REGULATORY INFORMATION DISTRIBUTION SYSTEM (RIDS)

ACCESSION NBR:940		
FACIL:STN-50-528	Palo Verde Nuclear Station, Unit 1, Arizona Publi 0500052	8
AUTH.NAME	AUTHOR AFFILIATION	
GRABO, B.A.	Arizona Public Service Co. (formerly Arizona Nuclear Power	•
LEVINĖ,J.M.	Arizona Public Service Co. (formerly Arizona Nuclear Power	•
RECIP.NAME	RECIPIENT AFFILIATION	

(ACCELERATED RIDS PROCESSIN

SUBJECT: LER 94-005-01:on 940619,CPC channel D was declared inoperable.Caused by hot leg temperature anomaly.CPC channel D was calibrated & declared operable.W/940907 ltr.

 $\mathbf{P}\mathbf{K}\mathbf{I}$

DISTRIBUTION CODE: IE22T COPIES RECEIVED:LTR / ENCL / SIZE: / TITLE: 50.73/50.9 Licensee Event Report (LER), Incident Rpt; etc.

NOTES:STANDARDIZED PLANT

1

	RECIPIENT ID CODE/NAME PD4-2 PD	COPII LTTR 1	ES ENCL 1	RECIPIENT ID CODE/NAME HOLIAN, B	COP LTTR 1	IES ENCL 1	`*
	TRAN,L	1	1	•			
INTERNAL:	ACRS	1	1	AEOD/ROAB/DSP	2	.2	
	AEOD/SPD/RRAB	ī	1	AEOD/ROAB/DSP FILE_CENTER_02	1	1	
	NRR/DE/EELB	1	1	NRR/DE/EMEB	1	1	
	NRR/DORS/OEAB	1	1	NRR/DRCH/HHFB	.1	1	
	NRR/DRCH/HICB	1	1	NRR/DRCH/HOLB	1	1	•
	NRR/DRSS/PRPB	2	2	NRR/DSSA/SPLB	1	1	
	NRR/DSSA/SRXB	1	1	NRR/PMAS/IRCB-E	1	1	
	RES/DSIR/EIB	1	1	RGN4 · FILE 01	l	. 1	
EXTERNAL:	EG&G BRYCE, J.H	2	2	L ST LOBBY WARD	1	1	
	NOAC MURPHY, G.A	ī	ĩ	NOAC POORE, W.	ī	1	
	NRC PDR	ĩ	1	NUDOCS FULL TXT	1	1	

NOTE TO ALL "RIDS" RECIPIENTS:

PLEASE HELP US TO REDUCE WASTE! CONTACT THE DOCUMENT CONTROL DESK, ROOM PI-37 (EXT. 504-2083) TO ELIMINATE YOUR NAME FROM DISTRIBUTION LISTS FOR DOCUMENTS YOU DON'T NEED!

FULL TEXT CONVERSION REQUIRED TOTAL NUMBER OF COPIES REQUIRED: LTTR 28 ENCL. 28.

2.3

99

R

1

D

M

E

N

• ø • ÷ . r1

Arizona Public Service Company PALO VERDE NUCLEAR GENERATING STATION P.O. BOX 52034 PHOENIX, ARIZONA 85072-2034

JAMES M. LEVINE VICE PRESIDENT NUCLEAR PRODUCTION

(he

192-00905-JML/BAG/RJR September 7, 1994

U. S. Nuclear Regulatory Commission Attention: Document Control Desk Mail Station P1-37 Washington, DC 20555

Dear Sirs:

Subject: Palo Verde Nuclear Generating Station (PVNGS) Unit 1 Docket No. STN 50-528 (License No. NPF-41) Licensee Event Report 94-005-01 File: 94-020-404

Attached please find supplement 1 to Licensee Event Report (LER) 94-005 prepared and submitted pursuant to 10CFR50.73. This supplement provides additional information on the cause, corrective actions, and safety significance of the fluctuations in the Core Protection Calculator Delta-T Power reported in the original submittal. The August 19, 1994, supplement submittal date was extended to September 16, 1994, by Howard Wong, Branch Chief, Reactor Projects (Telecon August 16, 1994). In accordance with 10CFR50.73(d), a copy of this LER is being forwarded to the Regional Administrator, USNRC Region IV.

If you have any questions, please contact Burton A. Grabo, Supervisor, Nuclear Regulatory Affairs, at (602) 393-6492.

JML/BAG/RJR/rv Attachment

Very truly you

(all with attachment)

cc: W. L. Stewart (a L. J. Callan K. E. Perkins K. E. Johnston INPO Records Center

> 9409280243 940907 PDR ADOCK 05000528 S PDR

• r 7 4 : a

·

											L	.IC	EN	ISI	EE	E١	VE	רא	T F	REF	20°	RT	(L)	EF	3)														
FACILITY	NVME (1)																_								_	0	оск	ET	NU	MBE	R (2)		· · · ·		T	P	AGE	(3)
	<u>lo</u> V	erd	e	Uni	t I																							0	5	0	0	0	ļĴ	1-	218	ſ	1 0	F	016
	re P		ec	tio	n C	al	cu.	lat	or	΄,	De	lt	:a-	T	Po)we	er	F	ʻ l u	ict	ua	nti	on	s															
	III DATE				_			BER (-			-	RT U	_		_	T							OTH		ACIL	.ITIE	ES (NVO					ź			
MONTH	(PA)	YEA	<u>n</u>	YEAR	Ľ	- M	INC	n	<u> </u>	KEVI. NUN	<u>85</u>	M	QUD)	"	DAY	<u> </u>	YE	٨R	1				F			NAN	IES					1			JMBE		•		
																									:/:		-					0	5	0	0		0		
06	19	91	4	914	- -	0	0	5	-	0	1) 9		01	7	9	4	4					Χ	/.4							0	5	10	0		01	1	Т
OPE	NATING			THIS R	EPO	17 13	SVE	MITI	ED	PUR	SUN	NT	TO TI	HĘI	REO	VIR	EME	HT	so	F 10	CFI	3 8: (0	Chec	k or	19 01	more	oft	ne foi	lowi	ng)	(11)	1			<u> </u>			I	
	DUE (0)		1		20,40	2(b)						Γ	20.40)5(c)					T	Т	50.7	3(a)(2)(ì	/ }							1		73.7	1(6)				
POWE		-			20.40	5(n)(1)(i)			ĺ]	50.30	?(c){	(1)						1	50,7	'3(a)(2)(v)								1 :	73.7	1(c)				
(10)		8	6		20.40	5(n)(1)(ii)					1	50.35	5(c)((2)						1	50,7	'3(a)(2)(v	ii)								1	отн	ER (Spe	ily in	Abs	tact
6 × 8	· · · ·		1		20,40	5(a)(1)(iii)				Х	1	50.73	3(a)((2)(i)						1	50.7	'3(a)(2)(v	ii)(/	\$								5010 366/		n	i ext	NHC	Form
× .	- 19 - 19	· · ·	' [20.40	5(a)(1)(īv)]	50.73	?(a){	(2)(1)	1					1	50.7	'3(a)(2)(v	ii){E	31													
	» ·	* e			29.40	5{a}(1Xv)						50.73	K2)	(2°(Hi)					1	50.7	'3(a)(2)(×)														
													LIC	EN	SEE	COI	ATA	CT	FOF	3 TH	SL	ER (1	2)																
NAME																												L				TEL	EPHO	ONE	NUN	IBE	۹ (
Bu	rton	۸.	G	rabo	o,	Su		_												-									6 	-	2 2	3	9	13	1	1	<u>ئ</u> ر؟	<u>.</u>	912
r							cc	MPL	ETE	ONE	LIN	IE F	OR E	AC	HCC)MP	OH	ENT	FA	ILUR	ED	ESCI	18E	41 O	1 TH	IS RE	POR	IT (1:	3)										
CAUSE	NGTEM	CO	APO	NENT	<u> </u>		UFA RER		REF T(PORT D NP	RDS	E		,		.:		4	CAU	SE	SY:	STEM	c	OM	POP	IENT			UR		:-	REP	PORT NP	RDS	18				- 1 - 1 - 2
				1		<u> </u>	1	L				-		*		, .	× .	,				1		1	I	1		1	1	•					1.0				· · ·
-		1	1	ł		1	1	1						'			≯ u					1		1	I	1		ł	1						37.272	X		22, 	x o N
							sup	LEM	ENT	ΛL Π	IFPC		LXL.	GCI	IED ((14)							*****									•		м	DHTH	T	DAY	T	YEAR
<u></u>	llser, sei	nulata	ENI	ectel	suc	MIS	SIQN	DATE	57					-	X]	no			ŗ										SUE	BMIS	CTEC 3510 (15)	N			1		1	ľ	
ABSTRAC	T (Lunit I	n (40)) spa	(==,j=	- <i>P</i> FF	σλίπ	ntely	litte e	n sin	i⊊!+-‡	(DAL)	r ļ	eewsit •	ttera	ines	0(16	5)						_	_			_						_		×	_	_		

At approximately 2258 MST on June 19, 1994, Control Room personnel determined that the Core Protection Calculator (CPC) Channel D, Delta-T Power signal could no longer be adjusted to within +/- 2 percent of actual power as determined by secondary plant calorimetric and required by Technical Specification (TS) 3.3.1, Table 4.3-1, Notation (2). CPC Channel D was declared inoperable. This condition was caused by loop 2 Hot leg temperature (T-h) Resistance Temperature Detector (RTD) fluctuations. Fluctuations in T-h RTDs have been identified at other plants and attributed to temperature stratification. On June 29, 1994, after reviewing plant logs, the condition was determined to be reportable. The loop 2 (T-h) Resistance Temperature Detector (RTD) creating the Delta-T power fluctuations was electronically switched with the T-h RTD used in the Core Operating Limits Supervisory System. At approximately 1812 MST on July 2, 1994, CPC Channel D was calibrated and declared OPERABLE. The event did not adversely affect safe operation of the plant.

No previous similar events have been reported pursuant to 10CFR50.73.

{

-74

P

-. 9 .

,

• ¥

LICENSEE EVENT REPORT (LER) TEXT CONTINUATION

ACILITY NAME			DOCKET NUMBER	LER NUMBER	PAGE
_				YEAR SEQUENTIAL REVISION	<i>v</i>
Palo Verde	a Unit	Ŧ A			
			015101010151218	914-01015-011	012.0F01
FXT					
~		P			l
I.	DESC	RIPTION OF WHAT OC	CURRED:		
	Α.	Initial Condition	ns:		
			2258 MST on June 19, 1 OPERATION) at normal o		
	В.	Reportable Event Times of Major O	Description (Including ccurrences):	Dates and Approximat	te
		Event Classifica	·····	prohibited by the p Specifications (TS)	lant's
		personnel (utili fluctuations of Computer (CPC) Cl could no longer 1 power as determin by TS 3.3.1 Table	2258 MST on June 19, 1 ty, licensed) determine approximately 5 percent hannel D, Delta-T Power be adjusted to within + ned by secondary plant e 4.3-1 Notation (2). laced in by-pass.	d that, due to freque in Core Protection signal, Delta-T powe /- 2 percent of actua calorimetric and requ	ent er al uired
TS Limiting Condition for Operation (LCO) 3.3.1 Action 2 stat that STARTUP and/or POWER OPERATION may continue with the num of channels OPERABLE 1 less than the total number of channels provided the inoperable channel is placed in the bypassed or tripped condition within 1 hour. This TS LCO Action also rec that the desirability of maintaining the channel in bypass be reviewed in accordance with TS 6.5.1.6.g and returned to OPER status no later than during the next COLD SHUTDOWN.				umber Ls, c equires be	
		Power on June 19 of the calibratic Prior to June 19 averaged by Cont the calorimetric not proceduralize initial investig	rmance of the calibrati , 1994, questions were on by a Control Room op , 1994, the CPC Delta-T rol Room personnel for . The averaging of thi ed or a subject of form ation identified that t signal varied between	raised as to the value erator (utility, lice Power signals had be determining agreement s fluctuating signal al operator training he method of determin	idity ensed). eèn t with was . The

Ş

- -. म L

ACILITY HAME		DOCKET NUMBER	LER NUMBER PAG	E
Palo Verde Unit	1		VEAR SEQUENTIAL REVISION NUMBER	Γ
	,	015101010151218	9 4 - 0 0 5 - 0 1 0 3 OF	
EXT				<u></u>
	Room operator felt the and even after adjustic percent of actual power Delta-T Power signal of outside its allowable this and the lack of we signal, it was determine fluctuations should not Power could not be call declared inoperable. data on CPC Channel D the same magnitude have To calculate Delta-T pp parameters. One of the T-h data is received ff (RTD). The RTDs are and leg is a 42 inch diame wells which protrude and stream. The thermal we in approximately the s RTD exists 10 inches conserved and (COLSS). Each CPC channel receine example, CPC Channel D Loop 2 RTD. These signed temperature, mass flow pressure to produce the Power calculation is on auctioneering algorith The Maximum Power Calcor receives two other power minimum signal) and au output of the Maximum Departure from Nucleat Density (LPD). The same	e fluctuations had, ing the average sig er, the fluctuation on CPC Channel D to band of +/- 2 perc written guidance on oned by the Control of be averaged. The ibrated as require During the investi Delta-T power show we existed for seve ower, the CPCs mon ose parameters is rom 8 Resistance T rranged with 4 in ter pipe. The RTD pproximately 3 inc ells are located r ame plane. An add loser to the steam e Core Operating L ves one T-h signal receives T-h inpunals are combined rate, and Reactor e Delta-T Power ca ne input to the Mat m. ulation auctioneer er signals (Neutron ctioneers the high Power Calculation e Boiling Ratios () me T-h signals are ic for the generat The auxiliary trip uncertainties, re	s would still cause the periodically swing ent power. Because of how to obtain an average Room staff that the us, CPC Channel D Delta-T d and the channel was gation a review of past ed that fluctuations of ral fuel cycles. itor several primary plant Hot Leg temperature (T-h). emperature Detectors each hot leg. Each hot s are inside of thermal hes into the process adially around the hot leg itional thermal well and generator inlet and is imits Supervisory System from each Hot Leg. For ts from 1 Loop 1 RTD and 1 with signals from cold leg Coolant System (RCS) lculation. The Delta-T kimum Power Calculation ing algorithm also n Flux and a 20 percent est of the 3 powers. The is used in calculating DNBR) and Local Power also used as an input to ion of an auxiliary Hot is provided when the	

ę

Γ

•

લ્ય

• د 5

LICENSEE EVENT REPORT (LER) TEXT CONTINUATION

FACILITY NAME	· · · · · · · · · · · · · · · · · · ·	Inocks	TNUMB				1			VOCD					
Palo Verde Unit	1			51(YEA	17.5	SEOU	MBER ENTIAL IBER		MBER		PAGE	
TEXT	······································	0 5		. 0	5	218	9	4	0.0) 5	- 0	11	0.14	OF	0
_	Prior to declaring CH a 86.08 percent actua calorimetric. The CH observed to be betwee even though Unit powe fluctuations in one o	l pov C Cha n app r was	ver a innel proxi s not	s d D mat va	ete: the: ely ryi:	rmin rmal 81. ng.	ned po 6 a Th	by wer nd is	sec in 86,0 was	onda dica 6 pe att	ry p tior cercer ribu	olan ns w nt p nted	t ere ower to		

several fuel cycles. Prior to this event, APS Engineering had been investigating these fluctuations since January, 1991, when ABB Combustion Engineering (ABB-CE) responded to a request by APS for an explanation of a T-h anomaly which had been observed in Unit 1, Loop 1. The response described the normal coolant temperature stratification effects which occur in reactor hot legs and the effects and postulated cause for the phenomenon known as the Hot Leg Temperature Anomaly.

to CPC Channel D Delta-T Power, a condition that has existed for

Hot Leg Temperature Anomaly is a phenomenon observed in the RCS hot legs where temperatures measured at the same distance from the core exit, but at different radial locations, may differ by several degrees. Although flow at the core exit is highly turbulent and mixing is expected to be complete, hotter water from the center of the core and colder water from the periphery do not always mix completely. This shows as varying temperature readings.

ABB-CE's response concluded that the T-h trends in PVNGS Unit 1 were consistent with trends observed in other ABB-CE reactors. This caused APS Engineering to follow the changes in T-h RTD fluctuations and conduct several reviews to verify that the RTDs were accurately responding to temperature changes. At no time during these investigations did the results identify problems specific to the instrumentation.

On February 18, 1994, the investigation team concluded that:

- The RTDs were functioning correctly,
- There was no safety concern since the fluctuations did not cause the CPC system to perform its safety function in a non-conservative manner, and

based on the available industry information and plant observations, the temperature variations seen in the hot legs were being caused by thermal-hydraulic effects of the phenomenon known as "Hot Leg Anomaly" or "Hot Leg Stratification." , . v • 1 * .

ГАСІЦІТ НАВІС		DOCKET NUMBER	LER NUMBER	PAGE
Palo Verde Unit	3		YEAR SECUENTIAL REVISION NUMBER NUMBER	
		0151010101302		
IEXT	1 		9 4 0 0 0 5 0 1 0	1310-101
	•	·		
	temporary modification with the CPC Channel I creating the Delta-T p switched with the COLS	n, which substitute D T-h RTD, was init power fluctuations SS T-h RTD. CPC Ch	le on June 19, 1994, a d the COLSS Loop 2 T-h iated. The loop 2 T-h was electronically annel D was successful approximately 1812 MST	n RTD n RTD
c.	Status of structures, at the start of the ev			ble
	Not applicable - no st inoperable at the star event.		or components were ch contributed to this	
D .	Cause of each componer	nt or system failur	e, if known:	Ŧ
		ctly. The variance to thermal strat		
Ε.	Failure mode, mechanis known:	sm, and effect of e	ach failed component,	if
	There were no componer	nt failures.		1
F.	For failures of compor systems or secondary f			
	Not applicable - no fa were involved.	ailures of componen	ts with multiple funct	ions
G.	For a failure that rer estimated time elapsed train was returned to	l from the discover	safety system inopera y of the failure until	
	Not applicable - there safety system inoperat		that rendered a train	of a
н.	Method of discovery of procedural error:	f each component or	system failure or	
		identified. There	onent or system failur were no procedural err	

~

ħ b

ъ., · ·

,

4,

LITY NAME		lood	KET NUMBER	PAGE
Palo Verd	e Unit	1	YEAR SEQUENTIAL REVISION NUMBER NUMBER	
			5 0 0 0 3 2 8 9 4 - 0 0 5 - 0 1 0	6 OF 0
<u>.</u>		<u> ``</u>		
		1	×	
	I.	Cause of Event:		
		identified in 1991, APS safety significant in th negatively effected. All condition and based on t information, the cause of phenomenon known as Hot X: Other). An investigat information is developed	uctuating T-h RTD signals was first determined that fluctuations were not at the trips provided by the CPCs were S continued to investigate and review he best available industry and plant f the T-h fluctuations is attributed t Leg Temperature Anomaly (SALP Cause Co tion of this event is continuing. If which would affect the reader's ion of this event, a supplement will b	the to a ode
	J.	Safety System Response:		
		Not applicable - there w were necessary.	ere no safety system responses and non	e
	К.	Failed Component Informa	cion:	*
		Not applicable - no comp	onent failures were involved.	
II.	ASSES	SMENT OF THE SAFETY CONSE	QUENCES AND IMPLICATIONS OF THIS EVENT	' p
		PC uses T-h indications f Thermal Power, and RCS F	or calculating the Hot Leg Saturation low.	
	•	is sufficient to offset	rip includes a 13 degree uncertainty w the observed abnormal behavior and pre with a large temperature difference am	vent
	•	first averaged. The cal a calculated reactor pow above 20 percent power). is used in the calculati likelihood that the aver	the CPCs to calculate thermal power ar culated thermal power is then compared er based on neutron flux density (when The higher of the two calculated sig on of DNBR and LPD. Because of this, aging techniques used by the Control R an adverse affect on DNBR and LPD is	to nals the

• . Ŧ i.

,

.

.