

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D. C. 20555

ARIZONA PUBLIC SERVICE COMPANY, ET AL.

DOCKET NO. STN 50-528

PALO VERDE NUCLEAR GENERATING STATION, UNIT NO. 1

AMENDMENT TO FACILITY OPERATING LICENSE

Amendment No. 35 License No. NPF-41

- 1. The Nuclear Regulatory Commission (the Commission) has found that:
 - A. The application for amendment, dated May 9, 1988, by the Arizona Public Service Company (APS) on behalf of itself and the Salt River Project Agricultural Improvement and Power District, El Paso Electric Company, Southern California Edison Company, Public Service Company of New Mexico, Los Angeles Department of Water and Power, and Southern California Public Power Authority (licensees), complies with the standards and requirements of the Atomic Energy Act of 1954, as amended (the Act) and the Commission's regulations set forth in 10 CFR Chapter I;
 - B. The facility will operate in conformity with the application, the provisions of the Act, and the regulations of the Commission;
 - C. There is reasonable assurance (i) that the activities authorized by this amendment can be conducted without endangering the health and safety of the public, and (ii) that such activities will be conducted in compliance with the Commission's regulations;
 - D. The issuance of this amendment will not be inimical to the common defense and security or to the health and safety of the public; and
 - E. The issuance of this amendment is in accordance with 10 CFR Part 51 of the Commission's regulations and all applicable requirements have been satisfied.
- 2. Accordingly, the license is amended by a change to the Technical Specifications as indicated in the enclosure to this license amendment, and paragraph 2.C.(2) of Facility Operating License No. NPF-41 is hereby amended to read as follows:

5 /5 m - 1775 - 17

.

.

.

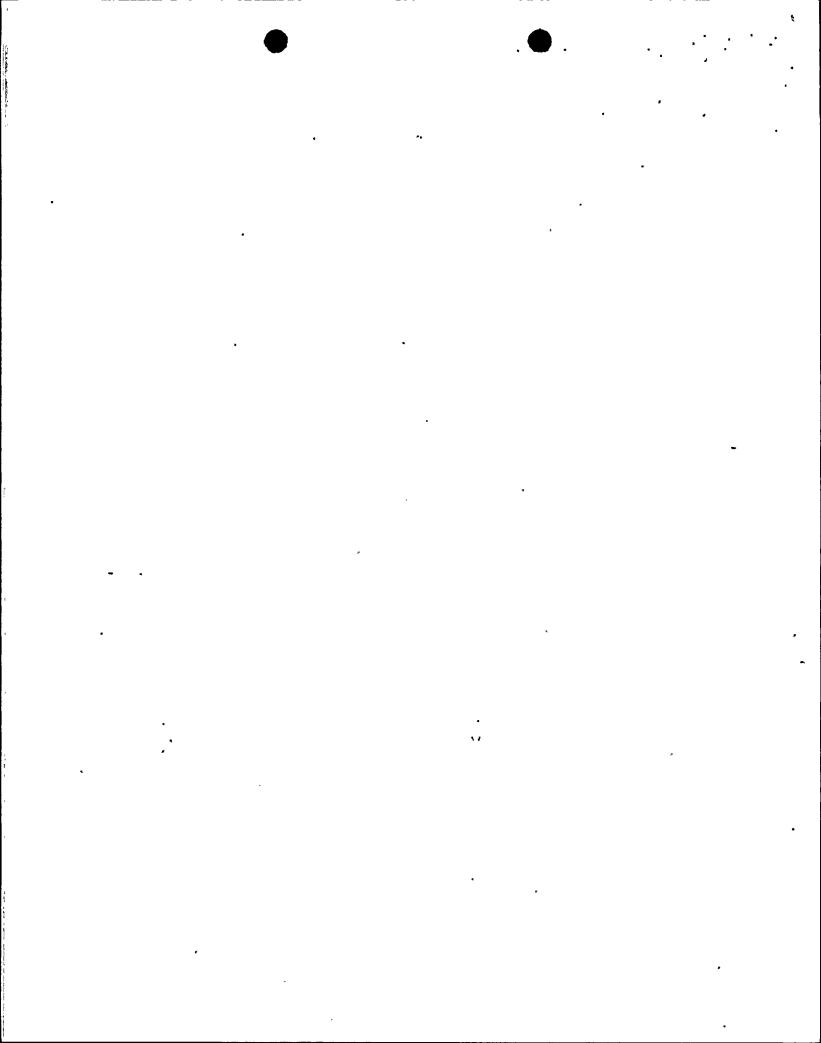
(2) Technical Specifications and Environmental Protection Plan

The Technical Specifications contained in Appendix A, as revised through Amendment No. 35, and the Environmental Protection Plan contained in Appendix B, are hereby incorporated into this license. APS shall operate the facility in accordance with the Technical Specifications and the Environmental Protection Plan.

3. This license amendment is effective as of the date of issuance. The changes in the Technical Specifications are to become effective within 30 days of issuance of the amendment. In the period between issuance of amendment and the effective date of the new Technical Specifications, the licensees shall adhere to the Technical Specifications existing at the time. The period of time during changeover shall be minimized.

FOR THE NUCLEAR REGULATORY COMMISSION

George M. Knighton Sirector


Project Directorate V

Division of Reactor Projects - III,

IV. V and Special Projects

Enclosure: Changes to the Technical Specifications

Date of Issuance: July 29, 1988

ENCLOSURE TO LICENSE AMENDMENT

AMENDMENT NO. 35 TO FACILITY OPERATING LICENSE NO. NPF-41

DOCKET NO. STN 50-528

Replace the following page of the Appendix A Technical Specifications with the enclosed page. The revised page is identified by Amendment number and contains vertical lines indicating the area of change. Also to be replaced is the following overleaf page to the amended page.

Amendment Page

Overleaf Page

3/4 6-21

3/4 6-22

TABLE 3.6-1 CONTAINMENT ISOLATION VALVES

VALVE NUMBER	PENETRATION NUMBER	FUNCTION	MAXIMUM ACTUATION TIME (SECONDS)
		A. CONTAINMENT ISOLATION (CIAS)	
RDA-UV 023	9	Containment radwaste sump pump to LRS holdup tank	30
RDB-UV 024	9	Containment radwaste sump pump to LRS holdup tank	5
RDB-UV 407	9	Containment radwaste sump post- accident sampling system	5
SGB-HV 200 [#]	11	Downcomer feedwater chemical .injection	1
SGB-HV 201 [#]	. 12	Downcomer feedwater chemical injection	1 ,
SIA-UV 708 [#]	23 ′	Containment recirc sump to post- accident sampling system	5
HCB-UV 044	25A	Containment air radioactivity monitor (inlet)	1
HCA-UV 045	25A	Containment air radioactivity monitor (inlet)	1 .
HCA-UV 046	25B	Containment air radioactivity monitor (outlet)	1.
HCB-UV 047	25B	Containment air radioactivity monitor (outlet)	1
GAA-UV 002	29	$ m N_2$ to steam generator and reactor drain tank	10
GAA-UV 001	30	N ₂ to SI tanks	10

TABLE 3.6-1 (Continued) CONTAINMENT ISOLATION VALVES

VALVE NUMBER	PENETRATION NUMBER	FUNCTION	MAXIMUM ACTUATION TIME (SECONDS)
		A. CONTAINMENT ISOLATION (CIAS) (Continued)	
HPA-UV 001	35	Containment to hydrogen recombiner	12
HPA-UV 003	35	Containment to hydrogen recombiner	12
HPA-UV 024	35	H ₂ control system	5
HPB-UV 002	36	Containment to hydrogen recombiner	12
HPA-UV 005.	38	Containment to hydrogen recombiner	12
HPB-UV 004	36	H ₂ recombiner return to containment (inlet)	12
HPA-UV 023	38 .	H ₂ control system	5
HPB-UV 006	· 39	H ₂ recombiner return to containment (inlet)	12
CHA-UV 516	40	Letdown line from RC loop 2B to regenerative heat exchanger and letdown heat exchanger	5
CHB-UV 523	40	Letdown line from RC loop 2B to regenerative heat exchanger and letdown heat exchanger	5
CHB-UV 924	40	Letdown line to post-accident sampling system	5
SSB-UV 201	42A	Pressurizer liquid sample line	5
SSA-UV 204	42A	Pressurizer liquid sample line	5
55 8- UV 202	42 B	Pressurizer steam space sample line	5
SĀ-UV 205	42 B	Pressurizer steam space sample line	5
SSB-UV 200	42 C	Hot leg sample.line	5
SA-UV 203	42 C	Hot leg sample line	. 5

· UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D. C. 20555

ARIZONA PUBLIC SERVICE COMPANY, ET AL.

DOCKET NO. STN 50-529

PALO VERDE NUCLEAR GENERATING STATION, UNIT NO. 2

AMENDMENT TO FACILITY OPERATING LICENSE

Amendment No. 22 License No. NPF-51

- 1. The Nuclear Regulatory Commission (the Commission) has found that:
 - A. The application for amendment, dated May 9, 1988, by the Arizona Public Service Company (APS) on behalf of itself and the Salt River Project Agricultural Improvement and Power District, El Paso Electric Company, Southern California Edison Company, Public Service Company of New Mexico, Los Angeles Department of Water and Power, and Southern California Public Power Authority (licensees), complies with the standards and requirements of the Atomic Energy Act of 1954, as amended (the Act) and the Commission's regulations set forth in 10 CFR Chapter I;
 - B. The facility will operate in conformity with the application, the provisions of the Act, and the regulations of the Commission;
 - C. There is reasonable assurance (i) that the activities authorized by this amendment can be conducted without endangering the health and safety of the public, and (ii) that such activities will be conducted in compliance with the Commission's regulations;
 - D. The issuance of this amendment will not be inimical to the common defense and security or to the health and safety of the public; and
 - E. The issuance of this amendment is in accordance with 10 CFR Part 51 of the Commission's regulations and all applicable requirements have been satisfied.
- 2. Accordingly, the license is amended by a change to the Technical Specifications as indicated in the enclosure to this license amendment, and paragraph 2.C.(2) of Facility Operating License No. NPF-51 is hereby amended to read as follows:

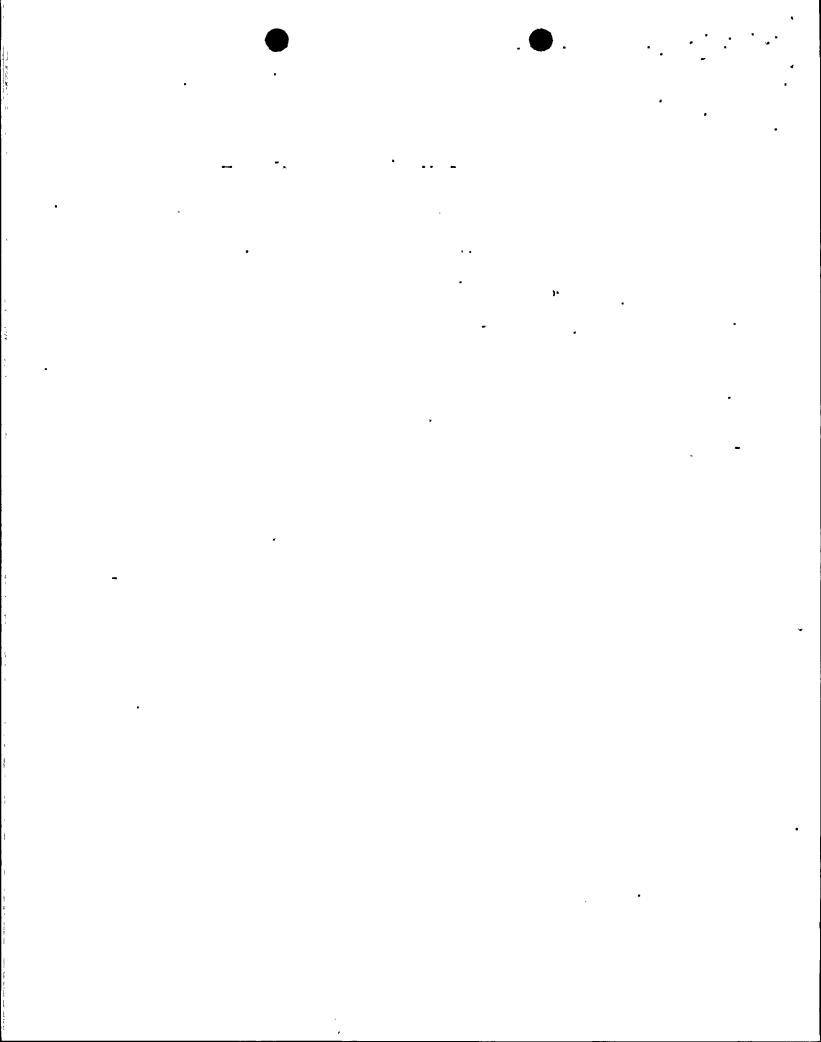
(2) Technical Specifications and Environmental Protection Plan

The Technical Specifications contained in Appendix A, as revised through Amendment No. 22, and the Environmental Protection Plan contained in Appendix B, are hereby incorporated into this license. APS shall operate the facility in accordance with the Technical Specifications and the Environmental Protection Plan.

3. This license amendment is effective as of the date of issuance. The changes in the Technical Specifications are to become effective within 30 days of issuance of the amendment. In the period between issuance of amendment and the effective date of the new Technical Specifications, the licensees shall adhere to the Technical Specifications existing at the time. The period of time during changeover shall be minimized.

FOR THE NUCLEAR REGULATORY COMMISSION

George W. Knighton, Director


Project Directorate V

Division of Reactor Projects - III,

IV, V and Special Projects

Enclosure: Changes to the Technical Specifications

Date of Issuance: July 29, 1988

ENCLOSURE TO LICENSE AMENDMENT

AMENDMENT NO. 22 TO FACILITY OPERATING LICENSE NO. NPF-51

DOCKET NO. STN 50-529

Replace the following page of the Appendix A Technical Specifications with the enclosed page. The revised page is identified by Amendment number and contains vertical lines indicating the area of change. Also to be replaced is the following overleaf page to the amended page.

Amendment Page

Overleaf Page

3/4 6-21

3/4 6-22

..... . • • • • • • - (

TABLE 3.6-1
CONTAINMENT ISOLATION VALVES

VALVE NUMBER	PENETRATION NUMBER	FUNCTION	MAXIMUM ACTUATION TIME (SECONDS)
		A. CONTAINMENT ISOLATION (CIAS)	
RDA-UV 023	9	Containment radwaste sump pump to LRS holdup tank	30
RDB-UV 024	9	Containment radwaste sump pump to LRS holdup tank	5
RDB-UV 407	9	Containment radwaste sump post- accident sampling system	5
6GB−HV 200 [#]	11	Downcomer feedwater chemical injection	1
GB-HV 201 [#]	12	Downcomer feedwater chemical injection	1
IA-UV 708 [#]	23	Containment recirc sump to post- accident sampling system	5 .
ICB-UV 044	25A	Containment air radioactivity monitor (inlet)	1
ICA-UV 045,	25A	Containment air radioactivity monitor (inlet)	1 .
CA-UV 046	25B	Containment air radioactivity monitor (outlet)	1
CB-UV 047	25B	Containment air radioactivity monitor (outlet)	i
AA-UV 002	29	${ m N_2}$ to steam generator and reactor drain tank	10
AA-UV 001	30	N ₂ to SI tanks	10

#Not Type C tested.

TABLE 3.6-1 (Continued) CONTAINMENT ISOLATION VALVES

VALVE NUMBER	PENETRATION NUMBER	FUNCTION	MAXIMUM ACTUATION TIME (SECONDS)
		A. CONTAINMENT ISOLATION (CIAS) (Continued)	
HPA-UV 001	35	Containment to hydrogen recombiner	12
HPA-UV 003	35	Containment to hydrogen recombiner	12
HPA-UV 024	35	H ₂ control system	5
HPB-UV 002	36	Containment to hydrogen recombiner	12
HPA-UV 005	38	Containment to hydrogen recombiner	12
HPB-UV 004	36	${\rm H_2}$ recombiner return to containment (inlet)	12
HPA-UV 023	38	H ₂ control system	5.
HPB-UV 006	39	${\rm H_2}$ recombiner return to containment (inlet)	12
CHA-UV 516	40	Letdown line from RC loop 2B to regenerative heat exchanger and letdown heat exchanger	5
CHB-UV 523	40	Letdown line from RC loop 2B to regenerative heat exchanger and letdown heat exchanger	.
CHB-UV 924	40	Letdown line to post-accident sampling system	5
SSB-UV 201	42A	Pressurizer liquid sample line	5
SSA-UV 204	42A	Pressurizer liquid sample line	5
SSB-UV 202	42 B	Pressurizer steam space sample line	5
SSA-UV 205	42 B	Pressurizer steam space sample line	5
SSB-UV 200	42C	Hot leg sample line	5 .
SSA-UV 203	42C ·	Hot leg sample line	• 5

. UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D. C. 20555

ARIZONA PUBLIC SERVICE COMPANY, ET AL.

DOCKET NO. STN 50-530

PALO VERDE NUCLEAR GENERATING STATION, UNIT NO. 3

AMENDMENT TO FACILITY OPERATING LICENSE

Amendment No. 11 License No. NPF-74 -

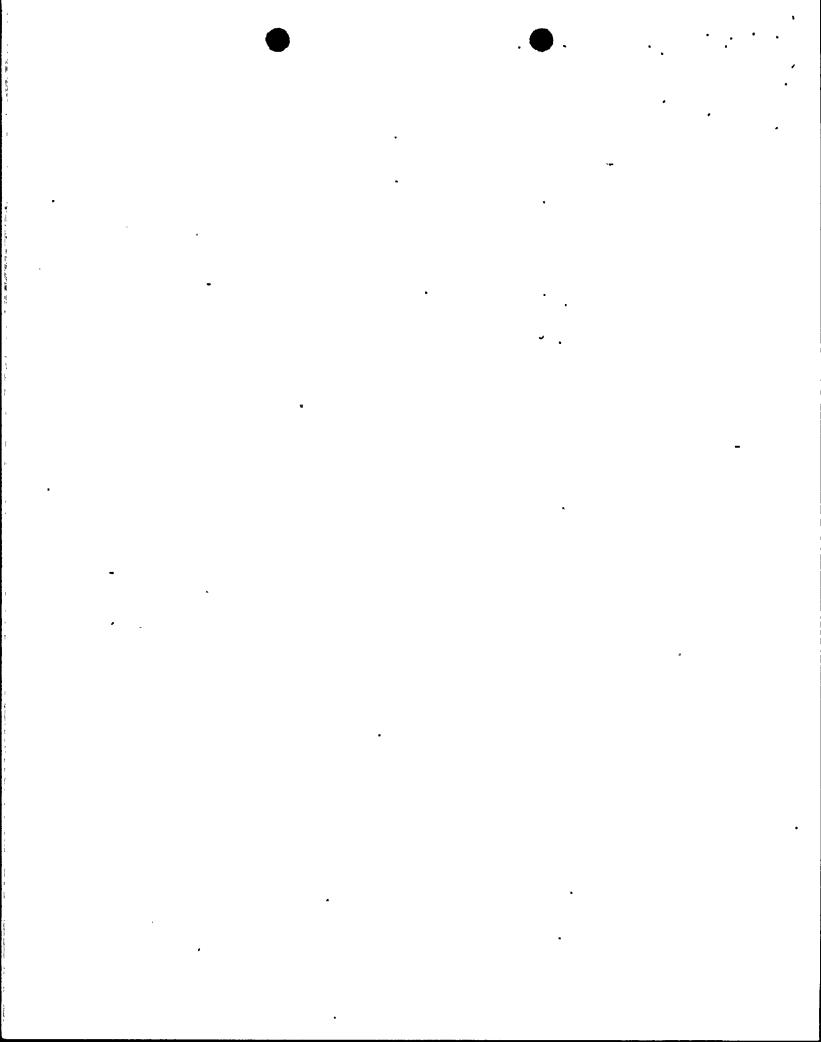
- 1. The Nuclear Regulatory Commission (the Commission) has found that:
 - A. The application for amendment, dated May 9, 1988, by the Arizona Public Service Company (APS) on behalf of itself and the Salt River Project Agricultural Improvement and Power District, El Paso Electric Company, Southern California Edison Company, Public Service Company of New Mexico, Los Angeles Department of Water and Power, and Southern California Public Power Authority (licensees), complies with the standards and requirements of the Atomic Energy Act of 1954, as amended (the Act) and the Commission's regulations set forth in 10 CFR Chapter I;
 - B. The facility will operate in conformity with the application, the provisions of the Act, and the regulations of the Commission;
 - C. There is reasonable assurance (i) that the activities authorized by this amendment can be conducted without endangering the health and safety of the public, and (ii) that such activities will be conducted in compliance with the Commission's regulations;
 - D. The issuance of this amendment will not be inimical to the common defense and security or to the health and safety of the public; and
 - E. The issuance of this amendment is in accordance with 10 CFR Part 51 of the Commission's regulations and all applicable requirements have been satisfied.
- 2. Accordingly, the license is amended by a change to the Technical Specifications as indicated in the enclosure to this license amendment, and paragraph 2.C.(2) of Facility Operating License No. NPF-74 is hereby amended to read as follows:

Technical Specifications and Environmental Protection Plan (2)

The Technical Specifications contained in Appendix A. as revised through Amendment No. 11, and the Environmental Protection Plan contained in Appendix B, are hereby incorporated into this license. APS shall operate the facility in accordance with the Technical Specifications and the Environmental Protection Plan.

This license amendment is effective as of the date of issuance. The changes in the Technical Specifications are to become effective within 30 days of issuance of the amendment. In the period between issuance of amendment and the effective date of the new Technical Specifications, the 3. licensees shall adhere to the Technical Specifications existing at the time. The period of time during changeover shall be minimized.

FOR THE NUCLEAR REGULATORY COMMISSION


George W. Knighton Sirector Project Directorate Y

Division of Reactor Projects - III.

IV, V and Special Projects

Enclosure: Changes to the Technical Specifications

Date of Issuance: July 29, 1988

ENCLOSURE TO LICENSE AMENDMENT

AMENDMENT NO. 11 TO FACILITY OPERATING LICENSE NO. NPF-74

DOCKET NO. STN 50-530

Replace the following page of the Appendix A Technical Specifications with the enclosed page. The revised page is identified by Amendment number and contains vertical lines indicating the area of change. Also to be replaced is the following overleaf page to the amended page.

Amendment Page

Overleaf Page

3/4 6-21

3/4 6-22

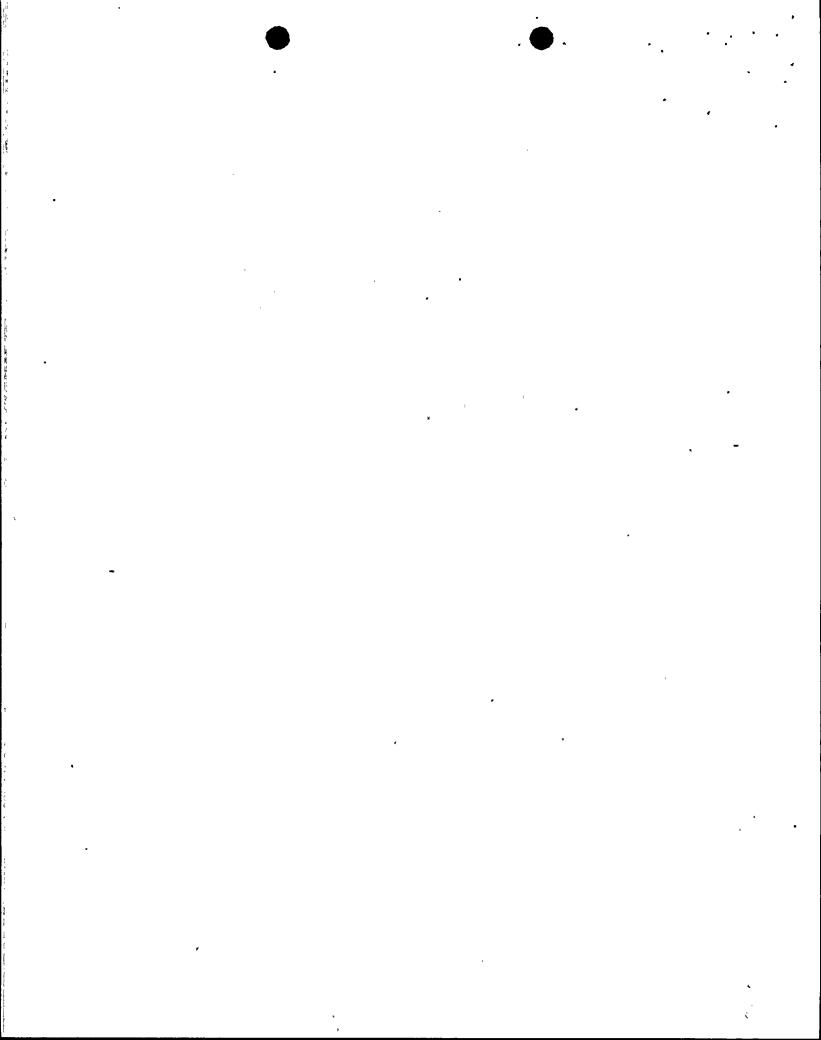


TABLE 3.6-1
CONTAINMENT ISOLATION VALVES

VALVE NUMBER	PENETRATION NUMBER	FUNCTION	MAXIMUM ACTUATION TIME (SECONDS)
		A. CONTAINMENT ISOLATION (CIAS)	
RDA-UV 023	9	Containment radwaste sump pump to LRS holdup tank	30
RDB-UV 024	9 .	Containment radwaste sump pump to LRS holdup tank	5
RDB-UV 407	9	Containment radwaste sump post- accident sampling system	5
SGB-HV 200 [#]	11	Downcomer feedwater chemical injection	1
SGB-HV 201 [#]	12	Downcomer feedwater chemical injection	1
SIA-UV 708 [#]	23	Containment recirc sump to post- accident sampling system	5
HCB-UV 044	25A	Containment air radioactivity monitor (inlet)	1
HCA-UV 045	25A	Containment air radioactivity monitor (inlet)	1
HCA-UV 046	25B	Containment air radioactivity monitor (outlet)	1
HCB-UV 047	25B	Containment air radioactivity monitor (outlet)	1
GAA-UV 002	29	${ m N_2}$ to steam generator and reactor drain tank	10
GAA-UV 001	30	N ₂ to SI tanks	10

[#]Not Type C tested.

TABLE 3.6-1 (Continued) CONTAINMENT ISOLATION VALVES

VALVE NUMBER	PENETRATION NUMBER	FUNCTION	MAXIMUM ACTUATION TIME (SECONDS)
		A. CONTAINMENT ISOLATION (CIAS) (Continued)	
HPA-UV 001	35	Containment to hydrogen recombiner	12
HPA-UV 003	35	Containment to hydrogen recombiner	12
HPA-UV 024	35	H ₂ control system	5
HPB-UV 002	36	Containment to hydrogen recombiner	12
HPA-UV 005	38	Containment to hydrogen recombiner	12
HPB-UV 004	36	${\rm H_2}$ recombiner return to containment (inlet)	12
HPA-UV 023	38	H ₂ control system	5
HPB-UV 006	39	H_2 recombiner return to containment (inlet)	12
CHA-UV 516	40	Letdown line from RC loop 2B to regenerative heat exchanger and letdown heat exchanger	5
CHB-UV 523	40	Letdown line from RC loop 2B to regenerative heat exchanger and letdown heat exchanger	5
CHB-UV 924	40	Letdown line to post-accident sampling system	5
SSB-UV 201	42A	Pressurizer liquid sample line	5
SSA-UV 204	42A	Pressurizer liquid sample line	5
SSB-UV 202	42B	Pressurizer steam space sample line	5
SSA-UV 205	42 B	Pressurizer steam space sample line	5
SSB-UV 200	42C	Hot leg sample line	5
SSA-UV 203	42 C	Hot leg sample line .	5 .
PALO VERDE -	UNIT 3	3/4 6-22	