|                                                               |                                                                                                                                                      |                                                                        | [O]<br>RATED                                                              | RITY 1<br>RIDS PROCESSING                                                                                                              | ·                                                                       |                                   |                                                         |        |
|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------------|--------|
|                                                               | REGULATORY                                                                                                                                           | INFORI                                                                 | MATION                                                                    | DISTRIBUTION SYST                                                                                                                      | TEM (RIDS                                                               | :)                                |                                                         |        |
| ACCESSIO<br>FACIL:S<br>S<br>S<br>AUTH.N<br>STEWART<br>RECIP.I | N NBR:9412050335<br>TN-50-528 Palo Verd<br>TN-50-529 Palo Verd<br>TN-50-530 Palo Verd<br>AME AUTHOR A<br>,W.L. Arizona P<br>NAME RECIPIEN<br>Documen | DOC.I<br>e Nuc<br>e Nuc<br>e Nuc<br>FFILIA<br>ublic<br>T AFFI<br>t Con | DATE:<br>lear S<br>lear S<br>lear S<br>ATION<br>Servi<br>ILIATI<br>trol E | 94/11/21 NOTARIZE<br>tation, Unit 1, An<br>tation, Unit 2, An<br>tation, Unit 3, An<br>ce Co. (formerly A<br>ON<br>Franch (Document Co | ED: NO<br>rizona Pu<br>rizona Pu<br>rizona Pu<br>Arizona N<br>ontrol De | bli<br>bli<br>bli<br>uclea<br>sk) | DOCKET #<br>05000528<br>05000529<br>05000530<br>r Power | P<br>R |
| SUBJECT                                                       | : Forwards response<br>Spectra for seism<br>Study 13-CS-102 p                                                                                        | to re<br>ic qua<br>repare                                              | equest<br>alific<br>ed by                                                 | for addl info re<br>ation of batteries<br>Bechtel Power Corr                                                                           | floor re<br>at plan<br>provide                                          | spons<br>t.<br>d in               | e fepon                                                 | 1      |
| DISTRIBU<br>TITLE: S                                          | Encl <sup>2</sup> .Calculatio<br>UTION CODE: A025D<br>Seismic Qualificati                                                                            | n CTRI<br>COPIES<br>on of                                              | L-01 e<br>S RECE<br>Equip                                                 | IVED:LTR _ ENCL _ ENCL _                                                                                                               | J SIZE:<br>Plants -                                                     | 32<br>A-46                        | +69<br>- GL-87                                          | O<br>R |
| NOTES:S<br>St<br>St                                           | TANDARDIZED PLANT<br>tandardized plant.<br>tandardized plant.                                                                                        |                                                                        |                                                                           |                                                                                                                                        |                                                                         |                                   | 05000528<br>05000529<br>05000530                        | l<br>T |
|                                                               | RECIPIENT<br>ID CODE/NAME<br>OGC/HDS2                                                                                                                | COPII<br>LTTR<br>1                                                     | ES<br>ENCL<br>1                                                           | RECIPIENT<br>ID CODE/NAME<br>NRR/PD11-2                                                                                                | COPI<br>LTTR<br>1                                                       | ES<br>ENCL<br>1                   |                                                         | Y      |
|                                                               | PD4-2 PD<br>TRAN,L                                                                                                                                   | 1<br>1                                                                 | 1<br>1                                                                    | HOLÍAN, B                                                                                                                              | 1                                                                       | 1                                 | ٨                                                       | 1      |
| INTERNAL:                                                     | ACRS<br>NRR/DE<br>NRR/DE/EELB<br>NRR/DRCH/HICB                                                                                                       | 6<br>1<br>1<br>1                                                       | 6 9<br>1<br>1<br>1                                                        | FILE CENTER 01<br>NRR/DE/ECGB<br>NRR/DE/EMEB<br>NRR/DRPE/PD1-3                                                                         | 1<br>2<br>4<br>1                                                        | 1<br>2<br>4<br>1                  |                                                         | D      |
|                                                               | NRR/DSSA/SPLB                                                                                                                                        | 1                                                                      | 1                                                                         | NRR/DSSA/SRXB                                                                                                                          | 1                                                                       | 1                                 |                                                         | 0      |
| EXTERNAL:                                                     | NRC PDR                                                                                                                                              | 1                                                                      | 1                                                                         |                                                                                                                                        |                                                                         |                                   |                                                         | С      |
|                                                               |                                                                                                                                                      |                                                                        |                                                                           |                                                                                                                                        |                                                                         |                                   |                                                         | U      |
|                                                               | · *.                                                                                                                                                 | •                                                                      |                                                                           |                                                                                                                                        |                                                                         |                                   |                                                         | М      |

NOTE TO ALL "RIDS" RECIPIENTS:

.

PLEASE HELP US TO REDUCE WASTE! CONTACT THE DOCUMENT CONTROL DESK, ROOM PI-37 (EXT. 504-2083 ) TO ELIMINATE YOU'R NAME FROM DISTRIBUTION LISTS FOR DOCUMENTS YOU DON'T NEED!

TOTAL NUMBER OF COPIES REQUIRED: LTTR 25 ENCL 25

Ε

N

Т

· · ·

\* \*

、 、 、 、 、 \* .

. .

Arizona Public Service Company P.O. BOX 53999 • PHOENIX, ARIZONA 85072-3999

WILLIAM L. STEWART EXECUTIVE VICE PRESIDENT NUCLEAR

لم أورو

102-03191-WLS/AKK/DRL November 21, 1994

U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Mail Station P1-37 Washington, D.C. 20555

Dear Sirs,

Subject: Palo Verde Nuclear Generating Station (PVNGS) Units 1, 2, and 3 Docket Nos. 50-528/529/530 Response to Request for Additional Information Concerning Floor Response Spectra For Seismic Qualification of Batteries at PVNGS - TAC No. M86200 File: 94-010-026

Arizona Public Service Company (APS) is responding to a request for additional information received through Brian Holian, Senior Project Manager - PVNGS, USNRC, regarding the seismic qualification of the station batteries at PVNGS. Enclosure 1 to this letter contains APS' response to these questions. A copy of Study No. 13-CS-102 prepared by the Bechtel Power Corporation is provided in Enclosure 2.

Should you have any questions, please contact A. Krainik at (602) 393-5421.

Sincerely. 5 i <sup>y</sup> s, <u>.</u>

WLS/AKK/DRL/rv

Enclosures:

1. APS' Response

ADDCK 05000528

PDR

2. Bechtel Power Corporation Study No. 13-CS-102

C50C47

cc: L. J. Callan K. E. Perkins B. E. Holian ; <sup>1</sup> K. E. Johnston

9412050335

PDR

3.1

. .

.

. . .

. . . .

• •

ء •

#### **ENCLOSURE 1**

APS RESPONSE TO REQUEST FOR ADDITIONAL INFORMATION CONCERNING FLOOR RESPONSE SPECTRA FOR SEISMIC QUALIFICATION OF BATTERIES AT PALO VERDE NUCLEAR GENERATING STATION TAC NO. M86200

9,412,050335



1

i b

- -----

١ţ

H

y

.

, ,

#### Floor Response Spectra for Seismic Qualification of AT&T Round Cell Batteries at Palo Verde Nuclear Generating Station (PVNGS) TAC No. M86200

#### **REFERENCES:**

- 1. PVNGS Study No. 13-CS-102, Finite Element Soil Structure Interaction Seismic Analysis, April 4, 1977.
- 2. NUREG-0800, Standard Review Plan (SRP) 3.7.2, Seismic System Analysis, Revision 2, August 1989.
- 3. ABB Impell Corporation Calculation No. SOIL-1, Site Analysis of PVNGS, February 23, 1993 (PVNGS SDR #A11401).
- 4. ABB Impell Corporation Calculation No. STR-01, SSI Methodology, February 17, 1993 (PVNGS SDR #A11401).
- 5. ABB Impell Corporation Calculation No. CTRL-01, Structural Model and SSI Analysis of Control Building, February 22, 1993 (PVNGS SDR #A11401).
- 6. ABB Impell Standard Program SASSI, A Computer Program for Soil-Structure Interaction Analysis, Version 4.0, User's Manual, Revision 1, June 1989.
- 7. APS Letter No. 102-02640-WFC/TRB/SAB, APS Responses to NRC Questions on Seismic Qualification of Station Batteries, September 10, 1993.
- 8. Regulatory Guide 1.60, Design Response Spectra for Seismic Design of Nuclear Power Plants, Revision 1, December 1973.
- 9. NUREG-0781, Safety Evaluation Report for South Texas Project, Units 1 and 2, April 1986.

#### **RESPONSE:**

#### **Request 1:**

A summary report indicating the extent of compliance with SRP 3.7.2 (Revision 2, August 1989) provisions regarding the SSI analysis.

#### **Response to Request 1:**

#### Bechtel Power Corporation Analysis:

The PVNGS finite-element soil-structure interaction analysis was performed by Bechtel Power Corporation (hereafter referred to as Bechtel) and documented in Study No. 13-CS-102 (Reference 1). This analysis was performed in 1977, prior to the issuance of Revision 2 to SRP



#### Floor Response Spectra for Seismic Qualification of AT&T Round Cell Batteries at Palo Verde Nuclear Generating Station (PVNGS) TAC No. M86200

3.7.2 (Reference 2). This study is included in Enclosure 2.

To evaluate the extent of compliance of the PVNGS finite-element soil-structure interaction analysis with SRP 3.7.2 (Revision 2), a comparison of Study No. 13-CS-102 to SRP 3.7.2.II.4 was made. This comparison is included in Table 1 of Attachment A. It is concluded that the methodology used for the PVNGS finite-element soil-structure interaction analysis, in comparison to the requirements of SRP 3.7.2 (Revision 2), gives reasonable results.

#### VECTRA Technologies Incorporated (formerly ABB Impell Corporation) Analysis:

In 1993, VECTRA Technologies Incorporated (hereafter referred to as VECTRA) performed soilstructure interaction analysis for the Control Building at PVNGS (References 3, 4 and 5). VECTRA's analysis for the Control Building was presented in two parts. Part 1 was an update of the existing PVNGS design basis for the Safe Shutdown Earthquake (SSE). A Peak Ground Acceleration (PGA) of 0.2g (licensing basis) for the SSE condition was used in the analysis. Part 2 was the evaluation of the building for Review Level Earthquake (RLE) for a PGA of 0.3g as part of the requirements for Individual Plant Examination of External Events (IPEEE).

VECTRA's soil-structure interaction analysis utilized computer program SASSI (Reference 6). SASSI uses finite-element techniques and a complex response method in the frequency domain to solve dynamic soil-structure interaction problems in two or three dimensions. VECTRA's analysis was performed to the requirements of SRP 3.7.2 (Revision 2).

A review of VECTRA's analysis of the Control Building reveals that PVNGS design basis response spectra for elevation 100' are very conservative. VECTRA's analysis also reveals that vertical SSE (increased by 20% for a PGA of 0.25g) and RLE response spectra for elevation 100' of the Control Building, at the batteries' locations, are enveloped by the vertical Test Response Spectrum (TRS) for the batteries. This is shown in Attachment B.

#### **Request 2:**

Synthetic time-history (vertical) at the grade level.

#### **Response to Request 2:**

Synthetic time-histories (vertical) at the grade level from analyses that were performed by Bechtel and VECTRA are provided in Attachment C.

#### **Request 3:**

Vertical response spectra at the foundation level and 60% of the design ground response spectrum.

, , , 

ł ¢

,

ī

#### Floor Response Spectra for Seismic Qualification of AT&T Round Cell Batteries at Palo Verde Nuclear Generating Station (PVNGS) TAC No. M86200

#### **Response to Request 3:**

The vertical response spectra at the foundation level and 60% of the design ground response spectrum from analyses that were performed by Bechtel and VECTRA are provided in Attachment D.

#### Request 4:

Vertical floor response spectrum (2% damping) at the batteries' locations of the structure which can be utilized for comparison with the TRS in Figure IIa (Reference 7).

#### **Response to Request 4:**

Vertical floor response spectra (2% damping) at the batteries' locations from analysis that was performed by VECTRA are provided in Attachment E. Vertical floor response spectrum (2% damping) at the batteries' locations was not generated in Bechtel's Study No. 13-CS-102.

#### **SUMMARY:**

Based on the previous discussions, the following conclusions are made:

- 1. PVNGS finite-element soil-structure interaction analysis that was performed by Bechtel, in comparison to the requirements of SRP 3.7.2 (Revision 2), gives reasonable results.
- 2. The soil-structure interaction analysis that was performed by VECTRA meets the requirements of SRP 3.7.2 (Revision 2).
- 3. A review of VECTRA's analysis of the Control Building reveals that PVNGS design basis response spectra for elevation 100' are very conservative. VECTRA's analysis also reveals that vertical SSE (increased by 20% for a PGA of 0.25g) and RLE response spectra for elevation 100' of the Control Building, at the batteries' locations, are enveloped by the vertical Test Response Spectrum (TRS) for the batteries.

In summary, based on the above discussions and previous APS responses (Reference 7) on the subject, it is concluded that the actual vertical response of the batteries in a SSE event is well enveloped by the vertical Test Response Spectrum (TRS). Therefore, the subject batteries will perform their intended function and maintain their structural integrity during and after a SSE event.

Note: This will also serve as a supplement to the response to Question No. 3 of APS letter 102-02640-WFC/TRB/SAB (Reference 7).

ı

. . . .

-----

r (

٠

ł

#### Attachment A

#### Comparison of Study No. 13-CS-102 to SRP 3.7.2.II.4 (Revision 2)

ł 1 • 1 н Н ţ 1 Б. Г 1 È. ļ ł 

1

#### Floor Response Spectra for Seismic Qualification of AT&T Round Cell Batteries at Palo Verde Nuclear Generating Station (PVNGS) TAC No. M86200

| SRP 3.7.2.II.4 (Revision 2) |                                                                                                                                                                                         | Study No. 13-CS-102               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Page No.                    | Description                                                                                                                                                                             | Page No.<br>and/or<br>Section No. | Description<br>(Note 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 3.7.2-9                     | The structure, foundation, and<br>soil are properly modeled to<br>ensure that the results of<br>analyses are within the range of<br>applicability of the particular<br>method employed. | 4-1<br>Section 4.1                | The finite-element soil-structure<br>interaction seismic analysis was<br>performed using the computer<br>program LUSH. LUSH was a<br>finite-element program for soil-<br>structure interaction analysis<br>using plane-strain elements to<br>represent structures and a finite<br>region of soil. At the time,<br>LUSH differed from other finite-<br>element programs in that it took<br>into account, in an approximate<br>manner, the non-linear effects<br>which could occur in soil subject<br>to strong earthquake motions.<br>The structures and the soil<br>deposit were mathematically<br>modeled by plane quadrilateral<br>or triangular elements. The soil<br>deposit was assumed to be<br>connected to a rigid base. The<br>model was then excited by a<br>specified acceleration time<br>history at the rigid base. |  |

#### Table 1: Comparison of Study No. 13-CS-102 to SRP 3.7.2.II.4 (Revision 2)



ı

;

•

]

1 <sup>31</sup>

!

1 1

.

.

ļ

7

i

十月日二 1

.

#### Floor Response Spectra for Seismic Qualification of AT&T Round Cell Batteries at Palo Verde Nuclear Generating Station (PVNGS) TAC No. M86200

| SRP 3.7.2.II.4 (Revision 2) |                                                                                                                                                                                              | Study No. 13-CS-102               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Page No.                    | Description                                                                                                                                                                                  | Page No.<br>and/or<br>Section No. | Description<br>(Note 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 3.7.2-9                     | The input motion at the base of a discrete soil model or soil column should produce the specified design spectra at the free surface of the soil profile in the free field (finished grade). | 4-1<br>Section<br>4.2.A           | The LUSH analysis was based<br>on the assumption that<br>earthquake surface motions are<br>primarily the result of upward<br>propagation of shear waves and<br>compression waves from the<br>underlying rock formation.<br>While it would be appropriate to<br>input motions at the rock level,<br>earthquake motions were<br>defined only at the ground<br>surface in Regulatory Guide<br>1.60.<br>To obtain this rock motion for<br>the analysis, the computer<br>program SHAKE was used to<br>deconvolve the surface motions.<br>Surface motions used in the<br>deconvolution were the Bechtel<br>synthetic time history motions<br>generated by modifying actual<br>records. These synthetic motions<br>enveloped the design spectra of<br>Regulatory Guide 1.60. |  |

#### Table 1: Comparison of Study No. 13-CS-102 to SRP 3.7.2.II.4 (Revision 2)



Ŧ

ų.

귀

#### Floor Response Spectra for Seismic Qualification of AT&T Round Cell Batteries at Palo Verde Nuclear Generating Station (PVNGS) TAC No. M86200

| SF       | RP 3.7.2.II.4 (Revision 2)                                                                                                                                                                                                                                                                                                                                                                                                                                              | Study No. 13-CS-102               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Page No. | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Page No.<br>and/or<br>Section No. | Description<br>(Note 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 3.7.2-9  | Perform sensitivity studies to<br>identify important parameters<br>(e.g., bonding and debonding of<br>side walls, nonsymmetry of<br>embedment, location of<br>boundaries) and to assist in<br>judging the adequacy of the final<br>results.<br>For the method of modeling soil<br>media with finite boundaries, all<br>boundaries should be properly<br>simulated and the use of types of<br>boundaries should be justified<br>and reviewed on a case-by-case<br>basis. | 6-1<br>Section 6.A                | The dimensions of the finite-<br>element soil models were<br>sufficiently wide such that<br>effects of wave reflection from<br>boundaries were kept to a<br>minimum. To simulate the<br>existence of horizontal soil<br>layers outside the vertical side<br>boundaries, special boundary<br>conditions were imposed. For<br>the horizontal input motion, the<br>boundary condition was such<br>that all nodal points on the side<br>boundaries could move in the<br>horizontal direction only.<br>Similarly, for the vertical input<br>motion, nodal points on the side<br>boundaries could move in the<br>vertical direction only. |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7-1<br>Section 7.2                | Variation in structural<br>frequencies due to variations in<br>parameters such as structural<br>properties, damping, soil<br>properties, and soil-structure<br>interaction were not evaluated.<br>In lieu of this evaluation, the<br>width of response spectra peaks<br>was increased by a minimum of<br>+/- 15 percent.                                                                                                                                                                                                                                                                                                            |  |

#### Table 1: Comparison of Study No. 13-CS-102 to SRP 3.7.2.II.4 (Revision 2)



#### Floor Response Spectra for Seismic Qualification of AT&T Round Cell Batteries at Palo Verde Nuclear Generating Station (PVNGS) TAC No. M86200

| SF       | SRP 3.7.2.II.4 (Revision 2)                                                                                                                                    |                                   | Study No. 13-CS-102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Page No. | Description                                                                                                                                                    | Page No.<br>and/or<br>Section No. | Description<br>(Note 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| 3.7.2-9  | Through the use of some<br>appropriate benchmark<br>problems, the user should<br>demonstrate its capability to<br>properly implement any SSI<br>methodologies. | N/A                               | The finite-element soil-structure<br>interaction analysis was<br>performed by Bechtel. As<br>reported in NUREG-0781,<br>April 1986, Safety Analysis<br>Report related to the operation<br>of South Texas Project, Units 1<br>and 2, Section 3.7.3, Bechtel as<br>the Architect/Engineer for<br>Houston Lighting and Power<br>Company "has used two-step<br>finite-element analysis to<br>account for the soil-structure<br>interaction (SSI) effects for the<br>major Category I structures" and<br>has therefore demonstrated its<br>capability to properly implement<br>SSI methodology.<br>Note: NUREG-0781 was<br>reviewed to Revision 1 of SRP<br>3.7.2 (which was the most<br>current revision at the time)<br>rather than to Revision 2. |  |  |

#### Table 1: Comparison of Study No. 13-CS-102 to SRP 3.7.2.II.4 (Revision 2)



!

• 34

---<sup>1</sup> 11

.

•

ī.

#### Floor Response Spectra for Seismic Qualification of AT&T Round Cell Batteries at Palo Verde Nuclear Generating Station (PVNGS) TAC No. M86200

| SRP 3.7.2.II.4 (Revision 2) |                                                                                                                                                                                                                                        | Study No. 13-CS-102                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Page No.                    | Description                                                                                                                                                                                                                            | Page No.<br>and/or<br>Section No.             | Description<br>(Note 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 3.7.2-9                     | Perform enough parametric<br>studies with the proper variation<br>of parameters (e.g., soil<br>properties) to address the<br>uncertainties (as applicable to<br>the given site) discussed in<br>subsection I.4 of this SRP<br>section. | 6-1<br>Section 6.A<br>7-2<br>Section<br>7.3.A | The height (or thickness) of soil<br>elements was predetermined to<br>assure that an ample frequency<br>content could be transmitted<br>from base rock to the soil<br>surface and structures. The<br>maximum element height was<br>calculated based on a maximum<br>cut-off frequency of 15 Hz. Soil<br>layers were identified in the<br>model as either sand or clay. The<br>low strain dependent properties<br>for sand and clay were utilized<br>in the program.<br>A "Column Study" was made to<br>determine the effects of cut-off<br>frequencies. A column of soil in<br>the free-field was modeled by<br>finite-elements in the LUSH<br>program. A rock motion was<br>then used to excite the soil<br>column using various cut-off<br>frequencies. Response spectra<br>at the surface resulting from<br>these cut-off frequencies were<br>then plotted against the free-<br>field response spectrum. The<br>only significant effect from the<br>cut-off frequencies was that the<br>response at frequencies was that the |  |

#### Table 1: Comparison of Study No. 13-CS-102 to SRP 3.7.2.II.4 (Revision 2)

•

,



) . в'

al

.

٢

. .

#### Floor Response Spectra for Seismic Qualification of AT&T Round Cell Batteries at Palo Verde Nuclear Generating Station (PVNGS) TAC No. M86200

| SF       | RP 3.7.2.II.4 (Revision 2)                                                                                              | 5                                 | Study No. 13-CS-102                                                                                                                                                                                                                                                                                                      |
|----------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Page No. | Description                                                                                                             | Page No.<br>and/or<br>Section No. | Description<br>(Note 1)                                                                                                                                                                                                                                                                                                  |
| cont'd   | cont'd                                                                                                                  | cont'd                            | than the cut-off frequencies tend<br>to level off to the maximum<br>ground acceleration. This would<br>happen in the soil-structure<br>system due to the "filter effect"<br>even if higher cut-off<br>frequencies were used in the<br>analysis.                                                                          |
|          | <b>N</b>                                                                                                                | 7-1<br>Section 7.2                | Variation in structural<br>frequencies due to variations in<br>parameters such as structural<br>properties, damping, soil<br>properties, and soil-structure<br>interaction were not evaluated.<br>In lieu of this evaluation, the<br>width of response spectra peaks<br>was increased by a minimum of<br>+/- 15 percent. |
| 3.7.2-9  | Modeling of Structure:<br>The acceptance criteria given<br>under subsection II.3 of this SRP<br>section are applicable. | 6-2<br>Section 6.B                | A comparison between Section<br>6.B of Study No. 13-CS-102 and<br>subsection II.3 of SRP 3.7.2<br>(Revision 2) concludes that the<br>structures were properly<br>modeled.                                                                                                                                                |

#### Table 1: Comparison of Study No. 13-CS-102 to SRP 3.7.2.II.4 (Revision 2)



, 1

1

3 1 1

•

ł

-

#### Floor Response Spectra for Seismic Qualification of AT&T Round Cell Batteries at Palo Verde Nuclear Generating Station (PVNGS) TAC No. M86200

| SF       | SRP 3.7.2.II.4 (Revision 2)                                                                                                   |                                   | Study No. 13-CS-102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|----------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Page No. | Description                                                                                                                   | Page No.<br>and/or<br>Section No. | Description<br>(Note 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 3.7.2-9  | The effect of embedment of<br>structure, ground-water effects,<br>and the layering effect of soil<br>should be accounted for. | 1-1<br>Section 1.2                | In-structure floor response<br>spectra were calculated using<br>the finite-element method for all<br>Seismic Category I buildings<br>having embedment more than 15<br>percent of their least width.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|          |                                                                                                                               | 5-1<br>Section 5                  | For purposes of the seismic<br>analysis, PVNGS site was<br>treated as a two-layer system<br>consisting of soil over bedrock.<br>The upper layer (soil) was<br>relatively uniform, both at each<br>unit and between units. The<br>uniformity of the site was<br>indicated by actual soil profiles,<br>velocity values and elastic<br>moduli. A composite soil profile<br>was formed by averaging the<br>depth, thickness, and properties<br>of each layer in the soil profile.<br>The strain dependent<br>relationships for shear moduli<br>and damping ratios for clay and<br>sand were used in the LUSH<br>program for this analysis. An<br>average ground water level of 44<br>feet below ground surface was<br>used. |  |  |

#### Table 1: Comparison of Study No. 13-CS-102 to SRP 3.7.2.II.4 (Revision 2)

.



#### Floor Response Spectra for Seismic Qualification of AT&T Round Cell Batteries at Palo Verde Nuclear Generating Station (PVNGS) TAC No. M86200

| SF       | RP 3.7.2.II.4 (Revision 2) | 5                                 | Study No. 13-CS-102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------|----------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Page No. | Description                | Page No.<br>and/or<br>Section No. | Description<br>(Note 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| cont'd   | cont'd                     | 4-2<br>Section<br>4.2.C           | In determining the vertical input<br>motion, for soil above the<br>ground water level, strain-<br>corrected soil properties were<br>found from the horizontal<br>deconvolution. Compression<br>wave velocities for all layers<br>were then calculated and input<br>in place of shear wave<br>velocities. For soil below the<br>ground water level, the field-<br>measured compression wave<br>velocities were input. The<br>synthetic vertical motions scaled<br>to 0.25g for the Safe Shutdown<br>Earthquake (SSE) and 0.13g for<br>the Operating Basis Earthquake<br>(OBE) were used at the ground<br>surface, and vertical rock<br>motions were obtained. |

#### Table 1: Comparison of Study No. 13-CS-102 to SRP 3.7.2.II.4 (Revision 2)



ŧ



,

#### Floor Response Spectra for Seismic Qualification of AT&T Round Cell Batteries at Palo Verde Nuclear Generating Station (PVNGS) TAC No. M86200

| SF       | RP 3.7.2.II.4 (Revision 2)                                                                                                                                                                         | Study No. 13-CS-102                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Page No. | Description                                                                                                                                                                                        | Page No.<br>and/or<br>Section No.             | Description<br>(Note 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 3.7.2-10 | The properties used in the SSI<br>analysis should be those<br>corresponding to the low strains<br>that are consistent with the<br>realistic soil strain developed<br>during the design earthquake. | 6-1<br>Section 6.A<br>7-3<br>Section<br>7.3.C | The height (or thickness) of soil<br>elements was predetermined to<br>assure that an ample frequency<br>content could be transmitted<br>from base rock to the soil<br>surface and structures. The<br>maximum element height was<br>calculated based on a maximum<br>cut-off frequency of 15 Hz. Soil<br>layers were identified in the<br>model as either sand or clay. The<br>low strain dependent properties<br>for sand and clay, as obtained<br>from the soil reports, were<br>utilized in the program.<br>The equivalent linear method<br>was used in the LUSH analysis.<br>In this method, the shear moduli<br>and damping ratios of soil at the<br>strain level caused by the<br>earthquake motion were<br>determined by iteration. The<br>closer the initial input for the<br>estimated shear moduli and<br>damping ratios of a soil element,<br>the faster a convergence could<br>be obtained.<br>Initial input values were<br>estimated by using the<br>computer program SHAKE.<br>Two SHAKE models were |  |
|          |                                                                                                                                                                                                    |                                               | Two SHAKE models were<br>prepared, one for the free-field<br>soil column, and one for the soil<br>column under the building with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |

#### Table 1: Comparison of Study No. 13-CS-102 to SRP 3.7.2.II.4 (Revision 2)



+

#### Floor Response Spectra for Seismic Qualification of AT&T Round Cell Batteries at Palo Verde Nuclear Generating Station (PVNGS) TAC No. M86200

| SI       | RP 3.7.2.II.4 (Revision 2) | 5                                 | Study No. 13-CS-102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------|----------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Page No. | Description                | Page No.<br>and/or<br>Section No. | Description<br>(Note 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| cont'd   | cont'd                     | cont'd<br>4-1<br>Section<br>4.2.B | the building represented by a<br>shear beam which has constant<br>material properties. The two<br>models were then excited by the<br>same earthquake motion. The<br>strain-corrected shear moduli<br>and damping ratios were<br>obtained from both models.<br>These values were then<br>averaged to obtain the input data<br>for estimated shear moduli and<br>damping ratios for soil elements<br>under structures. For soil<br>elements away from the<br>structure, values from the free-<br>field SHAKE models were used.<br>For the deconvolution of<br>horizontal and vertical motions,<br>a SHAKE model was developed<br>using the design soil profile. The<br>synthetic horizontal motions<br>scaled to 0.25g for the Safe<br>Shutdown Earthquake (SSE)<br>and 0.13g for the Operating<br>Basis Earthquake (OBE) were |
|          |                            |                                   | input at the ground surface. The<br>program calculated the strain<br>compatible soil properties by an<br>iterative process and then<br>determined the transfer<br>functions. The motions in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          |                            |                                   | layers were computed based on the transfer functions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

#### Table 1: Comparison of Study No. 13-CS-102 to SRP 3.7.2.II.4 (Revision 2)

.



ł



4

.

#### Floor Response Spectra for Seismic Qualification of AT&T Round Cell Batteries at Palo Verde Nuclear Generating Station (PVNGS) TAC No. M86200

| SRP 3.7.2.II.4 (Revision 2) |                                                                                                                                                                                                                                                                                                                                                                                      | Study No. 13-CS-102               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Page No.                    | Description                                                                                                                                                                                                                                                                                                                                                                          | Page No.<br>and/or<br>Section No. | Description<br>(Note 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 3.7.2-10                    | The control motion should be<br>consistent with the properties of<br>the soil profileThe spectral<br>amplitude of the acceleration<br>response spectra (horizontal<br>component of motion) in the<br>free field at the foundation depth<br>shall not be less than 60 percent<br>of the corresponding design<br>response spectra at the finished<br>grade in the free field (Ref. 5). | 8-1<br>Section 8.2                | In order to establish that input<br>motions were in conformance<br>with Regulatory Guide 1.60,<br>free-field response spectra at the<br>ground level were compared to<br>design spectra for all<br>mathematical models. Also,<br>free field response spectra at the<br>base level were compared to the<br>60 percent design spectra.<br>The rock motions used in the<br>analysis were in conformance<br>with Regulatory Guide 1.60.<br>Also, it was evident that all three<br>mathematical models were<br>adequate representations of the<br>soil-structure system, since free<br>field motions were adequately<br>restored from the deconvolved<br>rock motion through the soil-<br>structure models. |  |

#### Table 1: Comparison of Study No. 13-CS-102 to SRP 3.7.2.II.4 (Revision 2)



ı I

;

1 · · · · -

ł

and the second of the second o

; ; ;

ł

1

7

• •

#### Floor Response Spectra for Seismic Qualification of AT&T Round Cell Batteries at Palo Verde Nuclear Generating Station (PVNGS) TAC No. M86200

| SRP 3.7.2.II.4 (Revision 2) |                                                                                                                   | Study No. 13-CS-102               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Page No.                    | Description                                                                                                       | Page No.<br>and/or<br>Section No. | Description<br>(Note 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3.7.2-10                    | The behavior of soil, though<br>recognized to be nonlinear, can<br>often be approximated by linear<br>techniques. | 4-1<br>Section 4.1                | The finite-element soil-structure<br>interaction seismic analysis was<br>performed using the computer<br>program LUSH. LUSH was a<br>finite-element program for soil-<br>structure interaction analysis<br>using plane-strain elements to<br>represent structures and a finite<br>region of soil. At the time,<br>LUSH differed from other finite-<br>element programs in that it took<br>into account, in an approximate<br>manner, the non-linear effects<br>which may occur in soil subject<br>to strong earthquake motions. |
|                             |                                                                                                                   | 7-3<br>Section<br>7.3.C           | The equivalent linear method<br>was chosen in the LUSH<br>analysis. In this method, the<br>shear moduli and damping ratios<br>of soil at the strain level caused<br>by the earthquake motion were<br>determined by iteration. The<br>closer the initial input for the<br>estimated shear moduli and<br>damping ratios of a soil element,<br>the faster a convergence could<br>be obtained.                                                                                                                                      |

#### Table 1: Comparison of Study No. 13-CS-102 to SRP 3.7.2.II.4 (Revision 2)

А



.

.

#### Floor Response Spectra for Seismic Qualification of AT&T Round Cell Batteries at Palo Verde Nuclear Generating Station (PVNGS) TAC No. M86200

| SRP 3.7.2.II.4 (Revision 2) |                                                                                                                                                                                                                                           | Study No. 13-CS-102               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Page No.                    | Description                                                                                                                                                                                                                               | Page No.<br>and/or<br>Section No. | Description<br>(Note 1)                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3.7.2-11                    | The strain-dependent soil<br>properties (e.g., shear modulus,<br>damping) estimated for analysis<br>of the seismic motion in the free<br>field shall be consistent with the<br>geotechnical information<br>reviewed in SRP Section 2.5.4. | 5-1<br>Section 5                  | A composite soil profile was<br>formed by averaging the depth,<br>thickness, and properties of each<br>layer in the actual soil profile<br>(PVNGS UFSAR, Figure 3.7-7,<br>Soil Profile) at the three units.                                                                                                                                                                                                                                                         |
|                             |                                                                                                                                                                                                                                           | 6-1<br>Section 6.A                | The height (or thickness) of soil<br>elements was predetermined to<br>assure that an ample frequency<br>content could be transmitted<br>from base rock to the soil<br>surface and structures. The<br>maximum element height was<br>calculated based on a maximum<br>cut-off frequency of 15 Hz. Soil<br>layers were identified in the<br>model as either sand or clay. The<br>low-strain dependent properties<br>for sand and clay were utilized<br>in the program. |

#### Table 1: Comparison of Study No. 13-CS-102 to SRP 3.7.2.II.4 (Revision 2)

### ۲

ę

,

•

(2) A start from the second s Second sec

,|**\*** 

#### Floor Response Spectra for Seismic Qualification of AT&T Round Cell Batteries at Palo Verde Nuclear Generating Station (PVNGS) TAC No. M86200

| SRP 3.7.2.II.4 (Revision 2) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Study No. 13-CS-102               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Page No.                    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Page No.<br>and/or<br>Section No. | Description<br>(Note 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3.7.2-11                    | Unless the site is well<br>investigated, the variation in soil<br>properties should be considered<br>by performing SSI analyses<br>using three sets of values<br>(defined in terms of shear<br>moduli and soil hysteretic<br>damping ratio). These three<br>analyses should be performed<br>using the average (or best<br>estimate) value, twice the<br>average value and half the<br>average value of the low strain<br>shear modulus ( $G_{max}$ defined at<br>$10^{-4}$ percent peak shear strain). | 5-1<br>Section 5                  | For purposes of the seismic<br>analysis, PVNGS site was<br>treated as a two-layer system<br>consisting of soil over bedrock.<br>The upper layer (soil) was<br>relatively uniform, both at each<br>unit and between units. The<br>uniformity of the site was<br>indicated by actual soil profiles<br>and by velocity values and<br>elastic moduli. A composite soil<br>profile was formed by<br>averaging the depth, thickness,<br>and properties of each layer in<br>the soil profile. The strain<br>dependent relationships for<br>shear moduli and damping ratios<br>for clay and sand were used in<br>the LUSH program for this<br>analysis. |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7-1<br>Section 7.2                | Variation in structural<br>frequencies due to variations in<br>parameters such as structural<br>properties, damping, soil<br>properties, and soil-structure<br>interaction were not evaluated.<br>In lieu of this evaluation, the<br>width of response spectra peaks<br>was increased by a minimum of<br>+/- 15 percent.                                                                                                                                                                                                                                                                                                                        |

#### Table 1: Comparison of Study No. 13-CS-102 to SRP 3.7.2.II.4 (Revision 2)

,



#### Floor Response Spectra for Seismic Qualification of AT&T Round Cell Batteries at Palo Verde Nuclear Generating Station (PVNGS) TAC No. M86200

| SRP 3.7.2.II.4 (Revision 2) |                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Study No. 13-CS-102                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Page No.                    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                       | Page No.<br>and/or<br>Section No.             | Description<br>(Note 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3.7.2-12                    | The following limitations should<br>be observed for deep soil sites:<br>- The model depth, generally,<br>should be at least twice the base<br>dimension below the foundation<br>level, which should be verified<br>by parametric studies.<br>- The fundamental frequency of<br>the soil (or backfill) stratum<br>should be well below the<br>structural frequencies of interest.<br>- All structural modes of<br>significance should be included. | 6-1<br>Section 6.A<br>7-2<br>Section<br>7.3.A | The depth of the model was<br>approximately 2.5 times the<br>effective base width.<br>A "Column Study" was made to<br>determine the effects of cut-off<br>frequencies. A column of soil in<br>the free-field was modeled by<br>finite-elements in the LUSH<br>program. A rock motion was<br>then used to excite the soil<br>column using various cut-off<br>frequencies. Response spectra<br>at the surface resulting from<br>these cut-off frequencies were<br>then plotted against the free-<br>field response spectrum. The<br>only significant effect from the<br>cut-off frequencies was that the<br>response at frequencies higher<br>than the cut-off frequencies tend<br>to level off to the maximum<br>ground acceleration. This would<br>happen in the soil-structure<br>system due to the "filter effect"<br>even if higher cut-off<br>frequencies were used in the<br>analysis. |

#### Table 1: Comparison of Study No. 13-CS-102 to SRP 3.7.2.II.4 (Revision 2)

#### **NOTES:**

1. Supporting References, Tables and Figures are included in PVNGS Study No. 13-CS-102.

.

٣

u

ł

.

#### Floor Response Spectra for Seismic Qualification of AT&T Round Cell Batteries at Palo Verde Nuclear Generating Station (PVNGS) TAC No. M86200

#### Attachment **B**

Test Response Spectrum (TRS) Versus VECTRA's Required Response Spectrum (RRS)

۴.,

有能行 可將一

t

1

, \* 14.

*ب*۶«

μ





. .

#### Floor Response Spectra for Seismic Qualification of AT&T Round Cell Batteries at Palo Verde Nuclear Generating Station (PVNGS) TAC No. M86200

#### Attachment C

#### Vertical Synthetic Time History





;

1

41

-' a



10:34RM BECHTEL 310 807 3434 ,94 RPR 27

с. С.



| DESIGN VERIFICATION    |               |  |
|------------------------|---------------|--|
| CLIENT APS             |               |  |
| JOB NO. <u>0165</u>    | -00251        |  |
| CALC/PROB NO. Soll - I |               |  |
| BY: IMD                | DATE: 1/23/93 |  |
| CHKD: AA               | DATE: 1/28/13 |  |



#### Figure 3.3 - Spectral Matching of Vertical SSE Motion 2, 5, 7% Damping

VECTRA'S ANALYSIS

3-5

а - т.е. - е. \_



, i , i

#### **Attachment D**

Vertical Response Spectra at the Foundation Level and 60% of the Design Ground Response Spectrum

d

\$

---1) -

Ι,

4 -11 10

15.



# ì The second se

1

; "

, R

ļ

1

D

ς.,

η

ų



ŝ

| Frequen | cy (Hz) |
|---------|---------|
|---------|---------|

| DESIGN VERIFICATION   |               |  |
|-----------------------|---------------|--|
| CLIENT A              | PS            |  |
| JOB HO. 0165-00251    |               |  |
| CALCIPHOB NO. SOIL -1 |               |  |
| 614: SAD              | DATE: 1-77-93 |  |
| CHKD: AA              | DATE: 1/28/93 |  |

#### VECTRA'S ANALYSIS

### I 1 | ł ł )

111 ļ

;

]

: ;

ı 1

a I I II

ľ

1

- **ai** 'i ۲ ъ



Figure 4.6

Ratio of Foundation Level Spectra to Surface Spectra (5%Damping,Vert.)

Frequency (Hz)

| DESIGN VERIFICATION     |                 |  |
|-------------------------|-----------------|--|
| CLIENT Ars              |                 |  |
| JOU NO. 0165 -00751     |                 |  |
| CALCIPHOB NO. Soil-1    |                 |  |
| BY: 500 [DATE: 1-27-93] |                 |  |
| CHKD: AA                | DATE: 1/28 / 43 |  |

VECTRA'S ANALYSIS

Y- 11

·

1

1

1

. 1

1

ì

ł

- 10 M

1

.

.

#### Floor Response Spectra for Seismic Qualification of AT&T Round Cell Batteries at Palo Verde Nuclear Generating Station (PVNGS) TAC No. M86200

#### Attachment E

Vertical Floor Response Spectra (2% Damping) at the Batteries Location

## 4 1 1 - ままさ チャート きょましき 言い i ı I

, |

1

ч

1