UNITED STATES

NUCLEAR REGULATORY COMMISSION
WASHINGTON, D. C. 20555

ARIZONA PUBLIC SERVICE COMPANY, ET AL.
DOCKET NO. STN 50-528
PALO VERDE NUCLEAR GENERATING STATION, UNIT NO. 1
AMENDMENT TO FACILITY OPERATING LICENSE

Amendment No. 54
License No. NPF-41

1. The Nuclear Regulatory Commission (the Commission) has found that:
A. The application for amendment by the Arizona Public Service Company (APS) on behalf of itself and the Salt River Project Agricultural Improvement and Power District, El Paso Electric Company, Southern California Edison Company, Public Service Company of New'Mexico, Los Angeles Department of Water and Power, and Southern California Public Power Authority (licensees), dated October 11, 1990 complies with the standards and requirements of the Atomic Energy Act of 1954, as amended (the Act) and the Commission's regulations set forth in 10 CFR Chapter I;
B. The facility will operate in conformity with the application, the provisions of the Act, and the rules and regulations of the Commission;
C. There is reasonable assurance (i) that the activities authorized by this amendment can be conducted without endangering the health and safety of the public, and (ii) that such activities will be conducted in compliance with the Cornmission's regulations;
D. The issuance of this amendment will not be inimical to the common defense and security or to the health and safety of the public; and
E. The issuance of this amendment is in accordance with 10 CFR Part 51 of the Commission's regulations and all applicable requirements have been satisfied.
2. Accordingly, the license is amended by changes to the Technical Specifications as indicated in the attachment to this license amendment, and paragraph 2.C(2) of Facility Operating License No. NPF-41 is hereby amended to read as follows:

(2) Technical Specifications and Environmental Protection Plan

The Technical Specifications contained in Appendix A, as revised through Amendment No. 54, and the Environmental Protection Plan contained in Appendix B, are hereby incorporated into this license. APS shall operate the facility in accordance with the Technical Specifications and the Environmental Protection Plan, except where otherwise stated in specific license conditions.
3. This license amendment is effective as of the date of issuance and•must be fully implemented no later than 45 days from the date of issuance.

FOR THE NUCLEAR REGULATORY COPMMISSION

$$
\begin{aligned}
& \text { Chaules M. Trasmell } \\
& \text { for James E. Dyer, Director } \\
& \text { Project Directorate } v \\
& \text { Division of Reactor Projects IIF/IV/V } \\
& \text { Office of Nuclear Reactor Regulation }
\end{aligned}
$$

Attachment:
Changes to the Technical Specifications

Date of Issuance: June 27, 1991

DOCKET NO. STN 50-528

Replace the following pages of the Appendix A Technical Specifications with the enclosed pages. The revised pages are identified by amendment number and contain vertical lines indicating the areas of change.

Remove	Insert
I	I
X	X
3/4 1-6	3/4 1-6
3/4 1-22	3/4 1-22
3/4 2-12	3/4 2-12
3/4 3-38	3/4 3-38
3/4 3-48	3/4 3-48
3/4 3-50	3/4 3-50
3/4 3-52	3/4 3-52
3/4 3-54	3/4 3-54
3/4 3-55	3/4 3-55
3/4 4-19	3/4 4-19
3/4 4-35	3/4 4-35
3/4 6-37	3/4 6-37
3/4 7-29	3/4 7-29
3/4 8-3	3/4 8-3
3/4 8-5	3/4 8-5
3/4 9-1	3/4 9-1
3/4 9-6	3/4 9-6
3/4 10-1	3/4 10-1
3/4 10-5	3/4 10-5
3/4 10-10	3/4 10-10
3/4 11-1	3/4 11-1
3/4 10-1	B 3/4 10-1

er
DEFINITIONS
SECTION PAGE
1.0 DEFINITIONS
1.1 ACTION. 1-1
1.2 AXIAL SHAPE INDEX 1-1
1.3 AZIMUTHAL POWER TILT - Tq. 1-1
1.4 CHANNEL CALIBRATION. 1-1
1.5 CHANNEL CHECK 1-1
1.6 CHANNEL FUNCTIONAL TEST. 1-2
1.7 CONTAINMENT INTEGRITY. 1-2
1.8 CONTROLLED LEAKAGE. 1-2
1.9 CORE ALTERATION 1-2
1.10 DOSE EQUIVALENT I-131 1-3
1.11. E-AVERAGE DISINTEGRATION ENERGY 1-3
1.12 ENGINEERED SAFETY FEATURES RESPONSE TIME. 1-3
1.13 FREQUENCY NOTATION. 1-3
1.14 GASEOUS RADWASTE SYSTEM. 1-3
1.15 IDENTIFIED LEAKAGE 1-3
$1.16 \mathrm{~K}_{\mathrm{N}-1}$ 1-4
1.17 MEMBER(S) OF THE PUBLIC 1-4
1.18 OFFSITE DOSE CALCULATION MANUAL (ODCM) 1-4
1.19 OPERABLE - OPERABILITY 1-4
1.20 OPERATIONAL MODE - MODE 1-4
1.21 PHYSICS TESTS 1-4
1.22 PLANAR RADIAL PEAKING FACTOR' - $\mathrm{F}_{x y}$ 1-4
1.23 PRESSURE BOUNDARY LEAKAGE 1-5
1.24 PROCESS CONTROL PROGRAM (PCP) 1-5
1.25 PURGE - PURGING. 1-5
1.26 RATED THERMAL POWER. 1-5
1.27 REACTOR TRIP SYSTEM RESPONSE TIME 1-5
1.28 REPORTABLE EVENT. 1-5
1.29 SHUTDOWN MARGIN. 1-6
1.30 SITE BOUNDARY 1-6

INDEX

LIMITING CONDITIONS FOR OPERATION AND SURVEILLANCE REQUIREMENTS
SECTIONPAGE
3/4.10.4 CEA POSITION, REGULATING CEA INSERTION LIMITS AND REACTOR COOLANT COLD LEG TEMPERATURE. 3/4 10-4
3/4.10.5 MINIMUM TEMPERATURE AND PRESSURE FOR CRITICALITY 3/4 10-5
3/4.10.6 SAFETY INJECTION TANKS 3/4 10-6
3/4.10.7 SPENT FUEL POOL LEVEL. 3/4 10-7
3/4.10.8 SAFETY INJECTION TANK PRESSURE 3/4 10-8
3/4.10.9 SHUTDOWN MARGIN AND $\mathrm{K}_{\mathrm{N}-1}$ - CEDMS TESTING. 3/4 10-9
3/4.11 RADIOACTIVE EFFELUENTS
3/4.11.1 SECONDARY SYSTEM LIQUID WASTE DISCHARGES TO ONSITE EVAPORATION PONDS CONCENTRATION. 3/4 11-1
DOSE 3/4 11-5
LIQUID HOLDUP TANKS 3/4 11-6
3/4.11.2 GASEOUS EFFLUENTS DOSE RATE 3/4 11-7
DOSE - NOBLE GASES 3/4 11-11
DOSE - IODINE-131, IODINE-133, TRITIUM, AND RADIONUCLIDES IN PARTICULATE FORM. 3/4 11-12
GASEOUS RADWASTE TREATMENT. 3/4 11-13
EXPLOSIVE GAS MIXTURE 3/4 11-14
GAS STORAGE TANKS 3/4 11-15
3/4.11.3 SOLID RADIOACTIVE WASTE. 3/4 11-16
3/4.11.4 TOTAL DOSE 3/4 11-18
3/4.12 RADIOLOGICAL ENVIRONMENTAL MONITORING
3/4.12.1 MONITORING PROGRAM 3/4 12-1
3/4.12.2 LAND USE CENSUS 3/4 12-11
3/4.12.3 INTERLABORATORY COMPARISON PROGRAM 3/4 12-12
3.1.1.4 The Reactor Coolant System lowest operating loop temperature ($\mathrm{T}_{\text {cold }}$) shall be greater than or equal to $552^{\circ} \mathrm{F}$.

APPLICABILITY: MODES 1 and 2\#.
ACTION:
With a Reactor Coolant System operating loop temperature ($T_{\text {cold }}$) less than $552^{\circ} \mathrm{F}$, restore $\mathrm{T}_{\text {cold }}$ to within its limit within 15 minutes or be in HOT STANDBY within the next 15 minutes.

SURVEILLANCE REQUIREMENTS

4.1.1.4 The Reactor Coolant System temperature ($\mathrm{T}_{\mathrm{cold}}$) shall be determined to be greater than or equal to $552^{\circ} \mathrm{F}$:
a. Within 15 minutes prior to achieving reactor criticality, and
b. At least once per 30 minutes when the reactor is critical and the Reactor Coolant System $\mathrm{T}_{\text {cold }}$ is less than $557^{\circ} \mathrm{F}$.
\#With $K_{\text {eff }}$ greater than or equal to 1.0.

ACTION: (Continued)
b) The SHUTDOWN MARGIN requirement of Specification 3.1.1.2 is determined at least once per 12 hours.

Otherwise, be in at least HOT STANDBY within 6 hours.
d. With one full-length CEA inoperable due to causes other than addressed by ACTION a., above, but within its above specified alignment requirements, operation in MODES 1 and 2 may continue pursuant to the requirements of Specification 3.1.3.6.
e. With one part-length CEA inoperable and inserted in the core, operation may continue provided the alignment of the inoperable part length CEA is maintained within 6.6 inches (indicated position) of all other part-length CEAs in its group and the CEA is maintained pursuant to the requirements of Specification 3.1.3.7.

SURVEILLANCE REQUIREMENTS

4.1.3.1.1 The position of each full-length and part-length CEA shall be determined to be within 6.6 inches (indicated position) of all other CEAs in its group at least once per 12 hours except during time intervals when one CEAC is inoperable or when both CEACs are inoperable, then verify the individual CEA positions at least once per 4 hours.
4.1.3.1.2 Each full-length CEA not fully inserted and each part-length CEA which is inserted in the core shall be determined to be OPERABLE by movement of at least 5 inches in any one direction at least once per 31 days.

1 POWER DISTRIBUTION LIMITS

3/4.2.8 PRESSURIZER PRESSURE

LIMITING CONDITION FOR OPERATION
3.2.8 The pressurizer pressure shall be maintained between 2025 psia and 2300 psia.

APPLICABILITY: MODES 1 and 2.
ACTION:
With the pressurizer pressure outside its above limits, restore the pressure to within its limit within 2 hours or be in at least HOT STANDBY within the next 6 hours.

SURVEILLANCE REQUIREMENTS
4.2.8 The pressurizer pressure shall be determined to be within its limit at least once per 12 hours.

RADIATION MONITORING INSTRUMENTATION

MINIMUM CHANNELS OPERABLE	APPLICABLE MODES	ALARM/TRIP SETPOINT	MEASUREMENT \qquad	ACTION
.				
1	**	$\leq 15 \mathrm{mR} / \mathrm{hr}$	10^{-1} to $10^{4} \mathrm{mR} / \mathrm{hr}$	22 \& 24
1	*	$\leq 15 \mathrm{mR} / \mathrm{hr}$	10^{-1} to $10^{4} \mathrm{mR} / \mathrm{hr}$	22
2	1,2,3,4	$\leq 10 R / h r$	$1 \mathrm{R} / \mathrm{hr}$ to $10^{7} \mathrm{R} / \mathrm{hr}$	27
1	\#	$\leq 2.5 \mathrm{mR} / \mathrm{hr}$	10^{-1} to $10^{4} \mathrm{mR} / \mathrm{hr}$	25
1	1,2,3,4	\#\#	10^{0} to $10^{5} \mathrm{mR} / \mathrm{hr}$	27
1	1,2,3,4	\#\#	10^{0} to $10^{5} \mathrm{mR} / \mathrm{hr}$	27

2. Process Monitors
A. Containment Building

Atmosphere RU-1
$21,2,3,4$
23. \& 27

1) Particulate
2) - Gaseous
$\leq 2.3 \times 10^{-6} \mu \mathrm{Ci} / \mathrm{cc} 10^{-9}$ to $10^{-4} \mu \mathrm{Ci} / \mathrm{cc}$ Cs-137
$\leq 6.6 \times 10^{-2} \mu \mathrm{Ci} / \mathrm{cc} \quad 10^{-6}$ to $10^{-1} \mu \mathrm{Ci} / \mathrm{cc}$ Xe-133
B. Noble Gas Monitors

Control Room Ventilation Intake RU-29 \& RU-30

1
ALL MODES
$\leq 2 \times 10^{-5} \mu \mathrm{Ci} / \mathrm{cc} \quad 10^{-6}$ to $10^{-1} \mu \mathrm{Ci} / \mathrm{cc}$
26
3. Post Accident Sampling System $1 \# \# \#$

1,2,3.
N.A. : :
N. A.

28

[^0]
INSTRUMENTATION

REMOTE SHUTDOWN SYSTEM

LIMITING CONDITION FOR OPERATION
3.3.3.5 The remote shutdown system disconnect switches, power, controls and monitoring instrumentation channels shown in Tables 3.3-9 A-C shall be OPERABLE.

APPLICABILITY: MODES 1 and 2.

ACTION:

a. With the number of OPERABLE remote shutdown monitoring channels less than required by Table 3.3-9 AC, restore the inoperable channel(s) to OPERABLE status within 7 days, or be in HOT STANDBY within the next 12 hours.
b. With one or more remote shutdown system disconnect switches or power or control circuits inoperable, (listed in tables 3.3-9B and 3.3-9C) restore the inoperable switch(s)/circuit(s) to OPERABLE status or issue procedure changes per Specification 6.8.3 that identifies alternate disconnect methods or power or control circuits for remote shutdown within 7 days, or be in HOT STANDBY within the next 12 hours.
c. The provisions of Specification 3.0.4 are not applicable.
4.3.3.5 The Remote Shutdown System shall be demonstrated operable:
a. By performance of the CHANNEL CHECK and CHANNEL CALIBRATION operations at the frequencies shown in Table 4.3-6 for each remote shutdown monitoring instrumentation channel.
b. By operation of each remote shutdown system disconnect switch and power and control circuit including the actuated components at least once per 18 months.

REMOTE SHUTDOWN DISCONNECT SWITCHES

DISCONNECT SWITCHES

1. SG 1 line 2 Atmospheric Dump Valve Solenoid Air RSP
SWITCHLOCATIONIsolation Valves SGB-HY-178A and SGB-HY-178R
2. SG 2 line 1 Atmospheric Dump Valve Solenoid AirRSPIsolation Valves SGB-HY-185A and SGB-HY-185R
3. Auxiliary Spray Valve RSPCHB-HV-203
4. Letdown to RegenerativeRSP
Heat Exchanger Isolation, CHB-UV-515
5. Reactor Coolant Pump RSP
Controlled Bleedoff, CHB-UV-505
6. Auxiliary Feedwater Pump B to SG 1 Control Valve, AFB-HV-30 RSP
7. Auxiliary Feedwater Pump RSPB to SG 2 Control Valve, AFB-HV-31
8. Auxiliary Feedwater Pump RSPB to SG I Block Valve, AFB-UV-34
9. Auxiliary Feedwater PumpB to SG 2 Block Valve, AFB-UV-35
10. Pressurizer Backup Heaters Banks B10, B18, A05 Control RSP
11. Safety Injection Tank 2A RSP
Vent Control SIB-HV-613
12. Safety Injection Tank 2B RSPVent Control SIB-HV-623
13. Safety Injection Tank 1A Vent Control SIB-HV-633 RSP
14. Safety Injection Tank 1B RSPRSP

Vent Control SIB-HV-643

Vent Control SIB-HV-643
15. Safety Injection Tank Vent
15. Safety Injection Tank Vent RSP RSP
Valves Power Supply SIB-HS-18C
Valves Power Supply SIB-HS-18C
16. SG 1 line 2 Atmospheric Dump Valve Solenoid Air RSP
Isolation Valves SGD-HY-178B and SGD-HY-178S
17. SG 2 line 1 Atmospheric Dump Valve Solenoid Air Isolation Valves SGD-HY-185B and SGD-HY-185S RSP
18. Control BLDG Battery Room D Essential Exhaust Fan 'HJB-J01A'
19. Control BLDG Battery Room BEssential Exhaust Fan 'HJB-J01B!
20. Battery Charger D ControlRoom Circuits PKD-H14
21. ESF Switchgear RoomEssential AHU HJB-Z03
22. LPSI Pump SIB-PO1 Breaker
PHB-M3205
PHB-M3205
PHB-M3209 AND PKD-H14
PHB-M3205PBB-S04F
Control
23. Diesel Generator B Breaker Control
24. Essential Spray Pond Pump SPB-PO1 PBB-S04CPBB-S04B

TABLE 3.3-9B (continued)
REMOTE SHUTDOWN DISCONNECT SWITCHES
SWITCH
DISCONNECT SWITCHESLOCATION
50. LPSI-SD HX "B" Bypass PHB-M3803
SIB-HV-307
51. LPSI Pump "B" Recirc PHB-M3611SIB-UV-66852. LPSI Pump "B" SuctionPHB-M3805from RWT SIB-HV-692
53. SD Cooling LPSI Pump "B"Suction SIB-UV-652
54. SD Cooling LPSI Pump "B"Suction SIB-UV-654
55. L.PSI Header " B " to RC Loop

PHB-M36112A SIB-UV-61556. LPSI Header " B " to RC Loop2B SIB-UV-625
57. VCT Outlet Isolation CHN-UV-501
58. RWT Gravity Feed CHN-HV-536
59. Shutdown Cooling TemperatureControl SIB-HV-65860. Shutdown Cooling Heat ExchangerBypass Valve SIB-HV-693
61. 4.16 KV Bus PBB-SO4Feeder from XFMR NBN-XO4
62. 4.16 KV Bus PBB-SO4 Feeder from XFMR NBN-X03
63. Electrical Penetration Room B ACU HAB-Z06
64. Control Room HVAC Isolation Dampers RSP
HJB-M01/HJB-M55
65. O.S.A. Supply Damper HJB-M02 RSP
66. O.S.A. Supply Damper HJB-M03 RSP
67. R.C.S. Sample Isolation Valve SSA-UV-203 SSA-J04
68. R.C.S. Sample Isolation Valve SSB-UV-200RSPPKA-M4101
69. 125 VDC Battery A BreakerControl Room Circuits
PHB-M3611
PKD-B44
PHB-M3640
NHN-M7208
NHN-M7209.
PHB-M3416
PHB-M3416
PBB-SO4K
PBB-S04L
PHB-M3640
-

TABLE 3.3-9C (continued)
REMOTE SHUTDOWN CONTROL CIRCUITS

CONTROL CIRCUITS

27. E-PGB-L36 480V
Supply Breaker to Load Center PGB-L36
28. Battery Charger PKB-H12 Supply Breaker
29. Battery Charger PKD-H14 Supply Breaker
30. Backup Battery ChargerPKB-H16 Supply Breaker
31. Essential Spray Pond Pump SPB-P01
32. Essential Cooling Water Pump

- EWB-P01

33. Essential Chilled WaterChiller ECB-EO1
34. Battery Room D Essential Exhaust Fan HJB-J01A
35. Battery Room B EssentialExhaust Fan HJB-J01B
36. ESF Switchgear Room B
Essential AHU HJB-Z03
37. Electrical Penetration Room BACU Fan HAB-ZO6
38. SIT Vent Valves Power RSP
Supply SIB-HS-18B
39. SIT 2A Vent Valve RSP
SIB-HV-613
40. SIT 28 Vent Valve RSP
SIB-HV-623
41. SIT IA Vent Valve RSP
SIB-HV-633
42. SIT 1B Vent Valve RSP
SIB-HV-643
43. LPSI Pump BSIB-P01
44. Containment Spray Pump BDischarger to SD HX "B"Valve SIB-HV-689
45. LPSI Containment Spray from PHB-M3810
SD HX "B" X-tie Valve SIB-HV-695
46. Shutdown Cooling LPSI Suction Valve SIB-UV-656
47. Shutdown Cooling Warmup Bypass Valve SIB-HV-690
48. LPSI Containment Spray toSD HX "B" X-tie Valve SIB-HV-694$\because \because$

-

TABLE 3.3-9C (continued)
REMOTE SHUTDOWN CONTROL CIRCUITS

CONTROL CIRCUITS

SWITCH LOCATION
49. $\mathrm{SD} H X$ " B " to RC Loops
50. 2A/2B Valve SIB-HV-696
50. LPSI SD HX "B" Bypass

PHB-M3415 Valve SIB-HV-307
51. LPSI Pump B Recirc. Valve SIB-UV-668.
52. LPSI Pump B Suction From RWT SIB-HV-692
53. RC Loop to Shutdown
Cooling Valve SIB-UV-652
54. RC Loop to Shutdown Cooling Valve SIB-UV-654
55. LPSI Header B to RC
Loop $2 A$ Valve SIB-UV-615
56. LPSI Header B to RC Loop 28 Valve SIB-UV-625
57. SDC. "B" Temperature Control Valve" PHB-M3412
58. Control Room Ventilation Isolation RSP Dampers HJB-M01/HJB-M55
59. O.S.A. Supply Damper HJB-M02 . RSP
60. O.S.A. Suppiy Damper HJB-M03
61. Diesel Generator "B" Emergency Start

RSP
62. Normal Offsite Power Supply Breaker

DGB-B01
63. Alternate Offsite Power Supply Breaker

PBB-S04K
64. Battery "B" Breaker

PBB-S04L
65. Battery "D" Breaker

PKB-M4201
66. RCS Sample Isolation Valve SSA-UV-203

PKD-M4401
67. RCS Sample Isolation Valve SSB-UV-200

SSA-J04
68. Train " B " Pumps Combined Recirc to RWT Valve

SSB-J04 SIB-UV-659
69. Shutdown Cooling Heat Exchanger Bypass

RSP Valve SIB-HV-693
70. Battery "A" Breaker

PHB-M3413
PKA-M4101

- . .
3.4.5.2 Reactor Coolant System leakage shall be limited to:
a. No PRESSURE BOUNDARY LEAKAGE,
b. $\quad 1 \mathrm{gpm}$ UNIDENTIFIED LEAKAGE,
c. 1 gpm total primary-to-secondary leakage through all steam generators, and 720 gallons per day through any one steam generator,
d. 10 gpm IDENTIFIED LEAKAGE from the Reactor Coolant System, and
e. 1 gpm leakage at a Reactor Coolant System pressurë of 2250 ± 20 psia from any Reactor Coolant System pressure isolation vaive specified . in Table 3.4-1.

APPLICABILITY: MODES $1,2,3$, and 4.
ACTION:
a. With any PRESSURE BOUNDARY LEAKAGE, be in at least HOT STANDBY within 6 hours and in COLD SHUTDOWN within the following 30 hours.
b. With any Reactor Coolant System leakage greater than any one of the limits, excluding PRESSURE BOUNDARY LEAKAGE and leakage from Reactor Coolant System pressure isolation valves, reduce the leakage rate to within limits within 4 hours or be in at least HOT STANDBY within. the next 6 hours and in COLD SHUTDOWN within the following 30 hours.
c. With any Reactor Coolant System pressure isolation valve leakage greater than the above limit, isolate the high pressure portion of the affected system from the low pressure portion within 4 hours by use of at least one closed manual or deactivated automatic valve, or be in at least HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours.
d. With RCS leakage alarmed and confirmed in a flow path with no flow rate indicators, commence an RCS water inventory balance within 1 hour to determine the leak rate.

SURVEILLANCE REQUIREMENTS

4.4.5.2.1 Reactor Coolant System leakages shall be demonstrated to be within each of the above limits by:
a. Monitoring the containment atmosphere gaseous and particulate radioactivity monitor at least once per 12 hours.

REACTOR COOLANT SYSTEM
3/4.4.10 REACTOR COOLANT SYSTEM VENTS

LIMITING CONDITION FOR OPERATION
3.4.10 Both reactor coolant system vent paths shall be operable and closed at each of the following locations:
a. Reactor vessel head, and
b. Pressurizer steam space.

APPLICABILITY: MODES 1, 2, 3 and 4.
ACTION:
a. With only one of the above required reactor coolant system vent paths OPERABLE, from either location restore both paths at that. location to OPERABLE status within 72 hours or be in at least HOT STANDBY within the next 6 hours and in HOT SHUTDOWN within the following 6 hours.
b. With none of the above required reactor coolant system vent paths OPERABLE, from either location restore at least one path at that location to OPERABLE status within the next 6 hours or be in at least HOT STANDBY within the next 6 hours and in HOT SHUTDOWN within the following 6 hours.

SURVEILLANCE REQUIREMENTS

4.4.10 Each Reactor Coolant System vent path shall be demonstrated OPERABLE at least once per 18 months, when in MODES 5 or 6 , by:
a. Verifying all manual isolation valves in each vent path are locked in the open position.
b. Cycling each vent valve through at least one complete cycle from the control room.
c. Verifying flow through the reactor coolant system vent paths during venting.

CONTAINMENT SYSTEMS

ELECTRIC HYDROGEN RECOMBINERS

LIMITING CONDITION FOR OPERATION
3.6.4.2 Two portable independent containment hydrogen recombiner systems shared among the three units shall be OPERABLE.

APPLICABILITY: MODES 1 and 2.
ACTION:
With one hydrogen recombiner system inoperable, restore the inoperable system to OPERABLE status within 30 days or meet the requirements of Specification 3.6.4.3, or be in at least HOT STANDBY within the next 6 hours.

SURVEILLANCE REQUIREMENTS

4.6.4.2 Each hydrogen recombiner system shall be demonstrated OPERABLE:
a. At least once per 6 months by:

1. Verifying through a visual examination that there is no evidence of abnormal conditions within the recombiner enclosure and control console.
2. Operating the recombiner to include the air blast heat exchanger fan motor and enclosed blower motor continuously for at least 30 minutes at a temperature of approximately $800^{\circ} \mathrm{F}$ reaction chamber temperature.
b. At least once per year by performing a CHANNEL CALIBRATION of recombiner instrumentation to include a functional test of the recombiner at $1200^{\circ} \mathrm{F}\left(\pm 50^{\circ} \mathrm{F}\right.$) for at least four hours.

PLANT SYSTEMS

3/4.7.11 SHUTDOWN COOLING SYSTEM

LIMITING CONDITION FOR OPERATION
3.7.11 Two independent shutdown cooling subsystems shall be OPERABLE, with each subsystem comprised of:
a. One OPERABLE low pressure safety injection pump, and
b. An independent OPERABLE flow path capable of taking suction from the RCS hot leg and discharging coolant through the shutdown cooling heat exchanger and back to the RCS through the cold leg injection lines.

APPLICABILITY: MODES 1, 2, and 3.
ACTION:

- a. With one shutdown cooling subsystem inoperable, restore the inoperable subsystem to OPERABLE status within 72 hours or be in at least HOT STANDBY within 1 hour, be in at least HOT SHUTDOWN within the next . 6 hours and be in COLD SHUTDOWN within the next 30 hours and continue action to restore the required subsystem to OPERABLE status.
b. With both shutdown cooling subsystems inoperable, restore one subsystem to OPERABLE status within 1 hour or be in at least HOT STANDBY within 1 hour and be in HOT SHUTDOWN within the next 6 hours and continue action to restore the required subsystems to OPERABLE status.
c. With both shutdown cooling subsystems inoperable and both reactor coolant loops inoperable, initiate action to restore the required subsystems to OPERABLE status.

SURVEILLANCE REQUIREMENTS
4.7.11 Each shutdown cooling subsystem shall be demonstrated OPERABLE:
a. At least once per 18 mon'ths, during shutdown, by establishing shutdown cooling flow from the RCS hot legs, through the shutdown cooling heat exchangers, and returning to the RCS cold legs.
b. At least once per 18 months, during shutdown, by testing the automatic and interlock action of the shutdown cooling system connections from the RCS. The shutdown cooling system suction valves shall not open when RCS pressure is greater than 410 psia. The shutdown cooling system suction valves located outside containment shall close automatically when RCS pressure is greater than 500 psia. The shutdown cooling system suction valve located inside containment shall close automatically when RCS pressure is greater than 700 psia.

ELECTRICAL POWER SYSTEMS
SURVEILLANCE REQUIREMENTS
4.8.1.1.1 Each of the above required physically independent circuits between the offsite transmission network and the onsite Class IE distribution system shall be:
a. Determined OPERABLE at least once per 7 days by verifying correct breaker alignment indicating power availability
b. Demonstrated OPERABLE at least once per 18 months during shutdown by manually transferring the onsite Class 1E power supply from the normal circuit to the alternate circuit.
4.8.1.1.2 Each diesel generator shall be demonstrated OPERABLE:
a. In accordance with the frequency specified in Table 4.8-I on a STAGGERED TEST BASIS by:

1. Verifying the fuel level in the day tank.
2. Verifying the fuel level in the fuel storage tank.
3. Verifying the fuel transfer pump can be started and transfers fuel from the storage system to the day tank.
4. Verifying the diesel generator can start** and accelerate to -generator voitage and frequency at 4160 ± 420 volts and $60 \pm$ 1. 2 Hz in less than or equal to 10 seconds. Subsequently, the generator shall be manually synchronized to its appropriate bus and gradually loaded** to an indicated $5200-5400 \mathrm{kW***}$ and operates for at least 60 minutes. The diesel generator shall be started for this test using one of the following signals on a STAGGERED TEST BASIS:
a) Manual
b) Simulated loss of offsite power by itself.
c) Simulated loss of offsite power in conjunction with an ESF actuation test signal.
d) An ESF actuation test signal by itself.
5. Verifying the diesel generator is aligned to provide standby power to the associated emergency busses.
[^1]
ELECTRICAL POWER SYSTEM

SURVEILLANCE REQUIREMENTS (Continued)

4.8.1.1.2 (Continued)

loaded with the shutdown loads. After energization of these loads, the steady state voltage and frequency shall be maintained at 4160 ± 420 volts and $60+1.2 /-0.3 \mathrm{~Hz}$.
5. Verifying that on an ESF actuation test signal (without loss of power) the diesel generator starts* on the auto-start signal and operates on standby for greater than or equal to 5 minutes.
6. Simulating a loss-of-offsite power in conjunction with an ESF actuation test signal, and
a) Verifying de-energization of the emergency busses and load shedding from-the emergency busses.
b) Verifying the diesel starts* on the auto-start signal, energizes the emergency busses with permanently connected loads within 10 seconds, energizes the auto-connected emergency (accident) loads through the load sequencer, and operates for greater than or equal to 5 minutes and maintains the steady-state voltage and frequency at $4160 \pm$ 420 volts and $60+1.2 /-0.3 \mathrm{~Hz}$.
c) Verifying that all automatic diesel generator trips, except engine overspeed, generator differential, and low lube oil pressure, are automatically bypassed upon loss of voltage on the emergency bus, upon a safety injection actuation signal or upon AFAS.
7. Verifying the diesel generator operates* for at least 24 hours. During the first 2 hours of this test, the diesel generator shall be loaded to an indicated 5800-6000 $\mathrm{kW**}$ and during the remaining 22 hours of this test, the diesel generator shall be loaded to an indicated $5200-5400 \mathrm{~kW} *$. Within 5 minutes after completing this 24 -hour test, perform Surveillance Requirement 4.8.1.1.2.d.6.b). ***

[^2]
3/4.9 REFUELING OPERATIONS

3/4.9.1 BORON CONCENTRATION

LIMITING CONDITION FOR OPERATION
3.9.1 With the reactor vessel head closure bolts less than fully tensioned or with the head removed, the boron concentration of all filled portions of the Reactor Coolant System and the refueling canal shall be maintained uniform and sufficient to ensure that the more restrictive of the following reactivity conditions is met:
a. Either a $K_{e f f}$ of 0.95 or less, or
b. A boron concentration of greater than or equal to 2150 ppm .

APPLICABILITY: MODE 6*.
ACTION:
With the requirements of the above specification not satisfied, immediately suspend all operations involving CORE ALTERATIONS or positive reactivity changes and initiate and continue boration at greater than or equal to 26 gpm of a solution containing $\geq 4000 \mathrm{ppm}$ boron or its equivalent until $K_{\text {eff }}$ is reduced to less than or equal to 0.95 or the boron concentration is restored to greater than or equal to 2150 ppm , whichever is the more restrictive.

SURVEILLANCE REQUIREMENTS

4.9.1.1 The more restrictive of the above two reactivity conditions shall be determined prior to:
a. Removing or unbolting the reactor vessel head, and
b. Withdrawal of any full-length CEA in excess of 3 feet from its fully inserted position within the reactor pressure vessel.
4.9.1.2 The boron concentration of the Reactor Coolant System and the refueling canal shall be determined by chemical analysis at least once per 72 hours.

[^3]
REFUELING OPERATIONS

3/4.9.6 REFUELING MACHINE

LIMITED CONDITION FOR OPERATION

3.9.6 The refueling machine shall be used for movement of fuel assemblies and shall be OPERABLE with:
a. A minimum capacity of 3590 pounds and an overload cut off limit of less than or equal to 1556 pounds for the refueling machine.

APPLICABILITY: During movement of fuel assemblies within the refueling cavity.

ACTION:

With the above requirements for the refueling machine not satisfied, suspend use of the refueling machine from operations involving the movement of. fuel assemblies.

SURVEILLANCE REQUIREMENTS
4.9.6.1 The refueling machine used for movement of fuel assemblies shall be demonstrated OPERABLE within 72 hours prior to the start of such operations by performing a load test of at least 3590 pounds and demonstrating an automatic load cut off when the refueling machine load exceeds 1556 pounds.

3/4.10 SPECIAL TEST EXCEPTIONS

3/4.10.1 SHUTDOWN MARGIN AND K_{N-1} - CEA WORTH TESTS
LIMITING CONDITION FOR OPERATION
3.10.1 The SHUTDOWN MARGIN and K_{X-1} requirements of Specification 3.1.1.2 may be suspended for measurement of CEA worth and shutdown margin provided reactivity equivalent to at least the highest estimated CEA worth is available for trip insertion from OPERABLE CEA(s), or the reactor is subcritical by at least the reactivity equivalent of the highest CEA worth.

APPLICABILITY: MODES 2, 3^{*} and 4^{*}.
ACTION:
a. With any full-length CEA not fully inserted and with less than the above reactivity equivalent available for trip insertion, immediately initiate and continue boration at greater than or equal to 26 gpm of a solution containing greater than or equal to 4000 ppm boron or its equivalent until the SHUTDOWN MARGIN and $\mathrm{K}_{\mathrm{N}-1}$ required by Specification 3.1.1.2 is restored.
b. With all full-length CEAs fully inserted and the reactor subcritical by less than the above reactivity equivalent, immediately initiate and continue boration at greater than or equal to 26 gpm of a solution containing greater than or equal to 4000 ppm boron or its equivalent until the SHUTDOWN MARGIN required by Specification 3.1.1.1 is restored.
SURVEILLANCE REQUIREMENTS
4.10.1.1 The position of each full-length and part-length CEA required either partially or fully withdrawn shall be determined at least once per 2 hours.
4.10.1.2 Each CEA not fully inserted shall be demonstrated capable of full insertion when tripped from at least the 50% withdrawn position within 24 hours prior to reducing the SHUTDOWN MARGIN to less than the limits of Specification 3.1.1.2.
4.10.1.3 When in MODE 3 or MODE 4, the reactor shall be determined to be subcritical by at least the reactivity equivalent of the highest estimated CEA worth or the reactivity equivalent of the highest estimated CEA worth is available for trip insertion from OPERABLE CEAs at least once per 2 hours by consideration of at least the following factors:
a. Reactor Coolant System boron concentration,
b. CEA position,
c. Reactor Coolant System average temperature,
d. Fuel burnup based on gross thermal energy generation,
e. Xenon concentration, and
f. Samarium concentration.
*Operation in MODE 3 and MODE 4 shall be lịmited to 6 consecutive hours.

```
This page intentionally deleted.
```


This page is intentionally deleted.

3/4.11 RADIOACTIVE EFFLUENTS

3/4.11.1 SECONDARY SYSTEM LIQUID WASTE DISCHARGES TO ONSITE EVAPORATION PONDS CONCENTRATION

LIMITING CONDITION FOR OPERATION

3.11.1.1 The concentration of radioactive material discharged from secondary system liquid waste to the onsite evaporation ponds shall be limited to the lower limit of detectability (LLD) defined as $5 \times 10^{-7} \mu \mathrm{Ci} / \mathrm{ml}$ for the principal gamma emitters or $1 \times 10^{-6} \mu \mathrm{Ci} / \mathrm{ml}$ for $\mathrm{I}-131$.

APPLICABILITY: MODES 1, 2, 3, and 4.

ACTION:

When any secondary system liquid waste discharge pathway concentration determined in accordance with the surveillance requirements given below exceeds the specified LLD, divert that discharge pathway to the liquid radwaste system without delay or process the liquid wastes to meet the specified limits prior to release to the onsite evaporation ponds.

SURVEILLANCE REQUIREMENTS

4.11.1.1.1 Radioactive liquid wastes collected in the chemical waste neutralizer tank shall be sampled and analyzed prior to their batchwise discharge to the onsite evaporation pond in accordance with the sampling and analysis program specified in Table 4.11-1.
4.11.1.1.2 With the concentration of radioactive material in the chemical waste neutralizer tank exceeding the specified LLD, sample and analyze other secondary system discharge pathways in accordance with the sampling and analysis program specified in Table 4.11-1.

3/4.10.1 SHUTDOWN MARGIN

This special test exception provides that a minimum amount of CEA worth is immediately available for reactivity control when tests are performed for CEAs worth measurement. This special test exception is required to permit the periodic verification of the actual versus predicted core reactivity condition occurring as a result of fuel burnup or fuel cycling operations. Although testing will be initiated from MODE 2, temporary entry into MODE 3 is necessary during some CEA worth measurements. A reasonable recovery time is available for return to MODE 2 in order to continue PHYSICS TESTING.

3/4.10.2 MODERATOR TEMPERATURE COEFFICIENT, GROUP HEIGHT, INSERTION, AND POWER DISTRIBUTION LIMITS

This special test exception permits individual CEAs to be positioned outside of their normal group heights and insertion limits during the performance of such PHYSICS TESTS as those required to (1) measure CEA worth, (2) determine the reactor stability index and damping factor under xenon oscillation conditions, (3) determine power distributions for non-normal CEA configurations, (4) measure rod shadowing factors, and (5) measure temperature and power coefficients. Special test exception permits MTC to exceed.limits in Specification 3.1.1.3 during performance of PHYSICS TESTS.

3/4.10.3 REACTOR COOLANT LOOPS

This special test exception permits reactor criticality with less than four reactor coolant pumps in operation and is required to perform certain STARTUP and PHYSICS TESTS while at low THERMAL POWER levels.
3/4.10.4 CEA POSITION, REGULATING CEA INSERTION LIMITS AND REACTOR COOLANT COLD LEG TEMPERATURE

This special test exception permits the CEAs to be positioned beyond the insertion limits and reactor coolant cold leg temperature to be outside limits during PHYSICS TESTS required to determine the isothermal temperature coefficient and power coefficient.

3/4.10.5 MINIMUM TEMPERATURE AND PRESSURE FOR CRITICALITY

This special test exception intentionally deleted.

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D.C. 20555

ARIZONA PUBLIC SERVICE COMPANY, ET AL.

DOCKET NO. STN 50-529

PALO VERDE NUCLEAR GENERATING STATION, UNIT NO. 2

AMENDMENT TO FACILITY OPERATING LICENSE

Amendment No.

1. The Nuclear Regulatory Commission (the Commission) has found that:
A. The application'for amendment by the Arizona Public Service Company (APS) on behalf of itself and the Salt River Project Agricultural Improvement and Power District, El Paso Electric Company, Southern California Edison Company, Public Service Company of New Mexico, Los Ange les Department of Water and Power, and Southern California Public Power Authority (1icensees), dated October 11, 1990 complies with the standards and requirements of the Atomic Energy Act of 1954, as amended (the Act) and the Commission's regulations set forth in 10 CFR Part I;
B. The facility will operate in conformity with the application, the provisions of the Act, and the rules and regulations of the Commission;
C. There is reasonable assurance (i) that the activities authorized by this amendment can be conducted without endangering the health and safety of the public, and (ii) that such activities will be conducted in compliance with the Commission's regulations;
D. The issuance of this amendment will not be inimical to the common defense and security or to the health and safety of the public; and
E. The issuance of this amendment is in accordance with 10 CFR Part 51 of the Commission's regulations and all applicable requirements have been satisfied.
2. Accordingly, the license is amended by changes to the Technical Specifications as indicated in the attachment to this license amendment, and paragraph 2.C(2) of Facility Operating License No. NPF-51 is hereby amended to read as follows:
(2) Technical Specifications and Environmental Protection Plan

The Technical Specifications contained, in Appendix A, as revised through Amendment No. 39 , and the Environmental Protection Plan contained in Appendix B, are hereby incorporated into this license. APS shall operate the facility in accordance with the Technical Specifications and the Environmental Protection Plan, except where otherwise stated in specific license conditions.
3. This license amendment is effective as of the date of issuance and must be fully implemented no later than 45 days from the date of issuance.

FOR THE NUCLEAR REGULATORY COMMISSION

Attachment:
Changes to the Technical Specifications

Date of Issuance: June 27, 1991

ATTACHMENT TO LICENSE AMENDMENT NO. 39

TO FACILITY OPERATING LICENSE NO. NPF-51
DOCKET NO. STN 50-529

Replace the following pages of the Appendix A Technical Specifications with the enclosed pages. The revised pages are identified by amendment number and contain vertical lines indicating the areas of change.

".

DEFINITIONS

SECTION PAGE
1.0 DEFINITIONS
1.1 ACTION. 1-1
1.2 AXIAL SHAPE INDEX 1-1
1.3 AZIMUTHAL POWER TILT - T_{q} 1-1
1.4 CHANNEL CALIBRATION. 1-1
1.5 CHANNEL CHECK. 1-1
1.6 CHANNEL FUNCTIONAL TEST 1-2
1.7. CONTAINMENT INTEGRITTY 1-2
1.8° CONTROLLED LEAKAGE 1-2
1.9 CORE ALTERATION. 1-2
1.10 DOSE EQUIVALENT I-131. 1-3
$1.11 \vec{E}$ - AVERAGE DISINTEGRATION ENERGY 1-3
1.12 ENGINEERED SAFETY FEATURES RESPONSE TIME. 1-3
1.13 FREQUENCY NOTATION. 1-3
1.14 GASEOUS RADWASTE SYSTEM. 1-3
1.15 IDENTIFIED LEAKAGE. 1-3
$1.16 \mathrm{KN}-1$. 1-4
1.17 $\operatorname{MEMBER(S)~OF~THE~PUBLIC.~}$ 1-4
1.18 OFFSITE DOSE CALCULATION MANUAL (ODCM) 1-4
1.19 OPERABLE - OPERABILITY. 1-4
1.20 OPERATIONAL MODE - MODE. 1-4
1.21 PHYSICS TESTS 1.4
1.22 PLANAR RADIAL PEAKING FACTOR - F_{xy} 1-4
1.23 PRESSURE BOUNDARY LEAKAGE 1-5
1.24 PROCESS CONTROL PROGRAM (PCP) 1-5
1.25 PURGE - PURGING 1-5
1.26 RATED THERMAL POWER. 1-5
1.27 REACTOR TRIP SYSTEM RESPONSE TIME. 1-5
1.28 REPORTABLE EVENT. 1-5
1.29 SHUTDOWN MARGIN. 1-6
1.30 SITE BOUNDARY 1-6

LIMITING CONDITION FOR OPERATION
3.1.1.4 The Reactor Coolant System lowest operating loop temperature ($\mathrm{T}_{\text {cold }}$) shall be greater than or equal to $552^{\circ} \mathrm{F}$.

APPLICABILITY: MODES 1 and $2 \#$.
ACTION:
With a Reactor Coolant System operating loop temperature ($T_{\text {cold }}$) less than $552^{\circ} \mathrm{F}$, restore $\mathrm{T}_{\text {cold }}$ to within its limit within 15 minutes or be in HOT STANDBY within the next 15 minutes.

SURVEILLANCE REQUIREMENTS
4.1.1.4 The Reactor Coolant System temperature ($T_{\text {cold }}$) shall be determined to be greater than or equal to $552^{\circ} \mathrm{F}$:
a. Within 15 minutes prior to achieving reactor criticality, and
b. At least once per 30 minutes when the reactor is critical and the Reactor Coolant System $\mathrm{T}_{\text {cold }}$ is less than $557^{\circ} \mathrm{F}$.
\#With K ${ }_{\text {eff }}$ greater than or equal to 1.0

REACTIVITY CONTROL SYSTEMS

LIMITING CONDITION FOR OPERATION (Continued)
ACTION: (Continued)
b) The SHUTDOWN MARGIN, requirement of Specification 3.1.1.2 is determined at least once per 12 hours.

Otherwise, be in at least HOT STANDBY within 6 hours.
d. With one full-length CEA inoperable due to causes other than addressed by ACTION a., above, but within its above specified alignment requirements, operation in MODES 1 and 2 may continue pursuant to the requirements of Specification 3.1.3.6.
e. With one part-length CEA inoperable and inserted in the core, operation may continue provided the alignment of the inoperable part length CEA is maintained within 6.6 inches (indicated position) of all other part-length CEAs in its group and the CEA is maintained pursuant to the requirements of Specification 3.1.3.7.

SURVEILLANCE REQUIREMENTS

4.1.3.1.1 The position of each full-length and part-length CEA shall be determined to be within 6.6 inches (indicated position) of all other CEAs in its group at least once per 12 hours except during time intervals when one CEAC is inoperable or when both CEACs are inoperable, then verify the individual CEA positions at least once per 4 hours.
4.1.3.1.2 Each full-length CEA not fully inserted and each part-length CEA which is inserted in the core shall be determined to be OPERABLE by movement of at least 5 inches in any one direction at least once per 31 days.

3/4.2.8 PRESSURIZER PRESSURE

LIMITING CONDITION FOR OPERATION
3.2.8 The pressurizer pressure shall be maintained between 2025 psia and 2300 psia.

APPLICABILITY: MODES 1 and 2.
ACTION:
With the pressurizer pressure outside its above limits, restore the pressure to within its limit within 2 hours or be in at least HOT STANDBY within the next 6 hours.

SURVEILLANCE REQUIREMENTS
4.2.8 The pressurizer pressure shall be determined to be within its Timit at least once per 12 hours.

$$
\because .
$$

$$
.4
$$

TABLE 4.3-1 (Continued)

REACTOR PROTECTIVE INSTRUMENTATION SURVEILLANCE REQUIREMENTS

TABLE NOTATIONS

* - With reactor trip breakers in the closed position and the CEA drive system capable of CEA withdrawal, and fuel in the reactor vessel.
(1) - . Each STARTUP or when required with the reactor trip breakers closed and the CEA drive system capable of rod withdrawal, if not performed in the previous 7 days.
(2) - Heat balance only (CHANNEL FUNCTIONAL TEST not included), above 15\% of RATED THERMAL POWER; adjust the linear power level, the CPC delta T power and CPC nuclear power signals to agree with the calorimetric calculation if absolute difference is greater than 2%. During PHYSICS TESTS, these daily calibrations may be suspended provided these calibrations are performed upon reaching each major test power plateau and prior to proceeding to the next major test power plateau.
(3) - Above 15\% of RATED THERMAL POWER, verify that the linear power sub-. channel gains of the excore detectors are consistent with the values used to establish the shape annealing matrix elements in the Core Protection Calculators.
(4) - Neutron detectors may be excluded from CHANNEL CALIBRATION::
(5) - After each fuel loading and prior to exceeding 70\% of RATED THERMAL POWER, the incore detectors shall be used to determine the shape annealing matrix elements and the Core Protection Calculators shall use these elements.
(6) - This CHANNEL FUNCTIONAL TEST shall include the injection of simulated process signals into the channel as close to the sensors as practicable to verify OPERABILITY including alarm and/or trip functions.
(7) - Above 70\% of RATED THERMAL POWER, verify that the total steady-state RCS flow rate as indicated by each CPC is less than or equal to the actual RCS total flow rate determined by either using the reactor coolant pump differential pressure instrumentation or by calorimetric calculations and if necessary, adjust the CPC addressable constant flow coefficients such that each CPC indicated flow is less than or equal to the actual flow rate. The flow measurement uncertainty may be included in the BERRI term in the CPC and is equal to or greater than 4\%.
(8) - Above 70\% of RATED THERMAL POWER, verify that the total steady-state RCS flow rate as indicated by each CPC is less than or equal to the actual RCS total flow rate determined by either using the reactor coolant pump differential pressure instrumentation and the ultrasonic flow meter adjusted pump curves or calorimetric calculations.
(9) - The monthly CHANNEL FUNCTIONAL TEST shall include verification that the correct (current) values of addressable constants are installed in each OPERABLE CPC.
(10) - At least once per 18 months and following maintenance or adjustment of the reactor trip breakers, the CHANNEL FUNCTIONAL TEST shall include independent verification of the undervoltage and shunt trips.
- INSTRUMENT

1. Area Monitors
A. Fuel Pool Area RU-31
B. New Fuel Area RU-19
C. Containment RU-148 \& RU-149
D. Containment Power Access Purge Exhaust RU-37 \& RU-38
E. Main Steam

| 1) $\mathrm{RU}-139 \mathrm{~A} \mathrm{\& B}$ | 1 | $1,2,3,4$ | $\# \#$ |
| :--- | :--- | :--- | :--- | :--- |
| 2) $\mathrm{RU}-140 \mathrm{~A} \mathrm{\& B}$ | 1 | $1,2,3,4$ | |

2) $R U-140 A \& B$

MINIMUM

CHANNELS OPERABLE	APPLICABLE MODES	ALARM/TRIP SETPOINT	MEASUREMENT RANGE	ACTION
1	**	<15mR/hr	10^{-1} to $10^{4} \mathrm{mR} / \mathrm{hr}$	22 \& 24
1	*	$\leq 15 \mathrm{mR} / \mathrm{hr}$	10^{-1} to $10^{4} \mathrm{mR} / \mathrm{hr}$	22
2	1,2,3,4	$\leq 10 \mathrm{R} / \mathrm{hr}$	$1 \mathrm{R} / \mathrm{hr}$ to $10^{7} \mathrm{R} / \mathrm{hr}$	27
1	\#	$\leq 2.5 \mathrm{mR} / \mathrm{hr}$	10^{-1} to $10^{4} \mathrm{mR} / \mathrm{hr}$	25
1	1,2,3,4	\#\#	10^{0} to $10^{5} \mathrm{mR} / \mathrm{hr}$	27
1	1,2,3,4	\#\#	10^{0} to $10^{5} \mathrm{mR} / \mathrm{hr}$	27

2. Process Monitors
A. Containment Building Atmosphere RU-1

2
$1,2,3,4$
$23 \& 27$

1) Particulate
2) Gaseous
B. Noble Gas Monitors

Control Room Ventilation Intake RU-29 \& RU-30
3. Post Accident Sampling System

1\#\#\#
ALL MODES
$\leq 2 \times 10^{-5} \mu \mathrm{Ci} / \mathrm{cc}$
10^{-6} to $10^{-1} \mu \mathrm{Ci} / \mathrm{cc}$
26
1,2,3
$N: A:$
N.A.

[^4]3.3.3.5 The remote shutdown system disconnect switches, power, controls and monitoring instrumentation channels shown in Tables 3.3-9A-C shall be OPERABLE.

APPLICABILITY: MODES 1 and 2.

ACTION:

a. With the number of OPERABLE remote shutdown monitoring channels less than required by Table 3.3-9AC, restore the inoperable channel(s) to OPERABLE status within 7 days, or be in HOT STANDBY within the next 12 hours.
b. With one or more remote shutdown system disconnect switches or power or control circuits inoperable, (listed in Tables 3.3-9B and 3.3-9C) restore the inoperable switch(s)/circuit(s) to OPERABLE status or issue procedure changes per Specification 6.8.3 that identifies alternate disconnect methods or power or control circuits for remote shutdown within 7 days, or be in HOT STANDBY within the next 12 hours.
c. The provisions of Specification 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

4.3.3.5 The Remote Shutdown System shall be demonstrated operable:
a. By performance of the CHANNEL CHECK and CHANNEL CALIBRATION operations at the frequencies shown in Table 4.3-6 for each remote shutdown monitoring instrumentation channel.
b. By operation of each remote shutdown system disconnect switch and power and control circuit including the actuated components at least once per 18 months.

REMOTE SHUTDOWN DISCONNECT SWITCHES

DISCONNECT SWITCHES

1. SG 1 line 2 Atmospheric Dump Valve Solenoid Air Isolation Valves SGB-HY-178A and SGB-HY-178R
2. SG 2 line 1 Atmospheric Dump Valve Solenoid AirIsolation Valves SGB-HY-185A and SGB-HY-185R
3. Auxiliary Spray Valve RSP
CHB-HV-203
4. Letdown to Regenerative RSPHeat Exchanger Isolation, CHB-UV-515
5. Reactor Coolant Pump RSP
Controlled Bleedoff, CHB-UV-505
6. Auxiliary Feedwater Pump RSP
B to SG 1 Control Valve, AFB-HV-30
7. Auxiliary Feedwater Pump RSP
B to SG 2 Control Valve, AFB-HV-31
8. Auxiliary Feedwater Pump
B to SG 1 Block Valve, AFB-UV-349. Auxiliary Feedwater PumpB to SG 2 Block Valve, AFB-UV-35
9. Pressurizer Backup Heaters BanksB10, B18, A05 Control
10. Safety Injection Tank 2 A RSP
Vent Control SIB-HV-613
11. Safety Injection Tank 2B RSP
Vent Control SIB-HV-623
12. Safety Injection Tank 1A RSP
Vent Control SIB-HV-633
13. Safety Injection Tank 1B RSPVent Control SIB-HV-643
14. Safety Injection Tank Vent RSP
Valves Power Supply SIB-HS-18C
15. SG 1 line 2 Atmospheric Dump Valve Solenoid Air RSP
Isolation Valves SGD-HY-178B and SGD-HY-178S
16. SG 2 line 1 Atmospheric Dump Valve Solenoid Air RSP
Isolation Valves SGD-HY-185B and SGD-HY-185S
17. Control BLDG Battery Room D
Essential Exhaust Fan 'HJB-J01.A'
18. Control BLDG Battery Room BEssential Exhaust Fan 'HJB-J018'
19. Battery Charger D Control
Room Circuits PKD-H14
20. ESF Switchgear RoomEssential AHU HJB-Z03
21. LPSI Pump SIB-POI BreakerControl
22. Diesel Generator B BreakerControl
23. Essential Spray Pond Pump SPB-P01 PBB-S04C

REMOTE SHUTDOWN DISCONNECT SWITCHES

DISCONNECT SWITCHES

SWITCH LOCATION

PHB-M3416
PHB-M3803
PHB-M3611
PHB-M3805
PHB-M3611
PKD-B44
PHB-M3611
PHB-M3640
NHN-M7208.
NHN-M7209
PHB-M3416
PHB-M3416
PBB-SO4K
PBB-SO4L
PHB-M3640
RSP
RSP
RSP
SSA-J04
RSP
PKA-M4101

TABLE 3.3-9C (Continued)

REMOTE SHUTDOWN CONTROL CIRCUITS

CONTROL CIRCUITS

25. E-PGB L32B2 480V Main Supply Breaker

To Load Center PGB-L32
26. E-PGB-L34B2 480V Main Supply Breaker

To Load Center PGB-L34
27. E-PGB-L36 480 V

Supply Breaker To Load Center PGB-L36
28. Battery Charger PKB-H12

Supply Breaker
29. Battery Charger PKD-H14

Supply Breaker
30. Backup Battery Charger

PKB-H16 Supply Breaker
31. Essential Spray Pond Pump

SPB-P01
32. Essential Cooling Water Pump

EWB-P01
33. Essential Chilled Water

Chiller ECB-EO1
34. Battery Room D Essential

Exhaust Fan HJB-J01A
35. Battery Room B Essential

Exhaust Fan HJB-JO1B
36. ESF Switchgear Room B

Essential AHU HJB-Z03
37. Electrical Penetration Room B

ACU Fan HAB-Z06
38. SIT Vent Valves Power

Supply SIB-HS-18B
39. SIT 2A Vent Vaive

SIB-HV-613
40. SIT 2B Vent Valve RSP

SIB-HV-623
41. SIT IA Vent Valve . . RSP

SIB-HV-633
42. SIT IB Vent Valve RSP

SIB-HV-643
43. LPSI Pump B

SIB-P01
44. Containment Spray Pump B

Discharger to SD HX "B"
Valve SIB-HV-689
45. LPSI Containment Spray from

SD HX "B" X-tie Vaive SIB-HV-695
46. Shutdown Cooling LPSI Suction

Valve SIB-UV-656
47. Shutdown Cooling Warmup Bypass

Valve SIB-HV-690
48. LPSI Containment Spray to

SD HX "B" X-tie Valve SIB-HV-694

SWITCH LOCATION

PGB-L32B1
PGB-L34B1
PGB-L36B1
PHB-M3627
PHB-M3209
PHB-M3425
PBB-S04C
PBB-S04M
PBB-S04G
PHB-M3206
PHB-M3207
PHB-M3203
PHB-M3631
RSP
RSP

PBB-S04F
PHB-M3804

PHB-M3810
PHB-M3605
PHB-M3806
PHB-M3414

PRESSURIZER

LIMITING CONDITION FOR OPERATION

3.4.3.1 The pressurizer shall be OPERABLE with a minimum steady-state water level of greater than or equal to 27% indicated level (425 cubic feet) and a maximum steady-state water level of less than or equal to 56% indicated level (948 cubic feet) and at least two groups of pressurizer heaters capable of being powered from Class $1 E$ buses each having a minimum capacity of 125 kW .

APPLICABILITY: MODES 1, 2, and 3.
ACTION:
a. With only one group of the above required pressurizer heaters OPERABLE, restore at least two groups to OPERABLE status within. 72 hours or be in at least HOT STANDBY within the next 6 hours and in HOT SHUTDOWN within the following 6 hours.
b. With the pressurizer otherwise inoperable, restore the pressurizer to OPERABLE status within 1 hour, or be in at least HOT STANDBY with the reactor trip breakers open within 6 hours and in HOT SHUTDOWN within the following 6 hours.

SURVEILLANCE REQUIREMENTS

4.4.3.1.1 The pressurizer water volume shall be determined to be within its limits at least once per 12 hours.
4.4.3.1.2 The capacity of the above required groups of pressurizer heaters shall be verified to be at least 125 kW at least once per 92 days.
4.4.3.1.3 The emergency power supply for the pressurizer heaters shall be demonstrated OPERABLE at least once per 18 months by verifying that on an Engineered Safety Features Actuation test signal concurrent with a loss-ofoffsite power:
a. The pressurizer heaters are automatically shed from the emergency power sources, and
b. The pressurizer heaters can be reconnected to their respective buses manually from the control room.

REACTOR COOLANT SYSTEM

3/4.4.10 REACTOR COOLANT SYSTEM VENTS

LIMITING CONDITION FOR OPERATION
3.4.10 Both reactor coolant system vent paths shall be OPERABLE and closed at each of the following locations:
a. Reactor vessel head, and
b. Pressurizer steam space.

APPLICABILITY: MODES 1, 2, 3 and 4.
ACTION:
a. With only one of the above required reactor coolant system vent paths OPERABLE, from either location restore both paths at that location to OPERABLE status within 72 hours or be in at least HOT STANDBY within the next 6 hours and in HOT SHUTDOWN within the following 6 hours.
b. With none of the above required reactor coolant system vent. paths OPERABLE, from either location restore at least one path at -that location to OPERABLE status within the next 6 hours or be in at least HOT STANDBY within the next 6 hours and in HOT SHUTDOWN within the following 6 hours.

SURVEILLANCE REQUIREMENTS
4.4.10 Each reactor coolant system vent path shall be demonstrated OPERABLE at least once per 18 months, when in MODES 5 or 6 , by:
a. Verifying all manual isolation valves in each vent path are locked in the open position.
b. Cycling each vent valve through at least one complete cycle from the control room.
c. Verifying flow through the reactor coolant system vent paths during venting.
4.5.1 Each safety injection tank shall be demonstrated OPERABLE:
a. At least once per 12 hours by:

1. Verifying the contained borated water volume and nitrogen cover-pressure in the tanks is within the above limits, and
2. Verifying that each safety injection tank isolation valve is open and the nitrogen vent valves are closed.
b. At least once per 31 days and whenever the tank is drained to maintain the contained borated water level within the limits of Specification 3.5.1b, by verifying the boron concentration of the safety injection tank solution is between 2300 and 4400 ppm .
c. At least once per 31 days when the pressurizer pressure is above 430 psia, by verifying that power to the isolation valve operator is removed.
d. At least once per 18 months by verifying that each safety injection tank isolation valve opens automatically under each of the following conditions:
3. When an actual or simulated RCS pressure signal exceeds 515 psia, and
4. Upon receipt of a safety injection actuation (SIAS) test signal.
e. At least once per 18 months by verifying OPERABILITY of RCS-SIT differential pressure alarm by simulating RCS pressure >715 psia with SIT pressure < 600 psig.
f. At least once per 18 months, when SITs are isolated, by verifying the SIT nitrogen vent valves can be opened.
g. At least once per 31 days, by verifying that power is removed from the nitrogen vent valves.

SURVEILLANCE REQUIREMENTS (Continued)

1. A visual inspection of the containment sump and verifying that the subsystem suction inlets are not restricted by debris and that the sump components (trash racks, screens, etc.) show no evidence of structural distress or corrosion.
2. Verifying that a minimum total of 464 cubic feet of solid granular trisodium phosphate dodecahydrate (TSP) is contained within the TSP storage baskets.
3. Verifying that when a representative sample of $0.055 \pm 0.001 \mathrm{ib}$ of TSP from a TSP storage basket is submerged, without agitation, in 1.0 ± 0.05 gallons of $77 \pm 9^{\circ} \mathrm{F}$ borated water from the RWT, the pH of the mixed solution is raised to greater than or equal to 7 within 4 hours.
e. At least once per 18 months, during shutdown, by:
4. Verifying that each automatic valve in the flow path actuates to its correct position on (SIAS and RAS) test signal.(s).
5. Verifying that each of the following pumps start automatically upon receipt of a safety injection actuation test signal:
a. High pressure safety injection pump.
b. Low pressure safety injection pump.
6. Verifying that on a recirculation actuation test signal, the containment sump isolation valves open, the HPSI, LPSI and CS pump minimum bypass recirculation flow line isolation valves and combined SI mini-flow valve close, and the LPSI pumps stop.*
7. Conducting an inspection of all ECCS piping outside of containment, which is in contact with recirculation sump inventory during LOCA conditions, and verifying that the total measured leakage from piping and components is less than 1 gpm when pressurized to at least 40 psig.
f. By verifying that each of the following pumps develops the indicated differential pressure at or greater than their respective minimum allowable recirculation flow when tested pursuant to Specification 4.0.5:
8. High pressure safety injection pump greater than or equal to 1761 psid.
9. Low pressure safety injection pump greater than or equal to 165 psid.
\bullet

$$
\because \underbrace{r^{*}}
$$

CONTAINMENT SYSTEMS

3/4.6.2 DEPRESSURIZATION AND COOLING SYSTEMS
CONTAINMENT SPRAY SYSTEM

LIMITING CONDITION FOR OPERATION

3.6.2.1. Two independent containment spray systems shall be OPERABLE with each spray system capable of taking suction from the RWT on a containment spray actuation signal and automatically transferring suction to the containment sump on a recirculation actuation signal. Each spray system flow path from the containment sump shall be via an OPERABLE shutdown cooling heat exchanger.

APPLICABILITY: MODES $1,2,3$, and $4 *$.

ACTION:

With one containment spray system inoperable, restore the inoperable spray system to OPERABLE status within 72 hours or be in at least HOT STANDBY withim the next 6 hours; restore the inoperable spray system to OPERABLE status within the next 48 hours or be in COLD SHUTDOWN within the following 30 hours.

SURVEILLANCE REQUIREMENTS

4.6.2.1 Each containment spray system shall be demonstrated OPERABLE:
a. At least once per 31 days by verifying that each valve (manual, power-operated, or automatic) in the flow path is positioned to take suction from the RWT on a containment spray actuation (CSAS) test signal.
b. By verifying that each pump develops an indicated differential pressure of greater than or equal to 257 psid at greater than or equal the minimum allowable recirculation flowrate when tested pursuant to Specification 4.0.5.
c. At least once per 31 days by verifying that the system piping is full of water to the 60 inch level in the containment spray header (≥ 115 foot level).
d. At least once per 18 months, during shutdown, by:

1. Verifying that each automatic valve in the flow path actuates to its correct position on a containment spray actuation (CSAS) and recirculation actuation (RAS) test signal.
2. Verifying that upon a recirculation actuation test signal, the containment sump isolation valves open and that a recirculation mode flow path via an OPERABLE shutdown cooling heat exchanger is established.
*Only when shutdown cooling is not in operation.

3. Verifying that each spray pump starts automatically on a safety injection actuation (SIA) and on a containment spray actuation (CSA) test signal.
e. At least once per 5 years by performing an air or smoke flow test through each spray header and verifying each spray nozzle is unobstructed.

d. At least once per 18 months, during shutdown, by
4. Verifying that each automatic valve in the flow path actuates to its correct position on a containment spray actuation (CSAS) test signal, and
5. Verifying that each spray chemical addition pump starts automatically on a CSAS test signal.
e. At least once per 5 years by verifying each solution flow rate from the following drain connections in the iodine removal system:
6. SIA-V253 pump discharge line $0.63 \pm 0.02 \mathrm{gpm}$.
7. SIB-V254 pump discharge line $0.63 \pm 0.02 \mathrm{gpm}$.

TABLE 3.6-1 (Continued)
CONTAINMENT ISOLATION VALVES

VALVE NUMBER	PENETRATION NUMBER	FUNCTION	MAXIMUM ACTUATION TIME (SECONDS)
		CHECK VALVES* (Continued)	
CHE-V M70	41	Regenerative heat exchanger to RC loop 2A	N. A.
IAE-V 073	59	Containment service air utility station	N. A.
SIB-V 533	67	Long term recirculation loop 2	N.A.
CHE-V 835	72	RC pump seal injection water to RCP $1 A, 1 B, 2 A, 2 B$	N.A.
AFE-V 079\#	75	Steam generator 1 auxiliary feedwater	N.A:
AFE-V 080*	76	Steam generator 2 auxiliary feedwater	N.A.
SIA-V 523	77	Long term recirculation loop 1	N.A.

\#Not Type C tested.

TABLE 3.6-1 (Continued)
CONTAINMENT ISOLATION VALVES

				MAXIMUM
VALVE				
NUMBER	PENETRATION			ACTUATION
NUMBER	FUNCTION		TIME	

		REQUIRED OPEN DURING ACCIDENT COND	IONS
SID-UV 654	26	From shutdown cooling RC loop 2	N.A.
SIB-UV 656	26	From shutdown cooling RC loop 2	N.A.
SIB-HV 690	26	From shutdown cooling RC loop 2	N.A.
SIC-UV 653	27	From shutdown cooling RC loop 1	N.A.
SIA-UV 655	27	From shutdown cooling RC loop 1	N.A.
SIA-HV 691	27	From shutdown cooling RC loop 1	N.A.
HCC-HV 076\#	32A	Containment pressure monitor	N.A.:
HPA-HV 007A	35	Containment to hydrogen monitor	N.A.
HPB-HV 008A	36	Containment to hydrogen monitor	N.A.
HPA-HV 007B	38°	Hydrogen monitor to containment	N. A.
HPB-HV 008B	39	Hydrogen monitor to containment	N. A.
CHA-HV 524	41	Regenerative heat exchanger to RC loop 2A	N.A.
HCA-HV 074\#	54A	Containment pressure monitor	N. A.
HCB-HV 075\#	55A	Containment pressure monitor	N.A.
HCD-HV 077\#	62A	CB pressure monitor	N.A.
SID-HV 331	67	Long-term recirculation loop 2	N.A.
CHB-HV 255	72	RC pump seal injection water to RCP 1A, 1B 2A, 2B	N. A.
SIC-HV 321	77	Long-term recirculation loop 1	N. A.
SGA-UV 134\#	2	Main steam to auxiliary feedwater turbine	N.A.

\#Not Type C tested.
PALO VERDE - UNIT 2
3/4 6-32*
AMENDMENT NO. $3 ?$
b. At least once per 18 months during shutdown by:

1. Verifying that each automatic valve in the flow path actuates to its correc't position upon receipt of an auxiliary feedwater actuation test signal.
2. Verifying that each pump that starts automatically upon receipt of an auxiliary feedwater actuation test signal will start automatically upon receipt of an auxiliary feedwater actuation test signal.
c. Prior to startup following any refueling shutdown or cold shutdown of 30 days or longer, by verifying on a STAGGERED TEST BASIS (by means of a flow test) that the normal flow path from the condensate. storage tank to each of the steam generators through one of the essential auxiliary feedwater pumps delivers at least 750 gpm at 1270 psia or equivalent.
d. The provisions of Specification 4.0 .4 are not applicable for entry into MODE 3 or MODE 4 for the turbine-driven pump.

3/4.7.3 ESSENTIAL COOLING WATER SYSTEM

LIMITING CONDITION FOR OPERATION
3.7.3 At least two independent essential cooling water loops shall be OPERABLE.

APPLICABILITY: MODES 1, 2, 3, and 4.
ACTION:
With only one essential cooling water loop OPERABLE, restore at least two loops to OPERABLE status within 72 hours or be in at least HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours.

SURVEILLANCE REQUIREMENTS

4.7.3 At least two essential cooling water loops shall be demonstrated OPERABLE:
a. At least once per 31 days by verifying that each valve (manual, power-operated, or automatic) servicing safety-related equipment that is not locked, sealed, or otherwise secured in position, is in its correct position.
b. At least once per 18 months during shutdown, by verifying that each automatic valve servicing safety-related equipment actuates to its correct position on an SIAS test signal.
c. At least once per 18 months during shutdown, by verifying that the essential cooling water pumps start on an SIAS test signal.
d. At least once per 18 months during shutdown, by verifying that each valve (manual, power-operated, or automatic) servicing safetyrelated equipment that is locked, sealed, or otherwise secured in position, is in its correct position.

1. Verifying that the cleanup system satisfies the in-place testing acceptance criteria and uses the test procedures of Regulatory Positions C.5.a, C.5.c and C.5.d of Regulatory Guide 1.52, Revision 2, March 1978, and the system flow rate is $28,600 \mathrm{cfm} \pm 10 \%$.
2. Verifying within 31 days after removal that a laboratory analysis of a representative carbon sample obtained in accordance with Regulatory Position C.6.b of Regulatory' Guide 1.52, Revision 2, March 1978*, meets the laboratory testing criteria of Regulatory Position C.6.a of Regulatory Guide 1.52, Revision 2, March 1978*.
3. Verifying a system flow rate of $28,600 \mathrm{cfm} \pm 10 \%$ during system. operation when tested in accordance with ANSI N510-1980.
c. After every 720 hours of charcoal adsorber operation by verifying within 31 days after removal that a laboratory analysis of.a representative carbon sample obtained in accordance with Regulatory Position C.6.b of Regulatory Guide 1.52, Revision 2, March 1978*, meets the laboratory testing criteria of Regulatory Position C.6.a of Regulatory Guide 1.52, Revision 2, March 1978*.
d. At least once per 18 months by:
4. Verifying that the pressure drop across the combined HEPA filters, pre-filters, and charcoal adsorber banks is less than 8.4 inches Water Gauge while operating the system at a flow rate of $28,600 \mathrm{cfm} \pm 10 \%$.
5. Verifying that on a Control Room Essential Filtration Actuation Signal and on a SIAS, the system is automatically placed into a filtration mode of operation with flow through the HEPA filters and charcoal adsorber banks.
6. Verifying that the system maintains the control room at a positive pressure of greater than or equal to $1 / 8$-inch Water Gauge relative to adjacent areas during system operation at a makeup flow rate to the control room of less than or equal to 1000 cfm .
7. Verifying that the emergency chilled water system will maintain the control room environment at a temperature less than or equal to $80^{\circ} \mathrm{F}$ for a period of 30 minutes.
*ANSI N509-1980 is applicable for this specification.
$\because>$

8. Verifying that the cleanup system satisfies the in-place testing acceptance criteria and uses the test procedures of Regulatory Positions C.5.a, C.5.c and C.5.d of Regulatory Guide 1.52, Revision 2, March 1978, and the system flow rate is 6000 cfm $\pm 10 \%$.
9. Verifying within 31 days after removal that a laboratory analysis of a representative carbon sample obtained in accordance with Regulatory Position C.6.b of Regulatory Guide 1.52, Revision 2, March 1978,* meets the laboratory testing criteria of Regulatory Position C.6.a of Regulatory Guide 1.52, Revision 2, March 1978.*
10. Verifying a system flow rate of $6000 \mathrm{cfm} \pm 10 \%$ during system operation when tested in accordance with ĀNSI N510-1980.
c. After every 720 hours of charcoal adsorber operation by verifying within 31 days after removal that a laboratory analysis of a representative carbon sample obtained in accordance with Regulatory Position C.6.b of Regulatory Guide 1.52, Revision 2, March 1978,* meets the laboratory testing criteria of Regulatory Position C.6.a of Regulatory Guide 1.52, Revision 2, March 1978.*
d. At least once per 18 months by:
11. Verifying that the pressure drop across the combined HEPA filters, pre-filters, and charcoal adsorber banks is less than 8.4 inches Water Gauge while operating the system at a flow rate of $6000 \mathrm{cfm} \pm 10 \%$.
12. Verifying that the system starts on an SIAS test signal.
e. After each complete or partial replacement of an HEPA filter bank by verifying that the HEPA filter banks remove greater than or equal to 99\% of the DOP when they are tested in-place in accordance with ANSI N510-1980 while operating the system at a flow rate of $6000 \mathrm{cfm} \pm$ 10\%.
f. After each complete or partial replacement of a charcoal adsorber bank by verifying that the charcoal adsorbers remove greater than or equal to 99.0% of a halogenated hydrocarbon refrigerant test gas when they are tested in-place in accordance with ANSI N510-1980 while operating the system at a flow rate of $6000 \mathrm{cfm} \pm 10 \%$.
*ANSI N509-1980 is applicable for this specification.

PLANT SYSTEMS

3/4.7.11 SHUTDOWN COOLING SYSTEM

LIMITING CONDITION FOR OPERATION

3.7.11 Two independent shutdown cooling subsystems shall be OPERABLE, with each subsystem comprised of:
a. One OPERABLE low pressure safety injection pump, and
b. An independent OPERABLE flow path capable of taking suction from the RCS hot leg and discharging coolant through the shutdown cooling heat exchanger and back to the RCS through the cold leg injection lines.

APPLICABILITY: MODES 1, 2, and 3.
ACTION:
a. With one shutdown cooling subsystem inoperable, restore the inoperable subsystem to OPERABLE status within 72 hours or be in at least HOT STANDBY within 1 hour, be in at least HOT SHUTDOWN within the next 6 hours and be in COLD SHUTDOWN within the next 30 hours and continue action to restore the required subsystem to OPERABLE status:
b. With both shutdown cooling subsystems inoperable, restore one subsystem to OPERABLE status within 1 hour or be in at least HOT STANDBY within 1 hour and be in HOT SHUTDOWN within the next 6 hours and continue action to restore the required subsystems to OPERABLE status.
c. With both shutdown cooling subsystems inoperable and both reactor coolant loops inoperable, initiate action to restore the required subsystems to OPERABLE status.

SURVEILLANCE REQUIREMENTS

4.7.11 Each shutdown cooling subsystem shall be demonstrated OPERABLE:
a. At least once per 18 months, during shutdown, by establishing shutdown cooling flow from the RCS hot legs, through the shutdown cooling heat exchangers, and returning to the RCS cold legs.
b. At least once per 18 months, during shutdown, by testing the automatic and interlock action of the shutdown cooling system connections from the RCS. The shutdown cooling system suction valves shall not open when RCS pressure is greater than 410 psia. The shutdown cooling system suction valves located outside containment shall close automatically when RCS pressure is greater than 500 psia. The shutdown cooling system suction valve located inside containment shall close automatically when RCS pressure is greater than 700 psia.
4.8.1.1.1 Each of the above required physically independent circuits between the offsite transmission network and the onsite Class. IE distribution system shall be:
a. Determined OPERABLE at least once per 7 days by verifying correct breaker alignment indicating power availability
b. Demonstrated OPERABLE at least once per 18 months during shutdown by manually transferring the onsite Class $1 E$ power supply from the normal circuit to the alternate circuit.

4.8.1.1.2 Each diesel generator shall be demonstrated OPERABLE:

-a. In accordance with the frequency specified in Table 4.8-1 on a STAGGERED TEST BASIS by:

1. Verifying the fuel level in the day tank.
2. Verifying the fuel level in the fuel storage tank.
3. Verifying the fuel transfer pump can be started and transfers fuel from the storage system to the day tank.
4. Verifying the diesel generator can start** and acceleräte to generator voltage and frequency at 4160 ± 420 volts and $60 \pm$ 1.2 Hz in less than or equal to 10 seconds. Subsequently, the generator shall be manually synchronized to its appropriate bus and gradually loaded** to an indicated $5200-5400 \mathrm{~kW}{ }^{* * *}$ and operates for at least 60 minutes. The diesel generator shall be started for this test using one of the following signals on a STAGGERED TEST BASIS:
a) Manual
b) Simulated loss of offsite power by itself.
c) Simulated loss of offsite power in conjunction with an ESF actuation test signal.
d) An ESF actuation test signal by itself.
5. Verifying the diesel generator is aligned to provide standby power to the associated emergency busses.
[^5]
4.8.1.1.2 (Continued)

b. At least once per 92 days by verifying that a sample of diesel fuel from the fuel storage tank obtained in accordance with ASTM-D4176-82, is within the acceptable limits specified in Table 1 of ASTM D975-81 when checked for viscosity, water and sediment.
c. At least once per 184 days the diesel generator shall be started** and accelerated to generator voltage and frequency at 4160 ± 420 volts and $60 \pm 1.2 \mathrm{~Hz}$ in less than or equal to 10 seconds. The generator voltage and frequency shall be 4160 ± 420 volts and $60 \pm 1.2 \mathrm{~Hz}$ within 10 seconds after the start signal. The generator shall be manually synchronized to its appropriate emergency bus, loaded to an indicated $5200-5400$ *** kW in less than or equal to 60 seconds, and operate for at least 60 minutes.
This test, if it is performed so it coincides with the testing required by Surveillance Requirement 4.8.1.1.2.a.4, may also serve to concurrently meet those requirements as well.
d. At least once per 18 months during shutdown by:

1. Subjecting the diesel to an inspection in accordance with procedures prepared in conjunction with its manufacturer's recommendations for this class of standby service.
2. Verifying the generator capability to reject a single largest load of greater than or equal to 839 kW . (Train B AFW pump) for emergency diesel generator B or 696 kW for emergency diesel generator A (Train A HPSI pump) while maintaining voltage at 4160 ± 420 volts and frequency at $60 \pm 1.2 \mathrm{~Hz}$.
3. Verifying that the automatic load sequencers are OPERABLE with the interval between each load block within ± 1 second of its design interval.
4. Simulating a loss of offsite power by itself, and:
a) Verifying deenergization of the emergency busses and load shedding from the emergency busses.
b) Verifying the diesel starts** on the auto-start signal, energizes the emergency busses with permanently connected loads within 10 seconds, energizes the auto-connected shutdown loads through the load sequencer and operates for greater than or equal to 5 minutes while its generator is

[^6]\bullet
\because -
"'
4.8.1.1.2 (Continued)
loaded with the shutdown loads. After energization of these loads, the steady state voltage and frequency shall be maintained at 4160 ± 420 volts and $60+1.2 /-0.3 \mathrm{~Hz}$.
5. Verifying that on an ESF actuation test signal (without loss of power) the diesel generator starts* on the auto-start signal and operates on standby for greater than or equal to 5 minutes.
6. Simulating a loss-of-offsite power in conjunction with an ESF actuation test signal, and
a) Verifying de-energization of the emergency busses and load shedding from the emergency busses.
b) Verifying the diesel starts* on the auto-start signal, energizes the emergency busses with permanently connected loads within 10 seconds, energizes the auto-connected emergency (accident) loads through the load sequeñcer, and operates for greater than or equal to 5 minutes and maintains the steady-state voltage and frequency at $4160 \pm$ 420 volts and $60+1.2 /-0.3 \mathrm{~Hz}$.
c) Verifying that all automatic diesel generator trips, except engine overspeed, generator differential, and low lube oil pressure, are automatically bypassed upon loss of voltage on the emergency bus, upon a safety injection actuation signal or upon AFAS.
7. Verifying the diesel generator operates* for at least 24 hours. During the first 2 hours of this test, the diesel generator shall be loaded to an indicated 5800-6000 kW** and during the remaining 22 hours of this test, the diesel generator shall be loaded to an indicated $5200-5400 \mathrm{kW**}$. Within 5 minutes after completing this 24-hour test, perform Surveillance Requirement 4.8.1.1.2.d.6.b). ***

[^7]
ELECTRICAL POWER SYSTEMS

SURVEILLANCE REQUIREMENTS (Continued)

8. Verifying that the auto-connected loads to each diesel generator do not exceed the continuous rating of 5500 kW .
9. Verifying the diesel generator's capability to:
a) Synchronize with the offsite power source while the generator is loaded with its emergency loads upon a simulated restoration of offsite power,
b) Transfer its loads to the offsite power source, "and
c) Proceed through its shutdown sequence.
10. Verifying that the following diesel generator lockout features prevent diesel generator starting only when required:
a) turning gear engaged
b) emergency stop
e. At least once per 10 years or after any modifications which could affect diesel generator interdependence by starting** both diesel generators simultaneously, during shutdown, and verifying that both diesel generators accelerate to generator voltage and frequency at 4160 ± 420 volts and $60 \pm 1.2 \mathrm{~Hz}$ in less than or equal to 10 seconds.
4.8.1.1.3 Reports - All diesel generator failures, valid or nonvalid, shall be reported to the Commission within 30 days in a Special Report pursuant to Specification 6.9.2. Reports of diesel generator failures shall include the information recommended in Regulatory Position C.3.b of Regulatory Guide 1.108, Revision 1, August 1977. If the number of failures in the last 100 valid tests (on a per nuclear unit basis) is greater than or equal to 7 , the report shall be supplemented to include the additional information recommended in Regulatory Position C.3.b of Regulatory Guide 1.108, Revision 1, August 1977.

[^8]b. At least once per 92 days and within 7 days after a battery discharge with battery terminal vol:tage below 105 volts, or battery overcharge with battery terminal voltage above 145 volts, by verifying that:

1. The parameters in Table 4.8-2 meet the Category B limits,
2. There is no visible corrosion at either terminals or connectors, or the connection resistance of these items is less than 150×10^{-6} ohms, and
3. The average electrolyte temperature of six connected cells is above $60^{\circ} \mathrm{F}$.
c. At least once per 18 months by verifying that:
4. The cells, cell plates, and battery racks show no visual indication of physical damage or abnormal deterioration,
5. The cell-to-cell and terminal connections are clean, tight, and coated with anticorrosion material,
6. The resistance of each cell-to-cell and terminal connection is less than or equal to 150×10^{-6} ohms, and
7. The battery charger will supply at least 400 amperes for batteries A and B and 300 amperes for batteries C and D at 125 volts for at least 8 hours.
d. At least once per 18 months, during shutdown, by verifying that the battery capacity is adequate to supply and maintain in OPERABLE status all of the actual or simulated emergency loads for the design duty cycle when the battery is subjected to a battery service test.
e. At least once per 60 months, during shutdown, by verifying that the battery capacity is at least 80% of the manufacturer's rating when subjected to a performance discharge test. This performance discharge test may be performed in lieu of the battery service test required by Surveillance Requirement 4.8.2.1d.
f. Annual performance discharge tests of battery capacity shall be given to any battery that shows signs of degradation or has reached 85% of the service life expected for the application. Degradation is indicated when the battery capacity drops more than 10% of rated capacity from its average on previous performance tests, or is below 90% of the manufacturer's rating.
\because ..

ELECTRICAL POWER SYSTEMS

MOTOR-OPERATED VALVES THERMAL OVERLOAD PROTECTION AND BYPASS DEVICES

LIMITING CONDITION FOR OPERATION

3.8.4.2 The thermal overload protection of each valve shown in Table 3.8-3 shall be bypassed continuously or under accident conditions, as applicable, by an OPERABLE device integral with the motor starter.

APPLICABILITY: Whenever the motor-operated valve is required to be OPERABLE.

ACTION:

With the thermal overload protection for one or more of the above required valves not bypassed continuously or under accident conditions, as applicable, by an OPERABLE integral bypass device, take administrative action to continuously bypass the thermal overload within 8 hours or declare the affected valve(s) inoperable and apply the appropriate ACTION Statement(s) for the affected valve(s).

SURVEILLANCE REQUIREMENTS
4.8.4.2.1 The thermal overload protection for the above required valves shall be verified to be bypassed continuously or under accident conditions, as applicable, by an OPERABLE integral bypass device by the performance of a CHANNEL FUNCTIONAL TEST of the bypass circuitry for those thermal overloads which are normally in force during plant operation and bypassed under accident conditions and by verifying that the thermal overload protection is bypassed for those thermal overloads which are continuously bypassed and temporarily placed in force only when the valve motors are undergoing periodic or maintenance testing:
a. At least once per 18 months, and
b. Following maintenance on the motor starter.
4.8.4.2.2 The thermal overload protection for the above required valves which are continuously bypassed shall be verified to be bypassed following testing during which the thermal overload protection was temporarily placed in force.
\because
...
3.9.6 The refueling machine shall be used for movement of fuel assemblies and shall be OPERABLE with:
a. A minimum capacity of 3590 pounds and an overload cut off limit of less than or equal to 1556 pounds for the refueling machine.
$\frac{\text { APPLICABILITY: }}{\text { cavity. }}$ During movement of fuel assemblies within the refueling cavity.

ACTION:
With the above requirements for the refueling machine not satisfied, suspend use of the refueling machine from operations involving the movement of fuel assembies.:

SURVEILLANCE REQUIREMENTS
4.9.6.1 The refueling machine used for movement of fuel assemblies shall be demonstrated OPERABLE within 72 hours prior to the start of such operations by performing a load test of at least 3590 pounds and demonstrating an automatic load cut off when the refueling machine load exceeds 1556 pounds.

3/4.10.1 SHUTDOWN MARGIN AND $K_{N-1-}-$ CEA WORTH TESTS
 LIMITING CONDITION FOR OPERATION

3.10.1 The SHUTDOWN MARGIN and $\mathrm{K}_{\mathrm{N}-1}$ requirements of Specification 3.1.1.2 may be suspended for measurement of CEA worth and shutdown margin provided reactivity equivalent to at least the highest estimated CEA worth is available for trip insertion from OPERABLE CEA(s), or the reactor is subcritical by at least the reactivity equivalent of the highest CEA worth.

APPLICABILITY: MODES 2, 3* and 4*.
ACTION:
a. With any full-length CEA not fully inserted and with less than the above reactivity equivalent available for trip insertion, imnediately initiate and continue boration at greater than or equal to 26 gpm of a solution containing greater than or equal to 4000 ppm boron or its equivalent until the SHUTDOWN MARGIN and $\mathrm{K}_{\mathrm{N}-1}$ required by Specification 3.1.1.2 are restored.
b. With all full-length CEAs fully inserted and the reactor subcritical by less than the above reactivity equivalent, immediately initiate and continue boration at greater than or equal to 26 gpm of a solution containing greater than or equal to 4000 ppm boron or its equivalent until the SHUTDOWN MARGIN required by Specification 3.1.1.1 is restored.

SURVEILLANCE REQUIREMENTS
4.10.1.1 The position of each ful1-length and part-length CEA required either partially or fully withdrawn shall be determined at least once per 2 hours.
4.10.1.2 Each CEA not fully inserted shall be demonstrated capable of full insertion when tripped from at least the 50% withdrawn position within 24 hours prior to reducing the SHUTDOWN MARGIN to less than the limits of Specification 3.1.1.2.
4.10.1.3 When in MODE 3 or MODE 4, the reactor shall be determined to be subcritical by at least the reactivity equivalent of the highest estimated CEA worth or the reactivity equivalent of the highest estimated CEA worth is available for trip insertion from OPERABLE CEAs at least once per 2 hours by consideration of at least the following factors:
a. Reactor Coolant System boron concentration,
b. CEA position,
c. Reactor Coolant System average temperature,
d. Fuel burnup based on gross thermal energy generation,
e. Xenon concentration, and
f. Samarium concentration.

[^9]This page intentionally deleted.
\bullet

\because, \quad "

3/4.10.1 SHUTDOWN MARGIN

This special test exception provides that a minimum amount of CEA worth is immediately available for reactivity control when tests are performed for CEAs worth measurement. This special test exception is required to permit the periodic verification of the actual versus predicted core reactivity condition occurring as a result of fuel burnup or fuel cycling operations. Although testing will be initiated from MODE 2, temporary entry into MODE 3 is necessary during some CEA worth measurements. A reasonable recovery time is available for return to MODE 2 in order to continue PHYSICS TESTING.

3/4.10.2 MODERATOR TEMPERATURE COEFFICIENT, GROUP HEIGHT, INSERTION, AND POWER DISTRIBUTION LIMITS

This special test exception permits individual CEAs to be positioned outside of their normal group heights and insertion limits during the performance of such PHYSICS TESTS as those required to (1) measure CEA worth, (2) determine the reactor stability index and damping factor under xenon oscillation conditions, (3) determine power distributions for non-normal CEA configurations, (4) measure rod shadowing factors, and (5) measure temperature and power coefficients. Special test exception permits MTC to exceed*limits in Specification 3.1.1.3 during performance of PHYSICS TESTS.

3/4.10.3 REACTOR COOLANT LOOPS

This special test exception permits reactor criticality with less than four reactor coolant pumps in operation and is required to perform certain STARTUP and PHYSICS TESTS while at low THERMAL POWER levels.

3/4.10.4 CEA POSITION, REGULATING CEA INSERTION LIMITS AND REACTOR COOLANT COLD LEG TEMPERATURE

This special test exception permits the CEAs to be positioned beyond the insertion limits and reactor coolant cold leg temperature to be outside limits during PHYSICS TESTS required to determine the isothermal temperature coefficient and power coefficient.

3/4.10.5 MINIMUM TEMPERATURE AND PRESSURE FOR CRITICALITY

This special test exception intentionally deleted.

UNITED STATES
NUCLEAR REGULATORY COMMISSION
WASHINGTON, D.C. 20555

ARIZONA PUBLIC SERVICE COMPANY, ET AL.
DOCKET NO. STN 50-530
PALO VERDE NUCLEAR GENERATING STATION, UNIT NO. 3
AMENDMENT TO FACILITY OPERATING LICENSE

Amendment No. 27
License No. NPF-74

1. The Nuclear Regulatory Commission (the Commission) has found that:
A. The application for amendment by the Arizona Public Service Company (APS) on behalf of itself and the Salt River Project Agricultural Improvement and Power District, El Paso Electric Company, Southern California Edison Company, Public Service Company of New Mexico, Los Angeles Department of Water and Power, and Southern California Public Power Authority (licensees), dated October 11, 1990, complies with the standards and requirements of the Atomic Energy Act of 1954, as amended (the Act) and the Commission's regulations set forth in 10 CFR Chapter I;
B. The facility will operate in conformity with the application, the provisions of the Act, and the rules and regulations of the Commission;
C. There is reasonable assurance (i) that the activities authorized by this amendment can be conducted without endangering the health and safety of the public, and (ii) that such activities will be conducted in compliance with the Commission's regulations;
D. The issuance of this amendment will not be inimical to the common defense and security or to the health and safety of the public; and
E. The issuance of this amendment is in accordance with 10 CFR Part 51 of the Commission's regulations and all applicable requirements have been satisfied.
2. Accordingly, the license is amended by changes to the Technical Specifications as indicated in the attachment to this license amendment, and paragraph 2.C(2) of Facility Operating License No. NPF-74 is hereby amended to read as follows:
(2) Technical Specifications and Environmental Protection Plan

The Technical Specifications contained in Appendix A, as revised through Amendment No. 27 , and the Environmental Protection Plan contained in Appendix B, are hereby incorporated into this license. APS shall operate the facility in accordance with the Technical Specifications and the Environmental Protection Plan, except where otherwise stated in specific license conditions.
3. This license amendment is effective as of the date of issuance and must be fully implemented no later than 45 days from the date of issuance.

FOR THE NUCLEAR REGULATORY COMMISSION

Ckoula, Trasmell

for
James E. Dyer, Director
Project Directorate V
Division of Reactor Projects III/IV/N Office of Nuclear Reactor Regu lation

Attachment:

Date of Issuance: June 27, 1991

ATTACHMENT TO LICENSE AMENDMENT NO. 2.7

TO FACILITY OPERATING LICENSE NO. NPF-74
DOCKET NO. STN 50-530

Replace the following pages of the Appendix A Technical Specifications with the enclosed pages. The revised pages are identified by amendment number and contain vertical lines indicating the areas of change.

Remove	Insert		
3/4 1-6	3/4 1-6		
3/4 2-12	3/4 2-12		
3/4 3-16	3/4 3-16		
3/4 3-50	3/4 3-50		
3/4 3-52	3/4 3-52		-
3/4 3-54	3/4 3-54		
3/4 4-35	3/4 4-35		
3/4 7-21	3/4 7-21		
3/4 7-29	3/4 7-29	\cdots	
3/4 8-3	3/4 8-3	"	
3/4 9-6	3/4 9-6		r
$3 / 410-1$	3/4 10-1		
3/4 10-5	3/4 10-5		
в 3/4 10-1	B 3/4 10-1		

3.1.1.4 The Reactor Coolant System lowest operating loop temperature ($\mathrm{T}_{\text {cold }}$)
shall be greater than or equal to $552^{\circ} \mathrm{F}$.

APPLICABILITY: MODES 1 and 2\#.
ACTION:
With a Reactor Coolant System operating loop temperature ($T_{\text {cold }}$) less than $552^{\circ} \mathrm{F}$, restore $\mathrm{T}_{\text {cold }}$ to within its limit within 15 minutes or be in HOT STANDBY within the next 15 minutes.

SURVEILLANCE REQUIREMENTS

4.1.1.4 The Reactor Coolant System temperature ($\mathrm{T}_{\text {cold }}$) shall be determined to
be greater than or equal to $552^{\circ} \mathrm{F}$:
a. Within 15 minutes prior to achieving reactor criticality, añ
b. At least once per 30 minutes when the reactor is critical and the Reactor Coolant System ${ }_{\text {. cold }}$ is less than $557^{\circ} \mathrm{F}$.
\#With $K_{\text {eff }}$ greater than or equal to 1.0.

$$
\because,{ }^{\prime \prime} .
$$

3.2.8 The pressurizer pressure shall be maintained between 2025 psia and 2300 psia.

APPLICABILITY: MODES 1 and 2.
ACTION:
With the pressurizer pressure outside its above limits, restore the pressure to within its limit within 2 hours or be in at least HOT STANDBY within the next 6 hours.

SURVEILLANCE REQUIREMENTS
4.2.8 The pressurizer pressure shall be determined to be within its.limit at least once per 12 hours.
‘., ...

TABLE 4.3-1 (Continued)
REACTOR PROTECTIVE INSTRUMENTATION SURVEILLANCE REQUIREMENTS

TABLE NOTATIONS

* - With reactor trip breakers in the closed position and the CEA drive system capable of CEA withdrawal, and fuel in the reactor vessel.
(1) - Each STARTUP or when required with the reactor trip breakers closed and the CEA drive system capable of rod withdrawal, if not performed in the previous 7 days.
(2) - Heat balance only (CHANNEL FUNCTIONAL TEST not included), above 15\% of RATED THERMAL POWER; adjust the linear power level, the CPC delta T power and CPC nuclear power signals to agree with the calorimetric calculation if absolute difference is greater than 2%. During PHYSICS TESTS, these daily calibrations may be suspended provided these calibrations are performed upon reaching each major test power plateau and prior to proceeding to the next major test power plateau.
(3) - Above 15% of RATED THERMAL POWER, verify that the linear power subchannel gains of the excore detectors are consistent with the values used to establish the shape annealing matrix elements in the Core Protection Calculators.
(4) - Neutron detectors may be excluded from CHANNEL CALIBRATION.:
(5) - After each fuel loading and prior to exceeding 70\% of RATED THERMAL POWER, the incore detectors shall be used to determine the shape annealing matrix elements and the Core Protection Calculators shall use these elements.
(6) - This CHANNEL FUNCTIONAL TEST shall include the injection of simulated process signals into the channel as close to the sensors as practicable to verify OPERABILITY incJuding alarm and/or trip functions.
(7) - Above 70% of RATED THERMAL POWER, verify that the total steady-state RCS flow rate as indicated by each CPC is less than or equal to the actual RCS total flow rate determined by either using the reactor coolant pump differential pressure instrumentation or by calorimetric calculations and if necessary, adjust the CPC addressable constant flow coefficients such that each CPC indicated flow is less than or equal to the actual flow rate. The flow measurement uncertainty may be included in the BERRI term in the CPC and is equal to or greater than 4%.
(8) - Above 70% of RATED THERMAL POWER, verify that the total steady-state RCS flow rate as indicated by each CPC is less than or equal to the actual RCS total flow rate determined by either using the reactor coolant pump differential pressure instrumentation and the ultrasonic flow meter adjusted pump curves or calorimetric calculations.
(9) - The monthly CHANNEL FUNCTIONAL TEST shall include verification that the correct (current) values of addressable constants are installed in each OPERABLE CPC.
(10) - At least once per 18 months and following maintenance or adjustment of the reactor trip breakers, the CHANNEL FUNCTIONAL TEST shall include independent verification of the undervoltage and shunt trips.

$$
\because \bullet^{\star} \quad \backsim
$$

REMOTE SHUTDOWN DISCONNECT SWITCHES

DISCONNECT SWITCHES

1. SG 1 line 2 Atmospheric Dump Valve Solenoid Air Isolation Valves SGB-HY-178A and SGB-HY-178R
2. SG 2 line 1 Atmospheric Dump Valve Solenoid Air Isolation Valves SGB-HY-185A and SGB-HY-185R
3. Auxiliary Spray Valve RSP

CHB-HV-203
4. Letdown to Regenerative RSP

Heat Exchanger Isolation, CHB-UV-515
5. Reactor Coolant Pump Controlled Bleedoff, CHB-UV-505.
6. Auxiliary Feedwater Pump RSP
B to SG 1 Control Valve, AFB-HV-30
7. Auxiliary Feedwater Pump
B to $S G 2$ Control Valve, $A F B-H V-31$
8. Auxiliary Feedwater Pump RSP

B to SG 1 Block Valve, AFB-UV-34
9. Auxiliary Feedwater Pump
B to SG 2 Block Valve, AFB-UV-35
10. Pressurizer Backup Heaters Banks RSP B10, B18, A05 Control
11. Safety Injection Tank 2 A

Vent Control SIB-HV-613
12. Safety Injection Tank 2B

Vent Control SIB-HV-623
13. Safety Injection Tank 1A RSP

Vent Control SIB-HV-633
14. Safety Injection Tank IB RSP

Vent Control SIB-HV-643
15. Safety Injection Tank Vent , RSP Valves Power Supply SIB-HS-18C
16. SG 1 line 2 Atmospheric Dump Valve Solenoid Air RSP" Isolation Valves SGD-HY-178B and SGD-HY-178S
17. SG 2 line 1 Atmospheric Dump Valve Solenoid Air RSP Isolation Valves SGD-HY-185B and SGD-HY-185S
18. Control BLDG Battery Room D
19. Control BLDG Battery Room B

Essential Exhaust Fan 'HJB-J01B'
20. Battery Charger D Control

Room Circuits PKD-H14
21. ESF Switchgear Room

Essential AHU HJB-Z03
22. LPSI Pump SIB-PO1 Breaker Control
23. Diesel Generator B Breaker Control
24. Essential Spray Pond Pump SPB-POI Breaker Control

SWITCH
LOCATION
RSP
RSP

RSP

RSP

RSP

RSP
RSP

PHB-M3205
PHB-M3205
PHB-M3209 AND PKD-H14
PHB-M3205
PBB-S04F
PBB-S04B
PBB-S04C

$$
\because{ }^{, \quad, \quad}
$$

REMOTE SHUTDOWN DISCONNECT SWITCHES

SWITCH LOCATION
DISCONNECT SWITCHES
49. SD HX "B" to RC Loops PHB-M3416
2A/2B SIB-HV-696
50. LPSI-SD HX "B" BypassSIB-HV-307
51. LPSI Pump "B" Recirc SIB-UV-668
52. LPSI Pump "B" Suctionfrom RWT SIB-HV-692
53. SD Cooling LPSI Pump "B"Suction SIB-UV-652
54. SD Cooling LPSI Pump "B"Suction SID-UV-654
55. LPSI Header " B " to RC Loop2A SIB-UV-615
56. LPSI Header "B" to RC Loop2B SIB-UV-625
57. VCT Outlet IsolationCHN-UV-501
58. RWT Gravity Feed
CHE-HV-536
59. Shutdown Cooling Temperature Control SIB-HV-658
60. Shutdown Cooling Heat Exchanger Bypass Valve SIB-HV-693
61. 4.16 KV Bus PBB-SO4
Feeder from XFMR NBN-XO4
62. 4.16 KV Bus PBB-SO4Feeder from XFMR NBN-X03
63. Electrical Penetration Room B PHB-M3640ACU HAB-Z06
64. Control Room HVAC Isolation Dampers
HJB-M01/HJB-M55
65. O.S.A. Supply Damper HJB-M02RSPRSP
66. O.S.A. Supply Damper HJB-M03 RSP
67. R.C.S. Sample Isolation Valve SSA-UV-203 SSA-J0468. R.C.S. Sample Isolation Valve SSB-UV-20069. 125 VDC Battery A BreakerControl Room Circuits

TABLE 3.3-9C (Continued)

REMOTE SHUTDOWN CONTROL CIRCUITS

CONTROL CIRCUITS

SWITCH LOCATION

PGB-L32B1
PGB-L34B1
PGB-L36B1
PHB-M3627
PHB-M3209
PHB-M3425
PBB-S04C
PBB-S04M
PBB-SO4G
PHB-M3206
PHB-M3207
PHB-M3203
PHB-M3631
RSP
RSP
RSP
RSP
RSP
PBB-S04F
PHB-M3804

PHB-M3810
PHB-M3605
PHB-M3806
47. Shutdown Cooling Warmup Bypass Valve SIB-HV-690
48. LPSI Containment Spray to SD HX "B" X-tie Valve SIB-HV-694

PALO VERDE - UNIT 3

PHB-M3414

$$
\because \cdot{ }^{\infty}
$$

3/4.4.10 REACTOR COOLANT SYSTEM VENTS

LIMITING CONDITION FOR OPERATION
3.4.10 Both reactor coolant system vent paths shall be OPERABLE and closed at each of the following locations:
a. Reactor vessel head, and
b. Pressurizer steam'space.

APPLICABILITY: MODES 1, 2, 3 and 4.
ACTION:
a. With only one of the above required reactor coolant system vent paths OPERABLE, from either location restore both paths at that location to OPERABLE status within 72 hours or be in at least HOT STANDBY within the next 6 hours and in HOT SHUTDOWN within the following 6 hours.
b. With none of the above required reactor coolant system vent paths OPERABLE, from either location restore at least one path at. that location to OPERABLE status within the next 6 hours or be in at least HOT STANDBY within the next 6 hours and in HOT SHUTDOWN within the following 6 hours.

SURVEILLANCE REQUIREMENTS

4.4.10 Each reactor coolant system vent path shall be demonstrated OPERABLE at least once per 18 months, when in MODES 5 or 6 , by:
a. Verifying all manual isolation valves in each vent path are locked in the open position.
b. Cycling each vent valve through at least one complete cycle from the control room.
c. Verifying flow through the reactor coolant system vent paths during venting.

3/4.7.9 SNUBBERS

LIMITING CONDITION FOR OPERATION

> 3.7.9 All hydraulic and mechanical snubbers shall be OPERABLE. The only snubbers excluded from this requirement are those installed on nonsafety related systems and then only if their failure or failure of the system on which they are installed, would have no adverse effect on any safetyrelated system.

APPLICABILITY: MODES 1, 2, 3, and 4. MODES 5 and 6 for snubbers located on systems required OPERABLE in those MODES.

ACTION:

With one or more snubbers inoperable on any system, within 72 hours replace or restore the inoperable snubber(s) to OPERABLE status and perform an engineering evaluation per Specification 4.7 .9 g . on the attached component or declare the. attached system inoperable and follow the appropriate ACTION statement for that system.

SURVEILLANCE REQUIREMENTS

4.7.9 Each snubber shall be demonstrated OPERABLE by performance of the following augmented inservice inspection program and the requirements of Specification 4.0.5.
a. Snubber Types

As used in this specification, type of snubber shall mean snubbers of the same design and manufacturer, irrespective of capacity.
b. Visual Inspections

Snubbers are categorized as inaccessible or accessible during reactor operation. Each of these groups (inaccessible and accessible) may be inspected independently according to the schedule below. The first inservice visual inspection of each type of snubber shall be performed after 4 months but within 10 months of commencing POWER OPERATION and shall include all hydraulic and mechanical snubbers. If all snubbers of each type are found OPERABLE during the first inservice visual inspection, the second inservice visual inspection of that type shall be performed at the first refueling outage. Otherwise, subsequent visual inspections of a given type shall be performed in accordance with the following schedule:

3/4.7.11 SHUTDOWN COOLING SYSTEM
LIMITING CONDITION FOR OPERATION
3.7.11 Two independent shutdown cooling subsystems shall be OPERABLE, with each subsystem comprised of:
a. One OPERABLE low pressure safety injection pump, and
b. An independent OPERABLE flow path capable of taking suction from the RCS hot leg and discharging coolant through the shutdown cooling heat exchanger and back to the RCS through the cold leg injection lines.

APPLICABILITY: MODES 1, 2, and 3.
ACTION:
a. With one shutdown cooling subsystem inoperable, restore the inoperable subsystem to OPERABLE status within 72 hours or be in at least HOT STANDBY within 1 hour, be in at least HOT SHUTDOWN within the next 6 hours and be in COLD SHUTDOWN within the next 30 hours and continue action to restore the required subsystem to OPERABLE status:
b. With both shutdown cooling subsystems inoperable, restore one subsystem to OPERABLE status within 1 hour or be in at least HOT STANDBY within 1 hour and be in HOT SHUTDOWN within the next 6 hours and continue action to restore the required subsystems to OPERABLE status.
c. With both shutdown cooling subsystems inoperable and both reactor coolant loops inoperable, initiate action to restore the required subsystems to OPERABLE status.

SURVEILLANCE REQUIREMENTS

4.7.11 Each shutdown cooling subsystem shall be demonstrated OPERABLE:
a. At least once per 18 months, during shutdown, by establishing shutdown cooling flow from the RCS hot legs, through the shutdown cooling heat exchangers, and returning to the RCS cold legs.
b. At least once per 18 months, during shutdown, by testing the automatic and interlock action of the shutdown cooling system connections from the RCS. The shutdown cooling system suction valves shall not open when RCS pressure is greater than 410 psia. The shutdown cooling system suction valves located outside containment shall close automatically when RCS pressure is greater than 500 psia. The shutdown cooling system suction valve located inside containment shall close automatically when RCS pressure is greater than 700 psia.

$$
\begin{aligned}
& \because \text { と } \\
& \text { "• }
\end{aligned}
$$

4.8.1.1.1 Each of the above required physically independent circuits between the offsite transmission network and the onsite Class 1E distribution system shall be:
a. Determined OPERABLE at least once per 7 days by verifying correct breaker alignment indicating power availability
b. Demonstrated OPERABLE at least once per 18 months during shutdown by manually transferring the onsite Class IE power supply from the normal circuit to the alternate circuit.
4.8.1.1.2 Each diesel generator shall be demonstrated OPERABLE:
a.. In accordance with the frequency specified in Table 4.8-1 on a STAGGERED TEST BASIS by:

1. Verifying the fuel level in the day tank.
2. Verifying the fuel level in the fuel storage tank.
3. Verifying the fuel transfer pump can be started and transfers fuel from the storage system to the day tank.
4. Verifying the diesel generator can start** and accelerate to generator voltage and frequency at 4160 ± 420 volts and $60 \pm$ 1.2 Hz in less than or equal to 10 seconds. Subsequently, the generator shall be manually synchronized to its appropriate bus and gradually loaded** to an indicated 5200-5400 kW**** and operates for at least 60 minutes. The diesel generator shall be started for this test using one of the following signals on a STAGGERED TEST BASIS:
a) Manual
b) Simulated loss of offsite power by itself.
c) Simulated loss of offsite power in conjunction with an ESF actuation test signal.
d) An ESF actuation test signal by itself.
5. Verifying the diesel generator is aligned to provide standby power to the associated emergency busses.
${ }^{\text {*x }}$ This test shall be conducted in accordance with the manufacturer's recommendations regarding engine prelube and warmup procedures, and as applicable regarding loading recommendations.
***This band is meant as guidance to avoid routine overloading of the engine. Loads in excess of this band for special testing under direct monitoring of the manufacturer or momentary variations due to changing bus loads shall not invalidate the test.

REFUELING OPERATIONS

3/4.9.6 REFUELING MACHINE

LIMITING CONDITION FOR OPERATION
3.9.6 The refueling machine shall be used for movement of fuel assemblies and shall be OPERABLE with:
a. A minimum capacity of 3590 pounds and an overload cut off limit of less than or equal to 1556 pounds for the refueling machine.

APPLICABILITY: During movement of fuel assemblies within the refueling cavity.

ACTION:
With the above requirements for the refueling machine not satisfied, suspend use of the refueling machine from operations involving the movement of fuel assemblies...

SURVEILLANCE REQUIREMENTS
4.9.6.1 The refueling machine used for movement of fuel assemblies shall be demonstrated OPERABLE within 72 hours prior to the start of such operations by performing a load test of at least 3590 pounds and demonstrating an automatic load cut off when the refueling machine load exceeds 1556 pounds.

3/4. 10 SPECIAL TEST EXCEPTIONS

3/4.10.1 SHUTDOWN MARGIN AND K_{N-1} - CEA WORTH TESTS

LIMITING CONDITION FOR OPERATION
3.10.1 The SHUTDOWN MARGIN and ${ }^{K} \mathrm{~N}_{\mathrm{N}-1}$ requirements of Specification 3.1.1.2 may be suspended for measurement of CEA worth and shutdown margin provided reactivity equivalent to at least the highest estimated CEA worth is available for trip insertion from OPERABLE CEA(s), or the reactor is subcritical by at least the reactivity equivalent of the highest CEA worth.

APPLICABILITY: MODES 2, 3^{*} and 4^{*}.
ACTION:
a. With any full-length CEA not fully inserted and with less than the above reactivity equivalent available for trip insertion, immediately initiate and continue boration at greater than or equal to 26 gpm of a solution containing greater than or equal to 4000 ppm boron or its equivalent until the SHUTDOWN MARGIN and $K_{\mathrm{N}-1}$ required
by Specification 3.1 .1 .2 are restored.
b. With all full-length CEAs fully inserted and the reactor subcritical by less than the above reactivity equivalent, immediately initiate and continue boration at greater than or equal to 26 gpm of a solution containing greater than or equal to 4000 ppm boron or its equivalent until the SHUTDOWN MARGIN required by Specification 3.1.1.1 is restored.
SURVEILLANCE REQUIREMENTS
4.10.1.1 The position of each full-length and part-length CEA required either partially or fully withdrawn shall be determined at least once per 2 hours.
4.10.1.2 Each CEA not fully inserted shall be demonstrated capable of full insertion when tripped from at least the 50% withdrawn position within 24 hours prior to reducing the SHUTDOWN MARGIN to less than the limits of Specification 3.1.1.2.
4.10.1.3 When in MODE 3 or MODE 4, the reactor shall be determined to be subcritical by at least the reactivity equivalent of the highest estimated CEA worth or the reactivity equivalent of the highest estimated CEA worth is available for trip insertion from OPERABLE CEAs at least once per 2 hours by consideration of at least the following factors:
a. Reactor Coolant System boron concentration,
b. CEA position,
c. Reactor Coolant System average temperature,
d. Fuel burnup based on gross thermal energy generation,
e. Xenon concentration, and
f. Samarium concentration.

[^10]
$\because{ }^{\circ}$

:

This page intentionally deleted
-,

BASES

3/4.10.1 SHUTDOWN MARGIN

This special test exception provides that a minimum amount of CEA worth is immediately available for reactivity control when tests are performed for CEAs worth measurement. This special test exception is required to permit the periodic verification of the actual versus predicted core reactivity condition occurring as a result of fuel burnup or fuel cycling operations. Although testing will be initiated from MODE 2, temporary entry into MODE 3 is necessary during some CEA worth measurements. A reasonable recovery time is available for return to MODE 2 in order to continue PHYSICS TESTING.

3/4.10.2 MODERATOR TEMPERATURE COEFFICIENT, GROUP HEIGHT, INSERTION, AND POWER DISTRIBUTION LIMITS

This special test exception permits individual CEAs to be positioned outside of their normal group heights and insertion limits during the perform: ance of such PHYSICS TESTS as those required to (1) measure CEA worth, (2) determine the reactor stability index and damping factor under xenon oscillation conditions, (3) determine power distributions for non-normal CEA configurations, (4) measure rod shadowing factors, and (5) measure temperature and power coefficients. Special test exception permits MTC to exceed"limits in Specification 3.1.1.3 during performance of PHYSICS TESTS.

3/4.10.3 REACTOR COOLANT LOOPS

This special test exception permits reactor criticality with less than four reactor coolant pumps in operation and is required to perform certain STARTUP and PHYSICS TESTS while at low THERMAL POWER levels.

3/4.10.4 CEA POSITION, REGULATING CEA INSERTION LIMITS AND REACTOR COOLANT COLD LEG TEMPERATURE

This special test exception permits the CEAs to be positioned beyond the insertion limits and reactor coolant cold leg temperature to be outside limits during PHYSICS TESTS required to determine the isothermal temperature coefficient and power coefficient.

3/4.10.5 MINIMUM TEMPERATURE AND PRESSURE FOR CRITICALITY

This special test exception intentionally deleted.
$\cdot \cdot x^{x}$

[^0]: *With fuel in the storage pool or building.
 **With irradiated fuel in the storage pool.
 \#When purge is being used.
 \#\#Three (3) times background in Rem/hour.
 \#\#\#The Minimum Channels Operable will be defined in the Preplanned Alternate Sampling Program.

[^1]: **This test shall be conducted in accordance with the manufacturer's recommendations regarding engine prelube and warmup procedures, and as applicable regarding loading recommendations.
 ***This band is meant as guidance to avoid routine overloading of the engine. Loads in excess of this band for special testing under direct monitoring of the manufacturer or momentary variations due to changing bus loads shall not invalidate the test.

[^2]: *This test shall be conducted in accordance with the manufacturer's recommendations regarding engine prelube and warmup procedures, and as applicable regarding loading recommendations.
 **This band is meant as guidance to avoid routine overloading of the engine. Loads in excess of this band for special testing under direct monitoring of the manufacturer or momentary variations due to changing bus loads shall not invalidate the test.
 ***If Specification 4.8.1.1.2.d.6.b) is not satisfactorily completed, it is not necessary to repeat the preceding 24 -hour test. Instead, the diesel generator may be operated at $5200-5400 \mathrm{~kW} *$ for 1 hour or until operating temperature has stabilized.

[^3]: *The reactor shall be maintained in MODE 6 whenever fuel is in the reactor vessel with the reactor vessel head closure bolts less than fully tensioned or with the head removed.

[^4]: *With fuel in the storage pool or building.
 **With irradiated fuel in the storage pool.
 \#When purge is being used.
 \#\#Three (3) times background in Rem/hour.
 \#\#\#The Minimum Channels Operable will be defined in the Preplanned Alternate Sampling Program.

[^5]: - ${ }^{\text {KxThis }}$ test shall be conducted in accordance with the manufacturer's recommendations regarding engine prelube and warmup procedures, and as applicable regarding loading recommendations.
 ***This band is meant as guidance to avoid routine overloading of the engine. Loads in excess of this band for special testing under direct monitoring of the manufacturer or momentary variations due to changing bus loads shall not invalidate the test.

[^6]: **This test shall be conducted in accordance'with the manufacturer's recommendations regarding engine prelube and warmup procedures, and as applicable regarding loading recommendations.
 ***This band is meant as guidance to avoid routine overloading of the engine. Loads in excess of this band for special testing under direct monitoring of the manufacturer or momentary variations due to changing bus loads shall not invalidate the test.

[^7]: ${ }^{\text {K This }}$ test shall be conducted in accordance with the manufacturer's recommendations regarding engine prelube and warmup procedures, and as applicable regarding loading recommendations.
 **This band is meant as guidance to avoid routine overloading of the engine. Loads in excess of this band for special testing under direct monitoring of the manufacturer or momentary variations due to changing bus loads shall not invalidate the test.
 ***If Specification 4.8.1.1.2.d.6.b) is not satisfactorily completed, it is not necessary to repeat the preceding 24 -hour test. Instead, the diesel generator may be operated at $5200-5400 \mathrm{~kW} * *$ for 1 hour or until operating temperature has stabilized.

[^8]: **This test shall be conducted in accordance with the manufacturer's recommendations regarding engine prelube and warmup procedures, and as applicable regarding loading recommendations.

[^9]: Operation in MODE 3 and MODE 4 shall be limited to 6 consecutive hours.

[^10]: Operation in MODE 3 and MODE 4 shall be limited to 6 consecutive hours.

