ARIZONA NUCLEAR POWER PROJECT PALO VERDE NUCLEAR GENERATING STATION OPERATIONAL RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM REPORT FOR 1985

(⁾

ī

8604300060 860 PDR ADDCK 050 R

05000528 PDR

a • .

· · *

.

.

•

٨

•

а на **в**

.

.

• • • .

•

CONTENTS

ſ

ſ

ſ

I.

Į

ι.

ļ

*

1

ţ

1

\$

• 6.

Number	Title	Page
•	Abstract	1
1.0	Introduction	2
2.0	Description of the Monitoring Program	6
3.0	Analytical Procedures	12
4.0	Sample Preparation Methods	17
5.0	Nuclear Instrumentation	18
6.0	Isotopic Detection Limits and Activity Determinations	20
7.0	Quality Control Program	23
8.0	Data Interpretation and Conclusions	28
9.0	Miscellaneous Information	101
10.0	References	101
Appendix A	EPA Cross-check Results	102
Appendix B	1985 Land Use Census	103

-i-

1 1000 The second se

· · ·

. ·

. . . .

. .

.

· · ·

.

.

, 4.1

,

•

.

· · · · ·

-i Ī

J

J

T/	\BL	.ES
_		

í

.

ſ

ļ

1

ł

.

ì

į

* * * *

ale tra

....

ł.

Number	Title	Page
I.	Collection Locations	9
II	Collection Schedule	10
III	Aliquot Scanned for Detection Limit Calculation and Actual Analysis	24
IV	Sample Counting Times	25
V	Detection Limits by other than Gamma Spectrometry	26
VI	Detection Limits by Gamma Spectrometry	27
VII	Gross Beta in Air Particulate Data (Second Quarter)	32
VIII	Gross Beta in Air Particulate Data (Third Quarter)	34
IX	Gross Beta in Air Particulate Data (Fourth Quarter)	36
x	Gross Beta in Air Particulate Data (Station Summary)	38
XI	Gross Alpha in Air Particulate Data (Second Quarter)	40
XII	Gross Alpha in Air Particulate Data (Third Quarter)	42
XIII	Gross Alpha in Air Particulate Data (Fourth Quarter)	44
XIV	Airborne Radioiodine Data (Second Quarter)	60
xv	Airborne Radioiodine Data (Third Quarter)	62
XVI	Airborne Radioiodine Data (Fourth Cuarter)	64
XVII	Quarterly Thermoluminescent Dosimetry (Second Quarter)	67
XVIII	Quarterly Thermoluminescent Dosimetry (Third Quarter)	69
XIX	Quarterly Thermoluminescent Dosimetry (Fourth Quarter)	71
XX	Vegetation	78
XXI	Vegetation (Leafy), Gamma Spectrometry	79
XXII	Vegetation (Produce & Citrus Fruits), Gamma Spectrometry	30
XXIII	Drinking Water	32

-ii-

÷ ł 5 the work to be the second to be the seco +> 催眠,

TABLES (Cont.)

ı

7

Number	Title	Page
XXIV -	Drinking Water, Gamma Spectrometry	83
XXV	Croundwater	85
IVXX	Groundwater, Gamma Spectrometry	36
XXVII	Surface Water, PVNGS Reservoir	89
XXVIII	Surface Water, PVNGS Evaporation Pond	90
XXIX	Surface Water (Composite) PVNGS Evaporation Pond and Reservoir	91
xxx	Surface Water (Composite), Gamma Spectrometry PVNGS Evaporation Pond and Reservoir	92
XXXI	Milk (Fresh)	? 4
XXXII	Milk (Fresh), Gamma Spectrometry	90
XXXIII	Environmental Radiological Monitoring Program Annual Summary - 1985	° 91

1. . ;" ÷ • •

1

Ī -----

1

Ĵ

ļ

]

]

]

FIGURES

í

' [

ſ

•

•

•

. . .

1675 2975

.

a the same description and the second of the

•

1. **1**. 1.

•

I

ľ

1

Number	Title	Page
1	Area Collection Locations - Map	7
2	Site Collection Locations - Map	8
3	Gross Beta in Air Particulate (Station 1)	46
4	Gross Beta in Air Particulate (Station 4)	. 47
5	Gross Beta in Air Particulate (Station 6)	43
6	Gross Beta in Air Particulate (Station 7A)	49
7	Gross Beta in Air Particulate (Station 14A)	50
8	Gross Beta in Air Particulate (Station 15)	51
9	Gross Beta in Air Particulate (Station 17A)	52
10	Gross Beta in Air Particulate (Station 21)	53
11	Gross Beta in Air Particulate (Station 29)	54
12	Gross Beta in Air Particulate (Station 35)	55
13	Gross Beta in Air Particulate (Station 40)	56
14	Gross Beta in Air Particulate (Station 44)	57
15	Gross Beta in Air Particulate (Mean Weekly Activity)	<i>5</i> 8
16	Quarterly Thermoluminescent Dosimetry (Second Quarter)	73
17	Quarterly Thermoluminescent Dosimetry (Third Quarter)	74
13	Quarterly Thermoluminescent Dosimetry (Fourth Quarter)	75
19	Mean Quarterly Thermoluminescent Dosimetry	76

-iv-

• • • • --• • • .

* •

1 - - -1 Ĩ

Abstract

This operational environmental radiological monitoring program is an ongoing study conducted by Controls for Environmental Pollution, Inc. (CEP) for Arizona Nuclear Power Project (ANPP), Palo Verde Nuclear Generating Station (PVNGS). The data presented in this report were obtained from samples collected by APS personnel and analyzed by CEP during 1985, beginning May 25.

In order to determine radiation levels in the environment around the PVNGS, the following types of samples were collected: vegetation (including fruits and vegetables), fresh milk, groundwater, drinking water, surface water, airborne particulate and radioiodine.

Analytical results are presented and discussed along with other pertinent information. Possible trends and anomalous results, as interpreted by CEP are also discussed.

ARIZONA NUCLEAR POWER PROJECT PALO VERDE NUCLEAR GENERATING STATION OPERATIONAL RADIOLOGICAL MONITORING PROGRAM

1.0 Introduction

This report presents results of the operational environmental radiological monitoring program conducted during 1985 by Controls for Environmental Pollution, Inc. (CEP) for Arizona Nuclear Power Project (ANPP), Palo Verde Nuclear Generating Station (PVNGS).

share be

ł

Ł

In compliance with federal requirements to provide a complete environmental monitoring program for nuclear reactors, and in its concern for maintaining the quality of the local environment, ANPP began its pre-operational environmental monitoring program in 1979. The program complies with the requirements of the U.S. Nuclear Regulatory Commission in their Reactor Assessment Branch Technical Position, Revision 1, November, 1979. On May 25, 1985 PVNGS Unit One became operational.

The objectives of the pre-operational radiological environmental monitoring program were as follows: (1) to provide information on the concentrations of radionuclides and levels of radiation in the environs prior to reactor operations, (2) to provide the experience from which to develop a meaningful operational program of radiological assessment, and (3) to develop trip notification levels (background levels) for operational evaluation. Program modifications, should they prove necessary, will be described in each annual report.

The objectives of the operational radiological environmental monitoring program are as follows: 1) to determine radiation levels in the environs during reactor operations; 2) to monitor potential critical pathways of radioeffluent to man; 3) to determine radiological impact on the environment caused by the operation of PVNGS.

-2-

A number of techniques are used to distinguish power plant effects from other sources during the operational phase, including application of established background levels. Operational radiation levels measured in the vicinity of ANPP are compared with the pre-operational measurements at each of the sampling locations. Results of the monitoring program help to evaluate sources of elevated levels of radiation in the environment, e.g., atmospheric nuclear detonation or abnormal plant releases.

1.1 Pre-operational Radiological Monitoring Program Changes

÷

5

おんじ ふくる

To date, the following changes have been made in the pre-operational /operational radiological environmental monitoring program:

- 1.1.1 August 1984 Desert Farms became the new designation for what was earlier known as 18bbb or 19bbb. The collection location changed slightly.
- 1.1.2 February 1984 Meat samples were deleted from the sampling program. They may be collected again after PVNCS becomes operational.
- 1.1.3 February 1984 The Adams residence replaces the Roger's residence as a vegetation and citrus collection location. The Adams residence is approximately one half mile north of the old sampling location.
- 1.1.4 February 1984 AJM Farming, Inc. in Chandler, Arizona was added to the sampling program as the new Vegetation control site.

1.1.5 January 1984 - PVNGS took over the TLD program.

- 1.1.6 January 1984 The Hamstra #2 Dairy replaced the Dan Paxton Dairy as a milk sampling location.
- 1.1.7 1983, fourth quarter CEP purchased a Berthold (LB770) 10-Channel Low Level Planchet Counting System. This system is capable of simultaneously counting 10 planchets for gross alpha. and gross beta activities alternately with proportional gas flow detectors. The system has an average background count rate of less than 1 count per minute for Beta and less than 0.05 count per minute for Alpha. The system is connected to a computer to calculate samples as pCi/unit volume.
- 1.1.8 1983, first quarter Two new sample locations for vegetation were added to the sampling program, the Cooley Farm, located approximately 75 miles east of the PVNCS and the Rogers Residence, approximately 3 miles to the east of the PVNCS.

1.1.9 1983, first and second quarters - Domestic meat was collected at the Paxton Dairy during the first and second quarters of 1983.

R

1,.....

- 1.1.10 February 1983 Weekly airborne radioiodine sampling was re-introduced into the sampling regimen (See Section 1.1.12).
- 1.1.11 December, 1982 A Salt Drift Monitoring Program was initiated and continued throughout 1983 at monitoring locations 14, 15, 17A, 21, 29, and 40. Since this program required air filter leachates for analysis, gamma spectral analysis was performed weekly for these sites rather than quarterly.
- 1.1.12 Mid 1982 Thermoluminescent Dosimeter collection location number 45 was moved from the APS Deer Valley Office to PVNGS Lead Shielding.
- 1.1.13 1982 No Groundwater samples were collected from Winter's Well or Red Quail and these locations were dropped from the program.
- 1.1.14 1982, fourth quarter CEP purchased a Tennelec LB5100 System. This system has a two-inch detector (80 ug/cm² window) with an average of 2 cpm Beta background and 0.1 cpm Alpha background. This system has been designed for simultaneous Alpha and Beta counting and has a sample capacity of fifty samples.
- 1.1.15 1982, third quarter Surface water samples (PVNGS Evaporation Pond and Reservoir) were included in the sampling regimen. Samples were analyzed for Iodine-131 weekly and composited monthly for Gross Alpha, Gross Beta, Strontium-89, Strontium-90, Tritium and Gamma Spectral analysis.
- 1.1.16 March, 1982 the Hoffman and Mineso-Boers Dairies were deleted from the sampling program due to scheduling and relocation problems. At the same time, two new dairies were introduced into the sampling program, the Paul Skousen Dairy located approximately 24 miles east of the PVNGS and the Dan Paxton Dairy located in Chandler, Arizona, approximately 75 miles east of the PVNGS.
- 1.1.17 1982 The collection of Dairy Feed, Wildlife (jack rabbit) and Poultry Products (eggs) was deleted from the sampling regimen.
- 1.1.18 1982, fourth quarter A TLD Badge comparison was made. This was accomplished by introducing a different type of dosimeter (CaSO4), into the field which was placed next to the LiF dosimeter in order to evaluate performance of each type of badge with respect to each other.

-4-

- 1.1.19 December 31, 1981 Sampling for airborne radioiodine was suspended until February 1983, six months prior to the then estimated fuel load date.
- 1.1.20 1981 changes in the method of reporting non-detectable activity levels in the annual report were made. All samples that have non-detectable activity levels are reported as less than the detection limit (i.e., less than 5 pCi/l) instead of the previously used method of reporting, (i.e., 0+5 pCi/l). In addition, Tritium activities in groundwater reflect a 1000 pCi/l detection limit.
- 1.1.21 1981, fourth quarter Sampling for airborne particulate and airborne radioiodine began.
- 1.1.22 July, 1981 The TLD (Thermoluminescent Dosimetry) dose measurement program began.
- 1.1.23 1981 CEP acquired a new computer-based Gamma Spectrometry System. It consists of a Tracor Northern Scientific (Model 4500) 4096 channel pulse height analyzer coupled to three intrinsic detectors and one GeLi detector. The new system has greater sensitivity and gives more detailed information about the spectrum.
- 1.1.24 January, 1980 Due to a fire which totally destroyed Nancy's Yellow Canary, Drinking Water samples were collected from the Red Quail, a general store located directly behind what is now called "The Local". The Red Quail water comes from a well at the trailer park behind the store.
- 1.1.25 September, 1980 The Red Quail had an extensive filtering system installed. This made samples from Red Quail non-representative of the groundwater found in the Palo Verde area. For the October 24, 1980 sampling, the second sample was taken at a faucet on the pipe, in order to obtain an unfiltered sample. All remaining samples in 1980 and 1981 were taken from this point (faucet on the pipe).
- 1.1.26 September, 1979 The Al Lueck, Jr. Dairy moved to a new location approximately 25 miles east of PVNGS.

-5-

2.0 Description of the Monitoring Program

ANPP has contracted with CEP to determine the ambient radiation levels in the environment around PVNGS during its operation.

ANPP personnel collect the samples and ship them to CEP. The types of environmental samples collected include: vegetation (produce and citrus fruits), groundwater, drinking water, surface water, fresh milk, airborne particulates, and radioiodine.

The locations of the monitoring sites are shown in Figure I. The monitoring sites and the respective sample types collected are described in Table I. Table II describes the sample collection frequency. Information concerning new sample types, locations, and collection frequency are included in these tables where applicable.

-6-

TABLE I COLLECTION LOCATIONS

(

ł.

Sample Site #	Sample Type	Location Designation (a)	Location Description
1	Air	E30	APS Coodyear Office
4	Air	E20	APS Buckeye Office
6 ·	Air (Control)	SSE35	APS Gila Bend Substation
7A	Air	SE8	Arlington School
14A	Air	NNE2	Buckeye-Salome Rd. & 371st Ave.
15	Air	NE2	NE Site Boundary
17A	Air	E4	351st Ave., 1 mi. S of B-S Rd.
21	Air	S3	S Site Boundary
35	Air	NNW9	Tonopah, Palo Verde Inn Fire Station
40	Air	N3	Trailer Park at V'intersburg
44	Air	ENE35	APS El Mirage Office (Sun City)
46	Water, Veg.	NNW9	McArthur's Farm, Tonopah
47	Vegetation	ENE3	Adam's Residence, 355th Avenue & Buckeye - Salome Road
48	Water	Sw5	Well 19bbb - Desert Farms
49	Water	ESE4	Wedgeworth Residence, 351st Ave. & Dobbins Rd.
50	Milk	NE7	Cordell Baisley Dairy, 331st Ave. & Van Buren
51	Milk, Veg.	E11	Butler Pairy, Palo Verde Rd. & Southern
52	Vegetation	E15	Cambron Farm, Miller Rd. & Broadway
53	Milk	E26	Kerr Dairy, Dean & Buckeye Rds.
54	Milk	E27	Skousen Dairy, Airport & Dobbins Rds.
55	Milk	E23	Al Lueck Dairy Jr., Jackrabbit & Hazen Rds.
56	Milk (Control)	E75	Hamstra Dairy #2, McQueen & Ryan
		' •	Rds.
57	Water	Cnsite	Well 27ddc
58	Water	Cnsite '	well 34abb
59	Surface Water	,Onsite	FVNCS Evaporation Pond
60	Surface Water	Onsite	PVNGS Reservoir
61	Vegetation (Control)	E30	Cooley Farm, McQueen & Cuadalupe
62	Vegetation (Control)	E60	Road AJM Farms Inc., Chandler Industrial Park

(a) Based on Table J-1, NUREG-0654; distances are from centerline of Unit 2 containment in miles.

TABLE II

1985 COLLECTION SCHEDULE

Collection Site	Air Particulates	Airborne Radioiodine	Domestic <u>Meats</u>	Fresh Milk	Vegetation	Groundwater	Drinking <u>Water</u>	Surfac e Water
#1, APS Goodyear Office	w	w				• •		
#4, APS Buckeye Office	w	И,			P			
#6, APS Gila Bend Substation	w	W			•			
#7A, Arlington School	w	w'						
#14A, Buckeye-Salome Rd. & 371st Ave.	ŵ	W				•		
#15, NE Site Boundary	W'	W'						
#17A, 351st. Ave., 1 mi. S of B-S Rd.	w .	w						
#21, 5 Site Boundary	w	w						
Ø29, W Site Boundary	W.	W						
#35, Tonopah, Palo Verde Inn Fire Station	w	И,						
Ø40, Trailer Park at Wintersburg	W .	w						
#44, APS El Mirage Office	И,	w				٠		
#46, McArthur's Farm			ç		۸۸		м	
#47, Adam's Residence					۸۸			
#48, Desert Farms							м	
#49, Wedgeworth Residence							۸1	
# 50, Cordell Baisley Dairy				М			5a	
#51, Butler Dairy			Q	м	۸۸ .			
#52, Cambron Farm					۸۸	•		
#53, Kerr Dairy			•	М				
#54, Skousen Dairy				м				
#55, AI Lueck, Jr. Dairy				М	*			
_								

1.

1

. . .

---- I

,.... I

-10-

TABLE II (Cont.)

gefing an erie sten anna fift.

..

1985 COLLECTION SCHEDULE

Collection Site	Air <u>Particulates</u>	Airborne Radioiodine	Domestic <u>Meats</u>	Fresh <u>Milk</u>	Vegetation	Groundwater	Drinking <u>Water</u>	Surface Water
#56, Hamstra #2 Dairy				M				
Ø 57, Well 27ddc						Q		
#58, Well 34abb						Q		
#59, PVNGS Evaporation Pond								W'
#60, PVNGS Reservoir .								W
#61, Cooley Farm					٨٨			
#62, AJM Farms, Inc.					۸۸			
*						•		•
				~				

¥ = Weekly

-11-

10 1 4

2,92,700,495.64

 $M = Monthly \qquad AA = As available during growing season$

Q = Quarterly

÷

3.0 Analytical Procedures

1

1

いっていたい いいかい ひとうひん ちょうひん

たい たんてい いいい たいてい マック

The analytical procedures discussed in this report are those routinely used by CEP to analyze samples.

- 3.1 Fresh Milk
 - 3.1.1 Iodine-131

Two liters of milk containing standardized lodine carrier are stirred with Amberlite IRA-400 anion exchange resin for one hour. The lodine is stripped from the resin with sodium perchlorate $(NaClO_4)$ and precipitated with silver nitrate $(AgNO_3)$. The precipitate is filtered on a tared glass fiber filter. The dried precipitate is weighed for percent recovery and counted for lodine-131 in a thin window, gas flow, proportional counter (Beckman Low Beta II or Berthold LB770). These instruments have a forty-one percent efficiency and a forty-five percent, respectively using lodine-131 precipitated as silver iodide (AgI).

3.1.2 Strontium-89

The Strontium is precipitated with concentrated fuming nitric acid, redissolved in water, made basic with dilute ammonium hydroxide and precipitated as the oxalate. The dried oxalate precipitate is counted in a low background proportional counter (Beckman Low Beta II or Berthold LB770) having sixty percent and forty-five percent Strontium-Yttrium-90 efficiencies, respectively. The Strontium-39 activity is determined by subtracting the previously measured Strontium-90 activity and its corresponding Yttrium-90 ingrowth from the measured gross Strontium activity.

3.1.3 Strontium-90

An aliquot of milk containing standardized Strontium and Yttrium carriers, is stirred with Dowex 50WX8 cation exchange resin at a pH of six for thirty

-12- -

minutes. All nuclides are stripped from the resin with strong acid. After the ingrowth period has been established, the Yttrium-90 is extracted with five percent di-2-ethylhexyl phosphoric acid (D_2 EHPA) in toluene, back extracted into an aqueous phase, precipitated as the oxalate and counted in a low background internal gas flow proportional counter (Beckman Low Beta II or Berthold LB770) to determine the Strontium-90 content of the sample. These systems have Strontium-Yttrium-90 efficiency of sixty percent and forty-five percent, respectively.

3.1.4 Gamma Spectrometry

A suitable aliquot of sample is placed in a Marinelli beaker and counted with a multi-channel analyzer equipped with an intrinsic Germanium detector which is coupled to a 4096 channel, computer based, multichannel analyzer (Northern Scientific TN4500). The resulting spectrum is analyzed by the computer, and specific nuclides, if present, identified and quantified.

3.2 Vegetation

3.2.1 Gamma Spectrometry

Refer to Milk Subsection 3.1.4.

3.2.2 Iodine-131

Required on leafy vegetation only. After appropriate preparation of the sample, analysis is performed as discussed in Subsection 3.1.4.

3.3 Groundwater and Drinking Water

3.3.1 Gross Alpha and Beta

A 1.0 liter aliquot of water is evaporated to dryness and transferred to a weighed planchet. The Gross Alpha and Cross Beta radioactivity is measured by counting the planchet in an internal gas flow, simultaneous proportional, low background counter (Beckman Wide Beta II or Berthold LB770), or by counting the planchet in a low background simultaneous counter (Tennelec LB5100).

3.3.2 Gamma Spectrometry

Refer to Milk Subsection 3.1.4.

3.3.3 Strontium-90

A 1.0 liter aliquot of the sample containing standardized stable Strontium carrier is evaporated to dryness and wet ashed with concentrated nitric acid (HNO₃) and hydrogen peroxide (H₂O₂). The Yttrium-90 is extracted with five percent Di-2-ethylhexyl phosphoric acid (D2EHPA) in toluene after the ingrowth period has been established, back extracted into an aqueous phase, precipitated as the oxalate and counted with an integral gas flow proportional counter (Beckman Low Beta II or Berthold LB770) having a Strontium, Yttrium-90 efficiencies of sixty percent and forty-five percent, respectively. The counting results are back calculated to give Strontium-90 activity.

3.3.4 Tritium

٩.

Three milliliters of the water sample are mixed with NEF-934 Aquasol cocktail which is manufactured by New England Nuclear Corporation. The mixture used is nineteen percent sample in a clear gel type aquasol. This gives a Tritium counting efficiency of approximately thirty percent. The counting system used is a Beckman LS-100 Liquid Scintillation Spectrometer. Six Tritium standards, certified by NBS, are counted before each set of water samples to check the counting system's efficiency. A counting efficiency is derived from these standards which are equal in activity but vary in the amount of quenching.

-14-

3.4 Surface Water

3.4.1 <u>Iodine-131</u>

One liter of water centaining standardized lodine carrier is acidified with nitric acid (HNO₃), then extracted with carbon tetrachloride (CCl₄) and sodium nitrite (NaNO₂) to remove the lodine. The lodine is back extracted from the carbon tetrachloride (CCl₄) using a 0.2% hydrazine solution which supplies more purification and an aqueous media for precipitation. lodine is precipitated with silver nitrate (AgNO₃) and filtered on a tared glass fiber filter as silver iodide (AgI). The dried precipitate is weighed for recovery and counted for lodine-131 in a thin window, gas flow, . proportional counter (Beckman Low Beta II or Berthold LB770) having forty-one percent and forty-five percent efficienies, respectively for lodine-131 precipitated as silver iodide (AgI).

3.4.2 Gross Alpha and Beta

An aliquot of the monthly composite is taken and analyzed according to Ground and Drinking Water Subsection 3.4.1.

3.4.3 Gamma Spectrometry

An aliquot of the monthly composite is taken and analyzed according to Milk Subsection 3.1.4.

3.4.4 Strontium-89

An aliquot of the monthly composite is taken and analyzed according to Milk Subsection 3.1.2.

3.4.5 Strontium-90

An aliquot of the monthly composite is taken and analyzed according to Groundwater and Drinking Water Subsection 3.4.3.

3.4.6 Tritium

An aliquot of the monthly composite is taken and analyzed according to

Ground and Drinking Water Subsection 3.4.4.

3.5 Air Particulate

3.5.1 Gross Alpha and Beta

The Sartorius filter (cellulose nitrate filter with a 3 micron pore size), is placed in a 50 mm stainless steel planchet and counted for Gross Alpha and Gross Beta radioactivity using a low background internal gas flow, simultaneous proportional counter (Beckman Wide Beta II), or by using a low background simultaneous counter (Tennelec LB5100).

3.5.2 Gamma Spectrometry

The air filters are sealed in small, plastic Marinelli beakers and counted utilizing the method described in Milk Subsection 3.1.4.

3.6 <u>Airborne Radioiodine</u>

Two analytical methods for airborne radioiodine are used by CEP depending upon the length of time between the sample collection date and the date of sample receipt at CEP. The sensitivity of the Gamma Spectrometry Method decreases significantly after an Iodine-131 decay of greater than one half-life (8.04 days). Therefore, if more than one week has elapsed between sample collection and analysis of the sample the Alkaline Leach Method provides a greater sensitivity and is thus the analytical method of choice.

3.6.1 Alkaline Leach Method

Radioiodine is removed from activated charcoal along with a standardized iodine carrier using concentrated ammonium hydroxide (NH4OH) and hydrogen peroxide (H₂ Ω_2). The charcoal is filtered and the remaining solution is acidified with nitric acid (HN Ω_3) and extracted with carbon tetrachloride (CCl4). A 0.2% hydrazine solution supplies further purification and an aqueous media for precipitation. Iodine is precipitated with silver nitrate and filtered on a tared glass fiber filter as silver iodide

-16-

(AgI). The dried precipitate is weighed for recovery and counted for lodine-131 in a thin window, gas flow, proportional counter (Beckman Low Beta II or Berthold LB770) having forty-one percent and forty-five percent efficiencies, respectively for lodine-131 precipitated as silver iodide (AgI).

3.6.2 Gamma Spectrometry Method

The direct gamma counting method for lodine-131 consists of placing the charcoal canister directly on an intrinsic germanium detector and analyzing the resulting spectrum for lodine-131 using the computer, based Northern Scientific TN 4500 System. The system is calibrated using charcoal filters which have been uniformly loaded (in the first 5 mm) with standardized isotopes traceable to NBS and calibration verification is performed by analyzing a charcoal filter which has been uniformly loaded (in the first 5 mm) with standardized lodine-131 traceable to NBS. Deposition of activity in the first 5 mm of the filters is done to simulate actual sample loading and both standards and samples are placed on the detector.

4.0 Sample Preparation Methods

The following sample preparation methods are routinely used by CEP.

- 4.1 Vegetation Sample Preparation
 - The plastic bags are opened and the sample weighed immediately to obtain the wet weight.
 - 3. After weighing, the sample is transferred to a drying pan and placed in an oven at 110°C.
 - 4. The dry sample is ground to a fine powder and homogenized.
 - 5. The sample is then dissolved or ashed, whichever is required for further isotopic analysis.

4.2 <u>Milk</u>

Iodine carrier (Potassium Iodide), formalin and sodium bisulfate are added when the milk is collected to stabilize the Iodine-131 during shipment of samples to . CEP. The procedure for Fresh Milk is then followed as described in Section 3.1, of this report.

į

5.0 Nuclear Instrumentation

5.1 Tracor Northern Computer Based Gamma Spectrometer

The Gamma Spectrometer consists of a Tracor Northern TN-4500 Multichannel Analyzer equipped with: a) DEC LS1-11/23 Microprocessor; b) DEC RT-11 Version IV Operating System; c) Free Standing Console consisting of a full ASCII keyboard; d) Comprehensive MCA Control Section, and e) Two Solid State Ce(Li) Detectors and Three Intrinsic Detectors having 2.8 KeV, 3.0 KeV, 2.07 KeV, 1.35 KeV and 1.35 KeV resolutions and respective efficiencies of 16.1%, 8.9%, 22.6%, 30.6% and 25.1%.

The Computer Based Tracor Northern Gamma Spectrometry System is used for all gamma counting. The system uses the latest software to search and identify, as well as quantize the peaks of interest.

5.2 Beckman Wide Beta II Low Background Gas Proportional System

The Beckman Wide Beta II Two-inch Detector Counting System has an average of 2.5 cpm Beta background and 0.1 cpm Alpha background. The system can also be set up for one-inch detector. The system capacity is one hundred samples. The detector has an efficiency of 60% for Strontium-90 and 40% for Plutonium-239.

5.3 Beckman Wide Beta II Low Background Gas Proportional System (Simultaneous) The Beckman Wide Beta II Two-inch Planchet Counting System has an average of 2.5 cpm Beta background and 0.1 cpm Alpha background. The detector has a 60% efficiency for Strontium-90 and 40% for Plutonium-239. This system has

-18-

been designed for simultaneous Alpha and Beta counting. The system sample capacity is one hundred samples.

5.4 Beckman Low Beta II Low Background Beta System

The Beckman Low Beta II Gas Proportional One-inch Detector Counting System has an average of 1.5 cpm Beta background and 0.1 cpm Alpha background and detector efficiency of 60% for Strontium-90 and 40% for Plutonium-239. The system capacity is one hundred samples. The system can also be set up for twoinch detector having 2.5 cpm Beta background and 0.1 cpm Alpha background.

5.5 Beckman Low Beta II Low Background Beta System

The Beckman Low Beta II Gas Proportional Two-inch Detector Counting System has an average of 3.0 cpm Beta background and 0.2 cpm Alpha background and detector efficiency of 60% for Strontium-90 and 40% for Plutonium-239. The system capacity is one hundred samples. This system can also be set up for oneinch detector having 1.5 cpm Beta background and 0.1 cpm Alpha background.

5.6 Beckman Liquid Scintillation Counting Systems

Two Beckman LS-100 Liquid Scintillation Counters will be used for all Tritium determinations, as well as C-14, P-32, S-35 and other Beta emitters.

5.7 Low Background Alpha Gas Flow Systems

The Gross Alpha Counting Systems consist of two windowless gas flow detectors manufactured by Nuclear Measurements Corporation with an Alpha efficiency of 55% with a background of less than 0.1 cpm.

5.8 Low Background Scintillation Counter

The Low Background Scintillation Counter consists of a Zinc Sulfide screen. The system has an average Alpha of 0.1 cpm.

5.9 Tennelec LB5100 System

The Tennelec LB5100 System has a Two-inch Planchet Counting System and has an average of 2 cpm Beta background and 0.1 cpm Alpha background. This system has been designed for simultaneous Alpha and Beta counting. The sample capacity is fifty samples.

5.10 Low Level Planchet Counting Systems (2)

Each Berthold 10-Channel Low Level Planchet Counting System (Model LB700) is capable of simultaneously counting 10 planchets for Gross Alpha and Cross Beta activities alternately with Proportional Cas Flow Detectors. The systems have an average background count rate of less than 1 count per minute. The instruments have an Alpha efficiency of 33% for Plutonium-239 and Beta efficiences of 45% for Strontium, Yttrium-90 and 43% for Cesium-137.

5.11 Beckman Liquid Scintillation Counting System

A Beckman LS-5801 Liquid Scintillation System will be used for all Tritium determinations. The system has a tritium counting efficiency of sixty percent in a wide open window.

6.0 Isotopic Detection Limits and Activity Determinations

Analytical detection limits are governed by a number of factors including:

6.1 <u>Sample Size</u>

The sample size taken is based on the numerical data one wishes to obtain which can describe a particular situation and can be interpreted as a basis for possible action. The sample size has to be representative and provide for accurate analysis or the entire process is invalid (Table III).

6.2 Counting Efficiency

The fundamental quality in the measurement of a radioactive substance is the number of disintegrations per unit time. As with most physical measurements in analytical chemistry, it is seldom possible to make an absolute measurement of the disintegration rate but rather it is necessary to compare the sample with one or more standards. The standards determine the counter efficiency which may

then be used to convert sample counts per minute (cpm) to disintegrations per minute (dpm).

6.3 Background Count Rate

Any counter will show a certain counting rate without a sample in position. This background counting rate comes from several sources: 1) natural environmental radiation from the surroundings; 2) cosmic radiation; and 3) the natural radioactivity in the counter material itself. The background counting rate will depend on the amount of these types of radiation and the sensitivity of the counter to the radiation.

6.4 Background and Sample Counting Time

The amount of time devoted to counting background depends on the level of activity being measured. In general, with low level samples, this time should be about equal to that devoted to counting a sample (Table IV).

6.5 <u>Time Interval Between Sample Collection and Counting</u>

Decay measurements are useful in identifying certain short-lived isotopes. The disintegration constant, or its related quantity, the half-life, is one of the basic characteristics of a specific radionuclide and is readily determined if the half-life is sufficiently short.

6.6 <u>Chemical Recovery of the Analytical Procedures</u>

Most radiochemical analyses are carried out in such a way that losses occur during the separations. These losses occur due to a large number of contaminants that may be present and interfere during chemical separations. Thus it is necessary to include a technique for estimating these losses in the development of the analytical procedure. The Lower Limits of detection are calculated using the following formula:

$$LLD = \frac{4.66 \text{ sb}}{E \cdot V \cdot 2.22 \cdot Y \cdot \exp(-\Delta\lambda^{t})}$$

WHERE:

LLD = "A priori" lower limit of detection as defined above (as pCi per unit mass or volume).

- sb = Standard deviation of the background counting rate or of the counting rate of a blank sample as appropriate (as counts per minute).
- E = Counting efficieny (as counts per disintegration).
- V = Sample size (in units of mass or volume).
- 2.22 = Number of disintegrations per minute per picocurie.
- Y = Fractional radiochemical yield (when applicable).
- λ = Radioactive decay constant for the particular radioisotope.
- Δt = Elapsed time between sample collection (or end of the sample collection period) and time of counting.

The value of s_b used in the calculation of the LLD for a particular measurement system is based on the actual observed variance of the background counting rate, or, of the counting rate of the blank sample, (as appropriate), rather than on an unverified theoretically predicated variance.

In calculating the LLD for a radionuclide determined by gamma-ray spectrometry, the background included the typical contributions of other nuclides normally present in the samples.

The activities per unit sample mass or volume are determined using the following formula:

$$A = \frac{C-B}{(2.22) (V) (R) (E) (e^{-\lambda t})} + \frac{1.96}{(2.22) (V) (R) (E) (e^{-\lambda t})}$$

WHERE:

- A = Activity as pCi per units sample mass or volume.
- C = Sample count rate in counts per minute.
- B = Background counts per minute.
- V = Sample volume or mass analyzed.
- E = Counter efficiency as cpm/dpm.
- 2.22 = Numerical constant to convert disintegrations per minute to picocuries.
- $(e^{-\lambda t}) = Decay$ factor to correct the activity to time of collection.
 - T = Counting time in minutes.
 - 1.96 = Statistical constant for the 95% confidence level.
 - R = Chemical recovery or photon yield.

7.0 Quality Control Program

CEP employs a mutli-faceted Quality Control Program designed to maintain high performance of its laboratory. The overall objectives of the program are to:

- 1. Verify that work procedures are adequate to meet specifications of ANPP.
- 2. Coordinate an in-house quality control program independent of external programs, to assure that CEP is operating at maximum efficiency.

Objectives are met by a variety of procedures that oversee areas of sample receipt and handling, analysis and data review. These procedures include standard operating procedures, known and unknown spike analysis, blank analysis, reagent, carrier and " nuclide standardization as well as participation in the U.S. Environmental Protection Agency's Interlaboratory Cross-check Program. (See Appendix A for EPA Radiological Cross-check results).

TABLE III

ALIQUOT SCANNED FOR DETECTION LIMIT CALCULATION

AND ACTUAL ANALYSIS

Sample Type	Gross Alpha	Gross Beta	Gamma Spec.	Iodine-131	Strontium-89	Strontium-90	Tritium
Air Particulates	265 m ³	265 m ³	265 m ³				
Airborne Radioiodine				265 m ³			
Domestic Meats (Beef)			500 g				
Fresh Milk			1000 mls	2000 mls	2000 mls	2000 mls	
Vegetation (Citrus Fruits)			500 g				
Vegetation (Leafy)			500 g	100 g			
Groundwater	1000 mls-	1000 mls	1000 mls			1000 mls	3 ml
Drinking Water	1000 mls	1000 mls	1000 m.ls			1000 mls	, 3 ml
Surface Water	1000 mls	1000 mls	1000 mis	1000 mls	1000 mls	1000 mls	3 ml

TABLE IV

SAMPLE COUNTING TIMES

Sample Type	Gross Alpha	Gross Beta	Gamma Spec.	Iodine-131	Strontium-89	Strontium-90	Tritium
Air Particulates	100 min	100 min	8 hrs				-
Airborne Radioiodine			•	8 hrs*			
Domestic Meats (Beef)			8 hrs		1		
Fresh Milk			S hrs	100 min	100 min	100 min	
Vegetation (Citrus Fruits)			8 hrs				
Vegetation (Leafy)			8 hrs	100 min	•		
Groundwater	100 min	100 min	8 hrs			100 min	500 min
Drinking Water	100 min	100 min	8 hrs			100 min	500 min
Surface Water	100 min	100 min	• 8 hrs	100 min	100 min	100 min	500 min

*Alkaline Leach Method Counted for 100 mins

ŧ

-25-

TABLE V

DETECTION LIMITS BY OTHER THAN GAMMA SPECTROMETRY

Sample Type	Gross Alpha	Gross Beta	Iodine-131	Strontium-89	Strontium-90	<u> </u>
Air Particulates	0.005 pCi/m ³	0.002 pCi/m ³				
Airborne Radioiodine	¥		0.007 pCi/m ³ *	÷	·	
Fresh Milk			0.5 pCi/l	1.0 pCi/l	0.5 pCi/l	÷
Vegetation (Leafy)			0.02 pCi/g*		•	
Groundwater	1 pCi/1	2 pCi/l	 		0.5 pCi/l	1000 pCi/l
Drinking Water	l pCi/l	2 pCi/l.			0.5 pCi/l	1000 pCi/l
Surface Water	1 pCi/1	2 pCi/I	0.5 pCi/l	1.0 pCi/l	0.5 pCi/l	1000 pCi/l

*As Wet Weight

ż6;

**Alkaline Leach Method. I-131 Detection Limit by Gamma Spectrometry 0.020 pCi/m³
TABLE VI

DETECTION LIMITS BY GAMMA SPECTROMETRY

Energy MeV	Isotope	Sensitivity pCi/gm* Vegetation	Sensitivity pCi/l* Groundwater, Drinking Water and Surface Water	Sensitivity pCi/l* Fresh Milk	Sensitivity pCi/m ³ Air Particulate
0.134	Cerium-144	0.121	18	10	0.005
0.537 .	Barium-140	0.075	4	4	0.030
0.605	Cesium-134	0.029	10	10	0.023
0.622 .	Ru,Rh-106	0.143	2	2,	0.001
0.662	Cesium-137	0.056	2	2	0.001
0.765	Zr,Nb-95	0.066	10	8	0.026
0.835	Manganese-54	0.021	, 2	2	0.001
1.095	Iron-59	0.021	3	3	0.006
1.115	Zinc-65	0.060	16	16	0.045
1.173	Cobalt-60	0.063 '	5	5	0.019
1.596	Lanthanum-140	0.465	15	15	0.030

*See Table III for aliquots used in the calculation of these sensitivities.

-27-

8.0 Data Interpretation and Conclusions

Interpretations and conclusions regarding all types of samples analyzed during 1985 are discussed in the following sections. Assessment of pre-operational and operational data revealed no significant changes to environmental radiation levels. There was no observed impact on the environment due to PVNGS operations. For the calculation of means, a value of one half the detection limit is used for all samples with activities below the detection limit.

8.1 <u>Air Particulates</u>

08/07/85

09/18/85

10/02/85

6

29A

4A

Air particulate samples were collected from each of the twelve monitoring sites on a weekly basis during 1985.

Air filters were analyzed for gross alpha and gross beta activities. Gamma Spectral analysis of the air filters was done on the individual filters for Stations 14A, 15, 17A, 21, 29 and 40 due to the Salt Drift Monitoring Program. Camma Spectral analysis for the other stations was performed on quarterly composites by station.

Ten air particulate samples were marked as possibly invalid upon arrival at CEP. The samples and the reason for the questionable statuses are listed below:

Collected	Site #	Reason	_
05/29/85	17A	Malfunction of pressure relief valve	
	, 3	Third Quarter 1985	
Date Collected	Site #	Reason	
07/31/85 08/07/85	6 4	Power interupted during sampling period Flow calibration failed	

Second Quarter 1985

Flow calibration and redline criteria not available Numerous insects on air particulate filter Heavy dirt on air particulate filter

-28-

Fourth Quarter 1985

Date Collected	Site #	Reason	
10/09/85	29A	Insects on particulate filter	
10/16/85	15	Malfunctioning sampler	
10/23/85	15	Malfunctioning sampler	
12/11/85	4A	Wet air particulate filter	

Table VII presents second quarter Gross Beta results. Station 6A showed the highest activity during the quarter $(0.041\pm0.002 \text{ pCi/m}^3 \text{ collected } 06/19/85-06/26/85)$. The Station IA sample collected 05/29/85-06/05/85 showed the lowest level at $0.015\pm0.002 \text{ pCi/m}^3$. Weekly mean activities ranged from a low of $0.018\pm0.002 \text{ pCi/m}^3$ during the period of 05/29/85-06/05/85 to a high of $0.032\pm0.003 \text{ pCi/m}^3$ in the week of 06/26/85-07/03/85. The range of results are comparable to previous quarterly data and do not indicate any anomalies.

Table VIII presents the Gross Beta levels during the third quarter of 1985. A maximum value of 0.036 ± 0.002 pCi/m³ was observed at Stations 35A and 44A (collected 07/03/85-07/10/85). The lowest level of activity was 0.010 ± 0.002 pCi/m³ at Station 44A during the collection period of 07/24/85-07/31/85. Weekly mean activities ranged from a minimum of 0.018 ± 0.002 pCi/m³ (07/17/85-07/24/85), to a maximum of 0.032 ± 0.003 pCi/m³ in the period of 07/03/85-07/10/85. The range of results are comparable to previous quarterly data and do not indicate any anomalies.

Table IX presents the Gross Beta activities seen in the fourth quarter. Observed levels varied from 0.008 ± 0.006 pCi/m³ at Station 14A (collected 12/26/85-01/02/86), to 0.057 ± 0.002 pCi/m³ at Station 6A (collected 12/26/85-01/02/86). Weekly mean activities ranged from 0.013 ± 0.002 pCi/m³ during the collection period of 11/27/85-12/04/85 to 0.037 ± 0.003 pCi/m³ collected 10/23/85-10/30/85

-29-

and 0.037 ± 0.005 pCi/g collected 12/18/85-12/26/85. Based on data from other nuclear reactor environmental monitoring programs, the trend for Gross Beta in air particulates for the PVNGS during the fourth quarter of 1985 is similar to those for other reactor sites located west of the Mississippi River.

Table X contains the mean Gross Beta activities by station. Mean quarterly and mean annual activities are calculated using all weekly activities except those marked invalid. Mean activities for each quarter ranged from a low of 0.023 ± 0.006 at Station 21A during the third quarter, to a high of 0.033 ± 0.010 pCi/m³ at Station 15A in the fourth quarter. Annual mean activities compare very well and fall between 0.026 ± 0.006 pCi/m³ (Stations 17A, 21A and 35A) and 0.029 ± 0.007 pCi/m³ (Station 15A). Mean activities seen during 1985 are consistent with past results.

The average gross beta activity for each quarter is as follows:

•	pCi/m ³
Second Quarter 1985	0.027 <u>+</u> 0.005
Third Quarter 1985	0.024 <u>+</u> 0.004
Fourth Quarter 1985	0.030 <u>+</u> 0.009

Gross Beta levels determined during 1985 are slightly higher than those during 1982, 1983, and 1984.

No man-made Gamma-emitting Nuclides were detected in any of the air filter samples collected during 1985.

Tables XI thru XIII show the Cross Alpha activity for each week during 1935. No air particulate samples collected in 1985 had activity above detection limit. The data showed that fewer air filters in 1985 contained Gross Alpha activity above 0.005 pCi/m^3 than in 1984.

TABLE VII

418 · · ·

-

Se his hale and

ì

GROSS BETA IN AIR PARTICULATE DATA (pCi/m³)

SECOND QUARTER

<u>1985</u>

Collection Period	Station IA	Station 4A	Station 6A	Station 7A	Station 14A	Station 15A	Station 17A
05/22/85 - 05/29/85	0.025 <u>+</u> 0.002	0.029 <u>+</u> 0.002	0.026 <u>+</u> 0.002	0.031 <u>+</u> 0.002	0.027 <u>+</u> 0.002	0.031 <u>+</u> 0.002	0.015 <u>+</u> 0.002ª
05/29/85 - 06/05/85	0.015 <u>+</u> 0.002	0.019 <u>+</u> 0.002	0.021 <u>+</u> 0.002	0.020 <u>+</u> 0.002	0.018 <u>+</u> 0.002	0.021 <u>+</u> 0.002	0.018 <u>+</u> 0.002
06/05/85 - 06/12/85	0.025 <u>+</u> 0.002	0.029 <u>+</u> 0.002	0.027 <u>+</u> 0.002	0.024 <u>+</u> 0.002	0.02 <u>9+</u> 0.002	0.029 <u>+</u> 0.002	0.027 <u>+</u> 0.002
06/12/85 - 06/19/85	0.023 <u>+</u> 0.002	0.029 <u>+</u> 0.002	0.029 <u>+</u> 0.002	0.031 <u>+</u> 0.002	0.029 <u>+</u> 0.002	0.039 <u>+</u> 0.002	0.031 <u>+</u> 0.002
06/19/85 - 06/26/85	0.028 <u>+</u> 0.002	0.024 <u>+</u> 0.002	0.041 <u>+</u> 0.002	0.027 <u>+</u> 0.002	0.028 <u>+</u> 0.002	0.026 <u>+</u> 0.002	0.025 <u>+</u> 0.002
06/26/85 - 07/03/85	0.032 <u>+</u> 0.002	0.034 <u>+</u> 0.002	0.038 <u>+</u> 0.002	0.034 <u>+</u> 0.002	0.029 <u>+</u> 0.002	0.030 <u>+</u> 0.002	0.031 <u>+</u> 0.002

^aInvalid sample.

en Spiller

51.

TABLE VII (Cont.)

GROSS BETA IN AIR PARTICULATE DATA (pCi/m³)

SECOND QUARTER

<u>1985</u>

Collection Period	Station 21A	Station 29A	Station 35A	Station 40A	Station 44A	Weekly Mean Gross Beta Activities <u>+</u> Standard Deviation of the Mean
05/22/85 - 05/29/85	0.031 <u>+</u> 0.002	0.029 <u>+</u> 0.002	0 . 027 <u>+</u> 0.002	0.031 <u>+</u> 0.002	0.028 <u>+</u> 0.002	0.029 <u>+</u> 0.002
05/29/85 - 06/05/85	0.016 <u>+</u> 0.002	0.020 <u>+</u> 0.002	0.017 <u>+</u> 0.002	0.019 <u>+</u> 0.002	0.018 <u>+</u> 0.002	0.018 <u>+</u> 0.002
06/05/85 - 06/12/85	0.026 <u>+</u> 0.002	0.025 <u>+</u> 0.002	0.028 <u>+</u> 0.002	0.028 <u>+</u> 0.002	0.029 <u>+</u> 0.002	0.027 <u>+</u> 0.002
06/12/85 - 06/19/85	0.028 <u>+</u> 0.002	0.032 <u>+</u> 0.002	0.028 <u>+</u> 0.002	0.029 <u>+</u> 0.002	0.029 <u>+</u> 0.002	0.030 <u>+</u> 0.004
06/19/85 - 06/26/85	0.026 <u>+</u> 0.002	0.027 <u>+</u> 0.002	0.026 <u>+</u> 0.002	0.035 <u>+</u> 0.002	0.026 <u>+</u> 0.002	0.028 <u>+</u> 0.005
06/26/85 - 07/03/85	0.028 <u>+</u> 0.002	0.032 <u>+</u> 0.002	0.033 <u>+</u> 0.002	0.036 <u>+</u> 0.002	0.032 <u>+</u> 0.002	0 . 032 <u>+</u> 0 . 003

မှု

TABLE VIII

GROSS BETA IN AIR PARTICULATE DATA (pCi/m³)

THIRD QUARTER

<u>1985</u>

Collection Period	Station 1A	Station 4A	Station 6A	Station 7A	Station 14A	Station 15A	Station 17A
07/03/85 - 07/10/85	0.033 <u>+</u> 0.002	0.034 <u>+</u> 0.002	0.034 <u>+</u> 0.002	0.028 <u>+</u> 0.002	0.032 <u>+</u> 0.002	0.032+0.002	0.035+0.002
07/10/85 - 07/17/85	0.028 <u>+</u> 0.002	0.030 <u>+</u> 0.002	0.030 <u>+</u> 0.002	0.026 <u>+</u> 0.002	0.025 <u>+</u> 0.002	0.028+0.002	0.030+0.002
07/17/85 - 07/24/85	0.019 <u>+</u> 0.002	0.018 <u>+</u> 0.002	0.019 <u>+</u> 0.002	0.016 <u>+</u> 0.002	0.018 <u>+</u> 0.002	0.018 <u>+</u> 0.002	0.019 <u>+</u> 0.002
07/24/85 - 07/31/85	0.022 <u>+</u> 0.002	0.029 <u>+</u> 0.002	¥	0.023 <u>+</u> 0.002	0.022 <u>+</u> 0.002	0.022 <u>+</u> 0.002	
07/31/85 - 08/07/85	0 . 022 <u>+</u> 0.002	0.024 <u>+</u> 0.002*	0.020 <u>+</u> 0.002*	0.021 <u>+</u> 0.002	0.023 <u>+</u> 0.002	0.024 <u>+</u> 0.002	
08/07/85 - 08/14/85	0.022 <u>+</u> 0.002	0.022 <u>+</u> 0.002	0.022 <u>+</u> 0.002	0.021 <u>+</u> 0.002	0.032 <u>+</u> 0.002	0.021+0.002	0.023 <u>+</u> 0.002
08/14/85 - 08/21/85	0 . 025 <u>+</u> 0 . 002	0.026 <u>+</u> 0.002	0.025 <u>+</u> 0.002	0.026 <u>+</u> 0.002	0.024 <u>+</u> 0.002	0.025 <u>+</u> 0.002	0.025 <u>+</u> 0.002
08/21/85 - 08/28/85	0 . 025 <u>+</u> 0.002	0.025 <u>+</u> 0.002	0.025 <u>+</u> 0.002	0.023 <u>+</u> 0.002	0.022 <u>+</u> 0.002	0.025 <u>+</u> 0.002	0.024+0.002
08/28/85 - 09/04/85	0.028 <u>+</u> 0.002	0.023 <u>+</u> 0.002	0.027 <u>+</u> 0.002	0.027 <u>+</u> 0.002	0.025 <u>+</u> 0.002	0.026+0.002	0.024+0.002
09/04/85 - 09/11/85	0.022 <u>+</u> 0.002	0.019 <u>+</u> 0.002	0.018 <u>+</u> 0.002	0.020 <u>+</u> 0.002	0.019 <u>+</u> 0.002	0.020+0.002	
09/11/85 - 09/18/85	0.024 <u>+</u> 0.002	0.021 <u>+</u> 0.002	0.023 <u>+</u> 0.002	0.025 <u>+</u> 0.002	0.025 <u>+</u> 0.002	0.023 <u>+</u> 0.002	
09/18/85 - 09/25/85	0.022 <u>+</u> 0.002	0.024 <u>+</u> 0.002	0.025 <u>+</u> 0.002	0.024 <u>+</u> 0.002	0.025 <u>+</u> 0.002	0.026 <u>+</u> 0.002	0.022 <u>+</u> 0.002
09/25/85 - 10/02/85	0.023 <u>+</u> 0.002	0.027 <u>+</u> 0.002*	0.021 <u>+</u> 0.002	0 . 022 <u>+</u> 0 . 002	0.022 <u>+</u> 0.002	0.022 <u>+</u> 0.002	0.022 <u>+</u> 0.002

*Invalid sample.

-34-

TABLE VIII (Cont.)

GROSS BETA IN AIR PARTICULATE DATA (pCi/m³)

THIRD QUARTER

<u>1985</u>

Collection Period	Station 21A	Station 29A	Station 35A	Station 40A	Station 44A	Weekly Mean Gross Beta Activities <u>+</u> Standard Deviation of the Mean
<u> </u>	·					
07/03/85 - 07/10/85	0.028 <u>+</u> 0.002	0.031 <u>+</u> 0.002	0.036 <u>+</u> 0.002	0.029 <u>+</u> 0.002	0.036 <u>+</u> 0.002	0.032 <u>+</u> 0.003 [·]
07/10/85 - 07/17/85	0.027 <u>+</u> 0.002	0.028 <u>+</u> 0.002	0.029 <u>+</u> 0.002	0.026 <u>+</u> 0.002	0.033 <u>+</u> 0.002	0.028 <u>+</u> 0.002
07/17/85 - 07/24/85	0.017 <u>+</u> 0.002	0.016 <u>+</u> 0.002	0.018 <u>+</u> 0.002	0.018 <u>+</u> 0.002	0.023 <u>+</u> 0.002	0.018 <u>+</u> 0.002
07/24/85 - 07/31/85	0.022 <u>+</u> 0.002	0.025 <u>+</u> 0.002	0.025 <u>+</u> 0.002	0.023 <u>+</u> 0.002	0.010 <u>+</u> 0.002	0.022 <u>+</u> 0.005
07/31/85 - 08/07/85	0.021 <u>+</u> 0.002	0.021 <u>+</u> 0.002	0.025 <u>+</u> 0.002	0.023 <u>+</u> 0.002	0.024 <u>+</u> 0.002	0.023 <u>+</u> 0.001
08/07/85 - 08/14/85	0.023 <u>+</u> 0.002	0.024 <u>+0</u> .002	0.021 <u>+</u> 0.002	0.023 <u>+</u> 0.002	0.027 <u>+</u> 0.002	0.023 <u>+</u> 0.003
08/14/85 - 08/21/85	0.025 <u>+</u> 0.002	0.025 <u>1</u> 0.002	0.026 <u>+</u> 0.002	0.027 <u>+</u> 0.002	0.027 <u>+</u> 0.002	0.026+0.001
08/21/85 - 08/28/85	0.023 <u>+</u> 0.002	0.023 <u>+</u> 0.002	0.023 <u>+</u> 0.002	0.024 <u>+</u> 0.002	0.025 <u>+</u> 0.002	0.024 <u>+</u> 0.001
08/28/85 - 09/04/85	0.026 <u>+</u> 0.002	0.027 <u>+</u> 0.002	0.026 <u>+</u> 0.002	0.025 <u>+</u> 0.002	0.025 <u>+</u> 0.002	0.026 <u>+</u> 0.001
09/04/85 - 09/11/85	0.019 <u>+</u> 0.002	0.021 <u>+</u> 0.002	0.021 <u>+</u> 0.002	0.024 <u>+</u> 0.002	0.019 <u>+</u> 0.009	0.020 <u>+</u> 0.002
09/11/85 - 09/18/85	0.02310.002	0.021 <u>+</u> 0.002*	0.02310.002	0.022 <u>+</u> 0.002	0.028 <u>+</u> 0.002	0.024 <u>+</u> 0.002
09/18/85 - 09/25/85	0.025 <u>+</u> 0.002	0.024 <u>+</u> 0.002	0.027 <u>+</u> 0.002	0.025 <u>+</u> 0.002	0.023 <u>+</u> 0.002	0.024 <u>+</u> 0.001
09/25/85 - 10/02/85	0.02010.002	0.022 <u>+</u> 0.002	0.022 <u>+</u> 0.002	0.023 <u>+</u> 0.002	0.022 <u>+</u> 0.002	0.022 <u>+</u> 0.001

*Invalid sample.

TABLE IX

GROSS BETA IN AIR PARTICULATE DATA (pCi/m³)

FOURTH QUARTER

<u>1985</u>

Collection Period	Station IA	Station 4A	Station 6A	Station 7A	Station 14A	Station 15A	Station 17A
10/02/85 - 10/09/85	0.034 <u>+</u> 0.002	0.034 <u>+</u> 0.002	0.030 <u>+</u> 0.002	0.031 <u>+</u> 0.002	0.032 <u>+</u> 0.002	0.034 <u>+</u> 0.002	0.032 <u>+</u> 0.002
10/09/85 - 10/16/85	0.022 <u>+</u> 0.002	0.021 <u>+</u> 0.002	0.019 <u>+</u> 0.002	0.024 <u>+</u> 0.002	0.018 <u>+</u> 0.002	¥	0.018 <u>+</u> 0.002
10/16/85 - 10/23/85	.0.027 <u>+</u> 0.002	0.025 <u>+</u> 0.002	0.023 <u>+</u> 0.002	0.022 <u>+</u> 0.002	0.024 <u>+</u> 0.002	×	0.022 <u>+</u> 0.002
10/23/85 - 10/30/85	0.030 <u>+</u> 0.002	0.038 <u>+</u> 0.002	0.038 <u>+</u> 0.002	0.042 <u>+</u> 0.002	0.037 <u>+</u> 0.002	0.040 <u>+</u> 0.002	0.035 <u>+</u> 0.002
10/30/85 - 11/06/85	0.036 <u>+</u> 0.002	0.036 <u>+</u> 0.002	0.034 <u>+</u> 0.002	0.036 <u>+</u> 0.002	0.034 <u>+</u> 0.002	0.038 <u>+</u> 0.002	0.033 <u>+</u> 0.002
11/06/85 - 11/13/85	0.031 <u>+</u> 0.002	0.029 <u>+</u> 0.002	0.023 <u>+</u> 0.002	0.023 <u>+</u> 0.002	0.027 <u>+</u> 0.002	0.026 <u>+</u> 0.002	0.024 <u>+</u> 0.002
11/13/85 - 11/20/85	0.030 <u>+</u> 0.002	0.030 <u>+</u> 0.002	0.027 <u>+</u> 0.002	0.028 <u>+</u> 0.002	0.031 <u>+</u> 0.002	0.032 <u>+</u> 0.002	0.027 <u>+</u> 0.002
11/20/85 - 11/27/85	0.027 <u>+</u> 0.002	0.030 <u>+</u> 0.002	0.025 <u>+</u> 0.002	0.029 <u>+</u> 0.002	0.026 <u>+</u> 0.002	0.025 <u>+</u> 0.002	0.027 <u>+</u> 0.002
11/27/85 - 12/04/85	0.014 <u>+</u> 0.002	0.014 <u>+</u> 0.002	0.014 <u>+</u> 0.002	0.015 <u>+</u> 0.002	0.011 <u>+</u> 0.002	0.013 <u>+</u> 0.002	0.014 <u>+</u> 0.003
12/04/85 - 12/11/85	0.031 <u>+</u> 0.002	0.029 <u>+</u> 0.002*	0.027 <u>+</u> 0.002	0.032 <u>+</u> 0.002	0.027 <u>+</u> 0.002	0.028 <u>+</u> 0.002·	0.029 <u>+</u> 0.002
12/11/85 - 12/18/85	0 . 032 <u>+</u> 0.002	0 . 034 <u>+</u> 0.002	0.035 <u>+</u> 0.002	0.036 <u>+</u> 0.002	0.037 <u>+</u> 0.002	0.036 <u>+</u> 0.002	0.032 <u>+</u> 0.002
12/18/85 - 12/26/85	0.038 <u>+</u> 0.002	0.043 <u>+</u> 0.002	0.047 <u>+</u> 0.002	0.040 <u>+</u> 0.002	0.033 <u>+</u> 0.002	0.036 <u>+</u> 0.002	0.033 <u>+</u> 0.002
12/26/85 - 01/02/86	0.050 <u>+</u> 0.002	0.051 <u>+</u> 0.003	0.057 <u>+</u> 0.002	0.0 <i>55<u>+</u>0.</i> 002	0.008 <u>+</u> 0.006	0 . 0 <i>55<u>+</u>0.002</i>	0.049 <u>+</u> 0.002

*Invalid sample.

TABLE IX (Cont.)

x

GROSS BETA IN AIR PARTICULATE DATA (pCi/m³)

FOURTH QUARTER

<u>1985</u>

Collection Period	Station 21A	Station 29A	Station 35A	Station 40A	Station 44A	Weekly Mean Gross Beta Activities <u>+</u> Standard Deviation of the Mean
10/02/85 - 10/09/85	0.032+0.002	0.034+0.002*	0.033+0.002	0.03//+0.002	0.032.0.002	0.032.0.001
10/09/85 - 10/16/85	0.019+0.002	0.023+0.002	0.017+0.002	0.019+0.002	0.032 ± 0.002	0.032 ± 0.001
10/16/85 - 10/23/85	0.024+0.002	0.024+0.002	0.022+0.002	0.025+0.002	0.022+0.002	0.020+0.002
10/23/85 - 10/30/85	0.036 <u>+</u> 0.002	 0.037 <u>+</u> 0.002	0.034+0.002	0.039+0.002	0.034+0.002	0.037+0.003
10/30/85 - 11/06/85	0.032 <u>+</u> 0.002	0.033 <u>+</u> 0.002	0.032+0.002	0.038+0.002	0.032+0.002	0.034+0.002
11/06/85 - 11/13/85	0.029 <u>+</u> 0.002	0.023+0.002			0.026+0.002	0.026+0.003
.11/13/85 - 11/20/85	0 . 026 <u>+</u> 0.002	0.030 <u>+</u> 0.002	0.027 <u>+</u> 0.002	_ 0.031 <u>+</u> 0.002		0.028+0.003
11/20/85 - 11/27/85	0.029 <u>+</u> 0.002	0.025 <u>+</u> 0.002	0.024 <u>+</u> 0.002		0.022 <u>+</u> 0.002	0.026+0.002
11/27/85 - 12/04/85	0.014 <u>+</u> 0.002	0.014 <u>+</u> 0.002	0.010 <u>+</u> 0.002		0.010 <u>+</u> 0.002	 0.013 <u>+</u> 0.002
12/04/85 - 12/11/85	0.027 <u>+</u> 0.002	0.028 <u>+</u> 0.002	0.027 <u>+</u> 0.002	0.027 <u>+</u> 0.002	0.025 <u>+</u> 0.002	· 0.028 <u>+</u> 0.002
12/11/85 - 12/18/85	0.0 30 <u>+</u> 0.002	0.039 <u>+</u> 0.002	0.034+0.002	0.037 <u>+</u> 0.002		 0.034 <u>+</u> 0.003
12/18/85 - 12/26/85	0.038 <u>+</u> 0.002	0.035 <u>+</u> 0.002	0.035 <u>+</u> 0.002	0.034+0.002	0.029 <u>+</u> 0.002	0.037 <u>+</u> 0.005
12/26/85 - 01/02/86	0.053 <u>+</u> 0.002	0.040 <u>+</u> 0.002	0.047 <u>+</u> 0.002	0.040 <u>+</u> 0.002	0.044+0.002	0.046+0.013

*Invalid sample.

i

Ϋ́

TABLE X

GROSS BETA IN AIR PARTICULATE (pCi/m³)

STATION SUMMARY

<u>1985</u>

Mean Gross Beta Activities <u>+</u> Standard Deviation of the Mean	Station 1A	Station 4A	_Station 6A	Station 7A	Station 14A	Station 15A
Second Quarter	0.025 <u>+</u> 0.006	0.027 <u>+</u> 0.005	0.030 <u>+</u> 0.008	0.028 <u>+</u> 0.005	0.027 <u>+</u> 0.004	0.029+0.006
Third Quarter	0.024 <u>+</u> 0.004	0.025 <u>+</u> 0.005	0.024 <u>+</u> 0.005	0.023 <u>+</u> 0.003	0.024+0.004	 0.024+0.004
Fourth Quarter	0.031 <u>+</u> 0.008	0.032 <u>+</u> 0.010	0.031 <u>+</u> 0.012	0.032 <u>+</u> 0.010	0.026 <u>+</u> 0.009	
Annual	0.027 <u>+</u> 0.006	0.028 <u>+</u> 0.007	0.028 <u>+</u> 0.008	0 . 028 <u>+</u> 0.006	0.027 <u>+</u> 0.006	

TABLE X (Cont.)

. 33.4

ډ.

1.5

GROSS BETA IN AIR PARTICULATE (pCi/m³)

STATION SUMMARY

<u>1985</u>

Mean Gross Beta Activities <u>+</u> Standard Deviation			T T				
of the Mean	-	Station 17A	Station 21A	Station 29A	Station 35A	Station 40A	Station 44A
Second Quarter	•	0.026 <u>1</u> 0.005	0.026 <u>+</u> 0.005	0.028 <u>+</u> 0.005	0.026 <u>+</u> 0.005 [·]	0.030 <u>+</u> 0.006	0.027 <u>+</u> 0.005
Third Quarter		0.024 <u>+</u> 0.004	0.023 <u>+</u> 0.003	0.024 <u>+</u> 0.004	0.025 <u>+</u> 0.004	0.024 <u>+</u> 0.003	0 . 025 <u>+</u> 0.006
Fourth Quarter		0.029 <u>+</u> 0.009	0.030 <u>+</u> 0.009	0.029 <u>+</u> 0.008	0.028 <u>+</u> 0.009	0.0 ³ 0 <u>+</u> 0.008	0.026 <u>+</u> 0.008
Annual		0.026+0.006	0 . 026 <u>+</u> 0.006	0.027 <u>+</u> 0.006	0.026 <u>+</u> 0.006	0.028 <u>+</u> 0.006	0 . 026 <u>+</u> 0 . 006

<u>TABLE XI</u> <u>GROSS ALPHA IN AIR PARTICULATE DATA</u> (pCi/m³) <u>SECOND QUARTER</u> <u>1985</u>

Collection Period	Station 1A	Station 4A	Station 6A	Station 7A	Station 14A	Station 15A	Station 17A
05/22/85 - 05/29/85	¥	*	• *	¥	*	*	• *
05/29/85 - 06/05/85	×	¥	¥	*	×	×	*
06/05/85 - 06/12/85	*	*	*	*	· *	*	*
06/12/85 - 06/19/85	. *	*	*	¥	¥	×	• *
06/19/85 - 06/26/85	*	*	*	×	¥	×	*
06/26/85 - 07/03/85	*.	×	*	*	*	*	×
				· · ·			

*Less than dectection limit; 0.005 pCi/m^3 .

<u>TABLE XI (Cont.)</u> <u>CROSS ALPHA IN AIR PARTICULATE DATA (pCi/m³)</u> <u>SECOND QUARTER</u> <u>1985</u>

2

Collection Period	Station 21A	Station 29A	Station 35A	Station 40A	Station 44A	Weekly Mean Gross Alpha Activities <u>+</u> Standard Deviation of the Mean
05/22/85 - 05/29/85	¥	* •	*	. *	¥	*
05/29/85 - 06/05/85	*	*	×	×	¥	×
06/05/85 - 06/12/85	· *	*	*	×	×	¥
06/12/85 - 06/19/85	×	*	¥	*	¥	¥
06/19/85 - 06/26/85	×	*	*	¥	*	¥
06/26/85 - 07/03/85	×	*	*	¥	×	• *

*Less than dectection limit; 0.005 pCi/m^3 .

	TABLE XII
•	GROSS ALPHA IN AIR PARTICULATE DATA (pCi/m ³)
	THIRD QUARTER
	<u>1985</u> .

Collection Period	Station IA	Station 4A	Station 6A	Station 7A .	Station 14A	Station 15A	Station 17A
07/03/85 - 07/10/85	*	*	×	×	¥	*	*
07/10/85 - 07/17/85	*	×	×	* 、	* *	*	×
07/17/85 - 07/24/85	*	×	¥	×	×	×	×
07/24/85 - 07/31/85	* •	*	* *	×	×	*	* •
07/31/85 - 08/07/85	- *	* *	* *	*	*	×	*
08/07/85 - 08/14/85	*	×	×	* *	×	*	×
08/14/85 - 08/21/85	*	×	×	×	×	¥	×
08/21/85 - 08/28/85	×	×	¥	×	×	*	₩.,
08/28/85 - 09/04/85	×	*	×	` ` *	×	*	×
09/04/85 - 09/11/85	¥	*	×	¥	×	¥	×
09/11/85 - 09/18/85	×	×	×	×	×	*	¥
09/18/85 - 09/25/85	×	*	*	*	×	¥ -	* .
09/25/85 - 10/02/85	¥	* *	×	×	×	×	*

*Less than dectection limit; 0.005 pCi/m³.

**Invalid sample.

-42-

<u>TABLE XII (Cont.)</u> <u>GROSS ALPHA IN AIR PARTICULATE DATA</u> (pCi/m³) <u>THIRD QUARTER</u> <u>1985</u>

3

Weekly Mean

Gross Alpha Activities + Standard Deviation **Collection Period** Station 21A Station 29A Station 44A of the Mean . Station 35A Station 40A 07/03/85 - 07/10/85 07/10/85 - 07/17/85 07/17/85 - 07/24/85 07/24/85 - 07/31/85 07/31/85 - 08/07/85 08/07/85 - 08/14/85 08/14/85 - 08/21/85 × 08/21/85 - 08/28/85 08/28/85 - 09/04/85 09/04/85 - 09/11/85 09/11/85 - 09/18/85 09/18/85 - 09/25/85 09/25/85 - 10/02/85

*Less than dectection limit; 0.005 pCi/m³.

* * Invalid sample.

-43-

Collection Period	Station 1A	Station 4A	Station 6A	Station 7A	Station 14A	Station 15A	Station 17A
10/02/85 - 10/09/85	*	*	*	*	*	*	*
10/09/85 - 10/16/85	*	×	*	*	¥ -	* *	*
10/16/85 - 10/23/85	*	*	*	*	×	• **	¥
10/23/85 - 10/30/85	*	*	*	*	×	*	×
10/30/85 - 11/06/85	*	*	*	*	*	• *	×
11/06/85 - 11/13/85	¥	×	*	¥	×	¥	¥
11/13/85 - 11/20/85	¥	¥	*	- X	×	*	×
11/20/85 - 11/27/85	¥	×	¥	×	×	*	×
11/27/85 - 12/04/85	*	*	*	*	×	*	×
12/04/95 - 12/11/85	* .	* *	*	*	¥.	×	*
12/11/85 - 12/18/85	*	*	*.	*	*	*、	* ×
12/18/85 - 12/26/85	*	×	¥	*	*	*	*
12/26/85 - 01/02/86	*	×	×	*	, ,	*	*

*Less than dectection limit; 0.005 pCi/m³.

**Invalid[•]sample.

<u>TABLE XIII (Cont.)</u> <u>GROSS ALPHA IN AIR PARTICULATE DATA (pCi/m³)</u> <u>FOURTH QUARTER</u> <u>1985</u> 3

Collection Period	Station 21A	Station 29A_	Station 35A	Station 40A	Station 44A	Weekly Mean Gross Alpha Activities <u>+</u> Standard Deviation of the Mean
10/02/85 - 10/09/85	*	**	*	*	*	*
10/09/85 - 10/16/85	¥ -	×	*	×	×	¥
10/16/85 - 10/23/85	• *	* •	×	¥	• *	*
10/23/85 - 10/30/85	×	×	×	×	*	*
10/30/85 - 11/06/85	" ¥	×	¥	×	*	*
11/06/85 - 11/13/85	*	×	* *	*	*	*
11/13/85 - 11/20/85	*	*	*	*	*	*
11/20/85 - 11/27/85	×	*	, *	*	¥	*
11/27/85 - 12/04/85	×	×	×	. *	* -	*
12/04/95 - 12/11/85	*	*	*	×	*	*
12/11/85 - 12/18/85	*	×	*	*	*	¥
12/18/85 - 12/26/85	*	*	*	×	*	*
12/26/85 - 01/02/86	*	×	×	×	¥	*

*Less than dectection limit; 0.005 pCi/m³. * *Invalid sample.

-45-

8.2 <u>Airborne Radioiodine</u>

ħ

......

Samples for airborne radioiodine monitoring are collected concurrently with the air particulate samples. These samples are collected in charcoal cartridges and analyzed for I-131.

As can be seen in Table XIV no radioiodine samples collected during the second quarter of 1985 showed observable I-131 activity.

Third quarter radioiodine data may be found in Table XV. No samples indicated I-131 activity above the detection limit of 0.007 pCi/m^3 .

As can be seen in Table XVI no radioiodine samples collected during the fourth quarter of 1985 showed observable I-131 acitivty.

TABLE XIV AIRBORNE RADIOIODINE SECOND QUARTER 1985

Collection Period	Station 1	Station 4	Station 6	Station 7A	Station 14A	Station 15	Station 17A
05/22/85 - 05/29/85	*	· ¥	¥	×	*	* •	¥
05/29/85 - 06/05/85	¥	×	×	*	¥	×	×
06/05/85 - 06/12/85	×	×	*	*	¥	×	×
06/12/85 - 06/19/85	、 *	¥ .	¥	*	*	¥	¥
06/19/85 - 06/26/85	*	×	¥	×	¥	* -	*
06/26/85 - 07/03/85	*	*	*	*	*	×	*

1

*Iodine-131 activity less than 0.007 pCi/m³.

TABLE XIV (Cont.) AIRBORNE RADIOIODINE SECOND QUARTER 1985

Collection Period	Station 21	Station 29	Station 35	Station 40	Station 44
05/22/85 - 05/29/85	* 、	¥ *	*	×	*
05/29/85 - 06/05/85	×	*	*	×	*
06/05/85 - 06/12/85	¥	¥	¥	** *	*
06/12/85 - 06/19/85	¥	X .	* -	•	¥
06/19/85 - 06/26/85	×	- * (¥	* ,	¥
06/26/85 - 07/03/85	*	Jł t	*	*	*

*Iodine-131 activity less than 0.007 pCi/m³.

-61-

TABLE XV
AIRBORNE RADIOIODINE
THIRD QUARTER
1985

Collection Period	Station 1	Station 4	Station 6	Station 7A	Station 14A	Station 15	Station 17A
07/03/85 - 07/10/85	, *	×	*	*	*	*	• *
07/10/85 - 07/17/85	*	*	*	×	×	*	*
07/17/85 - 07/24/85	*	¥	*	×	*	*	*
07/24/85 - 07/31/85	*	*	* *	*	**	*	×
07/31/85 - 08/07/85	• *	¥	×	¥	*	*	*
08/07/85 - 08/14/85	* *	×	*	¥	×	×	*
08/14/85 - 08/21/85	*	×	×	×	×	×	*
08/21/85 - 08/28/85	*	. *	¥	×	*	¥	* •
08/28/85 - 09/04/85	*	×	×	× *	×	×	*
09/04/85 - 09/11/85	*	×	* '	×	×	×	*
09/11/85 - 09/18/85	* •	v X	¥	¥	*	×	*
09/18/85 - 09/25/85	*	×	X. t	×	×	* -	×
09/25/85 - 10/02/85	×	*	* ^į ,	¥	×	×	*

*Iodine-131 activity less than 0.007 pCi/m³. **Invalid sample.

ي اليويدين اليونيد المريد
TABLE XV (Cont.) AIRBORNE RADIOIODINE THIRD QUARTER 1985

Collection Period	Station 21	Station 29	Station 35	Station 40	Station 44
07/03/85 - 07/10/85	*	*	×	*	*
07/10/85 - 07/17/85	*	*	×	*	×
07/17/85 - 07/24/85	*	- ★	¥	×	•
07/24/85 - 07/31/85	*	×	¥	- *	×
07/31/85 - 08/07/85	*	*	*	×	×
08/07/85 - 08/14/85	*	×	*	×	, *
08/14/85 - 08/21/85	¥	x	<u> </u>	¥	*
08/21/85 - 08/28/85	*	* * *	* *	×	×
08/28/85 - 09/04/85	× •	¥ , _	*	¥	×
09/04/85 - 09/11/85	x	×	, *	¥	×
09/11/85 - 09/18/85	, X	×	¥	¥	*
09/18/85 - 09/25/85	· *	*	*	- *	¥
09/25/85 - 10/02/85	*	*	¥	×	×

*Iodine-131 activity less than 0.007 pCi/m³.

-

TABLE XVI
AIRBORNE RADIOIODINE
FOURTH QUARTER
1985

Collection Period	Station 1	Station 4	Station 6	Station 7A	Station 14A	Station 15	Station 17A
10/02/85 - 10/09/85	*	*	¥	★ 1.	×	* *	• *
10/09/85 - 10/16/85	• *	• *	*	×	*	* *	×
10/16/85 - 10/23/85	×	*	*	×	×	×	- *
10/23/85 - 10/30/85	×	*	*	*	×	×	×
10/30/85 - 11/06/85	- *	*	*	*	×	×	×
11/06/85 - 11/13/85	*	*	×	* *	*	×	×
11/13/85 - 11/20/85	×	*	*	*	×	×	×
11/20/85 - 11/27/85	¥	.*	×	¥	*	×	×
11/27/85 - 12/04/85	* *	*	*	*	×	×	¥
12/04/95 - 12/11/85	*	*	*	*	×	¥	×
12/11/85 - 12/18/85	×	*	×	×	×	¥	×
12/18/85 - 12/26/85	¥	×	×	×	*	×	*
12/26/85 - 01/02/86	×	¥	×	×	×	×	×

*Iodine-131 activity less than 0.007 pCi/m³.

**Invalid sample.

<u>TABLE XVI (Cont.)</u> <u>AIRBORNE RADIOIODINE</u> <u>FOURTH QUARTER</u> <u>1985</u>

Collection Period	Station 21	Station 29	Station 35	Station 40	Station 44
10/02/85 - 10/09/85	*	* *	*	*	*
10/09/85 - 10/16/85	*	* -	• • *	* •	×
10/16/85 - 10/23/85	*	*	*	*	×
10/23/85 - 10/30/85	* *	¥	*	× •	*
10/30/85 - 11/06/85	*	¥	¥	• *	* *
11/06/85 - 11/13/85	*	¥	×	¥	×
11/13/85 - 11/20/85	*	×	*'	*	×
11/20/85 - 11/27/85	¥	*	*	×	×
11/27/85 - 12/04/85	×	X	*	¥	. X
12/04/95 - 12/11/85	×	×	*	- *	×
12/11/85 - 12/18/85	. *	*	• *	* .	¥,
12/18/85 - 12/26/85	×	* *	*	*	×
12/26/85 - 01/02/86	¥	*	×	¥	* *

*Iodine-131 activity less than 0.007 pCi/m³.

24

-65-

8.3 <u>Thermoluminescent Dosimetry</u>

Thermoluminescent dosimeters were placed in fifty locations ranging from one to forty-five miles from the Palo Verde Nuclear Generating Station. Beginning in 1984 the Panasonic Model 812 Dosimeter replaced all other TLD's in use. The 812 is a multi-element dosimeter combining 2 elements of Lithium Borate and 2 Calcium Sulfate elements. Ł

Tables XVII to XIX present the results of the Quarterly exposures for 1985. Quarterly data obtained from TLD's are graphically presented in Figures 16 to 18.

Differences in individual station mean values represent statistical variation more so than actual fluctuations in the background radiation around the Palo Verde Nuclear Generating Station and tend to vary about an approximate mean of 24 mRem/quarter. Operational data for 1985 compare very closely with preoperational data.

Figure 19 illustrates the mean TLD activity from 1981 through 1985. These values were obtained by averaging all TLD's in the field during the quarter. (The control TLD was not included). Figure 19 illustrates the mean exposure with high and low standard deviations of the mean for each quarter.

-66-

TABLE XVII

QUARTERLY THERMOLUMINESCENT DOSIMETRY

SECOND QUARTER 1985

Map Location	Collection Location	Total Exposure (mrem)
i	APS Goodyear, E 30 Office	23.0
* 2	ENE 24 Scott-Libby School	23.5
3	E 25, Liberty School	23.0
4	E 20, APS Buckeye School	26.0
5	ESE 15, Palo Verde	21.0
6.	SSE 35, APS Gila Bend Sub-station	29.0
7	SE 8, Arlington School	29.0
8 .	SSE, Corner of 363rd Ave. and SPP Rd.	23.0
9	S5, Corner of 371st Ave. and SPP Rd.	30.0
10	SE 5, Corner of 355th Ave. and Ward Rd.	25.5
11	ESE 5, Corner of 339th Ave. and Dobbins Rd.	26.5
12	E5, Corner of 339th Ave., and B-S Rd.	26.0
13	N 1, N Site Boundary	25.5
14	NNE 2, NNE Site Boundary	27.0
15	NE 2, Site Boundary	25.0
16	ENE 2, ENE Site Boundary	24.0
17	E 2, E Site Boundary	27.0
Ĩ 1 8, -	ESE 2, ESE Site Boundary	24.5
19	SE 2, SE Site Boundary	27.0
. 20.	SSE 2, SSE Site Boundary	26.0
21	S 3, S Site Boundary	27.0
22	SSW 3, SSW Site Boundary	28.0
23	W 5, Benchmark at Baseline	24.5
24	SW 5, Ward Rd. at Well 18bbb	24.5
25	WSW 5, Ward Rd. at DF Vell 2 Rd.	*
26 `	SSW Well 21 Cbb2	\'issing

*Missing data

TABLE XVII (Cont.)

ļ

ł

QUARTERLY THERMOLUMINESCENT DOSIMETRY

SECOND QUARTER 1985

Map Location	Collection Location	Total Exposure (mrem)
27	SW 2, SW Site Boundary	27.0
28	WSW 1, WSW Site Boundary	27.0
29	W 1, W Site Boundary	26.0
30	WNW 1, WNW Site Boundary	27.0
31	NW 2, NW Site Boundary	23.0
32	NNW 1, NNW Site Boundary	26.0
33	NW 5, Yuma Rd., ½ mile W of Belmont Rd.	29.0
34	NNW 5, Corner of Belmont Rd. and Van Buren Rd.	29.0
. 35	NNW 9, Tonopah, Palo Verde Inn Fire Station	30.0
36	N 5, Corner of Wintersburg Rd. and Van Buren Rd.	26.0
37	NNE 5, Corner of 363rd Ave. and Van Buren Rd.	24.0
38	Corner of 355th Ave. and Yuma Rd.	23.0
39	ENE 5, 343rd Ave., ½ mile S of L. Buckeye	24.0
40	N 3, Trailer Park at Wintersburg	25.0
41	WNW 20, Harquahala Valley School	27.0
42	N 8, Ruth Fisher School	¥
43	N 45, Vulture Mine Rd. School, Wickenburg	Missing
44	ENE 35, APS El Mirage Office, Sun City	23.0
45	ENE 50, APS Deer Valley Office	7.0
46	Litchfield Park School .	24.0
47	Littleton School, Cashion	29.0
48	Perryville	26.0
. 49	Hopeville	24.0
50	Clinski Rd., 5 mile, WNW Sector	21.0

*Missing data

TABLE XVIII

QUARTERLY THERMOLUMINESCENT DOSIMETRY

THIRD QUARTER 1985

Map Location	Collection Location	Exposure (mrem)
1	APS Goodyear, E 30 Office	24.0
2	ENE 24 Scott-Libby School	26.0
<u>,</u> 3	E 25, Liberty School	25.0
4	E 20, APS Buckeye School	27.0
5	ESE 15, Palo Verde	21.0
6	SSE 35, APS Gila Bend Sub-station	30.0
7	SE 8, Arlington School	30.0
8	SSE, Corner of 363rd Ave. and SPP Rd.	26.0
9	S5, Corner of 371st Ave. and SPP Rd.	35.0
10	SE 5, Corner of 355th Ave. and Ward Rd.	27.0
11	ESE 5, Corner of 339th Ave. and Dobbins Rd.	29.0
12	E5, Corner of 339th Ave., and B-S Rd.	27.0
13	N 1, N Site Boundary	29.0
14	NNE 2, NNE Site Boundary	29.0
15	NE 2, Site Boundary	27.0
16	ENE 2, ENE Site Boundary	. 24.0
17	E 2, E Site Boundary	23.0
18	ESE 2, ESE Site Boundary	27.0
19	SE 2, SE Site Boundary	28.0
20 .	SSE 2, SSE Site Boundary	28.0
21	S 3, S Site Boundary	• 30.0
22	SSW 3, SSW Site Boundary	30.0
23	W 5, Benchmark at Baseline	28.0
24	SW 5, Ward Rd. at Well 18bbb	25.0
25	WSW 5, Ward Rd. at DF Well 2 Rd.	26.0
26	SSW Well 21 Cbb2	29.0

TABLE XVIII (Cont.)

QUARTERLY THERMOLUMINESCENT DOSIMETRY

i

::

THIRD QUARTER 1985

Map Location	Collection Location	Exposure (mrem)
27	SW 2, SW Site Boundary	29.0
28	WSW 1, WSW Site Boundary	29.0
29	W 1, W Site Boundary	29.0
30	WNW 1, WNW Site Boundary	29.0
31	NW 2, NW Site Boundary	- 28.0
32	NNW 1, NNW Site Boundary	28.0
33	NW 5, Yuma Rd., ½ mile ½ of Belmont Rd.	32.0
34	NNW 5, Corner of Belmont Rd. and Van Buren Rd.	31.0
35	NNW 9, Tonopah, Palo Verde Inn Fire Station	34.0
36	N 5, Corner of Wintersburg Rd. and Van Buren Rd.	28.0
37	NNE 5, Corner of 363rd Ave. and Van Buren Rd.	30.0
38	Corner of 355th Ave. and Yuma Rd.	31.0
39	ENE 5, 343rd Ave., ½ mile S of L. Buckeye	27.0
40	N 3, Trailer Park at Wintersburg	27.0
41	WNW 20, Harquahala Valley School	31.0
42	N 8, Ruth Fisher School	- 29.0
43	N 45, Vulture Mine Rd. School, Wickenburg	31.0
44	ENE 35, APS El Mirage Office, Sun City	25.0
45	ENE 50, APS Deer Valley Office	S.5 ·
46	Litchfield Park School	25.0
47	Littleton School, Cashion	30.0
48	Perryville	26.0
49	Hopeville	25.0
50	Olinski Rd., 5 mile, WNW Sector	22.0

TABLE XIX

QUARTERLY THERMOLUMINESCENT DOSIMETRY

FOURTH QUARTER 1985

Map Location	Collection Location	Total Exposure (mrem)
1	APS Goodyear, E 30 Office	23.0
2	ENE 24 Scott-Libby School	24.2
3	E 25, Liberty School	21.3
4	E 20, APS Buckeye School	25.2
5	ESE 15, Palo Verde	20.6
6	SSE 35, APS Gila Bend Sub-station	29.1
•7	SE 8, Arlington School	28.3
8	SSE, Corner of 363rd Ave. and SPP Rd.	24.4
9	S5, Corner of 371st Ave. and SPP Rd.	32.5
10	SE 5, Corner of 355th Ave. and Ward Rd.	25.3
11	ESE 5, Corner of 339th Ave. and Dobbins Rd.	26.0
12	E5, Corner of 339th Ave., and B-S Rd.	25.4
13	N 1, N Site Boundary	26.2
14	NNE 2, NNE Site Boundary	26.9
15	NE 2, Site Boundary	25.3
16	ENE 2, ENE Site Boundary	24.0
17	E 2, E Site Boundary	26.2
18	ESE 2, ESE Site Boundary	25.0
19	SE 2, SE Site Boundary	27.2
20	SSE 2, SSE Site Boundary	26.3
21	S 3, S Site Boundary	27.2
22	SSW 3, SSW Site Boundary	28.2
23	W 5, Benchmark at Baseline	24.3
24	SW 5, Ward Rd. at Well 18bbb	23.8
25	WSW 5, Ward Rd. at DF Well 2 Rd.	24.8
26	SSW Well 21 Cbb2	29.2

TABLE XIX (Cont.)

QUARTERLY THERMOLUMINESCENT DOSIMETRY

FOURTH QUARTER 1985

Map Location	Collection Location	Exposure (mrem)
27 、	SW 2, SW Site Boundary	29.6
28	WSW 1, WSW Site Boundary	27.6
29	W1, WSite Boundary	27.1
30	WNW 1, WNW Site Boundary	28.7
31	NW 2, NW Site Boundary	25.0
32	NNW 1, NNW Site Boundary	27.2
33	NW 5, Yuma Rd., ½ mile W of Belmont Rd.	30.3
34	NNW 5, Corner of Belmont Rd. and Van Buren Rd.	29.9
35	NNW 9, Tonopah, Palo Verde Inn Fire Station	33.7
36	N.5, Corner of Wintersburg Rd. and Van Buren Rd.	26.7
37	NNE 5, Corner of 363rd Ave. and Van Buren Rd.	25.3
38	Corner of 355th Ave. and Yuma Rd.	29.4
39	ENE 5, 343rd Ave., ½ mile S of L. Buckeye	25.7
40	N 3, Trailer Park at Wintersburg	26.4
41	WNW 20, Harquahala Valley School	27.9
42	N 8, Ruth Fisher School	26.5
43	N 45, Vulture Mine Rd. School, Wickenburg	29.4
44	ENE 35, APS El Mirage Office, Sun City	23.0
45	ENE 50, APS Deer Valley Office	7.5
46	Litchfield School	24.9
47	Littleton School, Cashion	30.1
48	Perryville	24.1
49	Hopeville	24.3
50	Olinski Rd., 5 mile, WNW Sector	21.2

`*

1. ******

8.4 Vegetation

Vegetation samples were collected from five local farms since no commercial companies are located in the area. The leafy vegetation samples collected during 1985 included: mustard greens, cabbage, swiss chard, turnip greens, and lettuce. The citrus samples included grapefruits, and oranges.

Table XX presents lodine-131 data for the vegetation samples collected during 1985. No observable activity was detected in any of the samples. The results of the gamma spectral analyses for all vegetation samples is presented in Tables XXI and XXII. No man-made Gamma emitting nuclides were detected in any of the samples.

TABLE XX VEGETATION 1985

-

Ì

Ł

1

Collection Location	Date Collected	Iodine-131 pCi/gm (Wet)
Leafy:	•	
Cambron Garden		
Lettuce	11/14/85	< 0.02
Cabbage	11/14/35	< 0.02
AJM Farms, Inc.		•
Leafy	11/15/85	< 0.02
- <u>De Shazo</u>		
Leafy	12/14/85	< 0.02
Thomas		
Leafy	12/17/85	< 0.02
Adams		
Swiss Chard	06/14/85	< 0.02
<u>Citrus:</u>		
Butler Dairy		
Grapefruits	11/14/85	< 0.02
Adams		
Grapefruits	11/14/85	< 0.02
Lemons	11/14/85	< 0.02
Oranges .	11/14/85	< 0.02

-78-

<u>TABLE XXI</u> <u>VEGETATION (Leafy)</u> <u>GAMMA SPECTROMETRY</u> <u>1985</u>

** :

	-				······	pCi/gm	(wet)		•		
Collection Location	Date Collected	Ba-140 0.075*	Co-60 0.063*	Mn-54 <u>0.021 *</u>	Ru,Rh-106 0.143*	Zn-65 <u>0.060*</u>	Zr,Nb-95 0.066*	Cs-137 0.056*	Cs-134 0.029*	Ce-144 0:121*	Fe-59 0.021*
Cambron Garden		•									
Lettuce Cabbage	11/14/85 11/14/85			•							
AJM Farms, Inc			÷				*	÷			
Leafy	11/15/85										
De Shazo								-			
Leafy	12/14/85			NONE	DETECI	T E D					
Thomas					т • •			•			
Leafy	12/17/85				ř.						
Adams									-		
Swiss Chard	06/14/85								•		
*Detection Limit											

-79-

2 *

٠,

\$

TABLE XXII VEGETATION (Citrus Fruits) GAMMA SPECTROMETRY <u>1985</u>

		pCi/gm(wet)									
Collection Location	Date Collected	Ba-140 0.075*	Co-60 0.063*	Mn-54 0.021*	Ru,Rh-106 	Zn-65 0.060*	Zr,Nb-95 0.066*	Cs-137 0.056*	,Cs-134 0.029*	Ce-144 0.121*	Fe-59 0.021*
Butler Dairy									*		•
Grapefruits	11/14/85								2		
<u>Adams</u>	•		*	•							
Grapefruits	11/14/85			NONE	DETEC	TED					
Lemons	11/14/85		•								
Oranges	11/14/85		÷								
*Detection Limit			н								

-80-

-8

ł

8.5 Drinking Water

Drinking water samples were taken monthly from Desert Farms, McArthur Farm, and begining in April, the Wedgeworth Farm. All of the samples were analyzed for Gross Alpha, Gross Beta, Strontium-90, Tritium and for Camma-emitting nuclides. Results of these analyses are summarized in Tables XXIII and XXIV.

Nine of the samples showed Gross Alpha activity above the detection limit of 1.0 pCi/l. The range of gross alpha activity in Drinking water samples collected during 1985 was from less than 1.0 pCi/l to 3.3 ± 1.6 pCi/l (Desert Farms collected 08/15/85).

Gross Beta activity ranged from less than 2.0 pCi/l to a high of 6.1 ± 1.5 pCi/l (Desert Farms collected 09/19/85). Results do not appear to be anomalous and may be attributed to naturally occurring nuclides present in water (i.e. Potassium-40, etc.).

Strontium-90 was detected in none of the drinking water samples collected during 1985.

Tritium results, for all drinking water samples collected during 1985, were less than 1000 pCi/l. In addition, no Gamma-emitting nuclides of man-made origin were detected in any of the samples.

TABLE XXIII DRINKING WATER 1985

		, pCi/l									
Collection Location	Date Collected	Gross Alpha 1.0*	Gross Beta 2.0*	Strontium-90 0.5*	Tritium 1000*						
Desert Farms	06/13/85 ^a	1.1 <u>+</u> 0.6	4.2 <u>+</u> 0.6	< 0.5	< 1000						
1	06/13/85 ^b	2.0 <u>+</u> 1.2	3.4 <u>+</u> 0.5	< 0 . 5 [.]	< 1000						
	07/18/85	1.4 <u>+</u> 1.3**	< 2.0 -	< 0.5	< 1000						
	08/15/85	3.8 <u>+</u> 1.6**	4.5 <u>+</u> 0.6**	< 0.5	< 1000						
	09/19/85	<1.0	6.1 <u>+</u> 1.5**	<0.5	< 1000						
	10/17/85	3.6 <u>+</u> 1.9	5.4 <u>+</u> 0.6	<0.5	< 1000						
	11/14/85	<1.0	< 2.0	<0.5	< 1000						
	12/19/85	2.2 <u>+</u> 1.3	4.7 <u>+</u> 0.6	<0.5	< 1000						
McArthur Farm	06/13/85ª	<1.0	4.4 <u>+</u> 0.6	<0.5	< 1000						
	06/13/85 ^b	<1.0	< 2.0	<0.5	< 1000						
	07/18/85	<1.0	< 2.0	<0.5	< 1000						
	08/15/85	<1.0	2.6 <u>+</u> 0.5 .	<0.5	< 1000						
	09/19/85	<1.0	< 2.0	<0.5	< 1000						
	10/17/85	<1.0	2 . 5 <u>+</u> 0.5	<0.5	< 1000						
	11/14/85	<1.0	< 2.0	<0.5	< 1000						
	12/19/85	1.3 <u>+</u> 1.1	2.3 <u>+</u> 0.5	<0.5	< 1000						
Wedgeworth	06/14/85 ^a	<1.0	< 2.0	<0.5	< 1000						
	06/13/85 ^b	1.5 <u>+</u> 1.2	2.4 <u>+</u> 0.9	<0.5	< 1000						
	07/18/85	<1.0	2.1 <u>+</u> 0.5	<0.5	< 1000						
	08/15/85	<1.0	2 . 3 <u>+</u> 0.5	<0.5	< 1000						
	09/19/85	<1.0	2.0 <u>+</u> 0.7	<0.5	< 1000						
	10/17/85.	2.1 <u>+</u> 1.8	3.2 <u>+</u> 1.8	<0.5	< 1000						
	11/14/85	<1.0	< 2.0	<0.5	< 1000						
	12/19/85	<1.0	< 2.0	<0.5	< 1000						

*Detection Limit

******Verified by reanalysis

^aComposite Sample

^bGrab Sample

مدينه ويراهم

TABLE XXIV DRINKING WATER GAMMA SPECTROMETRY

21

1 V.

<u>1985</u>

		pCi/l									
Collection Location	Date Collected	Ba-140 <u>4</u> *	Co-60 _ <u>5*</u>	Mn-54 	Ru,Rh-106	Zn-65 16*	Zr,Nb-95	Cs-137 	Cs-134 10*	Ce-144 18*	Fe-59 3*
Desert Farms	06/13/85 ^a 06/13/85 ^b 07/18/85 08/15/85 09/19/85 10/17/85 11/14/85 12/19/85	**************************************		۲ ۲		•	ŗ			x	
McArthur Farm	06/13/85a 06/13/85b 07/18/85 08/15/85 09/19/85 10/17/85 11/14/85 12/19/85			NONE	DETECT	ED	د ` =				
Wedgeworth	06/13/85 ^b 06/14/85 ^a 07/18/85 08/15/85 09/19/85 10/17/85 11/14/85 12/19/85		`			- -					
*Detection Limit ^a Composite Sample ^b Grab Sample	;	,									

•

.....

8.6 Groundwater

2 . eiler for "an "an an a'

110 - M.

Quarterly groundwater samples were collected from the on-site wells (Well 27ddc and Well 34abb). All groundwater samples were analyzed for Gross Alpha, Gross Beta, Strontium-90, Tritium and for Gamma-emitting nuclides. Results.

1

-. |

-

-

Two groundwater samples collected during 1985 exhibited Gross Alpha activity. Gross Alpha activity ranged from less than 1.0 pCi/l to 2.2 ± 1.4 pCi/l.

Gross Beta activity of 2.1 ± 0.5 was detected in one of the groundwater samples collected during 1985 (Well 27ddc - 08/15/85).

No groundwater sample collected during 1985 had detectable levels of Tritium or Strontium-90. In addition, no isotopes of interest were detected by gamma spectral analysis of the groundwater samples.

TABLE XXV GROUNDWATER 1985

		pCi/I									
Collection Location	Date Collected	Gross Alpha 1.0*	Gross beta 2.0*	Strontium-90 0:5*	Tritium 1000*						
Well 27ddc	08/15/85	2.2 <u>+</u> 1.4**	2.1 <u>+</u> 0.5**	< 0.5	< 1000						
	11/14/85	< 1.0	< 2.0	< 0.5	< 1000						
Well 34abb	08/15/85	1.9 <u>+</u> 1.3**	< 2.0	< 0.5	< 1000						
	11/14/85	< 1.0	< 2.0	< 0.5	< 1000						

*Detection limit

• •

Ī

******Verified by reanalysis

<u>TABLE XXVI</u> <u>GROUNDWATER</u> <u>GAMMA SPECTROMETRY</u> <u>1985</u>

		pCi/l									
Collection Location	Date Collected	Ba-140 	Co-60 	Mn-54 2*	Ru,Rh-106 10*	Zn-65 <u>16*</u>	Zr,Nb-95 	Cs-137 _2*_	Cs-134 	Ce-144 	Fe-59 3*
Well 27ddc	08/15/85 11/14/85										
Well 34abb	08/15/85 11/14/85		1	NONE	DETECT	ED		•			

. . .

•

*Detection Limit

-86-

8.7 Surface Water

Surface water samples were introduced into the monitoring program during the third quarter of 1982. Samples from PVNGS Reservoir and PVNGS Evaporation Pond were collected weekly throughout 1985.

These samples were analyzed for lodine-131 activity, then composited at the end of each month and analyzed for Cross Alpha, Gross Beta, Strontium-89, Strontium-90, Tritium and Gamma-emitting nuclides. Results of these analyses are presented in Tables XXVII, XXVIII, XXIX, and XXX.

Iodine-131 was detected in none of the 1985 surface water samples collected.

Table XXIX presents data obtained for analyses of Gross Alpha, Gross Beta, Strontium-89, Strontium-90 and Tritium on the monthly composite samples. Gross Alpha activity was detected in two of the monthly composite's one (November) from the PVNGS Evaporation Pond $(3.2\pm1.6 \text{ pCi/l})$ and one (November) from the PVNGS Reservoir $(1.9\pm1.4 \text{ pCi/l})$.

PVNGS Reservoir composites demonstrated Gross Beta activities ranging from less than 2.0 pCi/l to 10.9 ± 0.7 pCi/l (November composite). The composite samples from the PVNGS Evaporation Pond showed Gross Beta activities ranging' from less than 2.0 pCi/l to 12.9 ± 2.0 pCi/l (June composite).

As can be seen from Table XXIX, none of the monthly composite samples exhibited any observable activity for Strontium-39, Strontium-90, or Tritium above the detection limits of 1.0 pCi/l, and 1000 pCi/l respectively.

-87-

Gamma Spectral analysis of the monthly composites (PVNCS Reservoir and Evaporation Pond) showed no detectable activity for any of the nuclides of interest. (See Table XXX).

1

-

ì

TABLE XXVII SURFACE WATER 1985

Collection Location	Collection Date	I-131 (pCi/l)
	<u>Concerton Date</u>	
PVNGS Reservoir	05/30/85	< 0.5
	06/06/85	< 0.5
	06/13/85	< 0.5
	06/20/85	< 0.5
	06/27/85	· < 0.5
*	07/04/85	< 0.5
• · · ·	07/11/85	< 0.5
	07/18/85	< 0.5
	07/25/85	< 0.5
	08/01/85	< 0.5
	08/08/85	< 0.5
•	08/15/85	< 0.5
	08/22/85	< 0.5
	08/29/85	. < 0.5
	09/05/85	< 0.5
•	09/12/85	< 0.5
•	09/19/85	< 0.5
	09/26/85	< 0.5
	10/03/85	20.5
-	10/10/85	< 2.5
	10/17/85	< 2.5
•	10/24/85	< 0.5
*	10/31/85	< 0.5
	11/07/85	< 0.5
	11/14/85	< 0.5
	11/21/85	< 0.5
,	11/27/35	20.5
	12/05/85	< 0.5
	12/12/85	< 0.5
	12/19/85	20.5
· .	12/26/85	< 0.5

*Detection Limit

.

-89-

TABLE XXVIII SURFACE WATER 1985

-

4

•		I-131 (pCi/l)
Collection Location	Collection Date	0.5*
PVNGS Evaporation Pond	05/30/85	< 0.5
	06/06/85	< 0.5
	06/13/85	< 0.5
	06/20/85	× < 0.5
	06/27/85	< 0.5
	07/04/85	< 0.5
	07/11/85	< 0.5
	07/18/85	< 0.5
	07/25/85	< 0.5
_	08/01/35	< 0.5
	08/08/85	< 0.5
	08/15/85	< 0.5
	08/22/85	< 0.5
•	08/29/8 <i>5</i>	< 0.5
•	09/05/85	< 0.5
	09/12/85	< 0.5
	09/19/85	< 0.5
	09/26/8 <i>5</i>	< 0.5
	10/03/85	< 0.5
	10/10/85	< 0.5
	10/17/85	< 0.5
	10/24/85	< 0.5
	10/31/85	< 0.5
	11/07/85	< 0.5
	11/14/85	< 0.5
	11/21/35	< 0.5
a 1 9 f ettel article	11/27/85	< 0.5
	12/05/85	< 0.5
	12/12/85	< 0.5
	12/19/85	< 0.5
	12/26/85	< 0.5

*Detection Limit

TABLE XXIX SURFACE WATER (Composite)

<u>1985</u>

		pci/i								
Collection Location	Composite Period	Gross Alpha 1.0*	Gross Beta 2.0*	Strontium-89 1.0*	Strontium-90 0.5*	Tritium 1000*				
PVNGS Reservoir	May	< 1.0	5.9 <u>+</u> 0.6	< 1.0	< 0.5	<1000				
	June	< 1.0	6.6 <u>+</u> 0.6	< 1.0	< 0.5	<1000				
	July	< 1.0	7.0 <u>+</u> 1.0	< 1.0	< 0.5	<1000				
,	August	< 1.0	8.3 <u>+</u> 0.7	< 1.0	< 0.5	<1000				
	September	< 1.0	5.4 <u>+</u> 0.6	< 1.0	< 0.5	<1000				
	October	< 1.0	3.0 <u>+</u> 0.5	< 1.0	< 0.5	<1000				
	November	1.9 <u>+</u> 1.4	10.9 <u>+</u> 0.7	< 1.0	< 0.5	_ <1000				
	December	< 1.0	5:3 <u>+</u> 0.6	< 1.0	< 0.5	< 1000				
PVNCS Pond	A:ay	< 1.0	9.1 <u>+</u> 0.7	< 1.0	< 0.5	< 1000				
	June	< 1.0	12.9 <u>+</u> 2.0**	< 1.0	< 0.5 [°]	<1000				
	July	< 1.0	12.0 <u>+</u> 1.0	< 1.0	< 0.5	<1000				
	August	< 1.0	10.5 <u>+</u> 0.7	< 1.0	< 0.5	<1000				
	September	< 1.0	6.8 <u>+</u> 0.6	< 1.0	< 0.5	<1000				
	October .	< 1.0	8.3 <u>+</u> 0.7	< 1.0	< 0.5	<1000 -				
	November	3.2 <u>+</u> 1.6	6.7 <u>+</u> 0.6	< 1.0	< 0.5	< 1000				
	December	< 1.0	7.9 <u>+</u> 0.6	< 1.0	< 0.5	< 1000				

*Detection Limit

3 .1

6

***** *Verified by reanalysis

		TABLE XXX SURFACE WATER (Composite) GAMMA SPECTROMETRY									
			-		<u>1985</u>	<i>«</i> •				· .	
Collection Location	Date Collected	Ba-140 	Co-60 _5*	Mn-54 	Ru,Rh-106 10*	Zn-65 16*	<u>pCi/l</u> Zr,Nb-95 10*	Cs-137 	Cs-134 10*	Ce-144 18*	Fe-59 3*
PVNGS Reservoir	May June July August September October November December				N	ONEI	DETEC	TED			
PVNGS Pond	May										

June July August September October November December

*Detection Limit

-92-

8.8 Milk (Fresh)

si ta

SALLAND ST SALATA

Fresh milk samples were collected on a monthly basis during 1985 from the following locations:

I. Al Lueck, Jr. Dairy

2. Cordell Baisley Dairy

3. Butler Dairy

4. John Kerr Dairy

5. Hamstra #2 (designated operational control location)

6. Paul Skousen Dairy

All milk samples were analyzed for Iodine-131, Strontium-89, Strontium-90 and Gamma-emitting nuclides. Results of these analyses are presented in Tables XXXI and XXXII.

lodine-131 analyses of the milk samples showed no results above the detection limit of 0.5 pCi/l.

Strontium-90 analyses of the milk samples revealed no positive results above the detection limit of 0.5 pCi/l. Results for all milk samples for Strontium-89 analyses were less than the detection limit of 1.0 pCi/l.

Camma-emitting nuclides of interest remain below the level of detection for all milk samples analyzed in 1985.

TABLE XXXI MILK (Fresh) 1985

د

.

:.

-

ł

ŧ

J

•		pCi/l						
Collection Location	Date Collected	Iodine-131 0.5*	Strontium-89 1.0*	Strontium-90 0.5*				
John Kerr Dairy	06/14/85	< 0.5	< 1.0	< 0.5				
	· 08/16/85							
	09/20/85			< 0.5				
	10/18/85	< 0.5		< 0.5				
	11/15/85	< 0.5		< 0.5				
	12/20/05	< 0.5						
	12/20/37 .	< 0.2	< 1.0	< 0.7				
Al Lueck, Jr. Dairy	06/14/85	< 0.5	< 1.0	< 0.5				
	07/19/8 <i>5</i>	< 0.5	< 1.0	< 0.5				
	08/16/8 <i>5</i>	20.5	ج 1.0	< 0.5				
	C9/20/85	20.5	21.0	2 0.5				
	10/18/85	0.5	21.0	20.5				
	11/15/85	20.5	21.0	20.5				
	12/20/85	< 0.5	21.0	< 0.5				
Paul Skousen Dairy	06/14/85	0.5	1.0	. 0. 5				
r auf skousen bany	07/19/85	< 0.5		< 0.5				
	08/16/85	< 0.5						
~	00/20/05	< 0.5						
	07/20/82	< 0.5						
	10/15/35	< 0.5						
,	11/15/85	< 0.5	< 1.0	< 0.5				
	12/20/85	< 0.5	< 1.0	< 0.5				
Hamstra #2 Dairy	06/14/85	- 0.5	د ۱.0	c 0.5				
-	07/19/85	20.5	21.0	20.5				
•	08/16/85	20.5	21.0	20.5				
	09/20/85	20.5	21.0	0.5				
	10/18/85	0.5	21.0	0.5				
	11/15/85	0.5	21.0	0.5				
	12/20/85	< 0.5	< 1.0	< 0.5				
Cordoll Brielow Drine	06/11/195	0.5		0.5				
Corden baisley Dairy	00/14/05	< 0.5	< 1.0	< 0.5				
	07/17/07			< 0.5				
	00/10/02	< 0.5	< 1.0	< 0.2				
	07/20/83	< 0.2	< 1.0	< 0.2				
	10/18/85	< 0.5	< 1.0	< 0.5				
	11/15/85	< 0.5	< 1.0	< 0.5				
	12/20/85	- 0.5	- 1.0	د 0.5				

*Detection Limit

TABLE XXXI (Continued) <u>MILK (Fresh)</u>

<u>1985</u>

			pCi/l	
Collection Location	Date Collected	Iodine-131 0.5*	'Strontium-89 1.0*	Strontium-90 0.5*
^r Butler Dairy	06/14/85 07/19/85 08/16/85 09/20/85 10/18/85	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5
	12/20/85	< 0.5 < 0.5	< 1.0 < 1.0	< 0.5 < 0.5

*Detection Limit

-45

ſ

TABLE XXXII

MILK (FRESH)

ø

GAMMA SPECTROMETRY

<u>1985</u>

		PCi/I									
Collection Location	Collection Period	Ba-140 `_4*	Co-60 	Mn-54 2*	Ru,Rh-106 10*	Zn-65 <u>16*</u>	Zr,Nb-95 10*	Cs-137 	Cs-134 10*	Ce-144 18*	Fe-59 3*
Cordell Baisley											
Dairy	06/14/85										
•	07/19/85			i.							
	08/16/85										
	09/20/85										
	-10/18/85										
	11/15/85									•	
	12/20/85										
Butler Dairy	06/14/85										
· · · · · · · · · · · · · · · · · · ·	07/19/85			4							
	08/16/85										
	09/20/85										
	10/18/85										
	11/15/85				N	ONEI	DETEC	TED			
	12/20/85			-						• *	
John Kerr Dairy	06/14/85					ι.					
	07/19/85									•	
	08/16/85									`	
	09/20/85										
	10/18/85										
	11/15/85		*	,							
	12/20/85			۲		•					
Al Lueck, Jr. Dairy	06/14/85								•		
,,,,	07/19/85						•				
	08/16/85										
	09/20/85				*						
	10/18/85										
	11/15/85					-					
	12/20/85										
											•

1

t

.........

TABLE XXXII (Cont.)
MILK (FRESH)
GAMMA SPECTROMETRY
<u>1985</u>

. .

N 8-18 18-188 #4.

.....

	Collection Period	pCi/l									
Collection Location		Ba-140	Co-60 	Mn-54 _ <u>2*</u>	Ru,Rh-106 10*	Zn-65 16*	Zr,Nb-95 10*	Cs-137 	Cs-134 10*	Ce-144 	Fe-59 3*
Paul Skousen Dairy	06/14/85			•							
	07/19/8 <i>5</i>	•									
	08/16/85									e.	
' te	09/20/85		F								
	.10/18/85							,		-	
	11/15/85			14							
	12/20/85	NONE DETECTED									
Hamstra //2 Dairy	06/14/85										
	07/19/85										
	08/16/85										
	09/20/85	•						•			
	10/18/85						· · · · ·				
	11/15/85	-									
	12/20/85			-						•	

*Detection Limit

1

-97-

TABLE XXXIII ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM ANNUAL SUMMARY NAME OF FACILITY: PALO VERDE NUCLEAR GENERATING STATION LOCATION OF FACILITY: MARICOPA COUNTY, ARIZONA REPORTING PERIOD: 1985 (OPERATIONAL)

alfa'a at \$54"

- î +

1

Medium or Pathway sampled (Unit of Measurement)	Type and Total Lower Limit Number of of Detection Analyses (LLD) Performed		All Indicator Locations Mean (1) Range I	Location with Highest Annual Mean Name Distance & Direction	Mean (f) Range	Control Location Mean (f) Range	No. of nonroutine Reported Measurements	
Air Particulates (pCi/m ³)	Gross ^B (384)	0.002	0.027 (334/384) (0.008-0.037)	15A 2 miles 450	0.029 (32/32) (0.013-0.055)	0.028 (32/32) (0.014-0.057)	0	
	Gross ^a (384)	0.005	•	ĸ	•	•	0	
	Y-spec (36)	a e	•			4	0	
	1-131 (384)	0.007	•	۵		•	0	
TLD (mRem)	Quarterly (50)	N/A	25.8 (150/150)	371st Ave. & SPP Rd. 5 miles 1800	32.5 (3/3) (30.0-35.0)	7.7 (3/3) (7.0-8.5)	0	
Vegetation (pCi/g-wet)	1-131 (10)	0.02	•	•	•	•	0	
	Y-spec (10)	а	•	•		•	0`	

*All samples less than LLD aSee Table VI for LLD
TABLE XXXIII (Cont.)

ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM ANNUAL SUMMARY NAME OF FACILITY: PALO VERDE NUCLEAR GENERATING STATION LOCATION OF FACILITY: MARICOPA COUNTY, ARIZONA

REPORTING PERIOD: 1985 (OPERATIONAL)

Medium or Pathway sampled (Unit of Measurement)	Type and Total Number of Analyses Performed	Lower Limit of Detection (LLD)	All Indicator Locations Mean (1) Range	Location with Highest Annual Mean <u>Name</u> Distance & Direction	Mean (1) Range	Control Location Mean (f) Range	No. of nonroutine Reported Measurements
Drinking Water (pCi/l)	Gross ^a (24)	1.0	2.1 (9/24) (1.1-3.8)	Desert Farms 5 miles 2290	2.4 (6/8) (1.1-3.8)		0
	Gross ^β (24)	2.0	3.5 (15/24) (2.0-6.1)	Desert Farms 5 miles 2290	4.7 (6/8) (3.4-6.1)		0
	Sr-90 (24)	0.5	•			•	0, •
	113 (24)	1,000	بر ۲	• · · · · · · · · · · · · · · · · · · ·		*	0
	Y -spec (24)	a	•	•		•	0
Ground Water (pCi/l)	Gross a (4)	1.0	2.0 (2/4) (1.9-2.2)	Well 27ddc Onsite	2.2 (1/2) (2.2)		0
	Gross β (4)	2.0	2.1 (1/4) (2.1)	Well 27ddc Onsite	2.1 (1/2) (2.1)		0
	Sr-90 (4)	0.5	•	•			0 -
	H3 (4)	1,000	•	•			0
•	Y -spec (4)	a	•	٩			0
Surface Water (pCi/l)	1-131 (62)	0.5	· •	• *			0

•All samples less than LLD ^aSee Table VI for LLD

-96

TABLE XXXIII (Cont.) ENVIRONMENTAL RADIOLOGICAL MONITORING PROGRAM ANNUAL SUMMARY NAME OF FACILITY: PALO VERDE NUCLEAR GENERATING STATION LOCATION OF FACILITY: MARICOPA COUNTY, ARIZONA REPORTING PERIOD: 1985 (OPERATIONAL)

والماهيد ولاتكم تجدى وقراز وودويها أكا أساوه المريب الاقاد والا

Medium or Pathway sampled (Unit of Measurement)	Type and Total Number of Analyses Performed	Lower Limit of Detection (LLD)	All Indicator Locations Mean (1) Range	Location with Highest Annual Mean <u>Name</u> Distance & Direction	Mean (f) Range	Control Location Mean (1) Range	No. of nonroutin e Reported Measurements
Surface Water Composites (pCi/l)	Gross a(16)	1.0	2.6 (2/16) (1.9-3.2)	PVNGS Pond Onsite	3.2 (1/8) (3.2)		0
	Gross β(16)	2.0 .	7.9 (16/16) (3.0-12.9)	PVNGS Pond Onsite	9.3 (8/8) (6.7-12.9)		0
	Sr-89 (16)	1.0	•	•			0
	Sr-90 (16)	0.5		•			0
	113 (16)	1,000	•	•			ĨO
	Y-spec (16)	a	•	•			0
Nilk (pCi/l)	1-131 (42)	0.5	•	•		•	0
·	Sr-89 (42)	1.0	•	•		•	0.
2	Sr-90 (42)	0.5	•	\$			0
• •	Y-spec (42)	а	• **	•		•	0

•All samples less than LLD ^aSee Table VI for LLD

9.0 Miscellaneous Information

No miscellaneous information was obtained for the 1985 Annual Report.

10.0 References

- 1.) 1981 Annual Report, Palo Verde Nuclear Generating Station's Pre-Operational Radiological Monitoring Program.
- 2.) 1982 Annual Report, Palo Verde Nuclear Generating Station's Pre-Operational Radiological Monitoring Program.
- 3.) 1983 Annual Report, Palo Verde Nuclear Generating Station's Pre-Operational Monitoring Program.
- 4.) 1984 Annual Report, Palo Verde Nuclear Cenerating Station's Pre-Operational Monitroing Program.
- 5.) Palo Verde Nuclear Generating Station's Pre-Operational Radiological Monitoring Program, Summary Report 1979-1985.
- 6.) Nuclear Regulatory Commission, "Quality Assurance Criteria for Nuclear Power Plants and Fuel Processing Plant", 10 CFR 50, Appendix B (1975).
- 7.) Environmental Radiation Data, Quarterly Reports, U.S. Environmental Protection Agency, Office of Radiation Programs.
- S.) Nuclear Regulatory Commission, Branch Technical Position, Revision 1, 1979.

APPENDIX A

EPA CROSS CHECK RESULTS

, ··· ,

à

2

44 44 44

1

ŀ

•`<u>1985</u>

<u>Water</u>

Date	Parameter	EPA Known Value pCi/l±3 σ	CEP Reported Value pCi/filter
2/85	Chromium-51	48 <u>+</u> 8.7	$ \begin{array}{r} 38 \pm 7 \\ 46 \pm 7 \\ 32 \pm 7 \end{array} $
	Cobalt-60	20 <u>+</u> S.7	20 + 325 + 320 + 3
•	Zinc-65	55 <u>+</u> 8.7 /	51 <u>+</u> 3 50 <u>+</u> 3 55 <u>+</u> 3
	Cesium-134	³⁵ <u>+</u> S.7	33 <u>+</u> 2 29 <u>+</u> 2 32 <u>+</u> 2
	Cesium-137	25 <u>+</u> 8 . 7	23 <u>+</u> 3 25 <u>+</u> 3 28 <u>+</u> 3
7/85	Cobalt-60	14.0 <u>+</u> 5.0	$\begin{array}{c} 19 \pm 2 \\ 15 \pm 2 \\ 16 \pm 2 \end{array}$
	Zinc-65	47.0 <u>+</u> 5.0	52 <u>+</u> 5 49 <u>+</u> 5 44 <u>+</u> 4
	Ruthenium-106	62.0 <u>+</u> 5.0	73 <u>+</u> 7 74 <u>+</u> 7 69 <u>+</u> 7
	Cesium-134	35.0° <u>+</u> 5.0	$ \begin{array}{r} 23 \pm 3 \\ 29 \pm 3 \\ 26 \pm 3 \end{array} $
	Cesium-137	20.0 <u>+</u> 5.0	$ \begin{array}{r} 19 \pm 2 \\ 16 \pm 2 \\ 14 \pm 2 \end{array} $

-103-

<u>1985</u>

Radionuclides in Air Filters

Date	Parameter	EPA Known Value pCi/1±3σ	CEP Reported Value pCi/filter
3/85	Gross Alpha	10.0 <u>+</u> 8.7	9 <u>+</u> 1 10 <u>+</u> 1 12 <u>+</u> 1
	Gross Beta	36.0 <u>+</u> 8.7	40 <u>+</u> 4 41 <u>+</u> 4 39 <u>+</u> 4
	Strontium-90	15.0 <u>+</u> 2.6	19 <u>+</u> 2 13 <u>+</u> 2 17 <u>+</u> 2
	Cesium-137	6.0 <u>+</u> 8.7	7 <u>+</u> 2 6 <u>+</u> 2 5 <u>+</u> 2

ł

<u>1985</u>

Water

*

ł

1

Ì

Date	Parameter	EPA Known Value pCi/l±3σ	CEP Reported Value pCi/filter
4/85	Iodine-131	7.5 <u>+</u> 1.3	6 <u>+</u> 2 6 <u>+</u> 2 5 <u>+</u> 2

-105-

з

¥

l

E

<u>1985</u>

<u>Water</u>

Date	Parameter	EPA Known Value pCi/l±3 σ	CEP Reported Value pCi/filter
1/85	Cross Alpha	5.0 <u>+</u> 5.0	6 <u>+</u> 2 7 <u>+</u> 2 7 <u>+</u> 2
	Gross Beta	15.0 <u>+</u> 5.0	$ \begin{array}{r} 13 \pm 2 \\ 14 \pm 2 \\ 16 \pm 2 \end{array} $
5/85	Gross Alpha	12.0 <u>+</u> 5.0	$ \begin{array}{r} 13 \pm 2 \\ 15 \pm 2 \\ 14 \pm 2 \end{array} $
	Gross Beta	11.0 <u>+</u> 5.0	$ \begin{array}{r} 12 \pm 2 \\ 13 \pm 2 \\ 16 \pm 2 \\ \dots $
7/85	Gross Alpha	11 <u>+</u> 5	9 <u>+</u> 2 8 <u>+</u> 2 11 <u>+</u> 2
	Gross Beta	8 <u>+</u> 5	9 <u>+</u> 2 13 <u>+</u> 2 12 <u>+</u> 2
9/85	Cross Alpha	S <u>+</u> 5 ·	$ \begin{array}{r} 10 \pm 3 \\ 9 \pm 3 \\ 11 \pm 3 \\ \end{array} $
	Gross Beta	8 <u>+</u> 5	6 ± 3 5 ± 3 8 ± 3
11/85	Cross Alpha	10 <u>+</u> 5	9 <u>+</u> 3 8 <u>+</u> 3 10 <u>+</u> 3
•	Gross Beta	13 <u>+</u> 5	14 ± 3 -13 \pm 3 15 \pm 3

-106-

à

2

<u>1985</u>

Water

Date	Parameter	EPA Known Value pCi/l±3 σ	· CEP Reported Value pCi/filter
2/85	Tritium	3796 <u>+</u> 634	37 <i>5</i> 0 <u>+</u> 600 3610 <u>+</u> 600 3540 <u>+</u> 600
4/85		3559 <u>+</u> 630	3437 <u>+</u> 500 3265 <u>+</u> 500 3301 <u>+</u> 500
6/85		2416 <u>+</u> 351 /	3260 <u>+</u> 571 3191 <u>+</u> 576 2906 <u>+</u> 405
8/85		4430 <u>+</u> 443	3893 <u>+</u> 485 3944 <u>+</u> 476 3847 + 477

-107-

APPENDIX B

÷

PALO VERDE NUCLEAR GENERATING STATION

LAND USE CENSUS

ANPP

PVNGS

1985 LAND USE CENSUS

DECEMBER, 1985

7146C/dg

'n

ŧ

Ī

- ,

н

5 T ... X ... 1

.

1.0 INTRODUCTION

In accordance with PVNGS Technical Specification 12.2, the annual Land Use Census within a five mile radius of mid line PVNGS Unit 2 containment was performed during December, 1985 by Ralph B. Ochoa and Tim Hodges. -

ŧ

Observations were made in each of the 16 meteorological sectors of the nearest milking animals (cows and goats), nearest residence, and the nearest garden of greater than 500 ft² producing broad leaf vegetation. This census was completed by driving the roads within a five mile radius of PVNGS noting the location of the above-mentioned items.

The results of the Land Use Census are presented in Table 1 and discussed below. In the table, the radial direction and mileage from Unit 2 containment are presented for each location. The radial direction is one of the 16 different compass points. The mileage was estimated from map position from each location.

2.0 CENSUS RESULTS

2.1 Nearest Resident

Table 1 presents the location of the nearest resident to the PVNGS in each of the 16 meteorological sectors. There were two changes in the nearest resident noted in the 1985 census. These changes were in the NNW and WSW sectors.

2.2 Milking Animals

There were no milking animals observed during the 1985 census. No changes to the REMP milk sampling locations were made as a result of this census.

2.3 Vegetable Gardens

No gardens greater than 500 square feet producing broad leaf vegetation were found during the 1985 Land Use Census.

2.4 No changes were made to the REMP as a result of the 1985 Land Use Census.

Table 1

NY

.

-

.

14 . an an 4

NEAREST RESIDENCE WITHIN FIVE MILES OF PVNGS December, 1985

Meterological Sector	Radial Mileage		
N	1.50		
NNE	1.50 '		
NE	2.00		
ENE	1.75		
E	3.00		
ESE	3.75		
SE . ,	4.00		
SSE	4.50		
S	4.50		
SSW	No Residents		
SW	2.75		
WSW	1.75 (new)		
W	No Residents		
wnw .	No Residents		
NW	4.00		
NNW	2.50 (new)		

•

•

£

• •

Ð