

INDIAN POINT UNIT No. 3		
RCS PRESSURE FOR RCP SHAFT SEIZURE FOUR LOOPS IN OPERATION		
UFSAR FIGURE 14.1–56	REV. No. 03	

INDIAN POINT UNIT No. 3	
FAULTED LOOP FLOW FOR RCP SHAFT SEIZURE FOUR LOOPS IN OPERATION	
UFSAR FIGURE 14.1–58 REV. No. 03	

INDIAN POINT UNIT No. 3		
CORE HEAT FLUX TRANSIENT FOR LOSS OF EXTERNAL LOAD, MINIMUM REACTIVITY FEEDBACK, WITHOUT PRESSURE CONTROL		
UFSAR FIGURE 14.1-71	REV. No. 03	

INDIAN POINT UNIT No. 3		
PRESSURIZER PRESSURE TRANSIENT FOR LOSS OF EXTERNAL LOAD MINIMUM REACTIVITY FEEDBACK, WITHOUT PRESSURE CONTROL		
UFSAR FIGURE 14.1–73	REV. No. 03	

INDIAN POINT UNIT No. 3		
PRESSURIZER WATER VOLUME TRANSIENT FOR LOSS OF EXTERNAL LOAD, MINIMUM REACTIVITY FEEDBACK, WITHOUT PRESSURE CONTROL		
UFSAR FIGURE 14.1–74	REV. No. 03	

INDIAN POINT UNIT No. 3		
STEAM GENERATOR PRESSURE TRANSIENT FOR LOSS OF EXTERNAL LOAD, MINIMUM REACTIVITY FEEDBACK, WITHOUT PRESSURE CONTROL		
UFSAR FIGURE 14.1–76	REV. No. 03	

INDIAN POINT UNIT No. 3		
DNB RATIO TRANSIENT FOR LOSS OF EXTERNAL LOAD, MINIMUM REACTIVITY FEEDBACK, WITHOUT PRESSURE CONTROL		
UFSAR FIGURE 14.1–77	REV. No. 03	

	0 second	BREAK OCCURS	
		PUMP SI SIGNAL (LOW PRESSURIZER	
BLOWDOWN	~24.5 seconds	PRESSURE)	
		ACCUMULATOR INJECTION BEGINS	
		END OF BLOWDOWN	
		PUMPED ECCS INJECTION BEGINS	
REFILL	-24.5 - 36.5	BOTTOM OF CORE RECOVERY	
	seconds		
		ACCUMULATOR EMPTIES	
REFLOOD	~36.5 - 250	CORE QUENCHED	
	seconds		
		SWITCH TO COLD LEG RECIRCULATION ON	
LONG TERM	24 hours	RWST LOW LEVEL ALARM	
CORE		SWITCH TO HOT LEG/COLD LEG	
COOLING		RECIRCULATION	

INDIAN	POINT	UNIT	No.	3

TYPICAL TIME SEQUENCE OF EVENTS FOR THE INDIAN POINT 3 NUCLEAR POWER PLANT BEST ESTIMATE LARGE BREAK LOCA ANALYSIS

UFSAR FIGURE 14.3-1 REV. No. 01

INDIAN POINT	3 FSAR UPDATE
RESULTS OF WESTINGHOUSE CAPSULE IRRADIATION TESTS	
REV. 3 NOV 2001	FIG. NO. 14.3-74

APPARENT G(H2), MOLECULES/100 eV

100000

Fig. 3.3 Temperature in Welded LP-Rotor [6] (Line Number -1) \cdot 10 = T_c T_F = 1,8·T_c + 32 T_c = Temperature in °C, T_F = Temperature in °F

14A-7

Effect of stress intensity and yield strength on the growth rate of stress corrosion cracks in a steam turbine rotor steel. Note that K_{ISCC} is not measurably influenced by the change in yield strength; the "plateau" stress corrosion crack growth rate, however, is strongly influenced by the yield strength.

14A-12

Figure 5.3

- 15 -

Results of $\rm K_{\rm IC}$ - and $\rm R_{\bullet}$ - Measurements for the LP-Rotors of Indian Point Unit 3

The items and the test report number (MP.-No) of the forgings of the three LP Indian Point Unit 3 LP-rotors are summarized. The actual measures R_{\bullet} - (yield strength) and $K_{\rm HC}$ - (fracture toughness) values at room temperature are also tabulated and the fracture toughness statistically analyzed.

Contents: - Items and MP-numbers of the forgings

- Measured yield strength at room temperature
- Measured fracture toughness at room temperature
- Summary and statistical evaluation

Items of Forainas

7/91

6.0 <u>METHOD FOR CALCULATING TURBINE MISSILE GENERATION</u> <u>PROBABILITY (P,)</u>

The turbine missile generation probability (P_1) consists of two factors (1) the probability of shaft failure producing an internal tubine missile (P_1') and (2) the probability that this internal missile penetrates the casings and is ejected from out the turbine $(P_1")$.

$$P_{iicr}(N) = M \cdot \sum_{i=1}^{F} p_{i}(N)$$
 Equ. 6.14

- 30 -

Since one double flow LP-rotor of the Indian Point Unit 3 has six forgings (2 shaft-ends, 4 disks), three forgings per flow must be considered (F = 3), and so one obtains:

$$P_{1LCF}(N) = M \cdot [p_1(N) + p_2(N) + p_3(N)]$$
 Equ. 6.15

The indices correspond to the forging (shaft-end, thin disc, thick disc) of a flow.

Rev. 2

- 31 -

6.2.1 <u>Probability of Missile Generation of an Individual</u> <u>LP-Rotor Forging p_1 (N)</u>

The probability of missile generation due to Non-SCC for an individual LP-rotor forging is defined as the probability that an initial crack (crack length a_o) grows up to the critical crack length a_c for brittle fracture.

For the determination of this probability some assumptions are made:

- Each forging has an initial crack with the length a_o at the location, where the highest transient stress appears.

Figure 7.3 Recommendations for Inspection Intervals of Large Turbine Generators

14A-36

Figure 7B Temperature Distribution (Stationary)

14A-46

Rev. 0 7/91

Figure 7D Transient Hoop stress Distribution at Nominal Speed and t = 19,200 Sec.