3127.	H.T.Kenite/FR(HC711)	7	Kerite report	2600	9.5
	1	Kerite 3116	HTK / FR (HC711)	7	11	, n ,	11 '
, , , , , , , , , , , , , , , , , , ,	EP-01	ELECT. Penetration.	Poly sulfon sealant statuloss steel	3	IP5-137	1•2 % WF: ВА 2000	9.5
	EP-02.	Elect. Penetration		3	17	11.	9.5
«. ●	· '	Floca-up Tube	stainless steel	13	CWAPD-332	2500	9.5
	F/	Fam. Motor	still or cast iron	21	WCAP- 7829	2500	9.5-10
•	<u>LS-1</u>	Limit Switch	u ·	43	Quasi.of Namco Line.Sos	3000	10.5
••,	×1	Value operator		22	Limiteroue xpest=6001??	2600	7.67
	V 2	Value operator	· 11	16	Limiter 1:11 # 600456	3000	10.5
	۰ ۲	· · · · ·	j .]	u.		• • • • •	
							•

۰ ۰ • . , · • -. **4**

.

	;			ł			· · ·
	Ref Pog #-	Device Description	Material	Qual Doc Ref#	Test Report #	Chemica PPMB	el Apray laual. P.H.
	H-1,	Hydrogen Recombiner	300-series Stainless Steel Carbon Steel Incorrel 600 Magnesium Oxide Insulation Sheathed in Incology 800	20	WCAP-7709L Suppl. 2		10
	TI		Combination of Control Cable. insulation and jacket material + Raychem WCSF-070-X-N Heat Shrink tubing (Radiation crosslinked Polyolofin) Combination of instrument cable insulation and jacket material + Chemelex adhecive Sielant RTVW. Raychem WCSF-70-12-N WCSF-115-GN and WCSF-200-12-N heat Shrink tubing	62	Various Inst.Calle termination Qual		7.67-10.5 and P.H duc to 3000 PP14B with .064 M NA25203 9-11
• • •		Entrad Power rable farminations	Scotch # 23 tape cr	13	CWAPD-332	2500	9.5
							•

XLPE - crosslinked Polyethylene CSPE - clorosalphonated Polycthylene EP,DM - Ethylene Bropylene Rubber EPR - Ethylene Propylene Rubber EP - Ettigland propylene Rubber HTK - (hight temperature karite) Syntactic rabber FR - Fire Retardant okoprene - Neoforene (Synthetic rubber) okonite - Ethylene propylene Rubber Okolon - Hypalon Okogard - Ethiglene Propeglene base thermosetting Okothern - pélicone Rubber. Frewall II - Grosslinked Polyethylene - Crosslunked Polyethylene Vulkene

November 3, 1981 LTE:

Equipment Qualification Meeting

M. J. O'Keefe

OM:

2:

P. A. 1. toga-i 2. .R.F. 3. S. H. Steinhart 4. S. M. Toth

This memo is in response to questions raised during the October 2 Equipment Qualification Meeting. The pH range of 8.5 to 11.0 used to assess the resistance of various materials to the containment spray is given in both Unit 1 and Unit 2 Technical Specifications. There is no need to consider the corrosion effects of demineralized water since during and after an accident the water in the containment will contain chemical additives.

The "alkaline" spray in the containment will be a weakly basic sodium borate (borax) solution formed by the reaction between the boric acid in the reactor coolant and the sodium hydroxide spray additive. The long term effect of this solution on stainless steel, copper wire, and polysulfone would be minimal. Polysulfone, a Union Carbide Corp. product, is used as a sealant for containment penetrations. Union Carbide recommends polysulfone for use up to 250° F in a 50% sodium hydroxide solution, which has a pH of approximately 14. This solution would be much more aggressive than the containment spray.

The components of the Hydrogen Recombiner specified by Electrical Engineering Division are 300-Series stainless steel, carbon steel, Inconel-600, Incoloy-800, and magnesium oxide. The magnesium oxide is an insulating material sheathed in the Incoloy-800. The spray solution would not adversely affect the stainless steel, Inconel-600 or Incoloy-800. The magnesium oxide because it is contained in the Incoloy-800 will not be contacted by the spray and will not be affected. The carbon steel components would rust, unless coated, as they would in any moisture laden atmosphere, such as would exist in the containment after a loca.

Neoprene, crosslinked polyethylene, chlorosulfonated polyethylene, and ethylene-propylene elastomer which are used inside the containment as cable insulation, all exhibit long term resistance to basic solutions. Chlorosulfonated polyethylene and ethylene-propylene whose trade names are Hypalon and Nordel respectively, along with Neoprene are recommended for use in boric acid, sodium borate, and sodium hydroxide solutions.

The come contra . ., Dittory and constants topylene have corrosion resistance to basic solutions. The carbon steel and cast from components of the instruments are coated with Amercoat 66. This coating is an epoxy-polyamide resistant to basic (olutions.

bstre min al ter a

This submittal input was prepared using the sources of information shown on the attached SSDL and is, to the best of my knowledge, technically ccurate, factual, and complete.

M. J. O'Keefe M. J. O'Keefe

MJO:mm

cc: J.<u>A. Kobyra</u> J. Castresana TBW/GWP/File AEC

I have reviewed this document and have verified that it is factual by: review of information sources on SSDL; discussions with preparer; and discussions with other parties. To the best of my knowledge, this submittal input is technically accurate, responsive to the "Action Item" and complete.

·	\$		· _ +ru	
1 * .	1	NRC SUBMITTAL		
1		SOURCE DOCUMENT LIST	•	
TIO	NITEM	inonmental qualification of S.R. Equ	pimint	
-	$\frac{1}{1000}$	05788		
IDENI.	. NO. <u>NRC-</u>	THE FOLLOWING SOCUMENTS HAVE BLEN USED AS SOURCES OF INFORMA For Prepapation of the Attached NRC Submittal, Copies of the Doruminests are available for Review at the Lucation Specified	SE ,	
SUBMITTAL	STATEMENT	SOURCE DOCUMENT DESCRIPTION - TITLE,	CURRENT SOURCE	
PAGE	PARA.	NUMBER, REVISION, ETC.	DOC. LOCATION	•
	1	FSAR Technical specifications	1036	
1	2	Union Combride corp brochure on	1036	
	·	Rolysulfore	· [
		Lange's Hundlook of chemistry	1037	٠
1	3,4,5	Convosion Engineering	.1040	
		Fontana and Greene		
	4,5	Interpare Corporation brochuse	1040	
. •	•	ITT Grinnel brochere	•	
1	5	Clemical Engeneers Handbook	1040	
	* x	5°TD edition		
•		AEP Paint Manual		
`.	•			
••				
				,
	м		·	• .

* * * % . ۲. ۲ .

•,

• • • •

. •

, ,

***** * * , 4 • • .

* • . . .

۰.