

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D. C. 20555

ARIZONA PUBLIC SERVICE COMPANY, ET AL.

DOCKET NO. STN 50-528

PALO VERDE NUCLEAR GENERATING STATION, UNIT NO. 1

AMENDMENT TO FACILITY OPERATING LICENSE

Amendment No. 28 License No. NPF-41

- The Nuclear Regulatory Commission (the Commission) has found that: 1.
 - The application for amendment, dated December 4, 1987, by the Arizona Α. Public Service Company (APS) on behalf. of itself and the Salt River Project Agricultural Improvement and Power District, El Paso Electric Company, Southern California Edison Company, Public Service Company of New Mexico, Los Angeles Department of Water and Power, and Southern California Public Power Authority (licensees), complies with the standards and requirements of the Atomic Energy Act of 1954, as amended (the Act) and the Commission's regulations set forth in 10 CFR Chapter I;
 - The facility will operate in conformity with the application, the Β. provisions of Act, and the regulations of the Commission;
 - There is reasonable assurance (i) that the activities authorized by C. this amendment can be conducted without endangering the health and safety of the public, and (ii) that such activities will be conducted in compliance with the Commission's regulations;
 - The issuance of this amendment will not be inimical to the common D. defense and security or to the health and safety of the public;
 - The issuance of this amendment is in accordance with 10 CFR Part 51 Ε. of the Commission's regulations and all applicable requirements have been satisfied.
- Accordingly, the license is amended by changes to the Technical 2. Specifications as indicated in the enclosure to this license amendment, and paragraph 2.C(2) of Facility Operating License No. NPF-41 is hereby amended to read as follows:

8803180084 880304

PDR

ADDCK 05000528

PDR

• • • • . -

• • •

•

ı

٤.

•

•

¥

(2) Technical Specifications and Environmental Protection Plan

The Technical Specifications contained in Appendix A, as revised through Amendment No. 28, and the Environmental Protection Plan contained in Appendix B, are hereby incorporated into this license. APS shall operate the facility in accordance with the Technical Specifications and the Environmental Protection Plan.

3. This license amendment is effective as of the date of issuance. The changes in the Technical Specifications are to become effective within 30 days of issuance of the amendment. In the period between issuance of the amendment and the effective date of the new Technical Specifications, the licensees shall adhere to the Technical Specifications existing at the time. The period of time during changeover shall be minimized.

FOR THE NUCLEAR REGULATORY COMMISSION

TALLA

George W Knighton, Director Project Directorate V Division of Reactor Projects - III, IV, V and Special Projects

Enclosure: Changes to the Technical Specifications

1

Date of Issuance: March 4, 1988

•

.

۰ ۴

۲ ۰۰ ی^م ۲ ۰ ۱

.

ENCLOSURE TO LICENSE AMENDMENT

5

AMENDMENT NO. 28 TO FACILITY OPERATING LICENSE NO. NPF-41

DOCKET NO. STN 50-528

Replace the following pages of the Appendix A Technical Specifications with the enclosed pages. The revised pages are identified by Amendment number and contain vertical lines indicating the areas of change. Also to be replaced is the following overleaf page to the amended pages.

Amendment Pages	<u>Overleaf Page</u>
3/4 5-1	aa aa
3/4 5-2	~ ~
B 3/4 5-1	B 3/4 5-2

•

• • • •

۰. ۰

ν.

·

3/4.5 EMERGENCY CORE COOLING SYSTEMS (ECCS)

3/4.5.1. SAFETY INJECTION TANKS

LIMITING CONDITION FOR OPERATION

3.5.1 Each Reactor Coolant System safety injection tank shall be OPERABLE with:

- a. The isolation valve key-locked open and power to the valve removed,
- b. A contained borated water level of between 1802 cubic feet (28% narrow range indication) and 1914 cubic feet (72 % narrow range indication),
- c. A boron concentration between 2300 and 4400 ppm of boron, and
- d. A nitrogen cover-pressure of between 600 and 625 psig.
- e. Nitrogen vent valves closed and power removed**.
- f. Nitrogen vent valves capable of being operated upon restoration of power.

<u>APPLICABILITY</u>: MODES 1*, 2*, 3,*†, and 4*†.

ACTION:

- a. With one safety injection tank inoperable, except as a result of a closed isolation valve, restore the inoperable tank to OPERABLE status within 1 hour or be in at least HOT STANDBY within the next 6 hours and in HOT SHUTDOWN within the following 6 hours.
- b. With one safety injection tank inoperable due to the isolation valve being closed, either immediately open the isolation valve or be in at least HOT STANDBY within 1 hour and be in HOT SHUTDOWN within the next 12 hours.

SURVEILLANCE REQUIREMENTS

4.5.1 Each safety injection tank shall be demonstrated OPERABLE:

- a. At least once per 12 hours by:
 - 1. Verifying the contained borated water volume and nitrogen cover-pressure in the tanks is within the above limits, and

With pressurizer pressure greater than or equal to 1837 psia. When pressurizer pressure is less than 1837 psia, at least three safety injection tanks must be OPERABLE, each with a minimum pressure of 254 psig and a maximum pressure of 625 psig, and a contained borated water volume of between 1415 cubic feet (60% wide range indication) and 1914 cubic feet (83% wide range indication). With all four safety injection tanks OPERABLE, each tank shall have a minimum pressure of 254 psig and a maximum pressure of 625 psig, and a contained borated water volume of between 962 cubic feet (39% wide range indication) and 1914 cubic feet (83% wide range indication). In MODE 4 with pressurizer pressure less than 430 psia, the safety injection tanks may be isolated.

*See Special Test Exceptions 3.10.6 and 3.10.8.

**Nitrogen vent valves may be cycled as necessary to maintain the required nitrogen cover pressure per Specification 3.5.1d.

PALO VERDE - UNIT 1

EMERGENCY CORE COOLING SYSTEMS

SURVEILLANCE REQUIREMENTS (Continued)

- 2. Verifying that each safety injection tank isolation valve is open and the nitrogen vent valves are closed.
- b. At least once per 31 days and whenever the tank is drained to maintain the contained borated water level within the limits of Specification 3.5.1b, by verifying the boron concentration of the safety injection tank solution is between 2300 and 4400 ppm.
- c. At least once per 31 days when the pressurizer pressure is above 430 psia, by verifying that power to the isolation valve operator is removed.
- d. At least once per 18 months by verifying that each safety injection tank isolation valve opens automatically under each of the following conditions:
 - 1. When an actual or simulated RCS pressure signal exceeds 515 psia, and
 - 2. Upon receipt of a safety injection actuation (SIAS) test signal.
- e. At least once per 18 months by verifying OPERABILITY of RCS-SIT differential pressure alarm by simulating RCS pressure > 715 psia with SIT pressure < 600 psig.
- f. At least once per 18 months, when SITs are isolated, by verifying the SIT nitrogen vent valves can be opened.
- g. At least once per 31 days, by verifying that power is removed from the nitrogen vent valves.

3/4.5 EMERGENCY CORE COOLING SYSTEMS (ECCS)

BASES

3/4.5.1 SAFETY INJECTION TANKS

The OPERABILITY of each of the Safety Injection System (SIS) safety injection tanks ensures that a sufficient volume of borated water will be immediately forced into the reactor core through each of the cold legs in the event the RCS pressure falls below the pressure of the safety injection tanks. This initial surge of water into the RCS provides the initial cooling mechanism during large RCS pipe ruptures.

44

The limits on safety injection tank volume, boron concentration, and pressure ensure that the safety injection tanks will adequately perform their function in the event of a LOCA in MODE 1, 2, 3, or 4.

A minimum of 25% narrow range corresponding to 1790 cubic feet and a maximum of 75% narrow range corresponding to 1927 cubic feet of borated water are used in the safety analysis as the volume in the SITs. To allow for instrument accuracy, 28% narrow range corresponding to 1802 cubic feet and 72% narrow range corresponding to 1914 cubic feet, are specified in the Technical Specification.

A minimum of 593 psig and a maximum pressure of 632 psig are used in the safety analysis. To allow for instrument accuracy 600 psig minimum and 625 psig maximum are specified in the Technical Specification.

A boron concentration of 2000 ppm minimum and 4400 ppm maximum are used in the safety analysis. The Technical Specification lower limit of 2300 ppm in the SIT assures that the backleakage from RCS will not dilute the SITs below the 2000 ppm limit assumed in the safety analysis prior to the time when draining of the SIT is necessary.

The SIT isolation valves are not single failure proof; therefore, whenever the valves are open power shall be removed from these valves and the switch keylocked open. These precautions ensure that the SITs are available during a Limiting Fault.

The SIT nitrogen vent valves are not single failure proof against depressurizing the SITs by spurious opening. Therefore, power to the valves is removed while they are closed to ensure the safety analysis assumption of four pressurized SITs.

All of the SIT nitrogen vent valves are required to be operable so that, given a single failure, all four SITs may still be vented during post-LOCA long-term cooling. Venting the SITs provides for SIT depressurization capability which ensures the timely establishment of shutdown cooling entry conditions as assumed by the safety analysis for small break LOCAs.

The limits for operation with a safety injection tank inoperable for any reason except an isolation valve closed minimizes the time exposure of the plant to a LOCA event occurring concurrent with failure of an additional safety injection tank which may result in unacceptable peak cladding temperatures. If a closed isolation valve cannot be immediately opened, the full capability of one safety injection tank is not available and prompt action is required to place the reactor in a MODE where this capability is not required.

For MODES 3 and 4 operation with pressurizer pressure less than 1837 psia the Technical Specifications require a minimum of 57% wide range corresponding

PALO VERDE - UNIT 1

EMERGENCY CORE COOLING SYSTEMS (ECCS)

BASES

SAFETY INJECTION TANKS (Continued)

to 1361 cubic feet and a maximum of 75% narrow range corresponding to 1927 cubic feet of borated water per tank, when three safety injection tanks are operable and a minimum of 36% wide range corresponding to 908 cubic feet and a maximum of 75% narrow range corresponding to 1927 cubic feet per tank, when four safety injection tanks are operable at a minimum pressure of 235 psig and a maximum pressure of 625 psig. To allow for instrument inaccuracy, 60% wide range instrument corresponding to 1415 cubic feet, and 72% narrow range instrument corresponding to 1914 cubic feet, when three safety injection tanks are operable, and 39% wide range instrument corresponding to 962 cubic feet, and 72% narrow range instrument corresponding to 1914 cubic feet, when four SITs are operable, are specified in the Technical Specifications. To allow for instrument inaccuracy 254 psig is specified in the Technical Specifications.

The instrumentation vs. volume correlation for the SITs is as follows:

Volume	Narrow Range	<u>Wide Range</u>
962 ft ³	<0%	39%
1415 ft ³	<0%	60%
1802 ft ³	28%	78%
1914 ft ³	72%	83%

3/4.5.2 and 3/4.5.3 ECCS SUBSYSTEMS

The OPERABILITY of two separate and independent ECCS subsystems with the RCS temperatures greater than or equal to 350°F ensures that sufficient emergency core cooling capability will be available in the event of a LOCA assuming the loss of one subsystem through any single failure consideration. Either subsystem operating in conjunction with the safety injection tanks is capable of supplying sufficient core cooling to limit the peak cladding temperatures within acceptable limits for all postulated break sizes ranging from the double-ended break of the largest RCS cold leg pipe downward. In addition, each ECCS subsystem provides long-term core cooling capability in the recirculation mode during the accident recovery period.

With the RCS temperature below 350°F, one OPERABLE ECCS subsystem is acceptable without single failure consideration on the basis of the stable reactivity condition of the reactor and the limited core cooling requirements.

The trisodium phosphate dodecahydrate (TSP) stored in dissolving baskets located in the containment basement is provided to minimize the possibility of corrosion cracking of certain metal components during operation of the ECCS following a LOCA. The TSP provided this protection by dissolving in the sump water and causing its final pH to be raised to greater than or equal to 7.0.

The surveillance requirements provided to ensure OPERABILITY of each component ensure that at a minimum, the assumptions used in the safety analyses are met and that subsystem OPERABILITY is maintained. Surveillance requirements for throttle valve position stops and flow balance testing provide