

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D.C. 20555-0001

October 30, 2017

Mr. Bryan C. Hanson Senior Vice President Exelon Generation Company, LLC President and Chief Nuclear Officer Exelon Nuclear 4300 Winfield Road Warrenville, IL 60555

SUBJECT: NINE MILE POINT NUCLEAR STATION, UNIT 1 - REPORT FOR THE AUDIT OF LICENSEE RESPONSES TO INTERIM STAFF EVALUATIONS OPEN ITEMS RELATED TO NRC ORDER EA-13-109 TO MODIFY LICENSES WITH REGARD TO RELIABLE HARDENED CONTAINMENT VENTS CAPABLE OF OPERATION UNDER SEVERE ACCIDENT CONDITIONS (CAC NO. MF4481; EPID L-2014-JLD-0043)

Dear Mr. Hanson:

On June 6, 2013 (Agencywide Documents Access and Management System (ADAMS) Accession No. ML13143A334), the U.S. Nuclear Regulatory Commission (NRC) issued Order EA-13-109, "Order to Modify Licenses with Regard to Reliable Hardened Containment Vents Capable of Operation Under Severe Accident Condition," to all Boiling Water Reactor licensees with Mark I and Mark II primary containments. The order requirements are provided in Attachment 2 to the order and are divided into two parts to allow for a phased approach to implementation. The order required licensees to submit for review overall integrated plans (OIPs) that describe how compliance with the requirements for both phases of Order EA-13-109 will be achieved.

By letter dated June 27, 2014 (ADAMS Accession No. ML14184B340), Exelon Generation Company, LLC. (the licensee) submitted its Phase 1 OIP for Nine Mile Point Nuclear Station, Unit 1 (NMP1). By letters dated December 16, 2014, June 30, 2015, December 15, 2015 (which included the combined Phase 1 and Phase 2 OIP), June 30, 2016, December 14, 2016, and June 30, 2017 (ADAMS Accession Nos. ML14356A192, ML15181A017, ML15364A075, ML16182A013, ML16349A033, and ML17181A033, respectively), the licensee submitted its 6month updates to the OIP. The NRC staff reviewed the information provided by the licensee and issued interim staff evaluations (ISEs) for Phase 1 and Phase 2 of Order EA-13-109 for NMP1 by letters dated March 26, 2015 (ADAMS Accession No. ML15069A671), and August 30, 2016 (ADAMS Accession No. ML16231A452), respectively. When developing the ISEs, the staff identified open items where the staff needed additional information to determine whether the licensee's plans would adequately meet the requirements of Order EA-13-109.

The NRC staff is using the audit process described in the letters dated May 27, 2014 (ADAMS Accession No. ML14126A545), and August 10, 2017 (ADAMS Accession No. ML17220A328), to gain a better understanding of licensee activities as they come into compliance with the order. As part of the audit process, the staff reviewed the licensee's closeout of the ISE open items.

The NRC staff conducted a teleconference with the licensee on October 12, 2017. The enclosed audit report provides a summary of that aspect of the audit.

If you have any questions, please contact me at 301-415-1025 or by e-mail at Rajender.Auluck@nrc.gov.

Sincerely,

Ranlack

Rajender Auluck, Senior Project Manager Beyond-Design-Basis Engineering Branch Division of Licensing Projects Office of Nuclear Reactor Regulation

Docket No.: 50-220

Enclosure: Audit report

cc w/encl: Distribution via Listserv

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D.C. 20555-0001

AUDIT REPORT BY THE OFFICE OF NUCLEAR REACTOR REGULATION

AUDIT OF LICENSEE RESPONSES TO INTERIM STAFF EVALUATIONS OPEN ITEMS

RELATED TO ORDER EA-13-109 MODIFYING LICENSES

WITH REGARD TO RELIABLE HARDENED CONTAINMENT VENTS CAPABLE OF

OPERATION UNDER SEVERE ACCIDENT CONDITIONS

EXELON GENERATION COMPANY, LLC.

NINE MILE POINT NUCLEAR STATION, UNIT 1

DOCKET NO. 50-220

BACKGROUND

On June 6, 2013 (Agencywide Documents Access and Management System (ADAMS) Accession No. ML13143A334), the U.S. Nuclear Regulatory Commission (NRC) issued Order EA-13-109, "Order to Modify Licenses with Regard to Reliable Hardened Containment Vents Capable of Operation Under Severe Accident Condition," to all Boiling Water Reactor (BWR) licensees with Mark I and Mark II primary containments. The order requirements are divided into two parts to allow for a phased approach to implementation.

Phase 1 of Order EA-13-109 requires license holders of BWRs with Mark I and Mark II primary containments to design and install a Hardened Containment Vent System (HCVS), using a vent path from the containment wetwell to remove decay heat, vent the containment atmosphere (including steam, hydrogen, carbon monoxide, non-condensable gases, aerosols, and fission products), and control containment pressure within acceptable limits. The HCVS shall be designed for those accident conditions (before and after core damage) for which containment venting is relied upon to reduce the probability of containment failure, including accident sequences that result in the loss of active containment heat removal capability or extended loss of alternating current power (ELAP). The order required all applicable licensees, by June 30, 2014, to submit to the Commission for review an overall integrated plan (OIP) that describes how compliance with the Phase 1 requirements described in Order EA-13-109 Attachment 2 will be achieved.

Phase 2 of Order EA-13-109 requires license holders of BWRs with Mark I and Mark II primary containments to design and install a system that provides venting capability from the containment drywell under severe accident conditions, or, alternatively, to develop and implement a reliable containment venting strategy that makes it unlikely that a licensee would need to vent from the containment drywell during severe accident conditions. The order required all applicable licensees, by December 31, 2015, to submit to the Commission for

review an OIP that describes how compliance with the Phase 2 requirements described in Order EA-13-109 Attachment 2 will be achieved.

By letter dated June 27, 2014 (ADAMS Accession No. ML14184B340), Exelon Generation Company, LLC. (Exelon, the licensee) submitted its Phase 1 OIP for Nine Mile Point Nuclear Station, Unit 1 (NMP1). By letters dated December 16, 2014, June 30, 2015, December 15, 2015 (which included the combined Phase 1 and Phase 2 OIP), June 30, 2016, December 14, 2016, and June 30, 2017 (ADAMS Accession Nos. ML14356A192, ML15181A017, ML15364A075, ML16182A013, ML16349A033, and ML17181A033, respectively), the licensee submitted its 6-month updates to the OIP, as required by the order.

The staff reviewed the information provided by the licensee and issued interim staff evaluations (ISEs) for Phase 1 and Phase 2 for NMP2 by letters dated March 26, 2015 (ADAMS Accession No. ML15069A671), and August 30, 2016 (ADAMS Accession No. ML16231A452), respectively. When developing the ISEs, the staff identified open items where the staff needed additional information to determine whether the licensee's plans would adequately meet the requirements of Order EA-13-109.

The NRC staff is using the audit process in accordance with the letters dated May 27, 2014 (ADAMS Accession No. ML14126A545), and August 10, 2017 (ADAMS Accession No. ML17220A328), to gain a better understanding of licensee activities as they come into compliance with the order. The staff reviews submitted information, licensee documents (via ePortals), and preliminary Overall Program Documents (OPDs)/OIPs, while identifying areas where additional information is needed. As part of this process, the staff reviewed the licensee closeout of the ISE open items.

AUDIT SUMMARY

As part of the audit, the NRC staff conducted a teleconference with the licensee on October 12, 2017. The purpose of the audit teleconference was to continue the audit review and provide the NRC staff the opportunity to engage with the licensee regarding the closure of open items from the ISEs. As part of the preparation for these audit calls, the staff reviewed the information and/or references noted in the OIP updates to ensure that closure of ISE open items and the HCVS design are consistent with the guidance provided in Nuclear Energy Institute (NEI) 13-02, Rev. 1 and related documents (e.g. white papers (ADAMS Accession Nos. ML14126A374, ML14358A040, ML15040A038 and ML15240A072, respectively) and frequently asked questions (FAQs, ADAMS Accession No. ML15271A148)) that were developed and reviewed as part of overall guidance development. The NRC staff audit members are listed in Table 1. Table 2 is a list of documents reviewed by the staff. Table 3 provides the status of the ISE open items are taken from the Phase 1 and Phase 2 ISEs issued on March 26, 2015, and August 30, 2016, respectively.

FOLLOW UP ACTIVITY

The staff continues to audit the licensee's information as it becomes available. The staff will issue further audit reports for NMP1, as appropriate.

Following the licensee's declarations of order compliance, the licensee will provide a final integrated plan (FIP) that describes how the order requirements are met. The NRC staff will evaluate the FIPs, the resulting site-specific OPDs, as appropriate, and other licensee documents, prior to making a safety determination regarding order compliance.

CONCLUSION

This audit report documents the staff's understanding of the licensee's closeout of the ISE open items, based on the documents discussed above. The staff notes that several of these documents are still preliminary, and all documents are subject to change in accordance with the licensee's design process. In summary, the staff has no further questions on how the licensee has addressed the ISE open items, based on the preliminary information. The status of the NRC staff's review of these open items may change if the licensee changes its plans as part of final implementation. Changes in the NRC staff review will be communicated in the ongoing audit process.

Attachments:

- 1. Table 1 NRC Staff Audit and Teleconference Participants
- 2. Table 2 Audit Documents Reviewed
- 3. Table 3 ISE Open Item Status Table

Title	Team Member	Organization
Team Lead/Sr. Project Manager	Rajender Auluck	NRR/DLP
Project Manager Support/Technical		
Support – Containment / Ventilation	Brian Lee	NRR/DLP
Technical Support – Containment /		
Ventilation	Bruce Heida	NRR/DLP
Technical Support – Electrical	Kerby Scales	NRR/DLP
Technical Support – Balance of Plant	Kevin Roche	NRR/DLP
Technical Support – I&C	Steve Wyman	NRR/DLP
Technical Support – Dose	John Parillo	NRR/DRA

Table 1 - NRC Staff Audit and Teleconference Participants

Table 2 – Audit Documents Reviewed

ECP 13-000086-103 – Missile Evaluation

ECP 13-000086 - DCS Electrical Section, Battery and Charger

S10-HVAC-HV11, "TB Building Maximum & Minimum Temperatures"

HCVS-OGP-09 – HCVS Hose Radiological Evaluation

S22.4-201.1P002, "HCVS Piping Analysis for Non-Torus Attached Piping"

S22.4-201.13F004, Revision 0, "Hardened Contaniment Vent Capacity"

ECP 13-000086-103 – Suppresion Pool Thermal Capacity

S22.4-201.13F001, Revision 0, "Hardened Containment Vent Purge System Design Calculation"

Procedure N1-OP-51, Revision 01300 – Plant Communications

H21C-115, "NMP1 Hardened Containment Vent System Dose Analysis"

Calculation 125VDCSCES-FLEX-BDB, Revision 0, "Fukushima/NFPA-805 125VDC Portable Battery Charger Equipment Sizing"

S22.4-201.13M002, Revision 0, "HCVS Valve Motive Gas Supply Sizing"

VENRPT-15-000013 – Seismic Qualifiaction Summary for Hardened Containment Vent Components

ECP 13-000086-103 – Instrumentation & Controls Section 4.1.36

ECP 13-000086-103 – Environmental Conditions and Impacts Section 4.1.14

ECP 13-000086-103 – Assessment of Operator Access to HCVS Equipment Section 4.1.19

N2-MISC-004, Revision 0, "MAAP Analysis to Support SAWA Strategy"

ECP-17-000279-CN-001 - H21C-115, "Hardened Containment Vent System (HCVS) Radiological Dose Analysis"

BWROG-TP-008, "Severe Accident Water Addition Timing"

BWROG-TP-011, "Severe Accident Water Management Supporting Evaluations"

Nine Mile Point Nuclear Station, Unit 1 Vent Order Interim Staff Evaluation Open Items:

Table 3 - ISE Open Item Status Table

ISE Open Item Number Requested Action	Licensee Response – Information provided in 6 month updates and on the ePortal	NRC Staff Close-out notes	Safety Evaluation (SE) status Closed; Pending; Open (need additional information from licensee)
Phase 1 ISE OI 1 Make available for NRC staff audit the seismic and tornado missile final design criteria for the HCVS stack.	Seismic Design of HCVS stack The HCVS vent piping system has been evaluated to Seismic Category I requirements in pipe stress calculations S22.4-201.1P002 and S22.4-201.13P003 consistent with the plants seismic design basis to comply with NEI 13-02, Section 5.2 seismic design guidance. Per NRC Letter, May 9, 2014, "Subject: Screening and Prioritization Results Regarding Information Pursuant to Title 10of the <i>Code of Federal Regulations</i> 50.54(f) Regarding Seismic Hazard Reevaluations for Recommendation 2.1 of the Near- Term Task Force Review of Insights from the Fukushima Dai-ichi Accident", the NRC concluded that NMP1 "screened out" of performing the seismic risk evaluation as part of the HCVS seismic analysis. Therefore, use of current licensing basis and design basis seismic Information (i.e., response spectra) is considered acceptable for the BDB [beyond-design-basis] analysis of the HCVS piping system at NMP1. The above referenced pipe stress calculations are available for NRC review in the ePortal.	The NRC staff reviewed the information provided in the 6- month updates and on the ePortal. Calculations S22.4-201.1P002 and S22.4-201.13P003 address the HCVS seismic qualification. The licensee evaluated the entire HCVS system to Seismic Category I, which is consistent with the plant's seismic design- basis. The Engineering Change Package (ECP) -13-000086-103 addresses the HCVS Tornado Missile Protection. The licensee credits NEI 13-02, Section 5.1.1.6 risk informed approach to wind- borne missiles. The licensee indicated they have contingency actions available in the event a wind-borne missile blocks vent gas flow. The licensee's design is consistent with the endorsed white paper and meets all of the tornado missile assumptions identified in HCVS-WP-04.	Closed [Staff evaluation to be included in SE Section 3.2.2]

	Missile Protection of the outdoor HCVS	No follow-up questions.	
	<u>stack</u>		
	NEI 13-02, Section 5.1.1.6 requires that		
	missile impacts are to be considered for		
	portions of the HCVS. The Nuclear		
	Energy Institute (NEI) issued a white		
	paper, HCVS-WP-04, endorsed by the		
	NRC, which provides a risk-informed		
	approach to evaluate the threat posed to		
	exposed portions of the HCVS by wind-		
	borne missiles. The white paper		
	concludes that the HCVS is unlikely to be		
	damaged in a manner that prevents		
	containment venting by wind-generated		
	missiles coincident with an ELAP or		
	LUHS [loss of ultimate heat sink], for		
	plants that are enveloped by the		
	assumptions in the white paper.		
	A NMP1 specific missile evaluation is		
	documented in the Engineering Change		
	Package (ECP) consistent with HCVS-		
	WP-04. The conclusion of the evaluation		
	is that NMP1 meets all of the tornado		
	missile assumptions identified in HCVS-		
	WP-04 and as such, supplementary		
	protection is not required for the HCVS		
	piping and components. The ECP missile		
	evaluation is available on the eportal for		
	NRC review.		
Phase 1 ISE OI 2	The HCVS is sized to provide sufficient	The NRC staff reviewed the	Closed
	venting capacity to prevent a long-term	information provided in the 6-	
Make available for NRC staff	overpressure failure of the containment by	month updates and on the	Staff evaluation to be
audit analyses demonstrating	keeping the containment pressure below	ePortal.	included in SE Section
that HCVS has the capacity to	the containment design pressure and the	or or call	3.1.2.1]
vent the steam/energy	primary containment pressure limit. The	ECP-13-000086-103, Attachment	0
equivalent of one percent of	HCVS has been demonstrated by	B determined the energy released	
	calculation S22.4-201.13F004 to have the	for 3 hours is 2.9E8 BTUs. The	
licensed/rated thermal power		IOI S HOUIS IS 2.9EO DI US. INC	
(unless a lower value is	capacity to vent the steam/energy		

justified), and that the suppression pool and the HCVS together are able to absorb and reject decay heat, such that following a reactor shutdown from full power containment pressure is restored and then maintained below the primary containment design pressure and the primary containment pressure limit.	equivalent of 1 percent of licensed/rated thermal power. The calculation indicates that a vent capacity of approximately 68,300 lbm/hour of saturated steam at the primary containment design pressure is required. The results of this calculation show that the capacity of the HCVS exceeds this value. The suppression pool thermal capacity must be sufficient to absorb the decay heat generated during at least the first 3 hours following reactor shutdown. The total decay heat available to the suppression pool for the first 3 hours following reactor shutdown, when starting at 102% reactor thermal power, is 2.91 OE8 BTU [British Thermal Unit]; and the suppression pool thermal capacity, i.e., its capacity to absorb energy, is 6.299E8 BTU. Therefore, there is sufficient suppression pool capacity to absorb the decay heat during the first 3 hours following reactor shutdown, and the EA- 13-109, Attachment 2, Requirement 1.21 and NEI 13-02, Section 4.1.1 are satisfied. The calculations supporting the above response are available for NRC review in the ePortal.	capacity of the suppression pool is 6.299E8 BTUs. Analysis ECP-13-000086-MU-008 used the RELAP5 computer program. The 1% venting capacity required is 68,303 lbm/hr. The vent capacity is 63,259 lbm/hr at 25 per square inch gauge (psig) and 71,658 lbm/hr at 30 psig. The vent capacity at 35 psig is 79,859 lbm/hr. Updated Final Safety Analysis Report Section VI.B.2.1 design limits the Drywell and 35 psig and 25°F for the Suppression Pool (Torus). This document confirmed that the size of the wetwell portion of the HCVS provides adequate capacity to meet or exceed the order criteria. No follow-up questions.	Closed
Phase 1 ISE OI 3 Provide a description of the final design of the HCVS to address hydrogen detonation and deflagration.	As discussed in the December 2015 OIP submittal, the NMP1 design will use an Argon purge system to prevent the possibility of hydrogen detonation and deflagration. The argon purge system design is illustrated on Piping and Instrumentation Drawing C-18014-C, Sht. 7, and is available for NRC review in the ePortal. The argon purge system was	The NRC stan reviewed the information provided in the 6- month updates and on the ePortal. The licensee's design is consistent with option 3 of the endorsed white paper HCVS-WP- 03.	[Staff evaluation to be included in SE Section 3.1.2.11]

	sized in calculation S22.4-201.13F001 which is on the ePortal.	Calculation S33.4-201.13F001, "HCVS Purge System Design,"	
		determined the quantity of Argon required to inert the hydrogen in the vent system to preclude the potential for a hydrogen	
		deflagration. The calculation assumed 8 argon purges in the first 24 hours with a minimum of 1 hour between purges.	
		No follow-up questions.	
Phase 1 ISE OI 4 Make available for NRC staff audit documentation that demonstrates adequate communication between the remote HCVS operation locations and HCVS decision makers during ELAP and severe accident conditions.	At NMP1, the primary operating station for HCVS operation is located in the Auxiliary Control Room. A HCVS remote operating station (ROS) is located in the turbine building. The location was evaluated for habitability and accessibility during a severe accident. Onsite communications will be performed using either the installed sound powered headset system or the 450 MHz [mega hertz] radios in the talk around mode, or a combination thereof. A sound powered phone jack is available near the ROS to communicate with the rest of the plant. Offsite communications will utilize fixed satellite phones in the Control Room and Technical Support Center (TSC). Both locations also have portable satellite phones staged.	The NRC staff reviewed the information provided in the 6- month updates and on the ePortal. The communication methods are the same as accepted in Order EA-12-049. No follow-up questions.	Closed [Staff evaluation to be included in SE Section 3.1.1.1]
	Communications protocol for beyond design basis events are documented in CC-NM-118 and procedure N2-OP-76 which are available for NRC review on the ePortal.		

Phase 1 ISE OI 5 Provide a description of the strategies for hydrogen control that minimizes the potential for hydrogen gas migration and ingress into the reactor building or other buildings.	These communication methods are consistent with FLEX communication practices at NMP1 and have been previously reviewed by the staff as documented in a communications safety assessment regarding NTTF Rec 9.3 Communications for NMP ([ADAMS Accession No.] ML13100A236). P&IDs C18014C, Sheets 1 and 7 are available to the NRC for review on the ePortal. The P&IDs combined with the following system description provides a summary of the system design intended to minimize the potential for hydrogen gas migration and ingress into the reactor building or other buildings: The new HCVS wetwell pipe has a dedicated HCVS flowpath from the wetwell penetration PCIVs [primary containment isolation valve] to the outside with no interconnected downstream piping. The HCVS discharges the effluent to a release point above main plant structures. The new HCVS vent interfaces with lines 201.1-20-LT (upstream of PCIVs IV-201-16 and IV- 201-17) and 201.1-3-LT (upstream of PCIV IV-201.2-33 and IV-201.2-06) of the Containment System. Line 201.1-20-L T is utilized for supplying pitrogen to the torus through isolation	The NRC staff reviewed the information provided in the 6- month updates and on the ePortal. The licensee has installed a new HCVS wetwell pipe which provides a dedicated HCVS flowpath from the wetwell penetration PCIVs to the outside with no interconnected downstream piping. The staff's review of the proposed system indicates that the licensee's design appears to maintain hydrogen below flammability limits. No follow-up questions.	Closed [Staff evaluation to be included in SE Section 3.1.2.12]
	•		

	close upon receipt of a containment		
	isolation signal from the Reactor		
	Protection System or a high radiation		
	signal from the Off-Gas System monitors.		
	Line 201.1-3-L T provides nitrogen		
	makeup to the torus through isolation		
	valves IV-201.2-33 and IV-201.2-06		
	during normal operation. IV-201.2-33 and		
	IV-201.2-06 are normally closed and		· ·
	automatically close upon receipt of a		
	containment isolation signal from the		
	Reactor Protection System or a loss of		
	nitrogen to the valve actuator.		
	The new HCVS vent will be normally		
	isolated from the Containment System by		
	two new normally closed PCIVs (IV-		
	201.13-74 and IV-201.13-71) and will not		
	impact the operation of these interfacing		
	systems. The new HCVS piping is		
	designed as an independent, isolable		
	branch off of Line 201 .1-20-L T. There		
	are no branch lines downstream of the		
	HCVS vent piping PCIVs (IV-201.13-71		
	and IV-201.13-74), which interface with		
	existing plant systems and there is no		
	potential for cross flow from the HCVS,		
	thereby meeting the requirements of NEI		
	13-02, Section 1.2.3. Therefore, valves		
	IV-201.2-33, IV-201.2-06, IV-201-16 and		
	IV-201-17 are not considered boundary		
	valves. These valves are exposed to the		
	containment atmosphere, as a result of		
	the original plant design, independent of		
	the addition of HCVS.		
Phase 1 ISE OI 6		The NRC staff reviewed the	Closed
Fliase LISE ULD	An assessment of Operator access to		Cioseu
	HCVS equipment was performed and	information provided in the 6-	
Make available for NRC staff	documented in the Design Consideration	month updates and on the	
audit an evaluation of	Section (DCS) of Engineering Change	ePortal.	

terreneveluse and redictorized	Deckson FOD 10 000000 which has been		Ctoff evolution to be
temperature and radiological	Package ECP-13-000086 which has been	ECD 10.000000 100 desuments	[Staff evaluation to be
conditions to ensure that	loaded on the ePortal.	ECP-13-000086-103 documents	included in SE Sections
operating personnel can safely		that temperature and radiological	3.1.1.2 and 3.1.1.3]
access and operate controls	The assessment evaluated the	conditions should not inhibit	
and support equipment.	temperature and radiological conditions of	operator actions needed to initiate	
	all areas that will be needed to be	and operate the HCVS during an	
	accessed by plant Operators in order to	ELAP with severe accident	
	initiate and operate the HCVS during a	conditions.	
	beyond design basis event. The		
	assessment provides the expected	Temperatures do not exceed 110	
	temperature and radiological conditions in	degrees Fahrenheit (F°), which is	
	each area documented in tabular form in	acceptable for long-term	
	the DCS. The assessment concludes that	personnel habitability.	
	during the 7 days of sustained operation	Radiological conditions result in	
	during a beyond design basis event the	low operator dose.	
	predicted environmental and radiological		
	conditions will be acceptable for the	No follow-up questions.	
	operators to gain access to areas		
	required for HCVS operation in the		
	primary and remote operating stations.		
Phase 1 ISE OI 7	Batteries/Battery Charger Sizing:	The NRC staff reviewed the	Closed
	Butterioe, Buttery enalger eizing.	information provided in the 6-	0.0000
Make available for NRC staff	The new battery selected is a sixty (60)	month updates and on the	[Staff evaluation to be
audit the final sizing evaluation	cell GNB battery with the battery cells	ePortal.	included in SE Section
for HCVS batteries/battery	connected in series to create 125VDC	er onal.	3.1.2.6]
charger including incorporation	nominal voltage. The battery is a Valve	The licensee stated that all	0.1.2.0]
into FLEX DG loading	Regulated Lead Acid (VRLA) type rated	electrical power required for	
calculation.	for 104 ampere-hours. The battery is	operation of HCVS components is	
calculation.			
	selected in accordance to IEEE [Institute	provided by a dedicated HCVS	
	of Electrical and Electronics Engineers]	battery charger and batteries.	
	485. The Battery Sizing Requirements		
	indicates that based on 1.5 ampere	The battery sizing requirements	
	loading requirements for 24 hours duty	confirmed that the HCVS	
	period, a minimum of a sixty (60) cell, 55	batteries have a minimum	
	ampere hours battery is required to bound	capacity capable of providing	
	the required battery duty cycle and end-of	power for 24 hours without	
	cycle battery terminal voltage	recharging, and therefore is	
	requirements. The selected battery	adequate.	
	capacity of 104 ampere-hours is more		
	than the minimum required 55 ampere-		

hours battery capacity. Therefore	
selected battery is adequate.	portable battery charger
	equipment sizing calculation
The battery charger is rated for	
nominal DC [direct current] outp	
voltage, 10 amperes nominal D	
current, 120 volts AC [alternation	g current] calculation and confirmed that
input voltage and a current limit	with the additional load added, it's
adjustment range of 50% - 120°	5. still within the capacity and
	capability of the portable battery
The HCVS loads may also be p	wered charger BC-BDB.
via 125 VDC [volts direct curren] battery
board 12 which is downstream	f the No follow-up questions.
station battery charger 12 (DC s	
FLEX DG sizing calc. 600VACE	
FLEX-BDB was already sized to	
accommodate the station batter	/ charger
12 full load rating (AC side). Ac	
the HCVS loads will be powered	
portable power sources at T=24	
when the station battery would	
fully charged and load shedding	
have been completed during EL	
Therefore, there will be no impa	
FLEX DG loading calculation	
600VACDGES-FLEX-BDB. A r	inor
revision to the FLEX portable b	
charger equipment sizing calcu	
125VDCSCES-FLEX-BDB was to address the addition of the H	
loads. The calculation conclude	
HCVS panel load addition of 1.	
DC is negligible and still within	
ampere rating of the portable ba	ttery
charger BC-BDB.	
The battery/battery charger sizi	
requirements evaluation and the	
revision to calculation 125VDC	CES-

	FLEX- BDB are in the ePortal for NRC		
	review.		
Phase 1 ISE OI 8	As discussed in the December 2015 OIP	The NRC staff reviewed the	Closed
	submittal, the NMP1 design will use a	information provided in the 6-	
Make available for NRC staff	nitrogen bottle station to supply motive	month updates and on the	[Staff evaluation to be
audit documentation of the	force to the HCVS isolation valves. The	ePortal.	included in SE Section
HCVS nitrogen pneumatic	bottle station will be located in a readily		3.1.2.6]
system design including sizing	accessible protected area in the turbine	Calculation S22.4-201.13M002,	
and location.	building. The nitrogen supply system	Revision 0 "HCVS Valve Motive	· · · · · · · · · · · · · · · · · · ·
	design is illustrated on Piping and	Gas Supply Sizing" determined	
	instrumentation Drawing C18014-C, Sht.	that if the N2 bottles are	
	7, and is available for NRC review in the	maintained above 1993 psig, they	
	ePortal.	will have sufficient capacity to	
		operate the HCVS for 24 hours.	
	A calculation was completed to determine		
	the required pneumatic supply storage	No follow-up questions.	
	volume and supply pressure required to		
	operate the HCVS isolation valves (IV-		
	201.13-71 and IV-201.13-74) for 24 hours		
	following a loss of normal pneumatic		
	supplies during an ELAP. Calculation		
	S22.4-201.13M002 is available for NRC		
	review in the ePortal.		
Phase 1 ISE OI 9	New components related to HCVS	The NRC staff reviewed the	Closed
Males available for NDO staff	operation are required to be designed to	information provided in the 6-	
Make available for NRC staff	operate following a seismic event. Most	month updates and on the	[Staff evaluation to be
audit documentation of a	equipment came qualified or evaluated by	ePortal.	included in SE Section
seismic qualification evaluation	the vendor. Some equipment was	The Breezeway	3.2.2]
of HCVS components.	purchased as commercial grade (non-	The licensee provided several	
	safety related) and was shake tested in	reports which demonstrate the	
	order to prove the components' ability to	seismic adequacy of the HCVS	
	withstand a bounding seismic event.	components. The staff reviewed	
		these reports and confirmed that	
	Qualification/evaluation documentation	the components required for	
	provided by the vendor, or test results	HCVS venting remain functional	
	from shake tests were compiled into a	following a design-basis	
	single report for HCVS dedicated	earthquake.	
	equipment (Ref. VENRPT-15-000013)		
	with the exception of separate seismic	No follow-up questions.	
	design reports for the PCIVs and rupture	L	

×

	disc. These reports are available on the ePortal for NRC review.		
Phase 1 ISE OI 10	Description of Existing Instrumentation:	The NRC staff reviewed the information provided in the 6-	Closed
Make available for NRC staff audit descriptions of all instrumentation and controls (existing and planned) necessary to implement this order including qualification methods.	In the Phases 1 and 2 combined HCVS OIP, Part 2: Key Venting Parameters section, both drywell pressure, torus pressure and torus level are listed as key parameters. Other Part 2 OIP sections only list drywell pressure and torus pool level as key parameters. In Part 3 of the OIP, drywall pressure and suppression pool level are stated as the key parameters for SAWM [severe accident water management] operations. The following discussion has been revised since the June 2016 six-month update to clarify what key parameters are used for HCVS initiation and cycling for Phases 1 and 2. Existing control room indications for wetwell (suppression chamber) pressure and suppression pool (primary containment) water level are used for HCVS venting operation. Operation of the HCVS will be based on guidance in the EOPs [emergency operating procedures] and SAPs [severea accident procedures] and will follow the primary containment pressure limit (PCPL) curves containment wetwell pressure indication is preferred to determine the need, timing and effectiveness of the venting operation following a BDBEE, in order to ensure	 month updates and on the ePortal. ECP-13-000086-103 Revision 3, Section 4.1.36 discusses the environmental conditions during an accident at the locations containing I&C components. The staff's review indicated that the environmental qualification met the order requirements. No follow-up questions. 	[Staff evaluation to be included in SE Section 3.1.2.8]

that containment pressure does not	
exceed the PCPL.	
Existing control room indication for wetwell pressure, shown on PI-201.2- 595A (Channel 12) and PI-201 .2-594A Channel 11), will be used for this purpose. These indicators receive pressure signals from pressure transmitters PT-201.2-595 and PT-201 .2-594, respectively. These pressure transmitters sense the torus pressure from a penetration at the top of the torus and therefore will not be impacted by high water levels.	
Drywell pressure instrumentation may also be referenced during the event. Containment pressure is displayed on indicator PI-201.2-483A (Channel 12) and PI-201.2-484A (Channel 11). These indicators receive pressure signals from pressure transmitters PT-201.2-483 and PT-201.2-484, respectively. Wetwell level indication is needed to determine that the wetwell vent path is preserved. Wetwell level is displayed on indicator LI-201.2- 5950 (Channel 12) and LI-201.2-594C (Channel 11). LI-201.2-595D receives signals from PT-201.2-595D receives signals from PT-201.2-594C receives signals from PT-201.2-594 and PT-201.2-680. As indicated in the OIP, LI 58-05A (LT58- 05) can also be used to monitor torus level and PI 201.2-106A (PT 201.2-106) can also be used to monitor drywell pressure.	
The pressure and level indicators and related transmitters are all Safety Related, Regulatory Guide 1.97 compliant	

-	components. Channel 12 is the FLEX diesel power backed loop, and Channel 11 can be powered as an alternate strategy.		
	Description of New Instrumentation:		
	The I&C scope for the HCVS is to display the following and to control the SOVs [solenoid-operated valves] associated with the new primary containment isolation valves.		
	HCVS Isolation Valve Position Indication (POS)		
	 Temperature and Radiation of the HCVS Pipe (POS) Radiation of the HCVS Pipe (ROS) 		
	 HCVS Purge System Supply Pressure (POS and ROS) HCVS Battery Voltage (ROS) 		
	The ROS panel serves as the main power distribution for all I&C components and will contain local indicators to display HCVS battery voltage, radiation, and purge gas supply pressure. The POS panel provides all other indication except HCVS battery voltage and allows for the control of the HCVS SOVs via key lock switches.		
	A detailed description of new I &C components including qualification methods is included in the Engineering Change Package and is available on the ePortal for NRC review.		
Phase 1 ISE OI 11	The HCVS is located in the Reactor Building, Turbine Building, Auxiliary Control Room, and outside the Reactor	The NRC staff reviewed the information provided in the 6-	Closed

Make available for NRC staff	Building. Environmental conditions and	month updates and on the	[Staff evaluation to be
audit the descriptions of local	impacts are evaluated in detail in the	ePortal.	included in SE Section
conditions (temperature,	Engineering Change Package (ECP).		3.1.1.4]
radiation and humidity)	The ECP includes a listing of the	ECP-13-000086-103 Revision 3,	
anticipated during ELAP and	components in each area along with the	Section 4.1.36 discusses the	
severe accident for the	corresponding environmental conditions	environmental conditions during	
components (valves,	including temperature, radiation and	an accident at the locations	
instrumentation, sensors,	humidity. The ECP also includes a	containing I&C components. The	
transmitters, indicators,	detailed listing of environmental	staff's review indicated that the	
electronics, control devices,	qualification requirements. The complete	environmental qualification met	
and etc.) required for HCVS	listing and information from the ECP is	the order requirements.	
venting including confirmation	available on the ePortal for NRC review.		
that the components are	On Nevember 17, 0010 a talagarfarana	No follow-up questions.	
capable of performing their	On November 17, 2016 a teleconference		
functions during ELAP and	between Exelon and the NRC was held to		
severe accident conditions.	review NMP2 Phase 1 closure of open items. In this call NMP clarified that		
	consistent with NEI 13-02 Appendix C		
	Section C.8.1, no further environmental		
	qualification of existing containment		
	parameter monitoring instrumentation is		
	PC 1.07 qualified		
Phase 2 ISE OI 1	RG 1.97 qualified. Refer to the closure summary for ISE	The NRC staff reviewed the	Closed
Filase 2 13E OF 1	Phase 2 Open Item No. 2.	information provided in the 6-	Closed
Licensee to confirm through	Phase 2 Open item No. 2.	month updates and on the	[Staff evaluation to be
analysis the temperature and		ePortal.	included in SE Sections
radiological conditions to			4.1.1.4 and 4.2.1.4]
ensure that operating		Calculation S10-HVAC-HV11,	4.1.1.4 and 4.2.1.4
personnel can safely access		Revision 1, "TB Bldg. Max & Min	
		Temperatures" along with ECP-	
and operate controls and		13-000086-103, shows that	
support equipment.		temperature and radiological	
		conditions should not inhibit	
		operator actions needed to initiate	
		and operate the HCVS during an	
		ELAP with severe accident	
		conditions.	
		No follow-up questions.	

Phase 2 ISE OI 2	Equipment and Controls:	The NRC staff reviewed the information provided in the 6-	Closed
Licensee to evaluate the SAWA [severe accident water addition] equipment and controls, as well as ingress and egress paths for the expected severe accident Conditions (temperature, humidity, radiation) for the sustained operating period.	 Plant instrumentation for SAWM that is qualified to RG 1.97 or equivalent is considered qualified for the sustained operating period without further evaluation. The following plant instruments are qualified to RG 1.97: PT-201.2-594, PT-201.2-680, PT-201.2-594C – Wetwell Water Level PT-201.2-595, PT-201.2-596, PT-201.2-595D – Wetwell Water Level PT-201.2-595, PT-201.2-595A – Wetwell Pressure PT-201.2-594 PT-201.2-594A – Wetwell Pressure PT-201.2-594 PT-201.2-594A – Wetwell Pressure Passive components that do not need to change state after initially establishing SAWA flow do not require evaluation beyond the first 8 hours, at which time they are expected to be installed and ready for use to support SAWA/SAWM. Also the fire hoses used are the "Big 10" model from Key hose. This hose is a heavy duty double jacketed hose using both polyurethane and EPDM rubber. Per HCVS-OGP-009 these materials will withstand the maximum doses that can be experienced during a sever accident and are therefore acceptable. The following additional equipment 	Information provided in the 6- month updates and on the ePortal. Calculation S10-HVAC-HV11, Revision 1, "TB Bldg. Max & Min Temperatures," along with ECP- 13-000086-103, shows that temperature and radiological conditions should not inhibit operator actions or SAWA equipment and controls needed to initiate and operate the HCVS during an ELAP with severe accident conditions. No follow-up questions.	[Staff evaluation to be included in SE Section 4.1.1.4 and 4.2.1.4]

 SAWA/SAWM flow instrument SAWA/SAWM pump SAWA/SAWM generator Active valves in SAWA flow path (Not applicable as there are no active valves in the SAWA flow path) 	
The above listed additional SAWA/SAWM equipment performing an active function evaluated for radiation and temperature/humidity as described below:	
SAWA/SAWM flow instrument:	
The SAWA flow instrumentation will be mounted on a cart with a throttling valve and stored in the FLEX Storage Building. During FLEX/SAWA flow injection to the RPV, the cart will be moved into the turbine building near the HCVS Remote Operating Station (ROS). A quantitative evaluation of expected dose rates has been performed per HCVS-WP-02 and found the dose rates at the flow instrument are acceptable. Refer to calculation H21C115 loaded in the ePortal. The dose rate at the operating location of the flow meter cart (just west of the ROS, between column rows G and H) is 2.25E-05 rem/hr. The area just east of the ROS may be acceptable as well as	
long as an operator does not stay at the flow meter for an extended period of time	
as the dose rate east of the ROS increases to 7.335E-01 rem/hr per H21C115 page C3. Using the higher dose rate, the total dose over the 7-day	
 period is 123 rem. This dose is well	

Phase 2 ISE OI 3 Licensee to demonstrate how instrumentation and equipment being used for SAWA and supporting equipment is capable to perform for the sustained operating period under the expected temperature and radiological conditions	below the generally accepted maximum for digital equipment, 1000 rem. The flow meter is commercial equipment and does not have a published radiation dose limit. The selected instrument is designed for the expected flow rate, temperature and pressure for SAWA over the period of sustained operation. Refer to the closure summary for ISE Phase 2 Open Item No. 2.	The NRC staff reviewed the information provided in the 6- month updates and on the ePortal. Calculation S10-HVAC-HV11, Revision 1, "TB Bldg. Max & Min Temperatures," along with ECP- 13-00086-103, shows that temperature and radiological conditions should not inhibit operability for instrumentation and equipment being used for SAWA supporting equipment during an ELAP with severe accident conditions. No follow-up questions.	Closed [Staff evaluation to be included in SE Sections 4.1.1.4 and 4.2.1.4]
Phase 2 ISE OI 4 Licensee to demonstrate that containment failure as a result of overpressure can be prevented without a drywell vent during severe accident conditions.	The wetwell vent has been designed and installed to meet NEI 13-02 Rev 1 guidance, which will ensure that it is adequately sized to prevent containment overpressure under severe accident conditions. The SAWM strategy will ensure that the wetwell vent remains functional for the period of sustained operation. Nine Mile Point Unit 1 will follow the guidance (flow rate and timing) for SAWA/SAWM	The NRC staff reviewed the information provided in the 6- month updates and on the ePortal. Calculation N2-MISC-004, Revision 0 demonstrates the suppression pool will be provided with sufficient makeup to maintain a heat sink for reactor decay heat, which will maintain containment within design limits. The SAWM	Closed [Staff evaluation to be included in SE Sections 4.1 and 4.2]

.

F	1		
	described in BWROG-TP-15-008 and	strategy will ensure that the	
	BWROG-TP-15-011. The wetwell vent	wetwell vent remains functional	
	will be opened prior to exceeding the	for the period of sustained	
	PCPL value of 43 PSIG. Therefore,	operation.	
	containment over pressurization is		
	prevented without the need for a drywell	No follow-up questions.	
	vent.		
Phase 2 ISE OI 5	Reference Plant	The NRC staff reviewed the	Closed
	Torus freeboard volume is 525,000	information provided in the 6-	
Licensee to demonstrate how	gallons	month updates and on the	[Staff evaluation to be
the plant is bounded by the	5	ePortal.	included in SE Section
reference plant analysis that	NMP1		4.2.1.1]
shows the SAWM strategy is	Total freeboard volume is 862,288	Calculation N2-MISC-004,	
successful in making it unlikely	gallons	Revision 0 addresses	
that a drywell vent is needed.	ganono	SAWA/SAWM and the ability to	
	Reference Plant	maintain containment integrity.	
	SAWA flow is 500 GPM [gallons per	The calculation shows that	
		sufficient water is added to	
	minute] at 8 hours followed by 100 GPM		
	from 12 hours to 168 hours	maintain or increase water level in	
		the suppression pool and	
	<u>NMP1</u>	demonstrates a successful	
	SAWA flow is 263 GPM at 8 hours	SAWA/SAWM strategy.	
	followed by 54 GPM* from 12 hours to		
	168 hours	No follow-up questions.	
	NMP1 has performed a plant specific		
	MAAP [modular accident analysis		
	program] analysis to establish an initial		
	SAWA flow rate using the above		
	parameters of 263 GPM at 8 hours		
	followed by 54 GPM* from 12 hours to		
	168 hours. The MAAP analysis		
	demonstrates that the plant is bounded by		
	the reference plant analysis and that the		
	SAWM strategy is successful in making it		
	unlikely that a drywell vent is needed to		
	prevent containment failure (N1-MISC-		
	004).		

	(*Note that 53 GPM was quoted in the OIP but NMP1 will use 54 GPM in its procedures consistent with the flowrate used in MAAP)		
Phase 2 ISE OI 6 Licensee to demonstrate that there is adequate communication between the main control room (MCR) and the operator at the FLEX manual valve during severe accident conditions.	NMP1 utilizes the installed sound powered headset system and/or the 450 MHz radios in the talk around mode to communicate between the MCR and the SAWA flow control location. This communication method is the same as accepted in Order EA-12-049. These items will be powered and remain powered using the same methods as valuated under EA-12-049 for the period of sustained operation, which may be longer than identified for EA-12-049.	The NRC staff reviewed the information provided in the 6- month updates and on the ePortal. The communication methods are the same as accepted in Order EA-12-049. No follow-up questions.	Closed [Staff evaluation to be included in SE Section 4.1]
Phase 2 ISE OI 7 Licensee to demonstrate the SAWM flow instrumentation qualification for the expected environmental conditions.	Refer to the closure summary for ISE Phase 2 Open Item No. 2.	The NRC staff reviewed the information provided in the 6- month updates and on the ePortal. ECP-17-000279-CN-001- H21C115, Rev 0 discusses the SAWM flow instrumentation qualification. The NRC staff found through engineering judgement that the accuracy of the flow meter and the environmental qualifications related to the performance of the flow meter meet the intent of Order EA-13-109. No follow-up questions.	Closed [Staff evaluation to be included in SE Sections 4.1.1.3 and 4.2.1.3]

B. Hanson

SUBJECT: NINE MILE POINT NUCLEAR STATION, UNIT 1 - REPORT FOR THE AUDIT OF LICENSEE RESPONSES TO INTERIM STAFF EVALUATIONS OPEN ITEMS RELATED TO NRC ORDER EA-13-109 TO MODIFY LICENSES WITH REGARD TO RELIABLE HARDENED CONTAINMENT VENTS CAPABLE OF OPERATION UNDER SEVERE ACCIDENT CONDITIONS DATED October 30, 2017

DISTRIBUTION:

PUBLIC PBEB R/F RidsNrrDorlLpl1 Resource RidsNrrPMNineMilePoint Resource RidsNrrLASLent Resource

RidsRgn1MailCenter Resource TBrown, NRR RAuluck, NRR BLee, NRR RidsACRS_MailCTR Resource

ADAMS Accession No. ML17299A781

*via e-mail

OFFICE	NRR/DLP/PBEB/PM	NRR/DLP/PBMB/LA	NRR/DLP/PBEB/BC	NRR/DLP/PBEB/PM
NAME	RAuluck	SLent	TBrown	RAuluck
DATE	10/30/2017	10/27/2017	10/30/2017	10/30/2017

OFFICIAL RECORD COPY