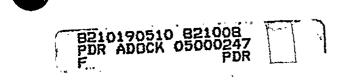
SMA 12901.03

.,


APPENDIX A

INDIAN POINT UNIT 2 <u>CONTROL BUILDING</u> SEISMIC IMPROVEMENT ANALYSIS

prepared for

PICKARD, LOWE AND GARRICK Irvine, California

August, 1982

₫

1

ł

,

Þ

. .

. · · · · ·

· · · ·

SMA 12901.03

INDIAN POINT UNIT 2 CONTROL BUILDING SEISMIC IMPROVEMENT ANALYSIS

bу

R. B. Narver D. A. Wesley

prepared for

PICKARD, LOWE AND GARRICK Irvine, California

August, 1982

4740 Von Karman, Newport Beach, Calif.92660 (714)833-7552

)

.

3

·

• .

.

٠ ٠

TABLE OF CONTENTS

<u>Section</u>

۰۰ د

¢

<u>Title</u>

<u>Page</u>

.

.

	LIST OF TABLES	ii
	LIST OF FIGURES	iii
1	INTRODUCTION.	1-1
2	BUILDING ANALYTICAL MODELS	2-1
	2.1 Previous Superheater Building Models	2-1
	2.2 Descriptions of SMA Control Building and	
	Superheater Building Models	2-3
3	ANALYTICAL VERIFICATION	3-1
	3.1 Linear Analyses	3-1
	3.2 Nonlinear Analyses	3-2
	3.3 Nonlinear Analyses Using Superheater Building	
	Model with Increased Mass	3-4
4	DESIGN CONSIDERATIONS	4-1
	4.1 Recommended Pad Design	4-1
	4.2 Design Capacities and Specifications	4-2
	4.3 Design Specifications	4-3
5	SUMMARY AND RECOMMENDATIONS	5-1
rrroru	CEC	

REFERENCES

.

.

· · · ·

L

;

.

*

LIST OF TABLES

.

.

۲. ۲

<u>Table</u>	<u>Title</u>	<u>Page</u>
2-1	First 7 Natural Frequencies of the Superheater Building According to the Blume Model for the North-South Direction	2-6
2-2	First 7 Natural Frequencies of the Steel Stack According to the Blume Model	2-7
2-3	First 7 Natural Frequencies of the Superheater Building According to the Westinghouse Model for the North-South Direction	2-8
2-4(a)	Stiffness Matrix Used to Describe Deflections and Determine Frequencies and Mode Shapes of Control Building (k/in)	2-9
2-4(b)	Masses Calculated for Control Building (K-Sec ² /In).	2-9
2-5	Stiffnesses Calculated for the Superheater Building (Based on Weiskopf and Pickworth Drawings)	2-10
3-1	Comparison of Natural Frequencies for the Two Connected Models vs the Two Unconnected Models	3-6
3-2	Comparison of Maximum Spring Forces and Deflections for the Coupled System Using the Different Super- heater Building Models	3-7
4-1	Maximum Allowable Shears for Marginal Puddle Welds Spaced 1 Foot Apart	4-4
4-2	Maximum Transferable Forces and Median Ground Accelerations that Produce These Forces	4-5

ii

.

۰ ۰

νe

• •

r . . .

• • • •

.

LIST OF FIGURES

<u>Figure</u>

יי ג

<u>Title</u>

. .

2-1	Blume Superheater Building Model Showing Masses and North-South Story Stiffness	2-11
2-2	Blume Steel Stack Model Showing Masses and Section Properties	2-12
2-3	Westinghouse Model of Column Line "L" in Super- heater Building	2-13
2-4(a)	Typical Control Building Interior Bent	2-14
2-4(b)	Control Building Column Line "L-2"	2-14
2-5(a)- (c)	Frequencies and Mode Shapes of the Control Building in the North-South Direction	2-15
2-6	Superheater Building Model	2-16
2-7	First Superheater Building Mode Shape in North-South Direction	2-17
2-8	Second Superheater Building Mode Shape in North- South Direction	2-18
2-9	Third Superheater Building Mode Shape in North- South Direction	2-19
2-10	Fourth Superheater Building Mode Shape in North- South Direction	2-20
2-11	Fifth Superheater Building Mode Shape in North- South Direction	2-21
3-1 .	Maximum Compression in Linear Spring Connecting Control Building and Superheater Building vs	
	Spring Stiffness	3-8
3-2	Force-Deflection Curve for Rubber Spring	3-9
3-3	First Superheater Building with Added Masses Mode Shape in North-South Direction	3-10
3-4	Second Superheater Building with Added Masses Mode Shape in the North-South Direction	3-11
3-5	Third Superheater Building with Added Masses Mode Shape in the North-South Direction	3-12
3-6	Fourth Superheater Building with Added Masses Mode	3-13
3-7	Fifth Superheater Building with Added Masses Mode	3-14

¢. • • .

. . .

.

. • • •

.

D.

.

.

LIST OF FIGURES (Continued)

<u>Figure</u>

ε

<u>Title</u>

<u>Page</u>

p

•...

. · ·

4-1	Existing Configuration of Control Buildings and Superheater Building at Elevation 72'-0"	4-6
4-2	Recommended Method for Adding Rubber Pads Between Control Building and Superheater Building	4-7
4-3	Possible Rubber Pad Load Characteristics \ldots $.$	4-8

ţ

"_____" a da anticipada da

ву .

i.

,

1. INTRODUCTION

During a recent probabilistic risk assessment of the Indian Point Unit 2 nuclear facility (Reference 1), one of the potential seismic failure modes identified as a possible contributor to risk involved impact between the roof of the Unit 2 control building and the Unit 1 superheater and turbine buildings. This failure mode considered impact levels of sufficient magnitude that dislocation and falling of ceiling-mounted items (such as light fixtures) could be expected with possible injury to operating personnel or damage to control cabinets and equipment. The median effective ground acceleration level associated with this mode of failure was established at approximately 0.27g. Although relatively low when compared with most of the other seismically-induced failure modes, this acceleration level is still nearly twice the Design Basis Earthquake (DBE) level of 0.15g.

A gap of 1.5 inches currently exists between the structures at the control building roof elevation, and 1 inch gaps exist at the two floor slabs. However, the flexibility of the upper story is considerably greater than the lower stories, so that impact at the floor slabs does not pose as severe a potential problem. The impact concern chiefly exists for north-south response between the control and superheater buildings. To some extent, a similar problem exists for east-west response between the control and turbine buildings. In this case, however, no gap exists between the turbine building steel frame and the unreinforced control building masonry wall. Failure of the masonry, either from its own inertia loads or loads transferred from the control building girts, is expected to result in essentially vertical, in-place collapse of the wall. This failure is expected to be localized in the extreme western end of the control building in the area of the turbine building stairwell and is not expected to impose an excessive hazard for operating personnel or equipment.

.

> , ,

.

,

.

·

ł

In order to increase the seismic capacity for the impact mode, several approaches are possible. One method consists of increasing the clearance from the current 1.5 inches around the control room roof to approximately 3.5 inches without the addition of any rubber pads. This would require no structural steel modifications and would retain the 1 inch expansion gaps at Elevation 53'-0" (control room floor) and below as currently exist. This modification was expected to increase the median ground acceleration capacity to approximately 0.45g (this value was calculated using the methods stated in Reference 1 and using an earlier. more flexible model of the superheater building). In order to achieve median ground acceleration capacities in excess of 0.45g by further increasing the clearance, the steel framing would require modification as would the 1 inch expansion gaps at the floor elevation. In order to develop the full seismic capacity of the control building without developing impact, nearly 8 inches clearance would be required at the roof elevation and approximately 3 inches at the control room floor elevation.

A second approach is to connect the control building to the superheater building so that impact between the structures will not occur. The engineering difficulty encountered with this approach is to design structure-to-structure attachment details capable of transmitting the loads within the limited space and access available. This approach would also require major structural modifications to connect the two structures and would require extensive additional analysis based on the resulting modified load distribution in order to verify the structural adequacy of the connected buildings.

The most promising approach, and the one recommended for implementation, consists of opening up the clearance between the structures at the control building roof elevation to the extent possible without requiring structural frame modifications (approximately 3.5 inches) and inserting rubber compression pads. The presence of the pads results in much lower forces being transmitted through the slabs than occurs through

. n

•

,

. . .

, . .

.

the slab-steel impact. This occurs because the energy is transferred over a much greater distance (and time) and also because the pads tend to reduce the out-of-phase motion between the structures. No structural steel modifications are required for the building frames, and since some clearance is maintained between structures at all except very high seismic excitation levels, the normal functions of the construction gaps are not impaired.

This report presents the results of the analyses conducted to determine the design properties of the rubber pads and building modifications required. Recommendations for standard rubber pads are presented. Median effective ground acceleration capacities for the control building assuming implementation of the recommended pad design are included.

۸. ۲. ۶

.

.

In order to evaluate the effects of the dynamic interaction between the control and superheater buildings, an overall mathematical model of the coupled control building structure and superheater building structure is required. At the ground acceleration input levels expected to result in roof failure with the rubber pads installed, a linear representation of the two building structures is considered adequate. However, the pad installation envisioned requires a nonlinear representation of the rubber pad effects.

2.1 <u>PREVIOUS SUPERHEATER BUILDING MODELS</u>

In 1969, John A. Blume and Associates analyzed the superheater building and steel stack to determine their ability to withstand the Operating Basis Earthquake (OBE) (Reference 2). The response spectrum chosen to represent the OBE was based on the average acceleration spectrum curves presented in Reference 3. The spectrum was normalized to 0.10g for both horizontal directions and to 0.05g for the vertical direction. The damping ratios chosen were 0.05 for reinforced concrete. 0.02 for bolted structural steel, and 0.01 for welded structural steel. The Blume model of the superheater building showing the calculated masses and stiffnesses in the north-south direction is given in Figure 2-1. The stack mass was included in the mass lumped at Elevation 135'-6". The Blume model accounted for the fact that the turbine building and the superheater building share a common column line by incorporating a portion of the former building's mass into the model. The building stiffnesses were based solely on the bracing system in the north-south direction.' Table 2-1 lists the first 7 natural frequencies calculated for this model for the north-south direction.

The steel stack model is presented in Figure 2-2 along with masses and average section properties. The stack was analyzed as coupled to the superheater building using the north-south response of the super-

. . '

·

.

,

· •

heater building. This direction showed maximum amplification of the ground motion and was used to determine the response of the stack. The first 7 natural frequencies calculated for this model are presented in Table 2-2.

In 1970, Westinghouse Electric Corporation performed a seismic analysis on the superheater building to determine the reinforcing necessary for the structural steel framing to make the building withstand the Design Basis Earthquake (DBE) (Reference 4). The DBE had a maximum horizontal peak ground acceleration of 0.15g. The analysis was limited to only horizontal motions in the north-south and east-west directions. A damping ratio of 0.07 was selected. This model was considerably more detailed than the original Blume model. In the Westinghouse analysis, all the major column lines were modeled. An example of a typical braced frame is presented in Figure 2-3. Reference 4 does not include an analysis or model description of the steel stack which was analyzed separately. The first 7 natural frequencies of the strengthened superheater building for the north-south direction are presented in Table 2-3.

The changes recommended by Westinghouse were to reinforce or replace existing bracing members. No additional bracing was introduced into unbraced bays. As a result, some of the column uplift forces became very large. In 1971, the firm Weiskopf and Pickworth was hired to reduce the column uplift forces to a more manageable level by adding bracing to unbraced bays. They also created a set of working drawings based on their recommendations. These drawings show the present building structure. A new analytical model of the structure was developed which included the latest added bracing as well as the effects of removing the superheaters from the building. This model initially assumed the superheaters and water in the condensate storage tanks were removed. The model was subsequently modified to include the mass of the water as well as the mass of anticipated offices to be added in place of the superheaters.

•

.

,

2.2 <u>DESCRIPTIONS OF SMA CONTROL BUILDING AND SUPERHEATER</u> BUILDING MODELS

The three-story, 57 foot-tall control building consists of seven moment-resisting bents in the north-south direction with both outside bents braced. A typical interior bent and the outside bent along Column Line "L-2" are shown in Figures 2-4(a) and 2-4(b). The top floor is significantly more flexible than the bottom two stories. The flooring is concrete slab with a nominal depth of 6.75 inches. The slabs were treated as flexible diaphragms because of their thickness and lack of shear connections to the supporting beams. The roof consists of metal decking, built-up roofing, and bullet-resistant steel panels. It was also considered to be flexible.

-, **-**

The superheater building is a multi-story, braced frame structure with five main bents in the north-south direction. Figure 2-3 in an upgraded condition is a typical bent. It is approximately 120 feet tall with a 265 foot steel stack on top. The stack originally was 80 feet taller, but was cut down to its present size to lessen the effects of potential tornado loads. (The original Blume analysis was performed with the stack at its original height). The building floors are partly concrete slab and partly steel grating. The roof is precast concrete slab. There, is some horizontal bracing present at each floor. It is primarily concentrated along the south end of the building and around the two superheaters. The roof at Elevation 135'-6" has extensive horizontal bracing.

The steel stack is constructed of riveted steel plates with thicknesses varying from 11/16 inch at the base to 7/16 inch at Elevation 400'-0". The diameter of the stack at the base is 30'-0" and tapers to approximately 13'-8" at Elevation 400'-0". There is an inner lining of 2.5 inch-thick gunite. The stack also supports a ventilation duct carrying exhaust from the containment structure along with several steel grating platforms along its height. Only the varying thickness steel plates were used in computing the stack stiffneses, although the mass of the gunite was included.

4

,

· · · · ·

۰ ۰

. .

The stiffnesses of the control building were determined by calculating the stiffness of each bent and adding them together for the twodimensional model. Using this overall stiffness and the total mass for each elevation was equivalent to using an average stiffness and average mass per bent. The masses calculated for the control building were determined from the Westinghouse Electric Corporation drawings. These stiffnesses and masses are presented in Tables 2-4(a) and 2-4(b). The frequencies and mode shapes calculated for this model are shown in Figures 2-5(a), 2-5(b) and 2-5(c).

The superheater building model is shown in Figure 2-6 along with the masses associated with each elevation. This model was initially based on the assumption that the masses are the same ones used in the Blume analysis with the following exceptions:

- i) Mass was deleted at Elevations 33'-O" and 135'-6" due to the anticipated removal of the two superheaters. The mass of the superheaters was estimated and assumed to be distributed in equal parts between the two elevations.
- ii) Mass was deleted at Elevation 72'-O" due to the removal of water from the three condensate storage tanks at that level.

This model was subsequently modified to include the mass of the water as well as the mass of some anticipated offices. The stiffnesses calculated for both versions of the model were based solely on the bracing stiffnesses. The stiffness of bracing that would be in compression was included if the slenderness ratio (L/r) for that bracing was less than 120. The cut-off value of 120 was chosen because for A36 and A7 steel (the steel from which the bracing was made), this is approximately the point at which the allowable compression stress is equal to half the allowable tension stress. The stiffnesses used in this model are presented in Table 2-5.

The steel stack model is the same as the Blume model shown in Figure 2-2 with the following exceptions:

.

h.

Ч

•

.

- i) The stack was cut off at Elevation 401'-0".
- ii) The mass at Elevation 401'-O" was reduced to reflect the reduced length.

v

The first 5 natural frequencies and mode shapes for the superheater building and steel stack are presented in Figures 2-7 through 2-11. For the current model, the fundamental frequency (0.96 Hz) is higher than either the Blume fundamental frequency (0.58 Hz) or the Westinghouse fundamental frequency (0.88 Hz). This is to be expected since this model is stiffer and has less mass than the original models.

ş

ŧ

×

*

x = 1

8

p* 5

,

.

TABLE 2-1

FIRST SEVEN NATURAL FREQUENCIES OF THE SUPERHEATER BUILDING ACCORDING TO THE BLUME MODEL FOR THE NORTH-SOUTH DIRECTION

. MODE	FREQUENCY (Hz)
٦	1.32
2	1.81
3 4	3.51 4.52
5	5.92
6	· 6.58
7	8 . 93

* * * * * .

.

•

t

.

TABLE 2-2

FIRST SEVEN NATURAL FREQUENCIES OF THE STEEL

STACK ACCORDING TO THE BLUME MODEL

MODE	FREQUENCY (Hz)
1	0.58
2	2.21
3	. 5.03
4	9.09
5	14.1
6	19.2
7	24.4

TABLE 2-3

FIRST SEVEN NATURAL FREQUENCIES OF THE SUPERHEATER BUILDING ACCORDING TO THE WESTINGHOUSE MODEL FOR THE NORTH-SOUTH DIRECTION

MODE	FREQUENCY (Hz)
1	0.88
2	, 2.13 [`]
3	4.12
4	5.65
5	6.99
6	8.26
7.	9.09

.

•

,

7 7 7 1

.

USED TO DESCRIE	BE DEFLECTIONS		
REQUENCIES AND N	NODE SHAPES OF		
<u>CONTROL BUILDING (K/IN)</u>			
•			
	-		
-707	33		
714	-168		
-168	130		
	EQUENCIES AND N ROL BUILDING (N -707 714		

TABLE 2-4(b)			
MASSES CALCULATED FO	<u>R CONTROL BUILDING (K-SEC²/IN</u>)		
M ₁ = 1.43	(Acts at Elevation 33'-0")		
M ₂ = 1.19	(Acts at Elevation 53'-0")		
M ₃ = 0.492	(Acts at Elevation 72'-0")		

. TABLE 2-4(a)

2-9

ŧ

•

ŧ.

i

.

ŀ

TABLE 2-5

٤

STIFFNESSES CALCULATED FOR THE SUPERHEATER BUILDING (BASED ON WEISKOPF AND PICKWORTH DRAWINGS)

r	·	T
FROM ELEVATION	TO ELEVATION	STIFFNESS (K/IN)
15'-0"	33'-0"	23,558
33'-0"	53 '- 0"	19,233
43'-0"	53'-0"	1,292
53'-0"	72'-0"	16,332
72'-0"	88'-6"	13,796
72'-0"	97'-7"	1,718
88'-6"	97'-0"	3,796
88'-6"	97'-7"	2,933
88'-6"	105'-6"	4,389
97'-0"	109'-10"	7,670
97'-7"	105'-6"	12,661
105'-6"	113'-11"	566
105'-6"	122'-6"	5,773
109'-10"	135'-6"	3,056
113'-11"	135'-6"	242 '
122'-6"	135'-6"	4,592

f = f

. . •

FIGURE 2-1. BLUME SUPERHEATER BUILDING MODEL SHOWING MASSES AND NORTH-SOUTH STORY STIFFNESS

2-11

i.

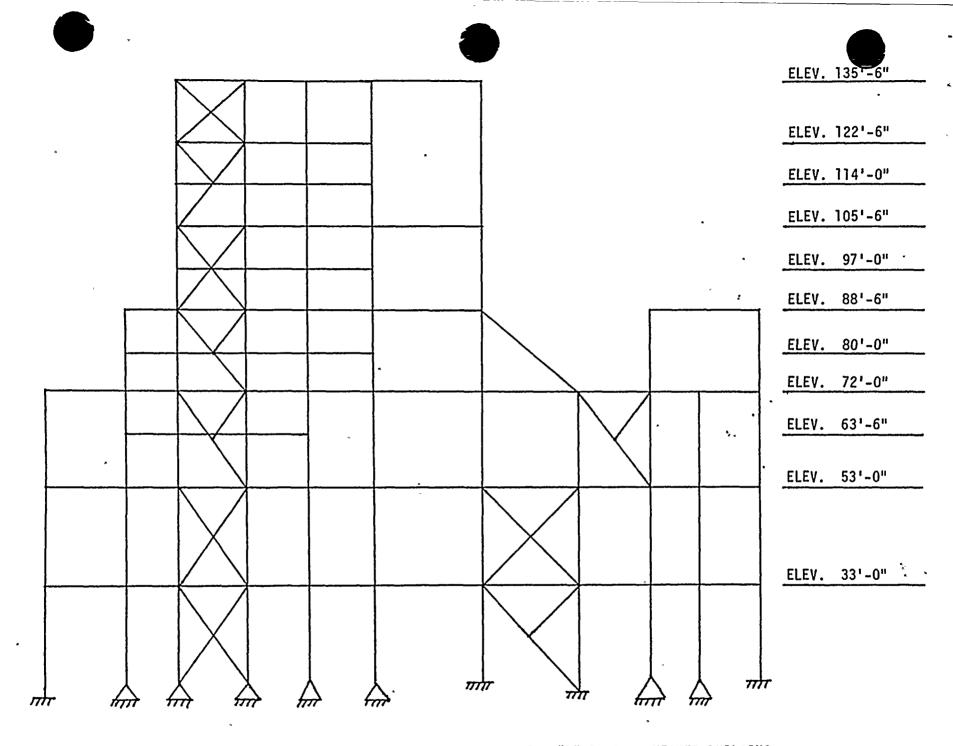
,	MASS (K-SEC ² /FT)	1 (ft ⁴)	A _s (ft ²)
ELEV. 470'-0"	1.300		
ELEV. 447'-0"	· 1.180	14.50	0.575
ELEV. 424'-0"	.: 1.330	21.60	0.655
ELEV. 401'-0"	2.160	30.61	0.740
ELEV. 378'-0"	1.863	41.89	0.820
ELEV. 355'-0"	1.960	55.65	0.900
<u>ELEV. 332'-0"</u>	1.959	72.14	0.980
ELEV. 309'-0"	2.226	91.59	1.065
ELEV. 286'-0"	2.422	114.27	1.145
ELEV. 263'-0"	2.642	160.28	1.400
ELEV. 240'-0"	2.894	194.35	1.495
ELEV. 217'-0"	3.134	262.28	1.785
ELEV. 194'-0"	3.396	311.13	1.890
ELEV. 171'-0"	3.766	405.96	2.215
	3.121	473.23	2.330
ELEV. 148'-0"	2.093	584.79	2.675

.'., **'**

s *

FIGURE 2-2. BLUME STEEL STACK MODEL SHOWING MASSES AND SECTION PROPERTIES

÷


.

i.

1

. .

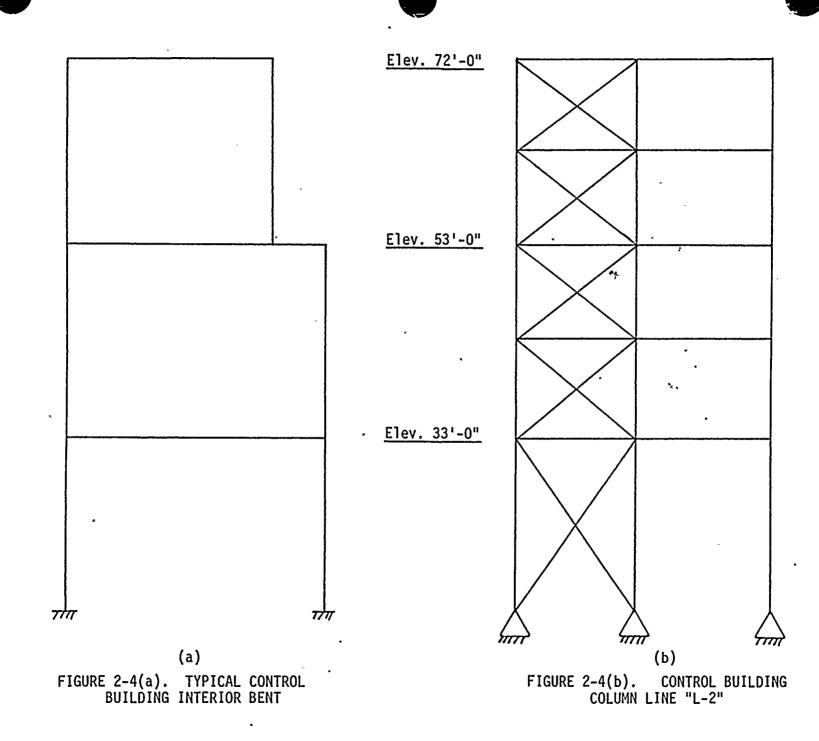
- · · · ·

?

FIGURE 2-3. WESTINGHOUSE MODEL OF COLUMN LINE "L" IN SUPERHEATER BUILDING

· . .

.


.

. . .

.

h

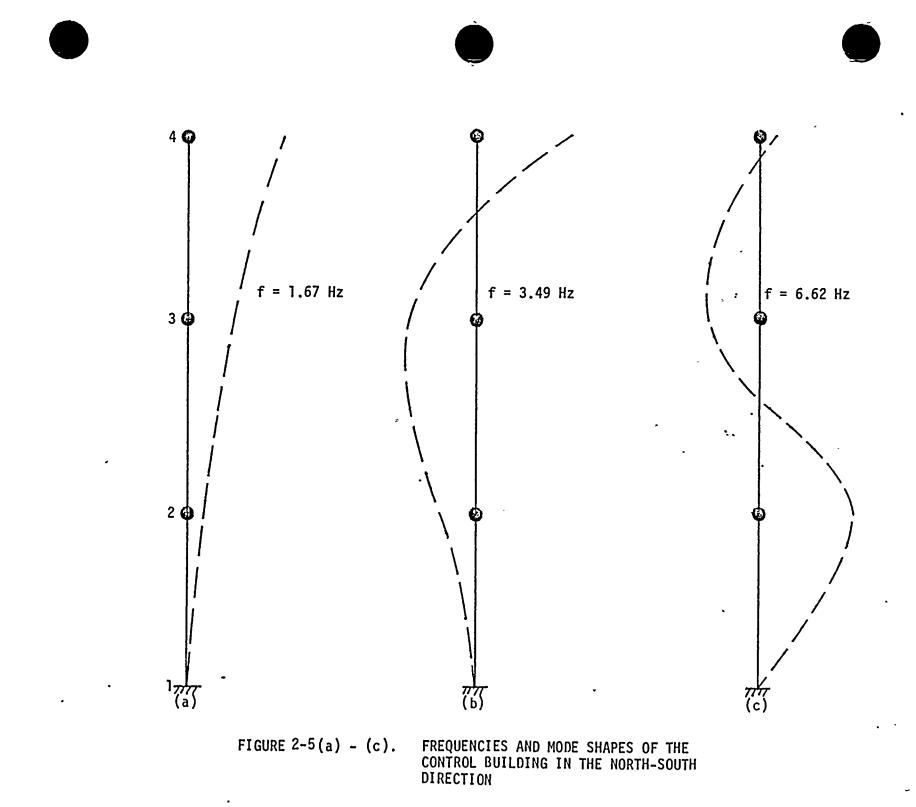
.

۰.

2-14

•

· · · ĸ ** •. χ.


.

\$

.

•

F •

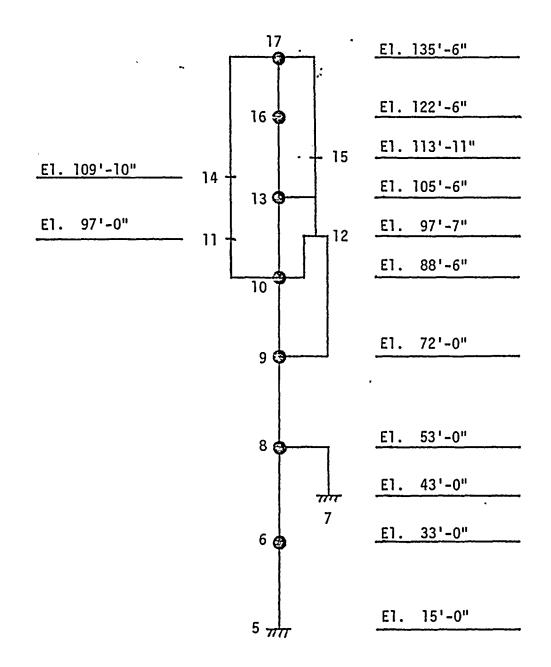
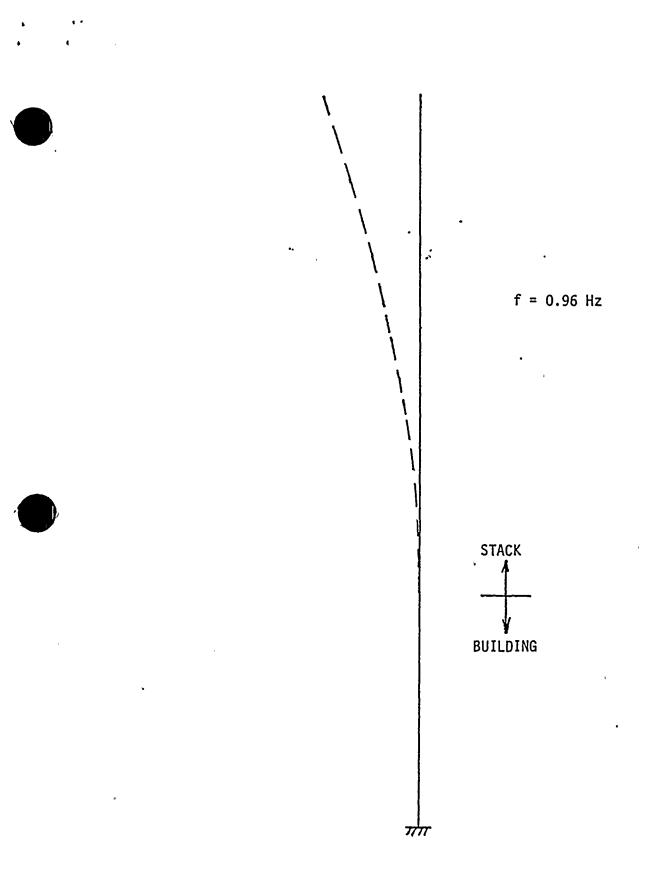


FIGURE 2-6. SUPERHEATER BUILDING MODEL

,

•


,

.

•

•

ı

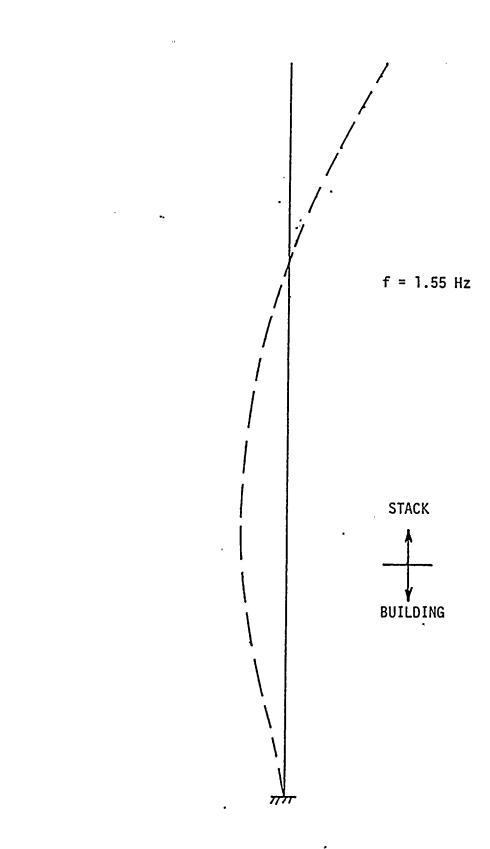


FIGURE 2-8. SECOND SUPERHEATER BUILDING MODE SHAPE IN NORTH-SOUTH DIRECTION

.

3

1

•

. . .

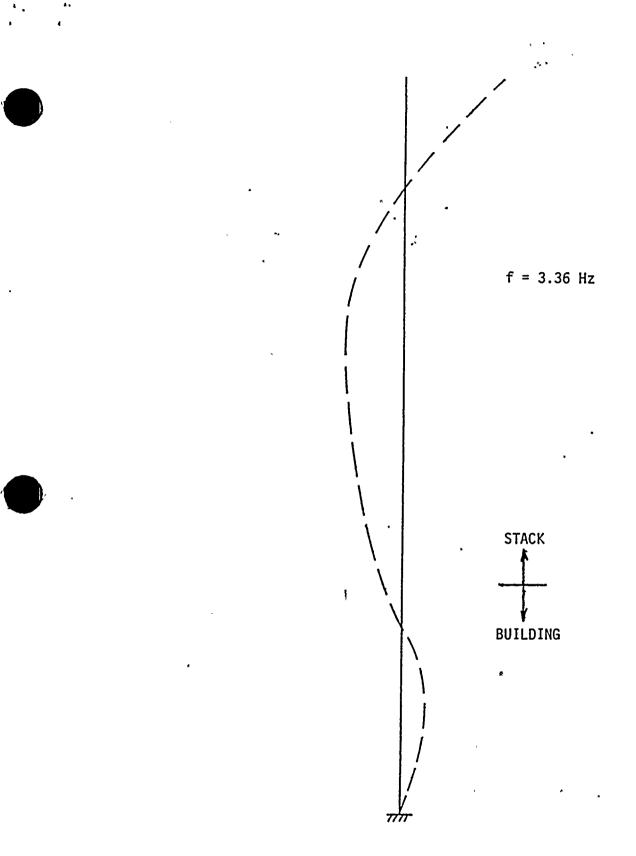
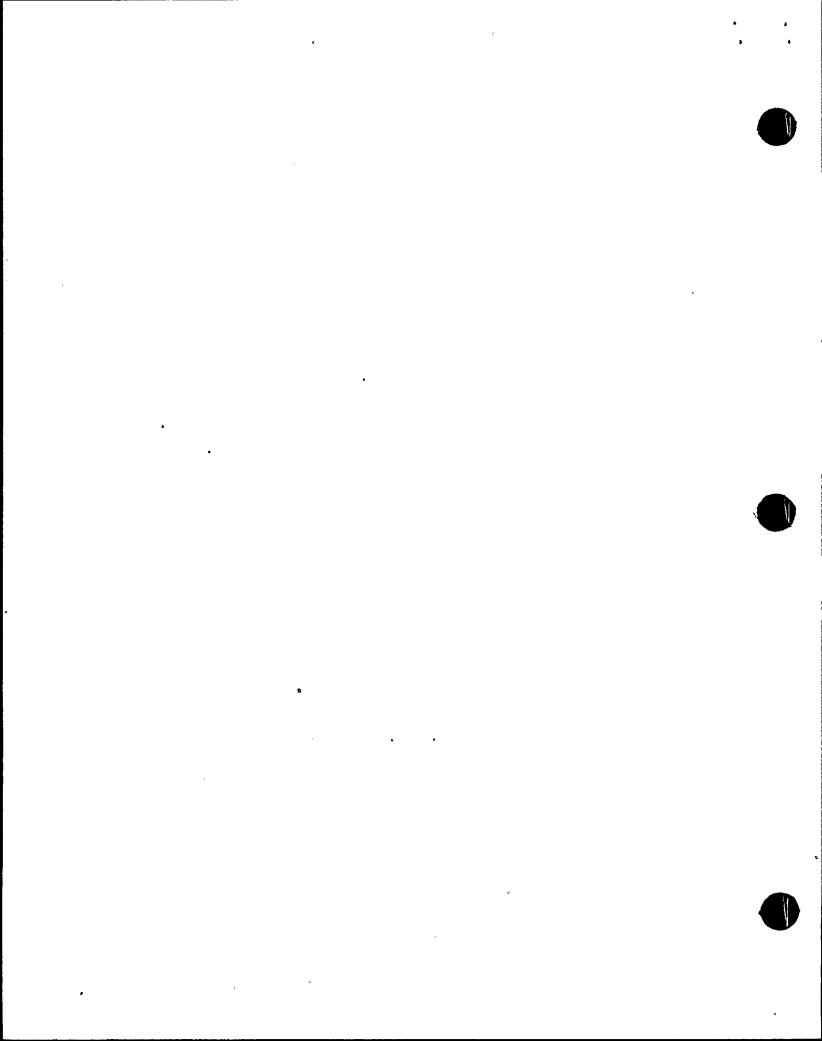
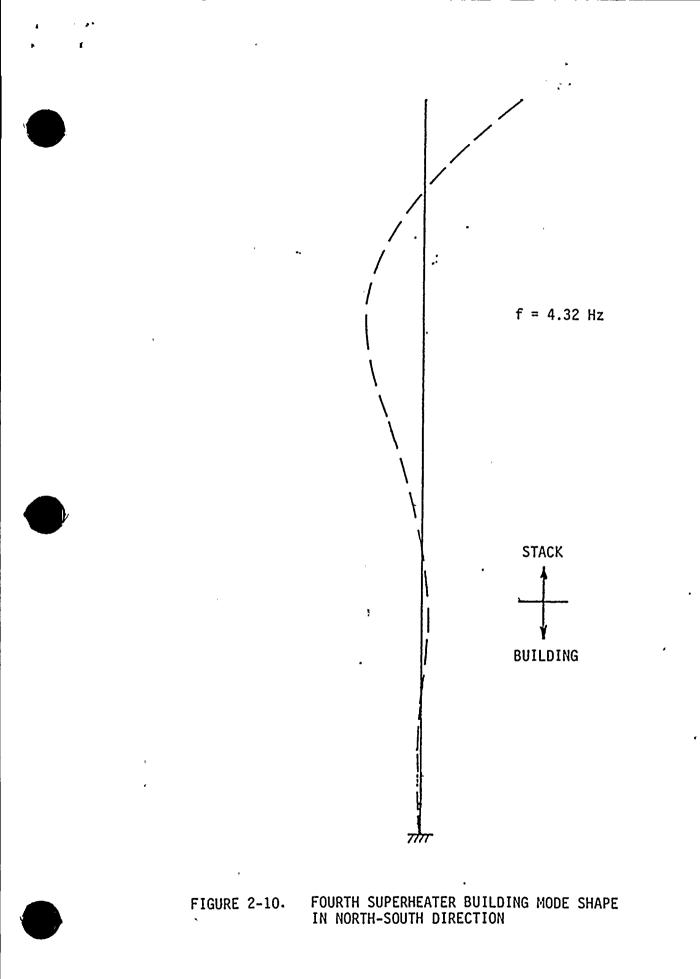




FIGURE 2-9. THIRD SUPERHEATER BUILDING MODE SHAPE IN NORTH-SOUTH DIRECTION

, •

. .

•

. .

. .

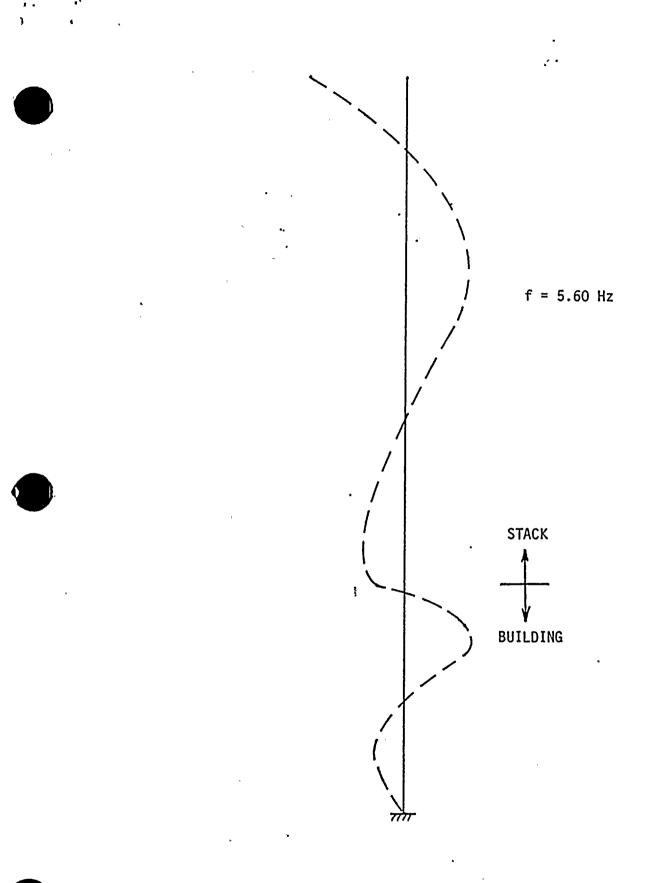


FIGURE 2-11. FIFTH SUPERHEATER BUILDING MODE SHAPE IN NORTH-SOUTH DIRECTION . .

, ,

•

n .

· .

·

. .

3. ANALYTICAL VERIFICATION

In this section, the various time history analyses performed on the interaction between the control building and superheater building (including the steel stack) models are discussed. The first set of analyses involve coupling the two models together with a linear spring that takes both tension and compression. This initial parametric study was conducted in order to determine the appropriate range of rubber pad spring rates for evaluation and to ensure that commercially available pads were available with correct geometries and spring rates. The next set of analyses replaces the linear spring with one that acts only in compression. The structural damping value used for all analyses was 0.10. This is considered appropriate in view of the very high levels of excitation being considered. The analyses were performed on either MODSAP (Reference 5) or DRAIN-2D (Reference 6).

3.1 LINEAR ANALYSES

For these analyses, a spring of constant stiffness for both tension and compression representing the combined effects of the individual rubber pads was used to connect the control and superheater building models at Elevation 72'-0". This corresponds to node 4 of the control building model and node 9 of the superheater building model. The stiffness of this spring was varied in order to determine how the spring stiffness affected the maximum closure distance and force levels transmitted between the two buildings due to an earthquake. The earthquake record used for these initial analyses was an artificial one with a peak ground acceleration equal to 1.0g. Its response spectra essentially envelop those of Regulatory Guide 1.60 (Reference 7). The results of these analyses are shown graphically in Figure 3-1. From these results, it was decided that the combined connecting spring stiffness should be approximately 500 k/in. At this stiffness, a spring that is approximately 3.5 inches in length (the maximum clearance expected) has a maximum compressive strain of about 30 percent for a ground motion with a

L.

•

ų

, . . (

. .

peak acceleration of 1.0g. Since the artificial earthquake used represents the median plus one standard deviation spectra for both soil and rock sites, it was expected to produce higher response that would typically be anticipated for actual earthquakes. In order to evaluate this conservatism, two analyses were run using actual earthquake records scaled to a peak acceleration of 1.0g. The records chosen were the S69E component of the Taft earthquake of July 21, 1952, as recorded at Lincoln School and the N69W component of the San Fernando earthquake of February 9, 1971, as recorded on the Old Ridge Route at Castaic. The maximum closure distance at Elevation 72'-0" using these two records is 0.85 inch and 0.78 inch, respectively. This may be compared to 0.99 inch for the artificial record.

The first 8 natural frequencies for the two models connected by a 500 k/in linear spring are presented in Table 3-1. Also presented in this table are the first 5 natural frequencies for the superheater building by itself and the three natural frequencies for the control building by itself. Note, that the superheater building frequencies have not changed. This is due to the following reasons:

- i) The superheater building is much stiffer and more massive than the control building.
- ii) The connecting spring acts at the top of the control building, but relatively close to the base of the superheater building.

3.2 NONLINEAR ANALYSES

The linear analyses assumed that the connecting spring had a constant stiffness for both tension and compression. This, however, 'is not the case for rubber since rubber becomes stiffer as it is compressed. Furthermore, it is not necessary that the pads be attached to both structures, but only that they absorb the compression forces. In the asbuilt configuration of the two structures, the installation of the pads will be simplified if the pads are attached only to the control building.

·

· · · .

• · ·

,

For this method of attachment, no tension in the pads will occur. However, the system becomes nonlinear, and this must be reflected in the final analysis. Two types of nonlinear analyses were performed. For the first case, the connecting spring could take only compression and had a constant compression stiffness. For the final confirmatory case, the spring was again allowed to take only compression, but a varying compression stiffness was included.

The first set of nonlinear analyses were done to determine whether or not the 500 k/in stiffness chosen by the linear analyses was an appropriate choice. Two analyses were performed using the abovementioned real earthquake records with the ground motion again scaled to 1.0g. For the Taft earthquake, the maximum spring compression was 0.76 inch while for the San Fernando earthquake, it was 0.74 inch. These results were slightly less but compare very well to the maximum compression as determined by the corresponding linear analyses of 0.85 inch and 0.78 inch, respectively.

For the final confirmatory set of nonlinear analyses, it was necessary to develop a force-deflection curve for rubber in compression. This was done in accordance with methods presented in Reference 8. The force-deflection curve used for these analyses is presented in Figure 3-2. Also shown is the force-deflection line for a 500 k/in linear spring. For the deformations expected at the ultimate load capacities as controlled by the roof decking puddle welds, the deviation of the nonlinear force-deflection relationship compared to the linear forcedeflection relationship is not extremely significant. Note that for this curve, a deflection of 0.75 inch produces a force of 375 kips. This force would also be produced by a linear spring of 500 k/in at the same deflection. This coupled control building/superheater building model was subjected to the two real earthquake ground motions scaled to 1.0g. For the Taft earthquake, the spring had a maximum compression of 0.71 inch. This corresponds to a force of 350 kips. There was a maximum spring compression of 0.69 inch for the San Fernando earthquake. This compression corresponds to a force of 340 kips.

,

ñ

·

. . *

.

Analyses were also performed using the natural earthquakes with the ground motion scaled to 1.2g. These analyses gave a maximum compression of 0.89 inch for the Taft earthquake and 0.86 inch for the San Fernando earthquake. These compressions resulted in forces of 476 kips and 454 kips, respectively. Note that in increasing the peak earthquake acceleration from 1.0g to 1.2g, the maximum compression in the spring increased by about 25 percent while the maximum spring force increased by about 35 percent.

3.3 <u>NONLINEAR ANALYSES USING SUPERHEATER BUILDING MODEL WITH</u> INCREASED MASS

After these analyses had been performed, it was discovered that the condensate storage tanks would still be operational. There are also plans to convert the superheater building into offices. At lower elevations, the weight of the added office equipment is expected to be approximately equal to the weight of the equipment to be removed. However, at elevations above 88'-6", a net gain of approximately 2000 kips per floor is expected. Therefore, some additional analyses were performed in which mass equivalent to 2000 kips was added to the masses at Elevations 88'-6" and 105'-6" and the mass at Elevation 72'-0" was restored to the value used in the Blume analysis.

The first 5 natural frequencies and mode shapes for the increased mass superheater building model are presented in Figures 3-3 through 3-7. Comparing these natural frequencies to the ones listed in Figures 2-7 through 2-11, the greatest percentage change in frequencies occurs in the second and fifth modes where the natural frequencies are lower by 11 percent. In these modes, the elevations at which mass was added have more relative motion than in the other modes.

This model was again coupled to the control building model using a spring with the nonlinear force-deflection characteristic shown in Figure 3-2. It was expected that the maximum forces experienced by the spring would not change significantly and that, therefore, the preceding

analyses were still valid in determining an appropriate spring rate. This system was then subjected to the Taft and San Fernando earthquake ground motions scaled first to 1.0g and then to 1.2g. For the Taft earthquake scaled to 1.0g, the spring had a maximum force of 408 kips with a maximum compression of 0.80 inch. For the same earthquake scaled to 1.2g, the maximum force was 597 kips with a maximum compression of 1.02 inches. The San Fernando earthquake scaled to 1.0g produced a maximum force of 315 kips corresponding to a deflection of 0.65 inch. Scaling this earthquake to 1.2g created a maximum spring force of 414 kips with a maximum compression of 0.81 inch. These results are presented in Table 3-2 along with previous calculated results for comparison. For the earthquakes that were scaled to 1.0g, the model with the added masses in the superheater building showed an average increase of 5 percent in the maximum spring force over the model without the added masses. For the earthquakes that were scaled to 1.2g, the average increase in the maximum spring force was 9 percent.

·

• •

۰ ۲

•

κ.

•

н.

r • •

,

.

TABLE 3-1

COMPARISON OF NATURAL FREQUENCIES FOR THE TWO CONNECTED MODELS

Mode	Connected Models Frequency (Hz)	Unconnected Models Frequency (Hz)		
1 2 3 4 5 6 7 8	$\begin{array}{cccc} 0.96 & 1 \\ 1.55 & 1 \\ 2.77 & 2 \\ 3.36 & 1 \\ 4.32 & 1 \\ 5.60 & 1 \\ 5.70 & 2 \\ 6.67 & 2 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		

(1) Superheater building natural frequency

••

② Control building natural frequency

, ,

. .

.

.

. .

.

x

• • • •

۰ ۰ ۰

۰ ۰

TABLE 3-2

COMPARISON OF MAXIMUM SPRING FORCES AND DEFLECTIONS FOR

THE COUPLED SYSTEM USING THE DIFFERENT SUPERHEATER BUILDING MODELS

-		MAXIMUM SPRING FORCE (KIPS)		MAXIMUM SPRING DEFLECTION (IN.)		-	
EARTHQUAKE	PGA	Case 1	Case 2 .	Percent Change	Case 1	Case 2	Percent Change
Taft	1.0g	350	408	+17	0.71	0.80	+13
Taft	1.2g	476	597	+25 +	0.89	1,.02	+15
San Fernando	1.Og	340	315	-7	0.69	0.65	-6
San Fernando	1.2g	454	414	-9	0.86	0.81	-6

Case 1: Superheater Building Model Without Added Masses

Case 2: Superheater Building Model With Added Masses

· ' '

•

N

v

۰. ۱

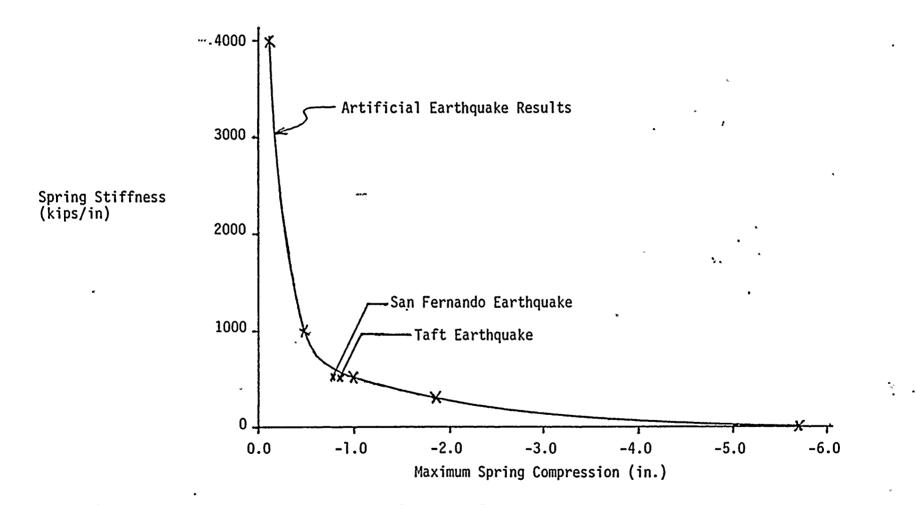
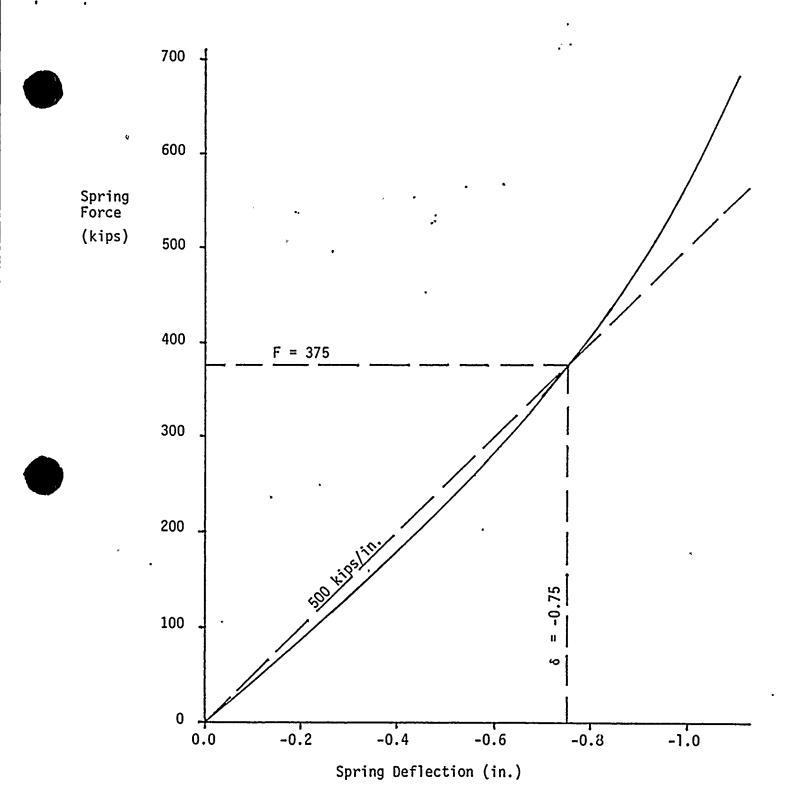
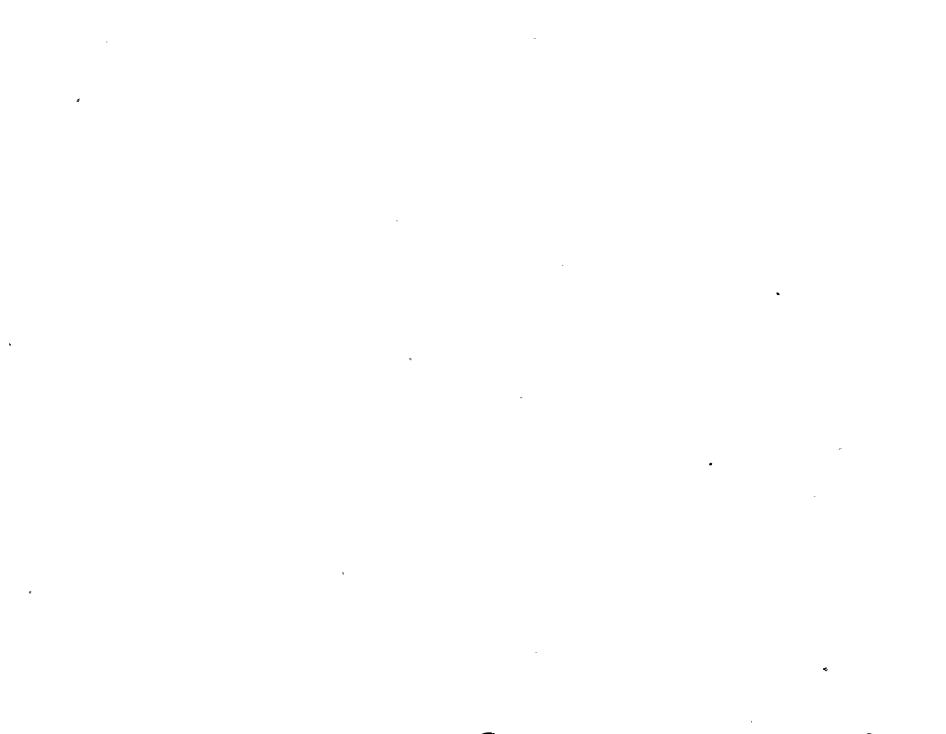




FIGURE 3-1. MAXIMUM COMPRESSION IN LINEAR SPRING CONNECTING CONTROL BUILDING AND SUPERHEATER BUILDING VS SPRING STIFFNESS

۹.,

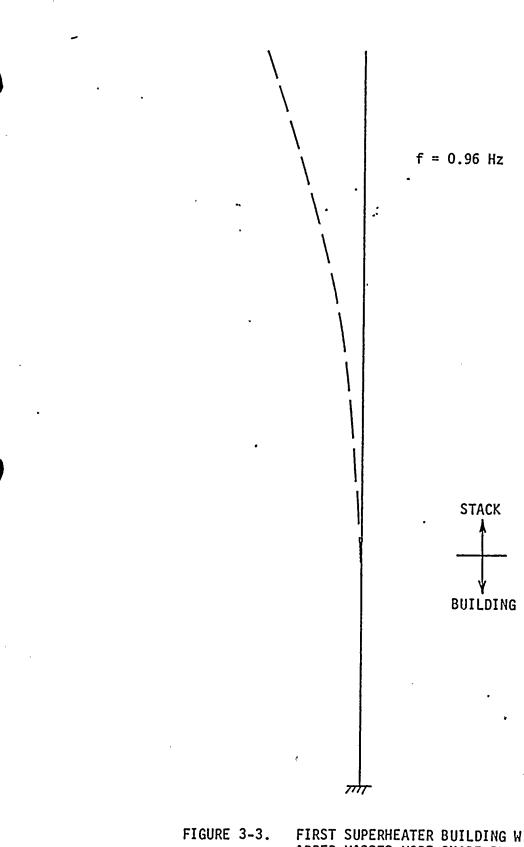


FIGURE 3-3. FIRST SUPERHEATER BUILDING WITH ADDED MASSES MODE SHAPE IN NORTH-SOUTH DIRECTION

,

(

۴.,

-

ĸ

÷

.

. ,

.

•

,

, •

-4

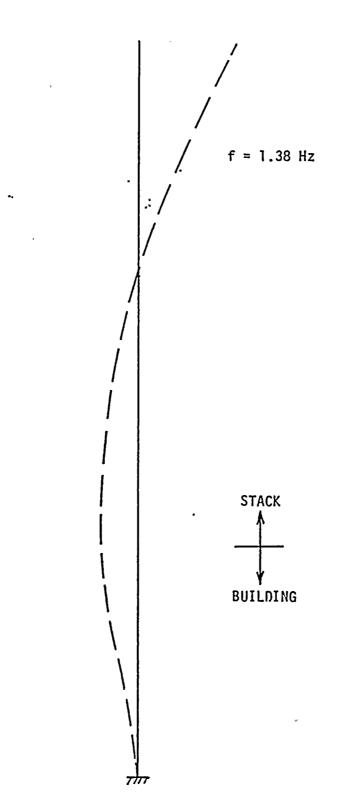


FIGURE 3-4. SECOND SUPERHEATER BUILDING WITH ADDED MASSES MODE SHAPE IN THE NORTH-SOUTH DIRECTION

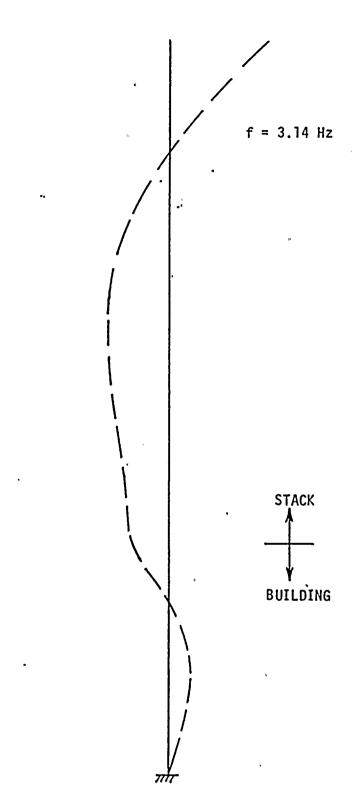


FIGURE 3-5. THIRD SUPERHEATER BUILDING WITH ADDED MASSES MODE SHAPE IN THE NORTH-SOUTH DIRECTION

a.

,

٠

· · ÷

•

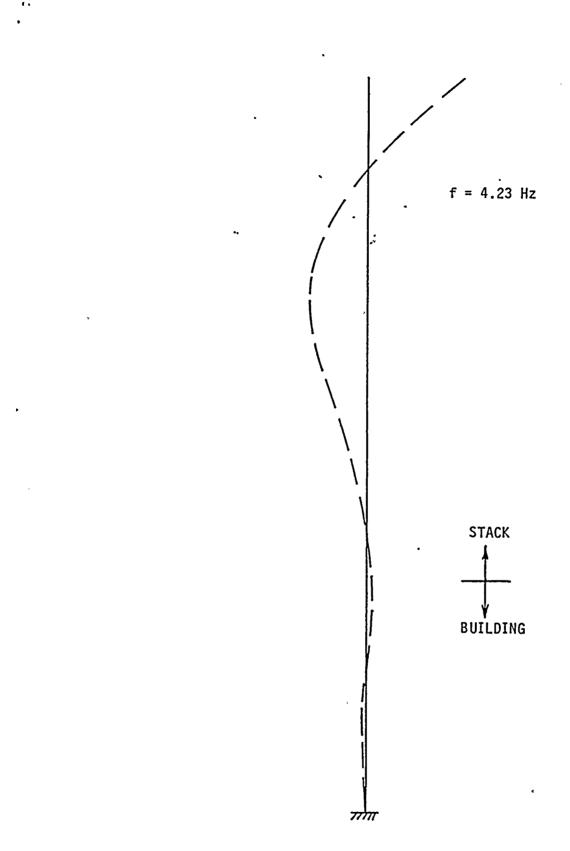


FIGURE 3-6. FOURTH SUPERHEATER BUILDING WITH ADDED MASSES MODE SHAPE IN NORTH-SOUTH DIRECTION

· · ·

μ

· ·

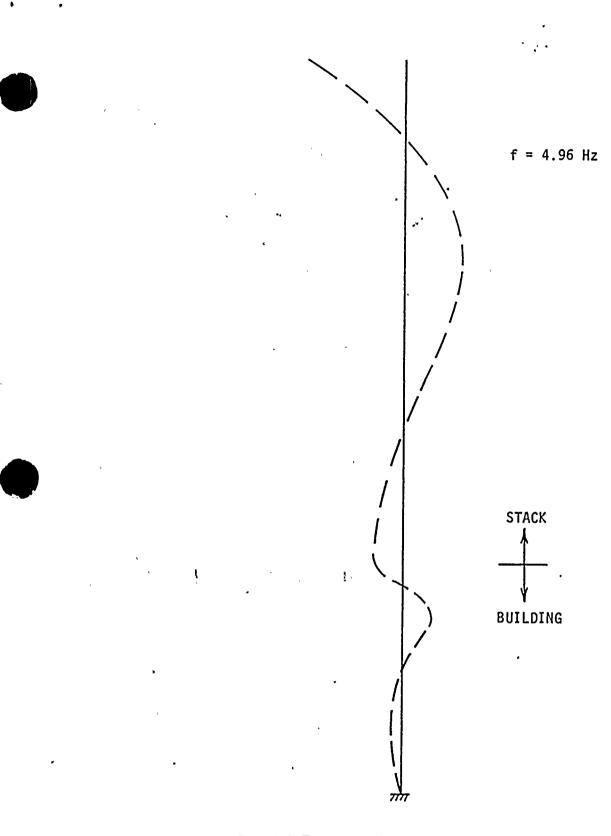


FIGURE 3-7. FIFTH SUPERHEATER BUILDING WITH ADDED MASSES MODE SHAPE IN NORTH-SOUTH DIRECTION

4. DESIGN CONSIDERATIONS

In this section, the recommended design configurations for adding the rubber pads will be presented. Also, seismic capacities of the control building roof impact mode of failure with the pads installed will be described and design specifications are presented.

4.1 <u>RECOMMENDED PAD DESIGN</u>

The existing configuration showing the 1.5 inch gap between the control building and the superheater building at Elevation 72'-O" is illustrated in Figure 4-1. It is possible to expand the gap to approximately 3.5 inches by a number of methods. Clearances in excess of approximately 3.5 inches require modification of the steel frame of either the superheater building or the control building. A number of such methods were evaluated. All involved the installation of rubber pads and provided essentially the same dynamic characteristics.

The recommended method is probably the easiest and least costly method for installing the pads. It is presented in Figure 4-2. For this method, the present 1.5 inch gap is opened up to 3-3.5 inches or greater as needed to accommodate the pads and the new steel angle. The angle section is welded to the existing steel plate, and the wood blocking is placed on the angle.

It is not necessary that the rubber pads completely fill the gap between the two buildings. By leaving a small gap of up to approximately 1 inch between the concrete slab and the rubber pads, ground motions with accelerations of less than 0.18g would result in no interaction between the buildings. This value (0.18g) is greater than that for the DBE (0.15g). This may have some licensing advantage.

4-1

. **.**

.

•

•

·

,

In this design, it is necessary to transfer the interaction loads from the rubber pads into the steel plate, into the metal decking, and finally into the control building steel structure. This requires fillet and puddle welds as noted on Figures 4-2. The advantage of retaining the existing superheater slab overhang dimensions as shown in Figure 4-2 can only be utilized if adequate puddle welds exist for the metal deck to control building frame.

4.2 DESIGN CAPACITIES AND SPECIFICATIONS

The capacity of this buffer system will be limited by the shear capacity of the puddle welds connecting the control building metal decking to the supporting beam. This capacity is based on the thickness of the metal decking. Table 4-1 presents maximum allowable shears in pounds per linear foot of decking on marginal puddle welds that are spaced one foot apart (Reference 9). These allowable shears were determined from tests to determine the ultimate capacity of the welds. The ultimate capacity was then typically divided by a factor assumed to be approximately 3 to determine a safe allowable load. Therefore, the ultimate capacity of the puddle welds may be expected to be at least 3 times the values shown in Table 4-1. To determine the total capacity of the system, it is necessary to multiply the ultimate capacity per linear foot of deck by the length over which the load is transferred from the decking to the beam. This is assumed to be the full length of the control building, approximately 100 feet. Table 4-2 presents the maximum load capacities calculated in this manner. Also presented in Table 4-2 are the median ground accelerations that are expected to produce these forces. These accelerations are based on the forces calculated using the superheater building model with added masses. These accelerations have an expected random lognormal standard deviation of 0.22 and a lognormal standard deviation of approximately 0.2 for uncertainty.

4-2

· · · · · · · ж**е с**

· ·

. . , .

.

.

نه

v

4.3 <u>DESIGN_SPECIFICATIONS</u>

Figure 4-3 shows a typical rubber shipping container mount recommended for the installation (Reference 10). Either part no. 29711-3A or 29711-4A could be used. To obtain a total compressive stiffness of 500 k/in, 85 of the former spaced at 14 inches on center or 66 of the latter spaced at 18 inches on center would be required. The spacing is based on having 100 feet in which to place the mounts. For one method of installation, the 1/2-inch diameter stud would be cut off flush with the mount surface and each pad attached by four 3/8-inch bolts as shown in Figure 4-3. Alternatively, the pads can be attached by means of the single 1/2inch bolt to the angle section and the 4-bolt stud mounting plate left intact. The angle section to which these mounts would be connected would be a 6x6x1/2 inch section. The angle section must be welded to the steel plates in such a manner as to ensure that, considering moments on the angle, the ultimate shear capacity of this weld exceeds the ultimate shear capacity of the puddle welds that connect the steel decking and its supporting beam. The same would be true for the welds between the steel plates and the metal decking. The puddle welds should be no smaller than 1/2-inch diameter and spaced no farther apart than 1 foot. This type of installation provides that the dynamic interaction loads are transmitted relatively uniformly across the roof span in order to develop the maximum capacity of the existing roof deck system. Fewer, stiffer mounts may also be utilized, provided the same overall force-displacement relationship is approximately retained.

· · · · ·

.

•

TABLE 4-1

MAXIMUM ALLOWABLE SHEARS FOR MARGINAL PUDDLE WELDS SPACED 1 FOOT APART

.

METAL DECKING GAUGE	ALLOWABLE SHEAR (1b/ft)	ULTIMATE SHEAR CAPACITY (1b/ft)
16	1920	5760
18	1540	4620
20	1150	3450
22	960	2880
	[

l

•• •} .

,

•

.

.

. .

***** • •

.

1

ŀ

r

.

.

TABLE 4-2

MAXIMUM TRANSFERABLE FORCES AND MEDIAN GROUND ACCELERATIONS THAT PRODUCE THESE FORCES

METAL DECKING GAUGE	MAXIMUM FORCE (kips)	MEDIAN PGA
16	576	1.3 g
18	462	1.1 g
20	345	1.0 g
· 22	288	0.90 g

l

4-5

• * , .

٠

÷

•

N

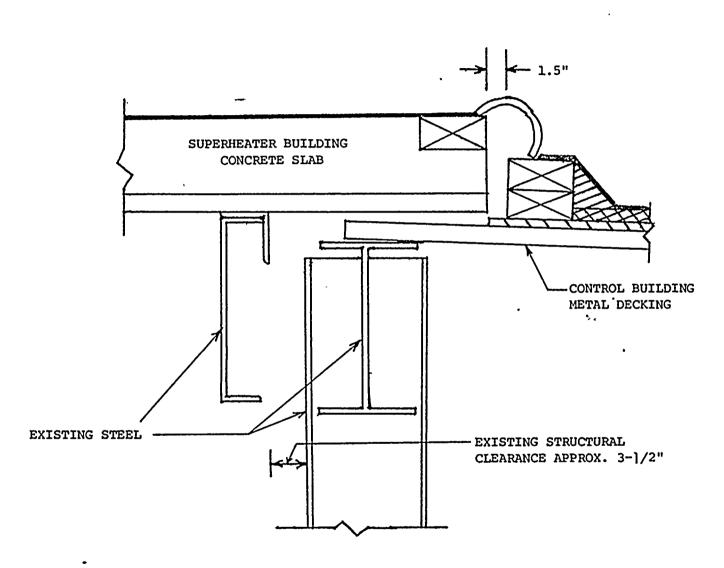


FIGURE 4-1. EXISTING CONFIGURATION OF CONTROL BUILDING AND SUPERHEATER BUILDING AT ELEVATION 72'-0"

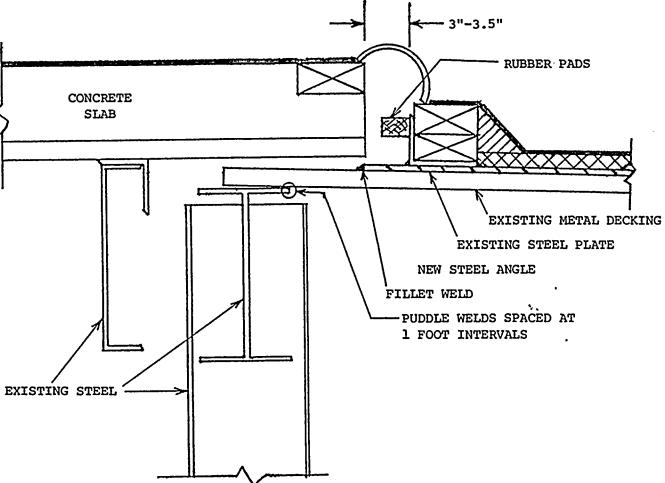
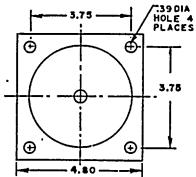
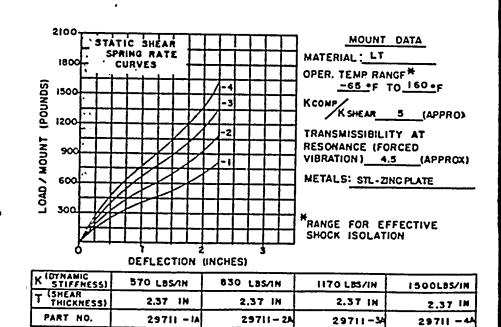


FIGURE 4-2. RECOMMENDED METHOD FOR ADDING RUBBER PADS BETWEEN CONTROL BUILDING AND SUPERHEATER BUILDING


•* • ▼, ™ €


• •

•

•

. •

FIGURE 4-3.

POSSIBLE RUBBER PAD LOAD CHARACTERISTICS

4-8

ł

5. SUMMARY AND RECOMMENDATIONS

An assessment of the probabilities of seismic induced failures of the Indian Point Unit 2 nuclear facility (Reference 1) identified impact between the roof of the Unit 2 control building and the Unit 1 superheater building as a potential seismic failure mode for ground motions with accelerations in excess of approximately 0.27g. There are several possible methods of increasing the seismic capacity for this impact mode. This report dealt with the most promising of these methods which consists of increasing the current 1.5 inch gap between the two buildings to create a gap of 3-3.5 inches and inserting rubber pads in this gap to act as impact absorbers.

In order to evaluate the effects of these pads, mathematical twodimensional models of the control building and the superheater building were created. The compression stiffnesses of the rubber pads were lumped together in one spring connecting the two models. Linear analyses were performed on these models in order to obtain an appropriate total spring stiffness. An artificial ground motion and two real earthquake records provided the input for these analyses. Due to the fact that the pads would only be attached to one building (and, hence, never be in tension) and that rubber becomes stiffer as it is compressed, it was necessary to conduct several nonlinear analyses taking the above into account. These analyses were performed using real earthquake records. Runs were made with the ground acceleration scaled to 1.0g and 1.2g. These analyses verified the spring stiffness chosen by the linear analyses.

A brief analysis of the control building roof established the puddle weld connections between the metal decking and the underlying support beam as the controlling factor in establishing the ultimate capacity of this system. Several capacities based on the metal decking thickness have been determined. Ground accelerations that would produce these forces have been calculated. These range from 0.90g to 1.3g.

5 - 1

٠ .

ANALYSIS - MANARAS

J

I

• '

ð •

ı

ж.

é

* el , . *

.

Several possible design methods were evaluated and the recommended method is discussed. Typical rubber pads have been selected that would conform to the analyses, and design specifications for their installation have been detailed. Other specifications are listed that would ensure that the puddle weld connections would control the ultimate capacity.

ł

REFERENCES

- 1. Wesley, D. A. et al, "Conditional Probabilities of Seismic Induced Failures for Structures and Components for Indian Point Generating Station Units 2 and 3", prepared for Pickard, Lowe and Garrick, October, 1981.
- 2. "Indian Point Unit No. 1, Earthquake and Tornado Analyses of Structures", John A. Blume and Associates, San Francisco, California, September, 1969.
- 3. "Nuclear Reactors and Earthquakes", Lockheed Aircraft Corporation, TID-7024, August, 1963.
- 4. "Final Report, Seismic and Tornado Analysis of the Super Heater Building, Unit No. 1, Indian Point", Westinghouse Electric Corporation, PWR Systems Division, NSD-E-WL-1707, Pittsburgh, Pennsylvania, October, 1970.
- 5. Johnson, J. J., "MODSAP: A Modified Version of the Structural Analysis Program SAP IV for the Static and Dynamic Response of Linear and Localized Nonlinear Structures", General Atomic Company, GA-A14006 (Rev.), June, 1976, revised June, 1978.
 - 6. Powell, G. H., "DRAIN-2D User's Guide", Earthquake Engineering Research Center, Report No. 73-22, University of California, Berkeley, September, 1973, revised August, 1975.
 - 7. USNRC Regulatory Guide 1.60, "Design Response Spectra for Seismic Design of Nuclear Power Plants", Rev. 1, December, 1973.
- 8. "Handbook of Molded and Extruded Rubber", Goodyear Tire and Rubber Company, Akron, Ohio, (undated).
- 9. "Research Committee Report", International Conference of Building Officials, Report No. 2739, July, 1979.
- 10. "Application Selection Guide", Barry Controls, Bulletin C5-178, 1978.

R-1

,

.

Þ

1

v

,

.

APPENDIX B

INDIAN POINT 2 FIRE RISK RELATED MODIFICATIONS

B.1 INTRODUCTION

In the Indian Point 2 fire analysis, contained in the Indian Point Probabilistic Safety Study (IPPSS) (Section 7.3.1 of Reference B-1) the overall risk due to fires is found to be dominated by two fire zones: (1) the switchgear room, and (2) the electrical tunnel. In this appendix, the risk effects of a plant modification to reduce the frequency of fire initiated core melt events is evaluated.

The fire scenarios originating in those zones proceed through these stages: occurrence, propagation, and extinguishment of the fire itself, and the impact of the fire on the safety components. Modifications can be proposed to affect one or more aspects of fire occurrence and lead to reduction in the overall fire risk. The most effective modification is the installation of additional transfer switches in the already existing alternate shutdown system (ASDS) and relocating of the alternate pneumatic indicators for steam generator levels and pressurizer level and pressure to outside the containment. The additional transfer switches would facilitate a quicker connection to an alternate power source for one train of component cooling pumps, charging pumps, and service water pumps.

The dominant fire scenario in the IPPSS (Section 7.3.1) is loss of the component cooling system (CCS) and the normal charging system (CVCS) (due to power cable failure) and loss of all mitigating systems. A small LOCA via reactor coolant pump (RCP) seal failure results from CCS and charging system failure.

To quantify the frequencies of core melt and release categories after the modification is completed, we need a more detailed list of contributors for the IPPSS. This is because, when the dominant contributors are reduced, other formerly noncontributing areas may gain importance. The IPPSS frequencies are reviewed in Section B.2.

The different aspects of a fire incident are analyzed in Section B.3. The details of the modification and all the necessary assumptions for evaluating the impact of this modification are given in Section B.4. The impact of the modification is evaluated in Section B.5. The results are summarized in Table B-1. . .

B.2 IPPSS FIRE RISK

The IPPSS fire risk results are needed for: (1) choosing the type of modification; and (2) measuring the reduction in the frequencies of core melt and release categories. In Section 7.3.1 of the Indian Point Probabilistic Safety Study, these frequencies are calculated in terms of the dominant contributors. Most of the fire zones were not explicitly analyzed quantitatively, judging that their contribution would be insignificant. Typically, these fire zones contained only a few safety related components. The proposed modification would certainly change the pattern of contributors to the release categories and core melt. The fire risk from all fire zones not explicitly quantified in the IPPSS are now so quantified. Table B-2 summarizes the results and Section B.6 gives the details. The fire zone designating numbers are taken from Reference B-2. All the areas that contain some safety components per Reference B-2 are included here. The results of Section 7.3.1 of the IPPSS are directly used in Table B-2. For areas not originally quantified in Section 7.3.1 of the IPPSS, point values (mean frequencies) are estimated per formulations given in Section B.6. The fire zones analyzed in Section 7.3.1 of the IPPSS are found to be (as expected) the dominant contributors to core melt and damage states SE and TE. However, the mean frequency of other damage states are found to be dominated by fire zones not explicitly quantified in Section 7.3.1. Two comments are in order here. First, the increased frequency of these damage states has very little impact on the overall frequency of the damage states. The IPPSS mean frequency of release category 8A increases from 4.8 x 10^{-5} per reactor year (from Table 8.3-2 of the IPPSS) to 4.9 x 10^{-5} per reactor year. Second, the main contributors to this increase are computed by conservative methods, and a more rigorous evaluation is expected to yield smaller frequencies and an overall 8A frequency very close to that presented in the IPPSS. The overall IPPSS mean frequency of release category 8B is 9.1×10^{-5} per reactor year (from Table 8.3-2 of the IPPSS) and is significantly larger than 1.8 x 10^{-5} , the new frequency of 8B due to fires. The latter is now dominated by contributions from fire zones that were not explicitly quantified in Section 7.3.1 of the IPPS. In Section B.6, we find that many conservative measures are incorporated in the quantification of these dominating fire zones.

B.3 BASIS FOR MODIFICATION

In this section, the basis for the proposed modification is examined. A typical quantification process for a critical fire area can be written as

 Φ Damage = λ FireQPlant

where λ_{Fire} represents fire phenomenology and Q_{Plant} represents the

· · · · ·

·

impact of fire on accident sequences. By fire phenomenology we mean the occurrence of fire in critical areas, its propagation to vital components, and failure of extinguishment features to put out the fire in time to prevent the failure of vital components. The conditional frequency (given the fire) Qplant represents the frequency of failure of vital components, the frequency of failure in restoring a failed component, and the unavailability of components independent from fire. The frequency of fires is obtained from statistical data.

Plant response to a fire incident can be altered by introducing new equipment or new power sources to existing equipment. In the IPPSS (Section 7.3.1), we find that there are two important areas (the switchgear room and the electrical tunnel) through which the power cables of almost all vital components are routed. Also, we find that the dominant accident sequence is a small LOCA via RCP seal failure and multiple loss of engineered safeguards. If seal failure can be prevented, core melt due to other initiating events (we have assumed a reactor trip as the enveloping initiating event) would depend on the availability of the turbine-driven or a motor-driven auxiliary feedwater pump. The turbine-driven pump can be started and brought up to speed independent of the switchgear room or the electrical tunnel. A motor-driven auxiliary feedwater pump can be powered from the alternate shutdown system.

In Section 7.3.1 of the IPPSS, we find that the existing alternate shutdown system configuration does not provide adequate protection to prevent RCP seal failure. This is because to power a charging pump and/or a component cooling pump from the alternate shutdown source, a cable (or cables) must be run from disconnect switch(es) near the pump(s), replacing the original power cable(s). The process was judged to take longer than a half hour, thereby not preventing RCP seal failure. It should be noted that the half hour is the conservatively assumed time to RCP seal failure in the absence of seal water injection and thermal barrier cooling.

The process can be expedited by installing fixed alternate cabling and transfer switches and connecting both normal and alternate power cables to the switches. The operators can then switch to the alternate shutdown system by simply throwing the transfer switches. If the seal failure is prevented, the plant can be safely shut down using the secondary side cooling features. However, it is necessary to monitor the steam generator levels and pressurizer level and pressure. It is proposed that the existing alternate pneumatic indicators for these parameters be relocated outside the containment. More details about this modification are given in the following section.

B.4 DESCRIPTION OF MODIFICATION

The most effective modification is the installation of transfer switches for one train of service water pumps, charging pumps, and component cooling pumps and relocating pneumatic level and pressure indicators outside the containment. The switches will allow an operator to transfer the power source for these pumps to the Indian Point Unit 1 switchgear within the first half hour of an accident that disables the component cooling and charging pumps. Figure B-1 shows the transfer switch that is already installed for a motor-driven auxiliary feedwater pump. It is assumed that the proposed ones will be very similar to this one.

This modification is judged to be the most effective because it complements another major modification, the alternate shutdown system installed previously. It does not require major rewiring of power or control circuits or installation of new major components.

The alternate shutdown system is described in Reference B-3. It uses Indian Point Unit 1 switchgear and power cables are run to supply at least one service water pump, one motor-driven auxiliary feedwater pump, one component cooling pump, and one charging pump. With the proposed modification, the operators can transfer the power source of the dedicated pumps by manually throwing a switch near the pump location. 0f course, they have to load the Unit 1 switchgear (which must be accomplished locally) prior to engaging the transfer switch(es). The power cables of the alternate shutdown system are routed through areas independent from the switchgear room, the electrical tunnel, the cable speading room, the control room, containment spray pump room (fire zone 2), and the primary makeup pump area (fire zone 2B). It is assumed in this analysis that the procedures will be modified to address the addition of the new switches and the system will be functionally tested prior to service. Furthermore, as part of this modification, the pneumatic indicators installed near the airlock in the containment for steam generator level and pressurizer level and pressure will be relocated to outside the containment.

B.5 FIRE RISK AFTER THE MODIFICATION

The modification impacts mainly those fire scenarios such as fires in the electrical tunnel or switchgear room where many vital components may be affected. Table B-3 summarizes the results in terms of mean frequencies of the contributions from all fire zones. The modification has reduced the contributions from the electrical tunnel, the switchgear room, and the containment spray pump area. The other fire areas are either not affected by the modification or the impact is insignificant.

,

1

. .

B.5.1 AREAS NOT AFFECTED

The cable spreading room and the control room fire scenarios are not significantly affected because the IPPSS included provisions for the alternate shutdown system (before the proposed modification). In those scenarios, credit is given to the operators reactivating normally running components such as a charging pump and a component cooling pump provided that they are inadvertently stopped by a fire. Inadvertent stoppage of these pumps due to fire is deemed to be a comparatively lower frequency event. Thus, the possibility of an RCP seal failure (small LOCA) is not analyzed. It should be noted that in a cable spreading room or control room fire, only control and instrumentation circuits are affected. Even if it is assumed that all indications are lost, the operators can use the existing pneumatic indicators and activate the pumps from the switchgear room to safely shut down the plant.

The modification cannot have a significant impact on the contribution from pump rooms such as fire zone 1 for CCS pumps or zone 9 for the SI pumps. For these cases, the fire will disable all power feeds to the pumps or the pumps themselves, thus the fire would render the proposed transfer switch ineffective. For the remaining areas, the modification cannot help the restoration of the affected system because the components within those areas are not powered by the alternate shutdown system.

B.5.2 IMPACT ON SWITCHGEAR ROOM CONTRIBUTION

The main impact of the proposed modification on a switchgear room fire is decreasing the likelihood of an RCP seal LOCA. In a switchgear room fire, if both switchgear cabinets or the power cables are affected, the power to all CCS pumps and charging pumps would be lost. With the proposed modification, the operators can activate switchgear of Unit 1 (which has to be done locally) and throw the transfer switches of the CCS pump and/or the charging pump and reactivate the RCP seal cooling function. The relevant valves would be in their normal operating position and it is deemed very unlikely for the switchgear room fire to cause inadvertent closure of these valves. The transfer to the Unit 1 switchgear has to be completed within the first half hour of loss of all RCP seal cooling.

The conditional frequency, Q_{S1} , of seal LOCA given a large fire in the switchgear room can then be written as

 $Q_{S1} = Q_{HE,S1} + Q_{SW} + Q_{CCS}$

where

 $Q_{\text{HE,S1}} \equiv$ human error; failure of the operators to reactivate the CCS pump within one half hour.

 $Q_{SW} \equiv$ failure of the transfer switch.

 Q_{CCS} = failure of the component cooling pump.

1 и . ι

۰.

· ·

.

and

$$Q_{CCS} = Q_{CCS,D} + 24\lambda_{CCS} + Q_{CCS,M}$$

where

 $Q_{CCS,D} \equiv$ failure of the CCS pump on demand.

 λ_{CCS} = failure of the CCS pump during operation (per hour).

 $Q_{CCS,M} \equiv$ unavailability of CCS pump due to maintenance.

The total time period that the component cooling pump is needed to operate is taken to be 24 hours.

The main contributor to $Q_{\text{HE},S1}$ is judged to be failure of the control room operators to initiate the process for transferring to the alternate shutdown system. The large fire in the switchgear room is judged to pose a medium to high stress level on the operators. There will be at least three operators involved in making the decision. Reference B-4 gives human error frequencies and has defined levels of dependency among the operators. It is judged that one of the operators will be strongly dependent on the other two and the level of dependence of the other two on one another will be low. Reference B-4 suggests 0.1 for the frequency of human error for one operator under very high levels of stress. For the conditional frequency of a second operator making the same error, Reference B-4 suggests a point value of 0.15. Based on these suggested frequencies, we have chosen $Q_{\text{HE},S1}$ to be lognormally distributed with the following characteristic values

 $Q_{\text{HE},S1,05} = 9.0 \times 10^{-3}$ $Q_{\text{HE},S1,50} = 3.0 \times 10^{-2}$ $Q_{\text{HE},S1,95} = 1.0 \times 10^{-1}$ $\alpha_{Q_{\text{HE},S1}} = 3.9 \times 10^{-2}$

Table B-4 gives the frequencies of Q_{SW} , $Q_{CCS,D}$, λ_{CCS} and $Q_{CCS,M}$. Using those frequencies and the previously given human error frequency the conditional frequency of seal LOCA is evaluated. Its characteristic values are:

```
Q_{S1,05} = 1.7 \times 10^{-2}

Q_{S1,50} = 3.7 \times 10^{-2}

Q_{S1,95} = 9.8 \times 10^{-2}

\alpha_{Q_{S1}} = 4.6 \times 10^{-2}
```

.

.

۴

·

In a large switchgear room fire, all the small LOCA mitigating functions will be lost. Thus, if a seal LOCA occurs, the operators have to turn on at least one auxiliary feedwater pump and at least one SI pump. The turbine-driven auxiliary feedwater pump is independent of the switchgear room. A motor-driven auxiliary feedwater pump can be activated using the alternate shutdown system. However, the SI pumps would be affected by the fire and would not be available within 1 hour of seal failure.

Thus, core melt is taken to be certainty in the case of seal failure. The conditional frequency of core melt $Q_{CM,14}$ can then be written as

 $Q_{CM,14} = Q_{S1}$

The characteristic values of Q_{CM,14} are:

 $Q_{CM,14,05} = 1.7 \times 10^{-2}$ $Q_{CM,14,50} = 3.7 \times 10^{-2}$ $Q_{CM,14,95} = 9.8 \times 10^{-2}$ $\alpha_{Q_{CM,14}} = 4.6 \times 10^{-2}$

The containment spray pumps and containment fan cooler units will be lost in a switchgear room fire. The alternate shutdown system does not have any provisions for restoring the power to these components. Thus, a core melt due to seal failure would lead to plant damage state SE. The unconditional frequency of damage state SE is then

 $^{\phi}$ SE,14 = $^{\phi}$ SE,14 Q CM,14

where $\phi_{SE,14}$ is the base case frequency of state SE due to switchgear fires given in the IPPSS.

If the seal failure is prevented, the initiating event becomes a transient (reactor trip is assumed here). Safe shutdown can be achieved if the AFWS or bleed and feed mode of core cooling is employed. The latter is not possible because the PORV block valves would be lost due to loss of both safety MCCS 26A and 26B. Also, there is no immediate power to SI pumps. Of the auxiliary feedwater system, either the turbine-driven pump or one motor-driven pump (by connecting to the alternate shutdown system) can be used. The conditional frequency, Q_{CM} , of core melt (given a large switchgear room fire and successful RCP seal cooling or injection) is then equal to the unavailability of AFWS. It is deemed that human error contribution is very small because the successful alignment of CCS and charging pumps would have a reassuring effect on the operators. The unavailability of AFWS due to other causes as evaluated in Section 1.5.2.3.9 of the IPPSS is used here. The distribution is approximated by a lognormal distribution with the following characteristic values:

 $Q_{CM,T,14,05} = 4.7 \times 10^{-5}$ $Q_{CM,T,14,50} = 1.3 \times 10^{-4}$ $Q_{CM,T,14,95} = 3.6 \times 10^{-4}$ $\alpha_{Q_{CM,T,14}} = 1.6 \times 10^{-4}$

Then the unconditional frequency of damage state TE becomes:

 $\Phi_{TE,14} = \Phi_{SE,14} Q_{CM,T,14}$

The base case frequency of damage state SE is used because it is equal to the frequency of large fires in the switchgear room. The mean of the frequency of damage state TE after the proposed modification is given in Table B-3.

B.5.3 IMPACT ON ELECTRICAL TUNNEL CONTRIBUTION

B.5.3.1 Fire at the Right Stack of Trays

The electrical tunnel contribution is also affected by the proposed modification. If the fire affects only the right stack of trays, damage states SEF and SLF would result (in this study we only use SEF and include all SLF contributions in SEF). The operators can prevent seal failure as described earlier. The conditional frequency of failure to prevent seal LOCA is Q_{S1} which was evaluated earlier.

In the base case evaluation of fire risk, the electrical tunnel is evaluated in two parts: (1) fire zone 1A on the PAB side, and (2) 32A on the control building side. The unconditional frequencies of SEF due to fire in these areas can be written as:

 $\phi'_{SEF,1A} = \phi'_{SEF,32A} = (\phi_{SEF,1A} + \phi_{SLF,1A}) Q_{S1}$

This equation reflects the fact that base case SEF and SLF frequencies of the portions of the tunnel are equal. The mean values are given in Table B-3.

If the seal failure is prevented, the initiating event becomes a transient (reactor trip is assumed here). Safe shutdown can be achieved if the AFWS or bleed and feed mode of core cooling is employed. The two safety MCCs will be failed in a fire in the right stack of trays. Thus, the PORV block valves will not be able to be opened for bleed and feed, and similar to the switchgear room fire, if AFWS is not activated core

ſ

. .

.

--.

,

.

r

melt could occur. The auxiliary feedwater system is independent from this fire. From Section 1.5.2.3.9 of the IPPSS the unavailability of AFWS is obtained. It is approximated with a lognormal distribution with the following characteristic values:

```
Q_{CM,T,ET,05} = 1.7 \times 10^{-6}

Q_{CM,T,ET,50} = 1.1 \times 10^{-5}

Q_{CM,T,ET,95} = 6.5 \times 10^{-5}

\alpha_{Q_{CM,T,ET}} = 1.9 \times 10^{-5}
```

The containment spray system would also fail from a fire in the right stack of trays. Thus, the unconditional frequency of TEF becomes

$$\phi_{\text{TEF,1A}}^{\dagger} = \phi_{\text{TEF,32A}}^{\dagger} = \lambda_{\text{AUX}} f_{\text{T}} f_{\text{R}} Q(\tau V) Q_{\text{CM,T,ET}}$$

where

- λ_{AUX} = frequency of fires in the PAB, the control building (CB) or the fan house (FH).
- f_T = fraction of PAB, CB and FH fires that occur in the electrical tunnel in the PAB.

f_R = fraction of electrical tunnel fires that occur in the right
 stack of trays.

 $Q(\tau_v)$ = conditional frequency of fire propagation.

These parameters are evaluated in Section 7.3.1.4 of the IPPSS and they are summarized in Table B-4. The mean frequencies of damage state TEF after the proposed modifications are given in Table B-3.

B.5.3.2 Fire Affecting Both Stacks of Trays

If the fire affects both stacks of trays, from the base case study, damage state SE would result. The seal failure may be prevented using the modified alternate shutdown system. The conditional frequency of seal failure is again Q_{S1} . Thus, the unconditional frequency of damage state SE becomes:

 $\phi_{SE,1A} = \phi_{SE,1A} q_{S1}$

 $^{\phi}$ SE,32A = $^{\phi}$ SE,32A^QS1

If seal failure is prevented, a transient (we assume reactor trip) would occur. The bleed and feed mode of core cooling would not be available because the two safety MCCs would be lost. Two trains of AFWS can be made available manually. Similar to switchgear room fire, it is deemed that human error contribution is very small because the successful alignment of CCS and charging pumps would have a reassuring effect on the operators. The unavailability of AFWS due to other causes as evaluated in Section 1.5.2.3.9 of the IPPSS is used here. Using the results from the switchgear room fire study, we write

 $Q_{CM,T,1A} = Q_{CM,T,32A} = Q_{CM,T,14}$

and for the unconditional frequencies

$$\phi'_{TE,1A} = \phi_{SE,1A}^{Q}_{CM,T,1A}$$

 $\phi'_{TE,32A} = \phi_{SE,32A}^{Q}_{CM,T,32A}$

The mean frequencies of damage state TE after the proposed modifications are given in Table B-3.

B.5.4 IMPACT ON CONTAINMENT SPRAY PUMP AREA, FIRE ZONES 2 AND 2A

The power cables of all CCS pumps are routed through these two fire zones, where the containment spray pumps, the primary water makeup pumps and the spray additive tank are located. Since the transfer switch and the power cable for one CCS pump from the alternate shutdown system would not be located in these areas, there is a very small likelihood for a single fire or coincident fires simultaneously affecting the contents of these fire zones and failing the power source transfer capability.

One component cooling pump can be made available manually by transferring the power source to the alternate shutdown system, thus preventing seal failure. The conditional frequency, Q_{S1} , which was evaluated earlier in this appendix is also applicable here. The frequencies of damage states SEF and SE are reduced by Q_{S1} . Table B-3 shows the mean values. For damage state SEF, the unavailability of CCS is reduced by Q_{S1} . For damage state SE, the unavailabilities of CCS and service water system (SWS) are reduced by Q_{S1} .

B.5.5 IMPACT ON THE RELEASE CATEGORIES DUE TO FIRE

Three release categories, 8B, 8A, and 2RW may result from a fire incident. Their frequencies of occurrence are evaluated from the major contributors as determined by the mean values of Table B-3. The results are summarized in Table B-1.

The frequency of release category 8B is dominated by the frequency of damage state TEC from fire zone 74A (electrical penetration area), by

the frequency of damage state TEFC from fire zone 23 (auxiliary boiler feed pump room), and by damage state TEFC from fire zone 11 (the cable spreading room).

$$\phi_{BB} = \phi_{TEC,74A} + \phi_{TEFC,23} + \phi_{TEFC,11} = \lambda_{AUX} f_T Q(\tau_H) Q_S$$

+ $\lambda_{AUX} f_1(Q_{SI} + Q_{REC} + Q_{PORV})$ + $\lambda_{CSR} f_{ES}Q(\tau_G) Q_S Q_{HE}$

All the parameters of this equation (such as λ_{AUX} , f_T , etc.) are defined and evaluated either in Section B.6 of this report or in Section 7.3.1 of the IPPSS. The characteristic values of release category 8B after the proposed modifications are given in Table B-1.

The frequency of release category 8A from fires is dominated by the frequency of damage state SEF from fire zones 1A and 32A (both portions of the electrical tunnel).

$$\phi_{8A}^{\dagger} = \phi_{SEF,1A}^{\dagger} + \phi_{SEF,32A}^{\dagger} = 2\phi_{SEF,1A}^{\dagger}$$

= 2($\phi_{SEF,1A}^{\dagger} + \phi_{SLF,1A}^{\dagger}$) Q_{S1}

The base case frequencies $\phi_{SEF, 1A}$ and $\phi_{SLF, 1A}$ are taken from Section 7.3.1 of the IPPSS. The parameter Q_{S1} is evaluated earlier in this section. The characteristic values of release category 8A after the proposed modifications are given in Table B-1.

The frequency of release category 2RW from fires is dominated by the frequency of damage state SE from fire zones 1A and 32A (both portions of the electrical tunnel), fire zone 14 (the switchgear room), and by the frequency of damage state TE from fire zone 11 (the cable spreading room).

 $\phi'_{2RW} = \phi'_{SE,1A} + \phi'_{SE,32A} + \phi'_{SE,14} + \phi'_{TE,11}$

= $\lambda_{AUX} f_T f_A [1 + Q(\tau_A)] Q_{S1} + \lambda_{AUX} f_{SWG} f_{SL} Q(\tau_G) Q_{CM, 14}$

+ $\lambda_{CSR} f_{ES} Q(\tau_G) Q_S Q_{HE}$

All the parameters of this equation (such as λ_{AUX} , f_T , etc.) are defined and evaluated either in this Appendix or in Section 7.3.1 of the IPPSS. The characteristic values of release category 2RW are given in Table B-1.

The frequency of core melt from fires is now dominated by the frequency of damage state TEC from fire zone 74A (the electrical penetration area), the frequency of state TEFC from fire zone 23 (the auxiliary boiler feed

ŕ

· · · · ·

۷ . .

•

pump room), the frequencies of damage states SEF and SE from fire zones 1A and 32A (both portions of the electric1 tunne1) and by the 'frequency of damage state TEFC from fire zone 11 (the cable spreading room).

^{+ φ}se,32A ^{+ φ}se,14 ^{+ φ}tefc,11

All the parameters of this equation have been defined earlier in this section. Thus, the characteristic values of the core melt frequency after the fixes are given in Table B-1.

B.6 <u>HIGHLIGHTS OF THE IPPSS QUANTIFICATION</u>

In this section, the methods used for calculating the risk from the fire zones not explicitly quantified in Section 7.3.1 of the IPPSS are described. The details of quantification for some areas are also high-lighted.

B.6.1 THE GENERAL FORMULATIONS

In Section 7.3.1 of the IPPSS, it is found that fires cannot cause a large or medium LOCA. The simultaneous occurrence of these initiating events and a fire disabling part or most of the mitigating systems can be shown to be dominated by the frequencies of these sequences due to causes other than fire.

For a small LOCA, it is found that fire can only lead to a reactor coolant pump seal failure (thereby leading to a small LOCA) and cannot cause any other type of breach in the primary system (Section 7.3.1 of the IPPSS). To simplify the calculations, the delayed melts (e.g., due to failure of the recirculation system) are combined with early melts. Core melt is computed in two parts: (1) core melt due to a small LOCA, and (2) core melt due to a transient. The transients are grouped together and reactor trip is chosen to be the representing transient initiating event.

 $\Phi_{\text{COPE melt}} = \Phi_{\text{CM},\text{small LOCA}} + \Phi_{\text{CM},\text{transient}}$ $\Phi_{\text{CM},\text{small LOCA}} = \lambda_{\text{Fire}} [Q_{\text{EP}} + Q_{\text{SW}} + Q_{\text{CCS}}(Q_{\text{SI}} + Q_{\text{REC}} + Q_{\text{CF}} + Q_{\text{PORV}} + Q_{\text{AFWS}})]$

 Φ CM, transient = λ Fire[(QSI + QREC + QPORV)QAFWS]

where

 λ_{Fire} = frequency of fire failing a specified group of vital components.

Q_i = unavailability of system i.

, , ,

· · ·

.

- EP = electric power system.
- SW = service water system.
- CCS = component cooling water system.
- SI = safety injection system.
- REC = recirculation system.
- CF = containment fan cooling system.
- PORV = power-operated relief valves (block valves are used for bleed and feed operation).
- AFWS = auxiliary feedwater system.

The equation for core melt due a small LOCA is based on the event tree of Figure 7.3.1-6 of the IPPSS. The systems referenced previously are analyzed in Section 1.5.2 of the IPPSS, except for the PORV which is analyzed in Section 1.3.3.9 of the IPPSS. The unavailability of these systems is given in Section 1.5.2 for different boundary conditions. In that core melt equation, it is assumed that total loss of electric power or service water will lead to RCP seal failure and loss of all mitigating features. It is also assumed that total loss of component cooling leads to loss of the charging pumps and, consequently, a small LOCA via the RCP seals. The availability of the containment fan coolers determines the availability of the recirculation system when the component cooling system is not available.

The equation for core melt due to a transient is based on the event tree of Figure 7.3.1-7 of the IPPSS. The plant damage states are computed from the following equations:

 $\Phi_{SEFC} = \lambda_{Fire} [Q_{CCS} (Q_{SI} + Q_{REC} + Q_{PORV} Q_{AFWS})]$

 ϕ SEF = ϕ SEFCQCS

 $\Phi SEC = \lambda Fire[QCCSQCF + QSW]$

 $\Phi SE = \lambda Fire[QEP + QSWQCS + QCCSQCFQCS]$

 Φ TEFC = Φ CM, transient

 ϕ TEF = ϕ TEFCQCS

 ϕ TEC = ϕ TEFCQCF

 $\Phi TE = \Phi TEFCQCFQCS$

where the different parameters are defined earlier and

•

ι.

.

ι

· · · ·

The frequencies of the release categories are computed using

 $\Phi_{8B} = \lambda_{Fire} [Q_{SW} + Q_{CCS}(Q_{SI} + Q_{REC} + Q_{CF}) + (Q_{SI} + Q_{REC} + Q_{PORV})Q_{AFWS}]$ $\Phi_{8A} = \lambda_{Fire} [Q_{CCS}(Q_{SI} + Q_{REC}) + (Q_{SI} + Q_{REC} + Q_{PORV})Q_{AFWS}]Q_{CS}$ $\Phi_{2RW} = \lambda_{Fire} [Q_{EP} + Q_{SW}Q_{CS} + Q_{CCS}Q_{CF}Q_{CS}$

+ (Q_{SI} + Q_{REC} + Q_{PORV})Q_{AFWS}Q_{CF}Q_{CS}]

The mean of the frequency of λ_{Fire} is conservatively taken as 10^{-3} for each fire zone in the primary auxiliary building (PAB), the fan house (FH), the control building (CB), and the containment. For those areas in which the core melt and damage state frequencies are evaluated, this mean frequency is reevaluated using distributions of the frequency of fires in the overall building and the fraction of those fires occurring in the specific area.

Table B-5 gives the results and input information for core melt and damage state calculations. All five zones are addressed. The details of some of the calculations are highlighted hereafter.

B.6.2 FIRE ZONE 1, CCS PUMP ROOM

Fire zone 1 is located at Elevation 68' of the PAB. The three component cooling pumps are installed in this area. The frequency of failure of all three pumps due to a fire incident, λ_{Fire} , is shown as a fraction of auxiliary building fires

 λ Fire = λ AUX^f1

In Section 7.3.1 of the IPPSS, we find:

$$\lambda_{AUX,05} \stackrel{!}{=} 0.015 \text{ ry}^{-1}$$

 $\lambda_{AUX,50} = 0.033 \text{ ry}^{-1}$
 $\lambda_{AUX,95} = 0.053 \text{ ry}^{-1}$
 $\alpha_{\lambda_{AUX}} = 0.034 \text{ ry}^{-1}$

The fraction f_1 is the fraction of fires that may occur in fire zone 1 and be of sufficient severity to fail all three CCS pumps. It is evaluated judgmentally based on the experience gained in doing the

•

.

ς

.

.

r

.

analysis of Section 7.3.1 of the IPPSS, and is chosen to be lognormally distributed with the following characteristic values:

 $f_{1,05} = 5.0 \times 10^{-4}$ $f_{1,50} = 5.0 \times 10^{-3}$ $f_{1,95} = 5.0 \times 10^{-2}$ $\alpha_{f_1} = 1.3 \times 10^{-2}$

The product of these two distributions, λ_{Fire} , which is the frequency of fires in fire zone 1 that would fail all three CCS pumps, yields the following characteristic values (per reactor year):

 $\lambda_{Fire.05} = 1.6 \times 10^{-5}$ $\lambda_{\text{Fire},50} = 0.9 \times 10^{-4}$ $\lambda_{\text{Fire},95} = 1.7 \times 10^{-3}$ $= 4.4 \times 10^{-4}$ α_{λ} Fire

The mean unavailabilities of the mitigating systems are taken from Section 1.5.2 of the IPPSS. The formulations given in Section 8.6.1 are used to evaluate the core melt and other plant damage states.

B.6.3 FIRE ZONE 15, CONTROL ROOM

The control room is directly above the cable spreading room and contains the control and instrumentation cables, controls, and readouts of virtually all the systems of the plant. There are no motive power cables in the area. The area is manned continuously. There are fire detectors inside the control cabinets. The fire extinguishment capability for the area consists of two hose stations and a class A fire extinguisher adjacent to the zone and several 15-pound carbon dioxide extinguishers inside the control room. The operators also have access to breathing apparatus that can be used in case of smoke in the area.

The most critical area within the control room is the control cabinet of safety components (cabinet numbers SB1 and SB2) which are directly above the critical area in the cable spreading room that was analyzed in Section 7.3.1 of the IPPSS. A fire in these cabinets would have the same impact on plant safety as a cable spreading room fire at the center

of the northern wall. However, in this case, the operators would detect the fire almost immediately and attempt to extinguish it in a short period of time. Also, the transient fuels in the control room are judged to be significantly less than the cable spreading room. Not all control room fires would lead to the evacuation of the area because operators can wear breathing apparatus and the control room HVAC can purge the contaminated control room air.

Fires affecting cabinets other than those controlling the safety components (i.e., SB1 and SB2) will not have severe impact on the plant's safety margin. A fire affecting SB1 and SB2 will result in accident sequences similar to those analyzed for cable spreading room fires in Section 7.3.1.2.4 of the IPPSS. It is judged that the frequency of core melt or other damage states from control room fires is just a fraction of the frequency of the same state from cable spreading room fires. This fraction, f_{CR} , is judged to have the following histogram:

f _{CR}	Probability	Cumulative Probability
0.01	0.05	0.05
0.03	0.20	0.25
0.10	0.25	0.50
0.30	0.25	0.75
0.75	0.20	0.95
1.00	0.05	1.00

The mean of this distribution is 0.31. For example, the core melt frequency from control room fires is obtained from

 Φ cm, cr = f cr ϕ cm, csr

where

 $\Phi_{CM,CSR}$ = core melt frequency from cable spreading room fires.

The mean frequencies are given in Table B-5.

B.6.4 FIRE ZONE 27A, CORRIDOR

This corridor at Elevation 98' of the primary auxiliary building contains the safety related motor control centers 26A and 26B. The controls of all safety related motor-operated valves pass through these motor control centers. It is a controlled access area. Considering the frequency of fires in other areas and the fire propagation analysis performed for other areas, the frequency of failing both of the motor control centers is written as

 $\lambda_{Fire} = \lambda_{AUX} f_{27A} f_{PF}$

α

 3

.

ş

۰ ۲

μ

where

 λ_{AUX} = frequency of auxiliary building fires.

- f_{27A} = the fraction of auxiliary building fires that may occur at the motor control center area.
- fpF = the fraction of motor control center area fires that may occur between the two safety cabinets and be large enough to fail both of them.

The fraction, f_{27A} , of auxiliary building fires in the motor control center area is assessed by comparing two similar parameters for the switchgear area, f_{SWG} , and electrical tunnel area, f_T , of Section 7.3.1 of the IPPSS. The probability distribution of f_{27A} is lognormal and has the following characteristic values:

 $f_{27A,05} = 0.03$ $f_{27A,50} = 0.1$ $f_{27A,95} = 0.3$ =.0.12 ^αf_{27A}

The fraction, f_{PF} , of motor control center fires that may occur between the two cabinets and be large enough to cause damage to both of them is assessed by comparing similar frequencies for cable spreading room fires, f_{es} ; for the electrical tunnel fires, f_R ; and switchgear room fires, f_{SL} of Section 7.3.1 of the IPPSS. The probability distribution of f_{PF} is lognormal and has the following characteristic values:

 $f_{PF,05} = 2.0 \times 10^{-3}$ $f_{PF,50} = 2.0 \times 10^{-2}$ $f_{PF,95} = 2.0 \times 10^{-7}$ $\alpha_{f_{PF}} = 5.3 \times 10^{-2}$ The frequency of fires in fire zone 27A is computed by using probabilistic arithmetic. The resulting distribution has the following characteristic values (per reactor year):

```
\lambda_{\text{Fire},05} = 4.9 \times 10^{-6}\lambda_{\text{Fire},50} = 6.9 \times 10^{-5}\lambda_{\text{fire},95} = 8.2 \times 10^{-4}.\alpha_{\lambda_{\text{fire}}} = 2.2 \times 10^{-4}
```

Since the PORV block valves are normally closed and are powered from these motor control centers, it is assumed that their control and motive power will be lost and, therefore, they will fail closed. It is also assumed that the CCS, AFW, EP, and SW systems will not be adversely affected by the fire. This is because CCS and SW are normally in operation; their valves would fail as they are and the pumps would not be affected by the fire. The AFW valves fail open upon loss of power and the pump controls would not be affected by the MCC failure. The electric power is very likely to continue to provide power to the switchgears. It is assumed that SI and recirculation unavailability would increase significantly. Even if they become unity, their impact on the frequency of core melt from fires in zone 27A would be insignificant because they will be dominated either by PORV unavailability (in the case of transients) or SW unavailability (in the case of a small LOCA).

B.6.5 FIRE ZONE 74A, THE ELECTRICAL PENETRATION AREA

Fire zone 74A is the electrical penetration area at Elevation 51' of the fan house. It is the far end of the electrical tunnel. The cable trays of this area are stacked in a fashion similar to the electrical tunnel. The control cables for the auxiliary feedwater pumps and their regulating valves, the power cables for the containment fan coolers, and the power and control cables for the PORVs and their associated block valves are located in this area. The conditions are similar to those of the left stack of trays in the electrical tunnel except that the power cables of the safety injection pumps are not run through this area. Therefore, the frequency of fires, λ_{Fire} , that may fail a vital set of cables is derived using results from the electrical tunnel analysis part of the IPPSS. We write

 $\lambda_{Fire} = \lambda_{AUX} f_T Q(\tau_H)$

where

fT

= the fraction of auxiliary building fires that may occur in fire zone 74A (this is defined in Section 7.3.1.3.1 of the IPPSS for the electrical tunnel).

• •

,e

·

 $Q(\tau_H)$ = the fraction of fires in fire zone 74A that are not extinguished in time to prevent vital component failures (derived in Section 7.3.1.4.2 of the IPPSS).

In Section 7.3.1.3.1 of the IPPSS, we find:

$$f_{T,05} = 8.0 \times 10^{-3}$$

$$f_{T,50} = 4.0 \times 10^{-2}$$

$$f_{T,95} = 2.0 \times 10^{-7}$$

$$\alpha_{f_T} = 6.5 \times 10^{-2}$$

In Section 7.3.1.4.2 of the IPPSS, we find

 $Q_{05}(\tau_{\rm H}) = \text{smaller than } 10^{-8}$ $Q_{50}(\tau_{\rm H}) = 7.3 \times 10^{-2}$ $Q_{95}(\tau_{\rm H}) = 0.68$ $\alpha_{Q}(\tau_{\rm H}) = 0.21$

The product of these distributions yields the following characteristic values for λF_{ire} (per reactor year):

 $\lambda_{Fire,05} = 5.9 \times 10^{-10}$ $\lambda_{Fire,50} = 1.0 \times 10^{-4}$ $\lambda_{Fire,95} = 2.1 \times 10^{-3}$ $\alpha_{\lambda_{Fire}} = 4.6 \times 10^{-4}$

B.6.6 FIRE ZONE 75A, OUTER ANNULUS OF CONTAINMENT

Fire zone 75A is the outer annulus of the containment at Elevation 46'. It contains the power and control cables for the PORVs and their block

values and the power cables of all fan cooling units. The frequency of fire, $\lambda_{\mbox{Fire}}$, that may occur in this area and fail the power cables to all the fan coolers and PORVs is written as

 λ Fire = λ CON^f75A

where

 λ_{CON} = the frequency of fires in the containment.

 λ_{75A} = the fraction of containment fires that may occur in area 75A and fail the previously listed components.

The frequency of containment fires is taken from Reference B-5. A lognormal distribution is fitted to the upper and lower bounds reported in that reference to simplify the quantification process. The characteristic values of λ_{CON} are (per reactor year):

 $\lambda_{\text{CON},05} = 6.2 \times 10^{-3}$ $\lambda_{\text{CON},50} = 1.3 \times 10^{-2}$ $\lambda_{\text{CON},95} = 2.8 \times 10^{-2}$ $\alpha_{\lambda_{\text{CON}}} = 1.5 \times 10^{-2}$

The fraction, f_{75A} , of containment fires occurring in fire zone 75A and failing the previously listed components is assessed by comparing two similar parameters for the switchgear area, f_{SWG} , and the electrical tunnel area, f_T , of Section 7.3.1 of the IPPSS. The probability distribution of f_{75A} is lognormal and has the following characteristic values:

$$f_{75A,05} = 4.0 \times 10^{-3}$$

$$f_{75A,50} = 2.0 \times 10^{-2}$$

$$f_{75A,95} = 1.0 \times 10^{-7}$$

$$\alpha_{f_{75A}} = 3.2 \times 10^{-2}$$

The product of these two distributions yields the following characteristic values for λ_{Fire} (per reactor year):

```
\lambda_{\text{Fire},05} = 4.3 \times 10^{-5}

\lambda_{\text{Fire},50} = 2.9 \times 10^{-4}

\lambda_{\text{Fire},95} = 1.5 \times 10^{-3}

\alpha_{\lambda_{\text{Fire}}} = 4.7 \times 10^{-4}
```

- **B.7** REFERENCES
- B-1. "Indian Point Probabilistic Safety Study," Consolidated Edison Company of New York and the Power Authority of the State of New York, March 1982.
- B-2. "Review of the Indian Point Station Fire Protection Program," Consolidated Edison Company of New York and Power Authority of State of New York, April 1977.
- B-3. Response to Staff Position P9 on Indian Point 2 Fire Protection Program, attached to letter from William J. Cahill, Jr., of Consolidated Edison Company of New York to Victor Stello, Jr., of NRC, September 18, 1978.
- B-4. Swain, A. D. and H. F. Guttman, "Handbook of Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications," Draft Report, NUREG/CR-1278, Sandia Laboratories, Albuquerque, New Mexico, October 1980.
- B-5. Apostolakis, G., and M. Kazarians, "The Frequency of Fires in Light Water Reactor Compartments," paper presented at the ANS/ENS Topical Meeting on Thermal Reactor Safety, Knoxville, Tennessee, April 6-9, 1980.

B-21

TABLE B-1

CHARACTERISTIC VALUES OF THE FREQUENCIES OF RELEASE CATEGORIES AND CORE MELT DUE TO FIRE AFTER THE MODIFICATION OF INDIAN POINT 2

,

•

Release Category/ Core Melt	Probability Level	Frequency (per reactor year) After Modification
Release Category 8B	5th Percentile Median 95th Percentile Mean	$\begin{array}{c} 1.2 \times 10^{-6} \\ 5.5 \times 10^{-6} \\ 1.6 \times 10^{-4} \\ 1.8 \times 10^{-5} \end{array}$
Release Category 8A	5th Percentile Median 95th Percentile Mean	8.2×10^{-8} 6.6×10^{-7} 2.1×10^{-5} 2.6×10^{-6}
Release Category 2R₩	5th Percentile Median 95th Percentile Mean	1.6×10^{-7} 1.6×10^{-6} 4.1×10^{-5} 6.7×10^{-6}
Core Melt	5th Percentile Median 95th Percentile Mean	3.2×10^{-6} 1.3×10^{-5} 1.6×10^{-4} 2.7×10^{-5}

f

TABLE B-2

IPPSS MEAN FREQUENCIES OF FIRE CONTRIBUTORS

Fire Zone	СМ	SEFC	SEC	SEF	SE	TEFC	TEC	TEF	TE	88	8A	2R¥
Electrical Tunnel 1A	8.0-5	-	-	2.4-5	5.6-5	-	-	-	-	-	2.4-5	5.6-5
SWG Room 14	5.6-5	-	-	-	5.6-5	-	-	-	-	-	-	5.6-5
Electrical Tunnel 32A	5.6-5	-	-	2.4-5	3.2-5	-	-	-	-	-	2.4-5	3.2-5
Electrical Penet. 74A	1.1-5	-	2.8-8	-	9.2-11	-	1.1-5	-	8.6-10	1.1-5	, -	9.5-10
CSR 11	1.9-6	-	-	-	-	1.6-6	-	-	2.9-7	1.6-6	-	2.9-7
DG Room 10	9.0-7	8.5-7	-	-	4.4-8	-	-	-	-	8.5-7	-	4.4-8
AFWS Pump Room 23	3.0-6	-	-	-	- '	3.0-6	3.0-12	2.3-10	2.3-16	3.0-6	2.3-10	2.3-16
CCS Pump Room 1	3.3-7	3.1-7	2.3-8	2.3-11	1.5-10	6.1-11	6.1-17	4.6-15	4.6-21	3.3-7	2.3-11	1.5-10
CS Pump Room 2	3.3-7	-	-	3.1-7	2.3-8	-	-	6.1-11	6.1-17	-	3.1-7	2.3-8
eup Pump Jm 2A	3.3-7	-	-	3.1-7	2.3-8	-	-	6.1-11	6.1-17	-	3.1-7	2.3-8
Control Room 15	5.7-7	-	-	-	-	4.8-7	-	-	8.9-8	4.8-7	-	8.9-8
Containment 77A	3.3-8	3.4-12 !!	2.3-8	2.6-16	9.4-11	9.4-9	5.6-13	7.1-13	4.2-17	3.3-8	7.1-13	9.4-11
REC Pump 78A	2.4-8	4.7-10	2.4-8	3.6-14	9.4-11	9.4-10	9.4-16	7.1-14	7.1-20	2.4-8	1.1-13	9.4-11
SI Pump Room 9	8.1-8	1.0-8	5.1-8	1.0-11	3.8-10	2.0-8	2.0-14	2.0-11	2.0-17	7.0-8	3.0-11	3-8-10
Yalve " Room 13A	8.1-8	1.0-8	5.1-8	1.0-11	3.8-10	2.0-8	2.0-14	2.0-11	2.0-17	7.0-8	3.0-11	3.8-10
Outer Annul 75A	3.7-8	-	2.8-8	-	9.4-11	-	9.4-9	-	7.1-13	3.7-8	-	9.5-11
RCP Area 70A	3.3-8	3.4-12	2.4-8	2.6-16	1.4-10	9.4-9	9.4-15	7.1-13	7.1-19	3.3-8	7 -1-13	1.4-10
MCC Area 27A	2.6-8	-	-	1.4-9	1.1-8	-	-	1.5-8	1.5-14	-	1.6-8	1.1-8
RCP Area 71A	3.3-8	3.4-12	2.4-8	2.6-16	1.4-10	9.4-9	9.4-15	7.1-13	7.1-19	3.3-8	7.1-13	1.4-10
Total	2.1-4	1.4-6	2.8-7	4.9-5	1.4-4	5.1-6	1.1-5	1.5-8	3.8-7	1.8-5	4.9-5	1.4-4

Note: Exponential notation is indicated in abbreviated form; i.e., $8.0-5 = 8 \times 10^{-5}$.

ų

· · · * •

• •

.

-

.

TABLE B-3

MEAN FREQUENCIES OF FIRE CONTRIBUTORS AFTER PROPOSED MODIFICATION

\$

u

Fire Zone	СМ	SEFC	SEC	SEF	SE	TEFC	TEC	TEF	TE	88	8A	2RW	Impact of Modification
Electrical Tunnel 1A	3.7-6			1.1-6	2.5-6			9.2-9	9.0-9		1.1-6	2.5-6	Affected
SWG Room 14	2.6-6				2.5-7				9.0-9			2.5-6	Affected
Electrical Tunnel 32A	2.6-6			1.1-6	1.4-6			9.2-9	5.1-9	i	1.1-6	1.4-6	Affected
Electrical Penet. 74A	1.1-5	:	2.8-8		9.2-11		1.1-5		8.6-10	1.1-5		9.5-10	No Effect
CSR 11	1.9-6					1.6-6			2.9-7	1.6-6		2.9-7	No Effect
DG Room 10	9.0-7	8.5-7			4.4-8					8.5-7		4.4-8	No Effect
AFWS Pump Room 23	3.0-6					3.0-6	3.0-12	2.3-10	2.3-16	3.0-6	2.3-10	2.3-16	No'Effect
CCS Pump Room 1	3.3-7	3.1-7	2.3-8	2.3-11	1.5-10	6.1-11	6.1-17	4.6-15	4.6-21	3.3-7	2.3-11	1.5-10	No Effect
CS Pump Room 2	i.5-8			1.4-8	1.1-9			6.1-11	6.1-17		1.4-8	1.1-9	Affected
Makeup Pump Room 2A	1.5-8			1.4-8	1.1-9			6.1-11	6.1-17		1.4-8	1.1-9	Affected
Control Room 15	5.7-7		`			4.8-7			8.9-8	4-8-7		8.9-8	No Effect
Containment 77A	3.3-8	3.4-12	2.3-8	2.6-16	9.4-11	9.4-9	5.6-13	7.1-13	4.2-17	3.3-8	7.1-13	9.4-11	No Effect
REC Pump 78A	2.4-8	4.7-10	2.4-8	3.6-14	9.4-11	9.4-10	9.4-16	7.1-14	7-1-20	2.4-8	1.1-13	9.4-11	No Effect
SI Pump Room 9	8.1-8	1.0-8	5.1-8	1.0-11	3.8-10	2.0-8	2.0-14	2.0-11	2.0-17	7.0-8	3.0-11	3.8-10	No Effect
Yalve Room 13A	8.1-8	1.0-8	5.1-8	1.0-11	3.8-10	2.0-8	2.0-14	2.0-11	2.0-17	7.0-8	3.0-11	3.8-10	No Effect

Note: Exponential notation is indicated in abbreviated form; i.e., $8.0-5 = 8 \times 10^{-5}$.

> r . .

.

TABLE B-3 (continued)

MEAN FREQUENCIES OF FIRE CONTRIBUTORS AFTER PROPOSED MODIFICATION

Fire Zone	СИ	SEFC	SEC	SEF	SE	TEFC	TEC	TEF	TE	8B	8A	2RW	Impact of Modification
Outer Annul 75A	3.7-8		2.8-8		9.4-II		9.4-9		7.1-13	3.7-8		9.5-11	No Effect
RCP Area 70A	3.3-8	3.4-12	2.4-8	2.6-16	1.4-10	9.4-9	9.4-15	7.1-13	7.1-19	3.3-8	7.1-13	1.4-10	No Effect
MCC Area 27A	2.6-8			1.4-9	1.1-8			1.5-8	1.5-14		1.6-8	1.1-8	No Effect
RCP Area 71A	3.3-8	3.4-12	2.4-8	2.6-16	1.4-10	9.4-9	9.4-15	7.1-13	7.1-19	3.3-8	7.1-13	1.4-10	No Effect
Total	2.7-5	1.4-6	2.8-7	2.2-6	6.7-6	5.1-6	1.1-5	3.4-8	4.0-7	1.8-5	2.2-6	6.7-6	

Note: Exponential notation is indicated in abbreviated form; i.e., $8.0-5 = 8 \times 10^{-5}$.

Į.

:

.

.

U

,

TABLE B-4

)

FREQUENCIES OF SEVERAL PARAMETERS USED IN SECTION B.5

Parameter	Distribution	Mean	Variance	Source
Q _{SW}	Lognormal	2.46 x 10^{-5}	1.84×10^{-8}	Table 1.5.1-4 of IPPSS, item 29.
Q _{CCS,D}	Lognormal	6.41×10^{-3}	7.78 x 10^{-6}	Table 1.5.1-4 of IPPSS, item 11.
λccs	Lognormal	1.68 x 10^{-5} per hour	2.76 x 10 ⁻⁸ per hour	Table 1.5.1-4 of IPPSS, item 16.
Q _{CCS,M}	Lognorma]	5.6 x 10 ⁻⁵	3.14×10^{-9}	Table 1.5.1-13 of IPPSS, approx- imating techniques $T_m = 1.0$, $T_{Comp} = 17832.0$.
λ _{AUX}	Gamma	0.034 per year		Section 7.3.1.3 of IPPSS.
fT	Lognormal	6.51 x 10^{-2}	6.71 x 10^{-3}	Section 7.3.1.3 of IPPSS.
f _R	Almost Certain	0.5		Section 7.3.1.4.3 of IPPSS.
Q(τ _γ)	See the Source	0.44		Section 7.3.1.4.2 of IPPSS.

,

•

•

4

I

· IPPSS FIRE CONTRIBUTIONS

															1 01 13
Fire	Core I Rela Compo	ted	Rel	inment ated onents	Point Estimates								Remarks		
Area	Within Fire Area	Outside Fire Area	Within Fire Area	Outside Fire Area	Fire Frequency	Core Melt	SEFC	SEC	SEF	SE	TEFC	ŤEC	TEF	TE	- Remarks
1: CCS Pump Room	CCS <u>P</u> (a11)	CCS 1.0 (a11) SIS 24 AFWS 25 EP 3.3-7 SWS 5.1-5 REC 54 PORV 6.2-3 (from page 1.3-128 for OP1)		CS 7.5-5 (all) CF 16	1	3.3-7	3.1-7	2.3-8	2.3-11	1.5-10	6.1-11	6.1-17	4.6-15	4.6-21	Part of CCS system. 8B = $3.3-7$ 8A = $2.3-11$ 2RW = $1.5-10$ $\lambda_{AUX} = 3.4-2$ f ₂ = 0.013 EP is 10 times higher than that of Table 1.5.2.2.1-2D
1A: Electrical Tunnel	(a11) - RHR (a11) P CHG Pまで PORV Pまで	CCS 1.0 SIS 1.0 AFWS 0.05 EP 3.3-7	CS P (a11) CF P (a11)	CS 1.0 CF 1.0	See 7.3.1	85			2.4-5	5.6-5					From Section 7.3.1 of the IPPSS, page 7.3-27.
2: Contain- ment Spray Pump Room	(a11) —	Sec Fire Zone 1	CS (all) -	CF 16 (all) CS 1.0	4.4-4	3.3-7			3.1-7	2.3-8			6.1-11	6.1-17	8B = 8A = 3.1-7 2RW = 2.3-8 λAUX ^f 2

<u>P</u> = power cables; <u>C</u> = control cables; CHG = charging pumps; CCS = component cooling system; SIS = safety injection system; AFMS = auxiliary feedwater system; EP = electric power; SWS = service water system; REC = recirculation system; PORV = PORVs and block valves; RHR = residual heat removal; MCC = motor control center.

.

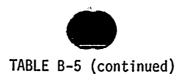
1 of 13

IPPSS FIRE CONTRIBUTIONS

r , ,, _, _, _, _, ,			<u>, </u>												2 of 13
Fire	Core Rela Compo		Rel	Containment Related Components		Point Estimates									
Area	Within Fire Area	Outside Fire Area	Within Fíre Area	Outside Fire Area	Fire Frequency	Core Helt	SEFC	SEC	SEF	SE	TEFC	TEC	TEF	TE	- Remarks
2A: Primary Water *Makeup Pump Room	CCS <u>P</u> (a11) CHG <u>C</u> (a11)	CCS 1.0 SIS 24 AFWS 25 EP 37 SW 55 REC 54 PORV 6.2-3	CS <u>P</u> (a11) [—]	CS 1.0 (a11) CF 16 (a11)	4.4-4	3-3-7		`	3.1-7	2.3-8			6.1-11	6.1-17	8B = 3.1-7 8A = 3.1-7 2RW = 2.3-8 λAUX ^f 2
3: RHR Pump Room	RHR 22 <u>P</u>														Part of RHR system. Large LOCA not pos- sible by fire.
3A: Corridor	RHR 21 and 22 <u>P</u>														Part of RHR system. Large LOCA not pos- sible by fire.
4: RHR Pump Room	RHR 21 <u>P</u>														Part of RHR system. Large LOCA not pos- sible by fire.
4A		1]				ļ		ļ					
5: CHG Pump Room	CIIG (all)			1											Part of CHG system analysis. CCS will prevent RCP seal LOCA.
5A = power cab		rol cables.			CCS = Com			vstem: S	S = sat	ety inie		stem: AF	S = anx	liary t	eedwater

system; EP = electric power; SWS = service water system; REC = recirculation system; PORV = PORVs and block valves; RHR = residual heat removal; MCC = motor control center.

2


•

•

' -

۰ • • • • • • •

· ·

:

IPPSS FIRE CONTRIBUTIONS

Fire	Rela	Melt ated onents	Rei	ainment lated ponents					Point Es	timates					3 of
Area	Within Fire Area	Outside Fire Area	Within Fire Area	Outside Fire Area	Fire Frequency	Core Melt	SEFC	SEC	SEF	SE	TEFC	TEC	TEF	TE	- Remarks
6	CHG 22,23	•													Part of CHG system.
6A	CHG (a11)														Part of CHG system analysis.
7	CHG 23			-											
7A	Remote S/D Panel CHG <u>C</u> CCSHX														Very small impact on com- ponents needed for safe S/D.
8	BAT 21 and 22											ļ			Part of CHG system.
8A	·						ĺ								
9: SI Pump room	SIS (all) ,	CCS 15 SIS 1.0 AFWS 25 EP 3.3-7 SWS 5.1-5 REC 54 PORV 6.2-3		CS 13 CF 16	10-3	8.1-8	18	5.1-8	111	3.8-10	28	214	211	217	Part of SI system. 8B = 8.1-8 8A = 3.0-11 2RW = 3.8-10
9A															
10: DG Building	All three diesels				See 7.3.1	97	8.5-7			4.4-8					See Section 7.3.1 for detail.
10A															

P = power cables; C = control cables;-CHG = charging pumps; CCS = component cooling system; SIS = safety injection system; AFWS = auxiliary feedwater System; EP = electric power; SWS = service water system; REC = recirculation system; PORV = PORVs and block valves; RHR = residual heat removal; MCC = motor control center.

TABLE B-5 (continued)

IPPSS FIRE CONTRIBUTIONS

	·····		·r	•											4 of
Fire	Core Rela Compo			inment ated onents	_			ł	Point Es	timates					Dury day
Area	Within Fire Area	Outside Fire Area	Within Fire Area	Outside Fire Area	Fire Frequency	Core Melt	SEFC	SEC	SEF	SE	TEFC	TEC	TEF	TE	Remarks
11: CSR						1.9-6					1.6-6			2.97	See Section 7.3.1 for detail
11A								}				ł]	
12	Batteries	1		!				Į				}			
12A		1					{	Į				}			
13	Batteries				}	į		ļ				}	}	·	
13A: Valve Room	RHR 21 and 22 P SIS(a11) P	CCS 15 SIS 1.0 AFWS 25 EP 37 SW 55 REC 54 PORY 6.2-3		CS 13 CF 16	10-3	8.1-8	18	5.1-8	111	3.8-10	28	214	211	217	8B = 88 8A = 311 2RW = 3.8-10
14: SWG Room						5.6-5				5.6-5					See Section 7.3.1
14A					Į				}						
15: Control Room	Controls of all Components	Power of all Components	Controls of all Components	Power of all Compo- nents	See cable spread- ing room (CSR) study	5.7-7					4-8-7			8.9-8	Same as CSR except for factor f _{CR} ($\alpha_{f_{CR}} = 0.3$) reduction due to human presence.

P = power cables; C = control cables; CHG = charging pumps; CCS = component cooling system; SIS = safety injection system; AFWS = auxiliary feedwater System; EP = electric power; SWS = service water system; REC = recirculation system; PORV = PORVs and block valves; RHR = residual heat removal; MCC = motor control center.

B-30

-

.

κ

E

·

.

Fire	Core Rela Compo	Melt Ited Dnents	Rel	inment ated onents				1	Point Est	timates					
Area _	Within Fire Area	Outside Fire Area	Within Fire Area	Outside Fire Area	Fire Frequency	Core Melt	SEFC	SEC	SEF	SE	TEFC	TEC	TEF	TE	- Remarks
15A: Valve Room												-	~		
16															
16A															
17															
17A															
18															
18A															
19												-			
19A												-		-	
20															
20A								:							
21		•													
21A															
22: Intake Structure	SW (all)														Part of SWS analysis. Pumps in open area.

<u>P</u> = power cables; <u>C</u> = control cables; <u>CHG</u> = charging pumps; <u>CCS</u> = component cooling system; <u>SIS</u> = safety injection system; <u>AFWS</u> = auxiliary feedwater system; <u>EP</u> = electric power; <u>SWS</u> = service water system; <u>REC</u> = recirculation system; <u>PORV</u> = PORVs and block valves; <u>RHR</u> = residual heat removal; <u>MCC</u> = motor control center.

.

٠

5 of 13

۳. ۲.

i

,

.

> • • • •

•

. .

ь.

r

Fire	Core Rela Compo		Rel	inment ated onents				1	Point Es	timates					
Area	Within Fire Area	Outside Fire Area	Within Fire Area	Outside Fire Area	Fire Frequency	Core Melt	SEFC	SEC	SEF	SE	TEFC	TEC	TEF	TE	Remarks
22A					1										
23: AFWS Pump Room	AFWS (all)	AFWS 1.0 SIS 24 REC 54 PORV 6.2-3 SW 55 EP 37 CCS 15		CS 7.5-5 (all) CF 16	4.4-4	3.0-6					3.0-6	3.0-12	2.3-10	2.3-16	Part of AFWS analysis. 8B = 3.1-6 8A = 2.3-10 2RW = 2.3-16
23A														•	
24A														ļ	
25A															
26A															
27A NCC Area 28A	MCC 26A and 26B	PORV 1.0 AFWS 75 EP 37 SW 55 REC 0.6 SIS 0.03	CS (MOVs)	CS 1.0 CF 10 ⁻⁶ (a1))	2.2-4	2.6-8			1.4-9	1.1-8			1.5-8		$f_{27A} = .121 \equiv$ fraction of auxiliary building fire in MCC area. fpr = .053 \equiv fraction of MC fire disabling both WCCs. $\lambda_{AUX} = 0.034$ BB = BA = 1.6-B 2RW = 1.1-B

P = power cables; C = control cables; CHG = charging pumps; CCS = component cooling system; SIS = safety injection system; AFWS = auxiliary feedwater system; EP = electric power; SWS = service water system; REC = recirculation system; PORV = PORVs and block valves; RHR = residual heat removal; KCC = motor control center.

•

•

Ξ

7

fh

۰ ۰

·

.

Area Within Fire Area Outside Fire Area Fire Area Core Fire Area SEF SE TEC TEC TEF TE 29A	Remarks					imates	Point Est	ŝ				inment ated onents	Rel Rel	Melt ited inents	Core Rela Compo	Fire
30A SH Pipes See See See See See See See See See See See See See See See See See See See See See	Remarks	TE	TEF	TEC	TEFC	SE	SEF	SEC	SEFC	Core Melt	Fire Frequency	Fire	Fire	Fire	Fire	
31A 2.4-5 3.2-5 See Sec of fight of the sec of the sec of fight of the sec of the sec of fight of the sec of the sec of fight of the sec of	art of SW ystem nalysis. No usceptible t							-								
33A 39A 40A 41A 42A 43A 44A						3.2-5				5.6-5						32A:
40A 41A 42A 43A 44A												-				
42A 43A 44A									ł					-	}	
43A						i										41A
44A																42A
									ļ							43A
														i		44A
																45A
46A						i										

P = power cables; C = control cables; CHG = charging pumps; CCS = component cooling system; SIS = safety injection system; AFWS = auxiliary feedwater System; EP = electric power; SWS = service water system; REC = recirculation system; PORV = PORVs and block valves; RHR = residual heat removal; MCC = motor control center.

¥

Fire	Core Rela Compo	Melt Ited Inents	Re1	inment ated onents				F	oint Est	imates					Dementer
Area	Within Fire Area	Outside Fire Area	Within Fire Area	Outside Fire Area	Fire Frequency	Core Melt	SEFC	SEC	SEF	SE	TEFC	TEC	TEF	TE	Remarks
48A					-	-									
49A		ļ		ł								ļ			
50A				[[l	ĺ	ł	Į	ļ		
51A															
52A									}						
53A															
55A							{		}		1		}		1
56A							ļ	ł			ł	l l			
57A															
58A										Į	4				
59A	Charcoal Filters														Does not pose immediate safety concern.
60A	Secondary RV P & C Penetra- tion Cooling System														The plant can be safety shut- down without these components.
61A										1					

<u>P = power cables; C = control cables; CHG = charging pumps; CCS = component cooling system; SIS = safety injection system; AFWS = auxiliary feedwater system; EP = electric power; SWS = service water system; REC = recirculation system; PORV = PORVs and block valves; RHR = residual heat removal; MCC = motor control center.</u>

.

8 of 13

۰ ۲

.

• • •

• • •

Ľ

TABLE B-5 (continued)

IPPSS FIRE CONTRIBUTIONS

Fire	Core Rela Compo		Rel	inment ated onents		·		1	Point Est	imates					
Area	Within Fire Area	Outside Fire Area	Within Fire Area	Outside Fire Area	Fire Frequency	Core Melt	SEFC	SEC	SEF	SE	TEFC	TEC	TEF	TE	Remarks
62A	Boiler Feedwater Components				-										Part of AFWS study.
63A										}					
64A					ļ					l					
65A	Main Feed- water Related Atmos- pheric Relief Valves													-	The plant can be safely shi down without these components.
70A RCP Area	PORV <u>P</u> & <u>C</u>	PORV 1. CCS 15 SIS 24 AFHS 25 EP 27 SW 55 REC 54		CS 7.5-5 CF 16	4.7-4 see 75A	3.3-8	3.4-12	2.4-8	2.6-16	1.4-10	9.4-9	9.4-15	7.1-13	7.1-19	Part of PORV failure frequency. 8B = 3.3-8 8A = 7.1-13 2RW = 1.4-10
71A	PORV P & C SIS Valves RHR Valves CHG Valves	Same as 70A		Same as 70A	4.7-4 see 75A	3.3-8	3.4-12	2.4-8	2.6-16	1.4-10	9.4-9	9.4-15	7.1-13	7.1-19	Only PORV failure affec plant safety; others are in safe position /should be quantified as part of PORV failure frequency. See 70A.

System; EP = electric control center. .

¢,

•

• •

h

.

.

*

ιŧ

															10 of 1
Fire	Core Rela Compo		Rel	inment ated ponents	~			I	Point Es	timates					Remarks
Area	Within Fire Arca	Outside Fire Area	Within Fire Area	Outside Fire Area	Fire Frequency	Core Melt	SEFC	SEC	SEF	SE	TEFC	TEC	TEF	TE	Remark S
72A	RHR Valves	-	CF 22 <u>P</u>												Failure of RH valves has little effect on plant safety; this fire zone can be regarded a part of CF system failur analysis.
74A: Electrical Penetra- tions Fan House	AFNS <u>C</u> PORV P & <u>C</u> Atmosphere <u>P & C</u>	PORV 1.0 CCS 15 SIS 24 AFWS 0.025 (see page 7.3-14) SWS 55 EP 27	CF <u>P</u>	CF 1.0 CS 7.5-5	4.6-4	1.1-5		2.8-8	·	9.2-11		1.1-5		8.5-10	$\begin{array}{l} 8B = 1.1-5 \\ 8A = - \\ 2RW = 8.6-10 \\ \lambda_{AUX} = 2.4-2 \\ f_{T} = 6.5-2 \\ Q(\tau) = 0.21 \end{array}$
75A: Outer Annulus Contain- ment	PORV <u>P</u> & <u>C</u> Przr Heaters	PORV 1.0 CCS 15 SIS 24 AFWS 25 EP 27 SWS 55 REC 54	CF <u>P</u> (a11)	CF 1.0 CS 7.5-5	4.7-4	3.7-8		2.8-8		9.4-11		9.4-9		7.1-13	$\begin{array}{l} 8B = 3.7-8 \\ 8A = - \\ 2RW = 9.5-11 \\ \lambda containment \\ = 1.5-2 \\ f_{75A} = 3.2-2 \end{array}$
76A: Contain- ment			CF 23, 24, 25 <u>P</u>	CF 1.0 CS 13								Ţ			Part of CF failure study plant can be safely shut down.

P = power cables; C = control cables; CHG = charging pumps; CCS = component cooling system; SIS = safety injection system; AFWS = auxiliary feedwater system; EP = electric power; SWS = service water system; REC = recirculation system; PORV = PORVs and block valves; RHR = residual heat removal; MCC = motor control center.

*

•

10 of 1

•

.

,

.

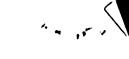
,

.

r

·

÷.,


.

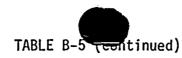
Fire	Core Rela Compo		Rel	inment ated ponents				1	Point Est	imates		• •		-	
Area	Within Fire Area	Outside Fire Area	Within Fire Area	Outside Fire Area	Fire Frequency	Core Melt	SEFC	SEC	SEF	SE	TEFC	TEC	_TEF	те	Remarks
77A - Contain- ment	PORV <u>p</u>	PORV 1.0 CCS 15 S1S 24 AFWS 25 EP 27 SW 55 REC 54	CF 25 <u>P</u>	CF 65 CS 7.5-5	4.7-4 see 75A	3.3-8	3.4-12	2.3-8	2.6-16	9.4-11	9.4-9	5.6-13	7.1-13	4.2-17	8B = 3.3-8 8A = 7.1-13 2RW = 9.4-11
78A - Recircu- lation Pump Area	RHRHX REC Pumps CCS Valves for RHRHX cooling	PORV 6.2-3 SIS 24 REC 0.1 AFWS 25 EP 27 SW 55 CCS 15		CF 16 CS 7.5-5	4.7-4 See 75A	2.4-8	4.7-10	2.4-8	3.6-14	9.4-11	9.4-10	9.4-16	7.1-14	7.1-20	Recirculation failure if CF is failed. 8B = 2.4-8 8A = 1.1-13 2RW = 9.4-11
80A			CF 21			•									Part of CF system analysis.
81A			CF 23												Part of CF system analysis.
82A 83A		-	CF 24 CF 25												Part of CF system analysis. Part of CF system analysis.

r = power cables; C = control cables; CHG = charging pumps; CCS = component cooling system; SIS = safety injection system; AFWS = auxiliary feedwater system; EP = electric power; SWS = service water system; REC = recirculation system; PORV = PORVs and block valves; RHR = residual heat removal; MCC = motor control center.

B-37

1 2

و ۲۰ ۲ .


. •

, .

у 1

•

a,

4

Fire	Core I Rela Compo	ted	Re1	inment ated onents				F	oint Est	imates					s Domanika
Area	Within Fire Area	Outside Fire Arca	Within Fire Area	Outside Fire Area	Fire Frequency	Core Melt	SEFC	SEC	SEF	SE	TEFC	TEC	TEF	TE	- Remarks -
84A			CF 22												Part of CF system analysis.
85A	Incore Detector														Failure would not lead to severely adverse situations.
864	Przr, SGS, CR Drives, Hydrogen Recom- biners								-						Fire cannot lead to mechanical component failure; therefore, this area is not critical.
87A															
90A										ļ					
91A															
94A]					· ·
95A		ł		ļ	l		۱ ۱								
96A										ĺ					
97A]											
98A				ł		l				l	Į				[

P = power cables; C = control cables; CHG = charging pumps; CCS = component cooling system; SI: safety injection system; AFWS = auxiliary feedwater system; EP = electric power; SWS = service water system; REC = recirculation system; PORV = PORVs and block valves; RHR = residual heat removal; MCC = motor control center.

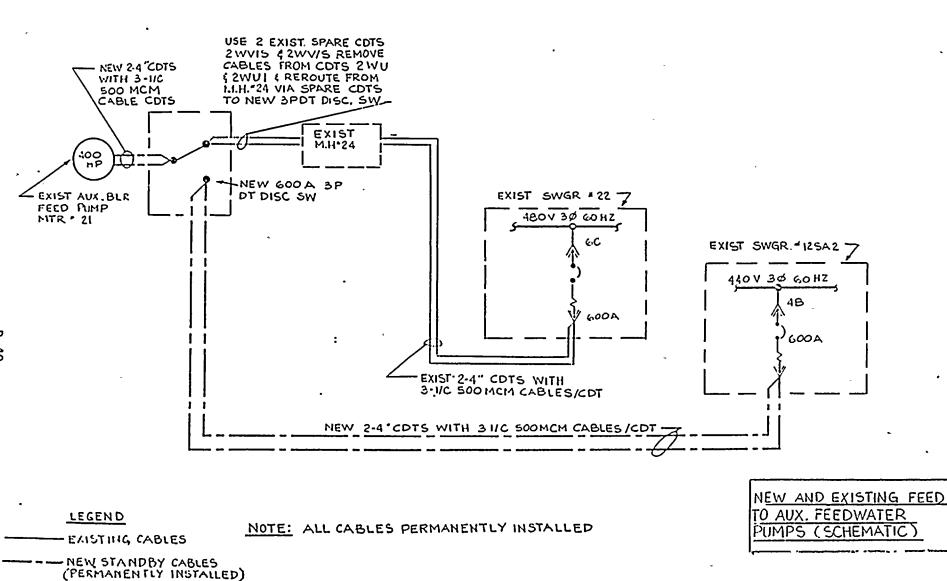
B-38

.

ra gra

•

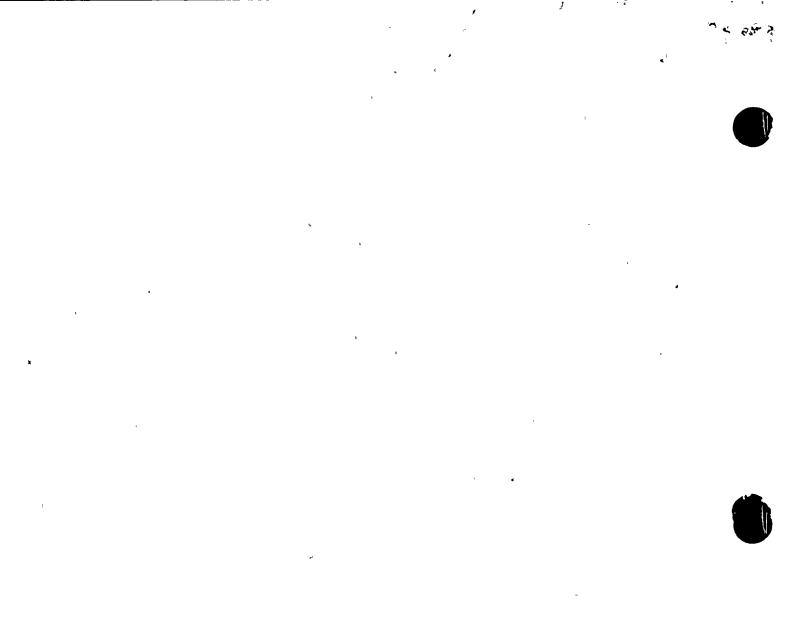
B-39


ۍ ۲

ו י

IPPSS FIRE CONTRIBUTIONS

Fire	Core Rela Compo		Rel	inment ated onents				ſ	Point Est	timates					
Area	Within Fire Area	Outside Fire Area	Within Fire Area	Outside Fire Area	Fire Frequency	Core Melt	SEFC	SEC	SEF	SE	TEFC	TEC	TEF	TE	Remarks
99A			Charcoal Filters												No effect on risk.
100A															
101A															6
105A											ł				
106A	RWST													•	Part of RWST failure frequency.


P = power cables; C = control cables; CHG = charging pumps; CCS = component cooling system; SHS = safety injection system; AFWS = auxiliary feedwater system; EP = electric power; SWS = service water system; REC = recirculation system; PORV = PORVs and block valves; RHR = residual heat removal; HCC = motor control center.

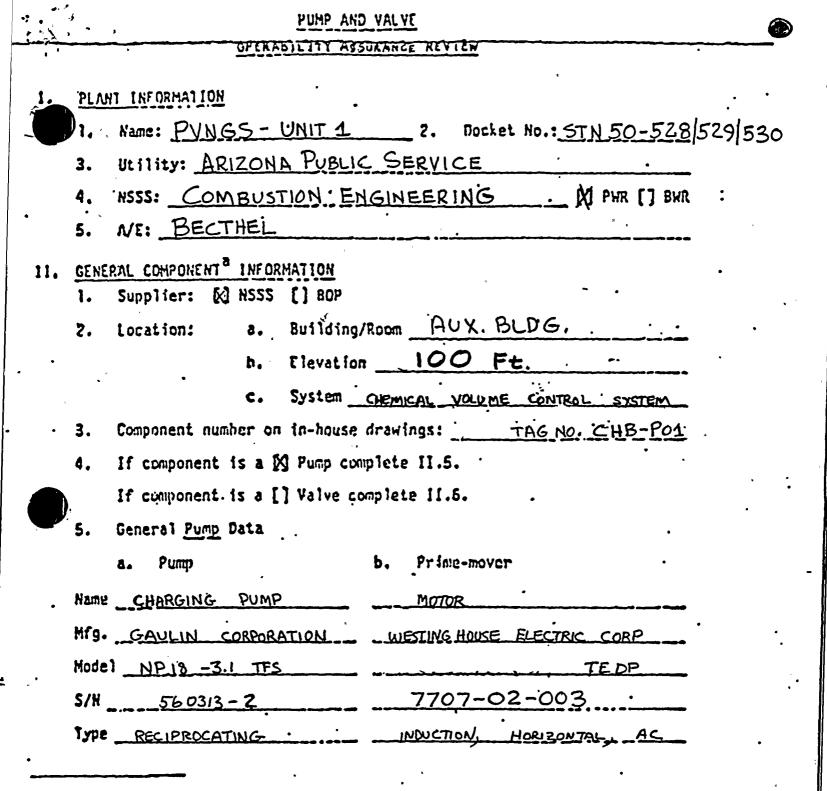

Æ

Figure B-1. Schematics of the Transfer Switch Installed for AFWS Pump 21

B-40



a. The component, whether pump or valve, is considered to be an <u>assembly</u> composed of the body, internals, prime-mover (or actuator) and functional accessories.

÷

•

+

i .

يده. مور

)e.

• н. Н

• •

k. х

a.	Pump (continued) AL INCL PUMP & moror	b. Prime-mover (continued)
	L 70"W 37"H	Size 20" DIA 30" LONG
Weight	5000 LBS	Weight <u>850 LBS</u>
Mounting Method	ANCHOR BOLTS	Mounting MethodANCHOR_BOLTS
Required B	.H.P	H.P 100 HP
Parameter	Design Operating	Power requirements: (include normal, maximum and minimum).
Press	.3010 psig 2735 psig	Electrical Volts - 460 NORMAL 345 MIN
·Temp	_250°F	CYLLES - 60
Flow	44 GDM	PHASEs - 3
Head		Other Space Heaters -12.0 VOLTS AC
	•	SINGLE PHASE 110 WATTS
Required N	PSH at maximum	If MOTOR list:
flow	B.2 PSIA	Duty cycle CONTINUOUS
Available N	NPSH. 9.0 PSIA	Stall current725
Operating S	Speed 195 RPm	Class of insulationH
Critical Sp	peed	·
List funct	ional_accessories:* <u>P</u>	UMP, MOTOR, BASE SUPPLIED AS
A COMP	PLETE UNIT. MOTOR	STAPTING CIRCUIT REGD. TO
MAKE	PUMP OPERATIONAL	- 1
	ol signal inputs:	•
		,

-2-

^{*} Functional accessories are those sub-components not supplied by the manufacturer that are required to make the pump assembly operational, (e.g., coupling, lubricating oil system, etc.)

Actuator (if not an integral Ъ. unit) 81.

Name	Name				
Mfg					
Model					
S/N	•				
Туре					
Size	Size				
Weight	Weight				
Mounting Method	Mounting Method				
Required Torque	Torque				
Parameter Design Operating	- · · · · · · ·				
Press	Electrical				
Тетр					
Max AP across valve	•				
Closing time @ max ΔP					
Opening time @ max $\overline{\Delta}P$					

Power requirements for functional accessories, (if any)

General <u>Valve</u> Data

Valve

6.

ð.

List control signal inputs:

1.	Briefly describe components normal and safety functions:									
	INJECT BORATED WATER INTO THE REACTOR COOLANT SYSTEM DURING NORMAL OPERATION, EMERGENCY REACTOR SHUTDOWN, AND SHUTDOWN COOLING.									
,										
	<u></u>			, JHOT D		00				
2.	The	com	ponents no	rmal state is:		X	Operating [] Standb			
3.	Saf	ety (function:							
	a.	×	Emergency shutdown	reactor	b.	נז	Containment heat removal			
,	с.	[]	Containme	nt isolation	d.	[]	Reactor heat removal			
	e.	נז	Reactor c	ore cooling	f.	[]	Prevent significant release of radio- active material to environment			
	g.	Ø	of one or				igate the consequences ents? 🕅 Yes [] No			
		Ø	LOCA	M HELB		Ø	MSLB			
		[]	Other	n			·····			
4.	Saf	ety	requiremen	ts:	,		1			
		Inte	rmittent O	peration [] During	po	stulated event			
	[]	Cont	inuous Ope	ration 👂	Follow	ing	postulated event			
	If component operation is required following an event, give approximate length of time component must remain operational.									
	app						g., hours, days, etc.)			

•

4

• •

۰ ۰ ۰

. . .

· •

-

	5.	For VALVES:
		does the component [] Fail open [] Fail closed [] Fail as is
		Is this the fail safe position? [] Yes [] No
	•	Is the valve used for throttling purposes? [] Yes [] No
		Is the valve part of the reactor coolant pressure boundary? [] Yes [] No
		Does the valve have a specific limit for leakage? [] Yes [] No
	2	If "Yes" give limit:
IV.	QUAL	IFICATION
	1.	Reference by specific number those applicable sections of the design codes and standards applicable to the component:
	•	ASME CODE SECTION TIL DIN 1, 1975 SUMMER ADDENDA, SECT. XI IN SERVICE
	ų	ASME POWER TEST CODE PTC 7.1, DISPLACEMENT PUMPS
	2.	Reference those qualification standards, used as a guide to qualify the component: <u>ASME PTC 7.1</u>
		1EEE STU NO. 323 -1974, 1EEE STU NO. 344 -1975
	3.	Identify those parts of the above qualification standards deleted or modified in the qualification program.
		Deleted: Modified:
		· · · ·
		٠
	4.	Have acceptance criterias been established and documented in the test plan(s) for the component? [X] Yes [] No
	5.	What is the expected failure mode that would keep the pump or valve assembly from performing its safety function?
	6.	NONE Are the margins* identified in the qualification documentation? [] Yes [3] No

.

d. Margin is the difference between design basis parameters and the test parameters used for equipment qualification.

、

•.

,

.

•

If	compone	nt is a PUMP, complete IV.	7.
If	compone	nt is a VALVE, complete IV	.8.
7.	Pump [] T€	operability has been demon st 🛛 🕅 Combination	strated by: [] Analysis
	Ident	ify PUMP tests performed:	
	a.	Shell hydrostatic b (ASME Section III)	 [X] Bearing temperature evaluations
	c.	🕅 Seismic loading d	• 🕅 Vibration levels
•	e.	🕅 Exploratory vibration f	. [] Seal leakage @ hydro press
		(Fundamental freg)	,
	g.	[] Aging: [] Thermal h	. 🕅 Flow performance
		[] Mechanical	Are curves provided 🕅 Yes
			[] No
	i.	A Pipe reaction end j	. [] Others
		loads (nozzle loads)	
	k.	[] Extreme environment:	
		[] Humidity	
		[] Chemical	
		[] Radiation	
8.	Valv [] T	e operability has been demo est [] Combination	enstrated by: [] Analysis
	Iden	tify VALVE tests performed:	
	a.	[] Shell hydrostatic b (ASME Section III)	0. [] Cold cyclic List times: Open Closed
	C	[] Seismic loading o	i. [] Hot cyclic List times: Open Closed
	e.	[] Exploratory vibration i	f. [] Main seat leakage
		(Fundamental freg.)	

-6-

,

1

ĸ

g.	[]	Aging	: [] []	Thermal Mechanical	h.	[] Bad	ck	seat leakage
i.	[]	Pipe	react	ion end	j.	[] Dis	sc	hydrostatic
		loadi	ng					
k.	[]	Extre	me er	vironment	1.	[] F10	w	interruption capabilit
		[]	Humid	lity				
		[]	Chemi	cal				
		[]	Radia	tion				
Π.	[]	Flow	chara	cteristics	n.	[] Oth	ner	'S
		Are c	urves	provided?				
	[]	Yes	[] No)		·		
devi If "	atic Yes"	ons fr ', bri	om de efly	sign requir describe an	ement: y char	s ident nges ma	tif Ide	s), were any ied? [] Yes [X] No in tests (or e deviation.
devi If " anal Was	atic Yes" ysis	test	om de efly to th 	sign requir describe an e component	ely ic	s ident nges ma prrect	tif th	ied? [] Yes [X] No in tests (or e deviation. (as to model, size,
devi If " anal Was etc.	atic Yes" ysis the) to	test	om de efly to th compo in-pl	sign requir describe an e component	ely ic nt?	s ident nges ma prrect dentica	tif ide th	ied? [] Yes [X] No in tests (or e deviation. (as to model, size,] No If "No", is
devi If " anal Was etc. inst If <u>t</u>	atic Yes" ysis the) to alle ype mee	test test test	om de efly to th compo in-pl ponen was u	sign requir describe an e component nent precis ant compone t [] oversi sed to qual	ely ic nt? .[zed or	s ident nges ma prrect dentica X] Yes [] un ne comp	tif ide th [] ide	ied? [] Yes [X] No in tests (or e deviation. (as to model, size,] No If "No", is
devi If " anal was etc. inst If <u>t</u> test [] Y Is cu If "	atic Yes" ysis the) to alle ype es ompo Yes"	test test test test test test test to the [] No enent , doe	om de efly to th compo in-pl ponen was u requ orien s ins	sign requir describe an e component nent precis ant compone t [] oversi sed to qual irements of tation sens	ely ic nt? [ify the itive	s ident nges ma prrect dentica X] Yes [] un ne comp 323-19	tif ide th ide ide ide	ied? [] Yes [X] No in tests (or e deviation. (as to model, size,] No If "No", is rsized? ent, does the type

2

•

,

	If ' ther	'Yes" iden mal, etc.	tify sequence, ():	e.g., rad	liati 	ion, seismic, cyclic,
15.		'aging"* w lanisms:	vas performed, ic	lentify th	ne si	gnificant aging
16. •	Ider qua 1	itify load ification	s imposed (assum tests (analysis	ned) on th) perform	ie co ied:	omponent for the
•	a.	[] Plant	s (shutdown load	is) b.	[]	Extreme environment
	c.	🕅 Seism	ic load	d.	ß	Others <u>NOZZLE</u> LOAD
17.	assu	re they e		cted oper		reviewed in-house to g, transient, and .
17. 18.	assu acci Does (Exa nonf	re they e dent cond the comp mples are	nvelope all expe itions? [3] Yes onent utilize an special gaskets terials, or spec	cted oper [] No y unique or packi	atin or s ng,	g, transient, and . pecial materials? limitations on
	assu acci Does (Exa nonf []'Y	the comp mples are errous ma es [X] No	nvelope all expe itions? [3] Yes onent utilize an special gaskets terials, or spec	cted oper [] No y unique or packi	atin or s ng,	g, transient, and . pecial materials? limitations on
	assu acci Does (Exa nonf []'Y If " Does prac	the comp mples are errous ma es [3] No Yes", ide componen	nvelope all expe itions? [2] Yes onent utilize an special gaskets terials, or spec ntify: t require any sp ncluding shorter	cted oper [] No y unique or packi ial coati ecial maí	or s ng, ngs nten	g, transient, and . pecial materials? limitations on
18.	assu acci Does (Exa nonf []'Y If " Does prac [] Y	re they e dent cond the comp mples are errous ma es [X] No Yes", ide componen tices, (i es [X] No	nvelope all expe itions? [2] Yes onent utilize an special gaskets terials, or spec ntify: t require any sp ncluding shorter	cted oper [] No y unique or packi ial coati ial coati ecial maí periods	atin or s ng, ngs nten betwo	g, transient, and . pecial materials? limitations on or surfaces.) ance procedures or een maintenance).

-8-

• •

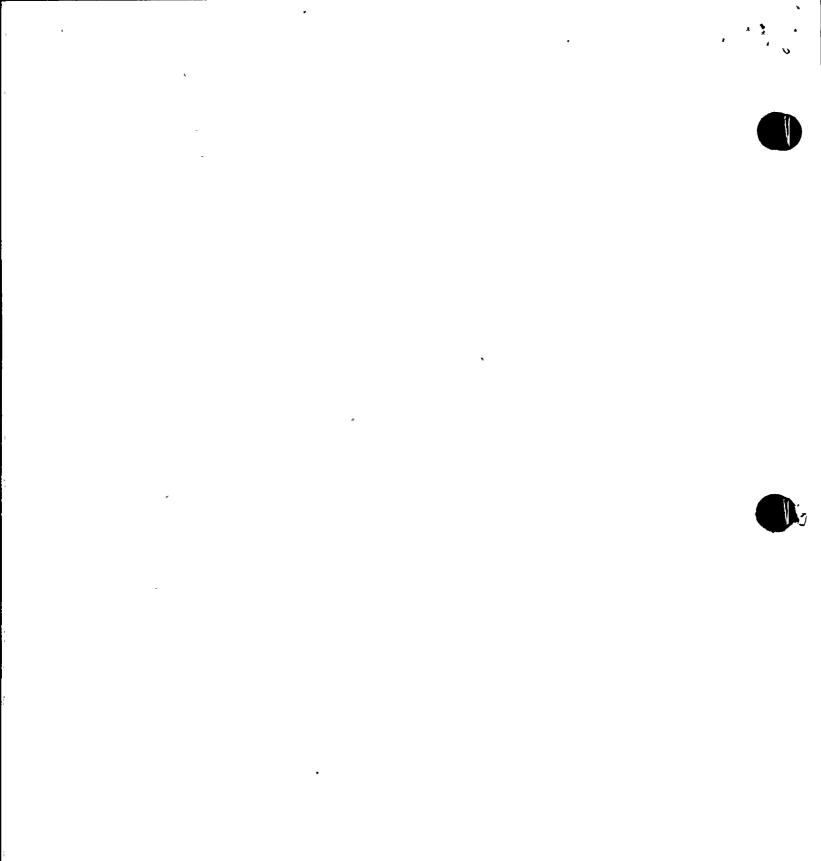
, •

.

×

、

k.



Report Number	Report Title	Date	Company/Organization Preparing Report	Company/Organization Reviewing Report
ଞା	ENGINEERING TEST REPORT	6/24/7)	GAULIN CORPORATION	C-E
BS25411	SEISMIC ANALYSIS	ددا ھالج	WESTING HOUSE ELECTRIC CORPORATION	C-E
			•	- -
	-			<i>.</i>
			,	
	· .		-	*
				۰. ۲
	- -		· · ·	
				· ·

	Г. р. 5	PUMP AND VALVE
		GPERADILITY ASSURANCE REVIEW
)1.	<u>1 INFORMATION</u> Name: <u>PVNGS - UNIT 1</u> 2. Nocket No.: <u>STN 50-528</u> /529/530
	3.	ULILITY: ARIZONA PUBLIC SERVICE
	4.	NSSS: COMBUSTION : ENGINEERING . N PHR [] BHR :
•	5.	NE: BECTHEL
11.	GENER 1.	Supplier: [] NSSS [] BOP
	2.	Location: a. Building/Room AUX, BLD'G
•		b. Elevation 40'
	•	C. System SAFETY INJECTION SYSTEM
•	3.	Component number on in-house drawings: TAG NO. SIA-PO1
	4.	If component is a M Pump complete II.5.
		If component is a [] Valve complete 11.6.
	5.	General Pump Data
٣		a. Pump b. Prime-mover
•	Name	LOW PRESSURE SAFETY INTECTION PUMP PUMP MOTOR
	Mfg.	INGER SOLL -RAND WESTINGHOUSE ELECTRIC CORPORATION
	Model	8x 20 WDF 5010 P39 VSW2
	S/H _	0876-36 15-77
	-	CENTRIFUGAL PUMP VERTICAL VERTICAL

a. The component, whether pump or valve, is considered to be an <u>assembly</u> composed of the body, internals, prime-mover (or actuator) and functional accessories.

• •

.

•

a. Pump (continued)	b. Prime-mover (continued)		
Size <u>91"H 50" DIA</u>	Size <u>49"L 49"W 65"H</u>		
Weight	Weight		
Mounting Method <u>ANCHOR BOLTS</u>	Mounting Method <u>ANCHOR BOLTS</u>		
Required B.H.P. 500	H.P		
Parameter Design Operating	Power requirements: (include normal, maximum and minimum).		
Press . 710 psic	Electrical VOLTS -4000 NORMAL 3000 MIN		
•Temp <u>400°F</u>	cycles - 60		
Flow	PHases - 3		
Head <u>335</u>	Other SPACE HEATERS 120 VOLTS		
	PHASE -1 WATTS-239		
Required NPSH at maximum	If MOTOR list:		
flow 16 FT	Duty cycle CONTINUOUS		
Available NPSH <u>20 FT</u>	Stall current345		
Operating Speed <u>1780 RPm</u>	Class of insulation <u>CLASS B</u>		
Critical Speed			
List functional accessories:*	DUMP, MOTOR SUPPLIED AS		
A COMPLETE UNIT MOTOR	STARTING CIRCUIT REQD. TO HAKE		
PUMP OPERATIONAL .	······································		
List control signal inputs:	`.		
	· · · · · · · · · · · · · · · · · · ·		

* Functional accessories are those sub-components not supplied by the manufacturer that are required to make the pump assembly operational, (e.g., coupling, lubricating oil system, etc.)

-2-

. .

.

6. General Valve Data Valve . Actuator (if not an integral b. a. unit) Name _____ Name _____ Mfg._____ Mfg._____ Mode1 Model _____ S/N _____ S/N _____ Туре Туре Size Size _____ Weight _____ Weight _____ . Mounting Mounting Method Method _____ _____ Required Torque Torque Parameter Design Operating Power requirements: (include normal, maximum and minimum). Press Electrical . Temp Flow ' _____ -----Max ΔP across valve Closing time @ max ΔP _____ Other: [] Pneumatic [] Hydraulic Opening time θ max $\overline{\Delta P}$ Power requirements for functional accessories, (if any) _____ List control signal inputs:

-3-

.

·

.

List functional accessories:*

***	CUNC	TTON							
111.	FUNCTION								
	1.	1. Briefly describe components normal and safety functions:							
٠	INJECT BORATED WATER INTO THE REACTOR COOLANT SYSTEM IN EVENT								
	OF	PIPE	RUPTURE .	PROVIDE	SAU	Down	<u>'c</u>	DOLING FLOW THRDUCH	
	Re	ACTO	R CORE 1	ND SHUTDO	wN_	COOLI	ŊG	HX'S FOR NORMAL	
	.PL	ANT	SHUTDOL	<u>uN</u>					
	2.	The o	components n	ormaï state i	s:		[]	Operating 🛛 Standby	
	3.	Safe	ty function:						
		a.	I Emergend shutdowr	y reactor		b.	[]	Containment heat removal	
		c.	[] Containm	ent isolation		d.	Ø	Reactor heat removal	
		e.	🕅 Reactor	core cooling		f.	[]	Prevent significant release of radio- active material to environment	
		g.	of one of					igate the consequences ents? [4] Yes [] No	
			Ķ∄ LOCA	[] HELB		۰.	Ø	MSLB	
حد			[] Other	·				· · · · · · · · · · · · · · · · · · ·	
	4.	Safe	ty requireme	ents:		•			
			ntermittent	Operation	N :	During	pos	stulated event	
			ontinuous Op	-	• -	-		postulated event	
		If c appr	omponent ope oximate_leng	eration is req oth of time co	uire mpon	d foll ent mu	owi st	ng an event, give remain operational.	
			12	O DAYS			(e.	g., hours, days, etc.)	
•									
* F	uncti factu	onal.	accessories	are those sub	-COM	ponent valve	s ni assi	ot supplied by the embly operational,	

	1
5.	For VALVES:
	does the component [] Fail open [] Fail closed [] Fail as is
	Is this the fail safe position? [] Yes [] No
	Is the valve used for throttling purposes? [] Yes [] No
	Is the valve part of the reactor coolant pressure boundary? [] Yes [] No
	Does the valve have a specific limit for leakage? [] Yes [] No
	If "Yes" give limit:
. QUA	LIFICATION
1.	Reference by specific number those applicable sections of the design codes and standards applicable to the component:
	ASME CODE SECTION IIL, SECTION IX, WELDING QUALIFICATIO
	HYDRAULIC INSTITUTE FOR CENTRIFUGAL RUMPS 13TH EDITION
2.	Reference those qualification standards, used as a guide to qualify the component:
	1EEE 323,1974 LEEE 344,1975
3.	Identify those parts of the above qualification standards deleted or modified in the qualification program.
	Deleted: Modified:
	K
4.	
4.	Have acceptance criterias been established and documented in the test plan(s) for the component? [X] Yes [] No
4. 5.	Have acceptance criterias been established and documented in the

d. Margin is the difference between design basis parameters and the test parameters used for equipment qualification.

. .

. .

.

ς

.

,

If d	:ompon	ent is a PUMP, complete IV	.7.	
If c	mpon	ent is a VALVE, complete I	¥.8.	
7.	Pump [] T	operability has been demo est 🛛 🕅 Combination	instra	ted by: [] Analysis
	Iden	tify PUMP tests performed:		
	a.	☑ Shell hydrostatic (ASME Section III)	b.	[] Bearing temperature evaluations
	c.	[] Seismic loading	d.	🕅 Vibration levels
•	e.	[] Exploratory vibration	f.	[] Seal leakage @ hydro press
		(Fundamental freq)		•
	g.	[] Aging: [] Thermal	h.	🕅 Flow performance
		[] Mechanical		Are curves provided 🔀 Yes 💡
				[] No
	i.	[] Pipe reaction end	j.	[] Others
		loads (nozzle loads)		
•	k.	[] Extreme environment:		
		[] Humidity		
		[] Chemical		
		[] Radiation		•
8.		e operability has been de est [] Combination	monsti	rated by: [] Analysis
	Ider	tify VALVE tests performe	d:	
	a.	[] Shell hydrostatic (ASME Section III)	b.	[] Cold cyclic List times: Open Closed
	C.,	[] Seismic loading	d.	[] Hot cyclic List times: Open Closed
·	c.	<pre>[] Seismic loading [] Exploratory vibration</pre>		Open Closed

-6-

.

٠

`

•

`

.

*

		-7.	•	•
g.	[] Ag	ing: [] Thermal [] Mechanical	h.	[] Back seat leakage
i.		pe reaction end ading	j.	[] Disc hydrostatic
k .	[] Ex 	•	1.	[] Flow interruption capability
m .	[] F10	ow characteristics	n.	[] Others
	Ari	e curves provided?		
		5 [] No		
dev If	result iations 'Yes", 1	of any of the tes from design requir priefly describe an	ement y cha	r analysis), were any s identified? [] Yes [3] No nges made in tests (or orrect the deviation.
dev If	result iations 'Yes", 1	of any of the tes from design requir priefly describe an	ement y cha	r analysis), were any s identified? [] Yes [3] No nges made in tests (or
dev If anai Was	the tes) to th	c of any of the tes from design requir priefly describe an or to the component	ely id nt?	r analysis), were any s identified? [] Yes [3] No nges made in tests (or orrect the deviation. dentical (as to model, size, [4] Yes [] No If "No", is
dev If anai Was etc. inst If t	the tes) to the test (ype test)	t of any of the tes from design requir priefly describe an or to the component to the component to the component is in-plant compone component [] oversi t was used to qual the requirements of	ely id nt? zed ou	r analysis), were any s identified? [] Yes [3] No nges made in tests (or orrect the deviation. dentical (as to model, size, [4] Yes [] No If "No", is
dev If anai 	the tes (ysis) of the tes (ysis) of the tes () to the ailed of the tes () to the the tes () to the tes () to	t of any of the tes from design requir priefly describe an or to the component to the component to component precis the in-plant compone component [] oversi t was used to qual the requirements of No at orientation sens	ely id ify ti itive	r analysis), were any s identified? [] Yes [3] No nges made in tests (or orrect the deviation. dentical (as to model, size, [4] Yes [] No If "No", is r [] undersized? he component, does the type

• •

14. Were the qualification tests performed in sequence and on <u>only</u> one component? [] Yes [] No N/A

If "Yes"	identif	y sequence,	(e.g.,	radiation,	seismic,	cyclic,
thermal,	etc.): _					·

- 15. If "aging"* was performed, identify the significant aging mechanisms:
- 16. Identify loads imposed (assumed) on the component for the qualification tests (analysis) performed:
 - a. [] Plants (shutdown loads) b. [] Extreme environment
 - c. [] Seismic load d. [] Others <u>NOZZLE LOADS</u>
- 17. Have component design specifications been reviewed in-house to assure they envelope all expected operating, transient, and . accident conditions? [X] Yes [] No
- 18. Does the component utilize any unique or special materials? (Examples are special gaskets or packing, limitations on nonferrous materials, or special coatings or surfaces.) [] Yes [X] No

If "Yes", identify: _____

19. Does component require any special maintenance procedures or practices, (including shorter periods between maintenance), [] Yes [X] No

If "Yes", identify:

20. Is the qualified life for the component less than 40 years?
[] Yes [3] No If "Yes", what is the qualified life? ______

As outlined in Section 4.4.1 of IEEE-627 1980.

-8-

21. Information Concerning Qualification Documents for the Component

Report Number	Report Title	Date	Company/Organization Preparing Report	Company/Organization Reviewing Report
EAS -TR -7708 - RP	STRUCTURAL INTEGRITY AND OPERABILITY ANALYSIS REV. 0	5/5/77	INGERSOL - RAND	C-E
76 F. 60575	SELSMIC ANALYSIS	7/28/78	WESTINGHOUSE	C-E
	v			-
		×		
	•			

.

؋

:	(* }	PUMP AND VALVE
ar		OPERABILITY ASSURANCE REVIEW
		TINFORMATION
		Name: PVNGS - UNIT 1 2. Docket No.: STN 50-528/529/530
	3.	ULIIITY: ARIZONA PUBLIC SERVICE
	4.	NSSS: COMBUSTION ENGINEERING MPHR [] BHR
•	5.	NE: BECTHEL
п.	GENE	RAL COMPONENT ^a INFORMATION
	1.	Supplier: 53 NSSS [] BOP
	2.	Location: a. Building/Room <u>AUXILIARY BLDG</u> .
		b. Elevation <u>77 Ft.</u>
	٠	C. System SAFETY INJECTION/SHUTDOWN COOLING SYSTEM
•	3.	Component number on in-house drawings: N77850-2 (TAG No. SI-655)
	4.	If component is a [] Pump complete II.5. (APS # (SIA - UV - 655)
		If component is a po Valve complete II.6.
	5.	General Pump Data
		a. Pump . b. Prime-mover
•	Name	
	Mfg.	،
	S/N	
•		

a. The component, whether pump or valve, is considered to be an assembly composed of the body, internals, prime-mover (or actuator) and functional accessories.

t

•

.

. . .

.

.

. . .

. . .

.

a. Pump (continued)	b. Prime-mover (continued)			
Size	Size			
Weight	Weight			
Mounting Method	Mounting			
Required B.H.P.				
Parameter Design Operating	Power requirements: (include normal, maximum and minimum).			
Press	Electrical			
·Temp				
Flow	· · · · · · · · · · · · · · · · · · ·			
Head	Other			
Required NPSH at maximum	If MOTOR list:			
flow	Duty cycle			
Available NPSH	Stall current			
Operating Speed	Class of insulation			
List functional accessories:*				
	• 、			
*				
List control signal inputs:				

* Functional accessories are those sub-components not supplied by the manufacturer that are required to make the pump assembly operational, (e.g., coupling, lubricating oil system, etc.)

-2-

6. General <u>Valve</u> Data	
a. Valve: TAG No. SI-655	b. Actuator (if not an integral unit)
Name ISOLATION VALVE	Name MOTOR OPERATOR
MFg. NUCLEAR VALVE DIV'N OF BORGWARK	RMFg. LIMITORQUE
Model PN=77850-2	Model SMB-1
S/N 27613N77850-2	S/N 264038
Type MOTOR OPERATED GATE	Туре _~
Size 16 × 12 × 16 INCH	Size <u>SMB-1-40</u>
Weight <u>4900 lbs</u>	Weight 500 lbs
Mounting BUTT WELD IN PIPE LINE	Mounting STUDS & NUTS
Required ~ Torque	Torque PER' ASSY DWG.
Parameter Design Operating	Power requirements: (include normal, maximum and minimum).
Press(PSIG) 435 400	Electrical
Temp(F) <u>400</u> <u>350</u>	2.6 HP NOMINAL @ 460VAC + 109
Flow(GPM) 9000	36.5 AMPS MAX. @ LOCKED ROTOR
Max AP across valve 400 PSI	50 WATTS @ 120V FOR HEATER.
Closing time Comman AP <u>80</u> SEC.	Other: [] Pneumatic [] Hydraulic
Opening time Commax AP 80 SEC.	
Power requirements for functional	·
accessories, (if any) <u>SEE Ac</u>	CTUATOR

List control signal inputs: <u>HAND SWITCH, ON-OFF ONLY & WTERLO</u>CKS: A. RCS PRESSURE GREATER: THAN 400 PSIA PREVENTS OPEN'S. L. RCS PRESSURE GREATER THAN 500 PSIA PROVIDES AUTOMATIC CLOSURE.

-3-

FUN	
1.	Briefly describe components normal and safety functions: THE VALVE
	D DURING NORMAL PLANT OPERATION & DURING OPERATION OF THE SI
70	SOLATE ONE SHUTDOWN COOLING SUCTION LINE. WHEN SHUTDOW
	NG CONDITIONS ARE REACHED THE VALVE IS OPENED TO ALL
RC	FLUID TO FLOW TO THE "SHUTDOWN COOLING" * PUMPS
2.	The components normal state is: [] Operating 🕺 Standby
3.	Safety function:
	a. Emergency reactor b. [] Containment heat removal
	c. [] Containment isolation d. 🔀 Reactor heat removal
	e. [] Reactor core cooling f. [] Prevent significant release of radio- active material to environment
	g. X Does the component function to mitigate the consequences of one or more of the following events? X Yes [] No If "Yes", identify.
	X LOCA [] HELB X MSLB
	[] Other
4.	Safety requirements:
	X Intermittent Operation [] During postulated event
	[] Continuous Operation K Following postulated event
	If component operation is required following an event, give approximate length of time component must remain operational.
	ONE TRAIN $SDC = 2 IYR$ (e.g., hours, days, etc.)
	onal accessories are those sub-components not supplied by the er that are required to make the valve assembly operational,

\$

•

•

. , •

- · · ·

.

×

, ,

.

. · · · · · ·

•

	5.	For VALVES:
		does the component [] Fail open [] Fail closed 🔀 Fail as is
		Is this the fail safe position? [] Yes [] No
	•	Is the valve used for throttling purposes? [] Yes 💢 No 🗾
		Is the valve part of the reactor coolant pressure boundary? [] Yes 🛛 🔀 No
		Does the valve have a specific limit for leakage? 🔀 Yes [] No
		IF "Yes" give I imit: MAIN SEAT LEAKAGE < 10 CC/HR/INCH OF
IV.	QUAL	IFICATION NOMINAL VALVE SIZE,
	1.	Reference by specific number those applicable sections of the design codes and standards applicable to the component: A. ASME, B& PV, SECT. III, WINTER 1975 ADDENDA. B. MSS-SP-61, HYDROSTATIC TESTING OF STEEL VALVES - 1961.
	ч ⁷	C. ANSI- B16.25, BUTT WELDING ENDS - 1972.
	2.	Reference those qualification standards, used as a guide to qualify the component: SAME AS "A" a "B" OF $IV \cdot 1 \cdot Above$
	3.	Identify those parts of the above qualification standards deleted or modified in the qualification program.
		Deleted: Modified:
,		
	4.	Have acceptance criterias been established and documented in the test plan(s) for the component? [] No
	5.	What is the expected failure mode that would keep the pump or valve assembly from performing its safety function? <u>NONE</u>
	6.	Are the margins* identified in the qualification documentation? [] Yes 🙀 No

٠,

^{*}d. Margin is the difference between design basis parameters and the test parameters used for equipment qualification.

If c	:ompon	ent is a PUMP, complete IV	1.7.	
If c	ompon	ent is a VALVE, complete	[V.8.	
7.	Pump [] T	operability has been demo est [] Combination	onstr	ated by: [] Analysis.
	Ider	tify PUMP tests performed	•	•
	а.	<pre>[] Shell hydrostatic (ASME Section III)</pre>	b.	<pre>[] Bearing temperature evaluations</pre>
	с.	[] Seismic loading	d.	<pre>[] Vibration levels</pre>
•	e.	[] Exploratory vibration	f.	[] Seal leakage @ hydro press
		(Fundamental freg)		
	g.	[] Aging: [] Thermal	h.	[] Flow performance
		[] Mechanical		Are curves provided [] Yes
		٩		[] No
	i.	[] Pipe reaction end	j.	[] Others
		loads (nozzle loads)		
	k.	[] Extreme environment:		
		[] Humidity		
-		[] Chemical	·	
		[] Radiation		•
8.	Va] []	ve operability has been de Test St Combination	monst	rated by: [] Analysis
	Ide	ntify VALVE tests performe	d:	
	a.	Shell hydrostatic (ASME Section III)	b.	Cold cyclic List times: Open Closed
	C	[] Seismic loading	d.	[] Hot cyclic List times: Open Closed
	e.	[] Exploratory vibration	ıf.	🕅 Main seat leakage
		(Fundamental freg)		

-6-

.

.

• , • •

•

. .

.

•

b U .

g.	Ĺ	Aging	: [] Thermal [] Mechanic	h. cal	🕅 Back	seat leakage
i.	[]	Pipe	reaction end	j.	🕅 Disc	hydrostatic
		loadi	ng			
k.	[]	Extre	me environmer	nt 1.	[] Flow	interruption capabilit
		[]	Humidity			
		[] (Chemica1			
		[] [Radiation			
Π.	[]	Flow (characteristi	ics n.	[] Othe	rs
		Are ci	urves provide	d?		
	٢٦	Yes	[] No			
devi If "	res atio Yes"	ult of ns fro , brie	om design red efly describe	uirement	ts identin Inges made	is), were any fied? [] Yes 🕅 No e in tests (or ne deviation.
devi If " anal 	res atio Yes" ysis	ult of ns fro , brie) or 1	om design req efly describe to the compon	uirement any cha ent to c	ts identit inges made correct th	fied? [] Yes 🕅 No e in tests (or ne deviation.
devi If " anal Was etc.	res atio Yes" ysis the) to	ult of ns fro) or 1 	om design red efly describe to the compon	cisely i	ts identit inges made correct th dentical Market for the second s	fied? [] Yes 🕅 No e in tests (or ne deviation. (as to model, size,] No If "No", is
devi If " anal Was etc. inst If <u>t</u> test	res atio Yes" ysis the) to alle mee	ult of ns fro) or f) or f test of the f d comp test v	om design req efly describe to the compon component pre in-plant comp conent [] ove vas used to q	cisely i onent? ualify t	dentical M Yes [che compor	fied? [] Yes \$\$ No e in tests (or ne deviation. (as to model, size,] No If "No", is
devi If " anal Was etc. inst If <u>t</u> test [] Y Is c If "	res atio Yes" ysis the) to alle mee es ompoi Yes"	ult of ns fro brie) or f	component pre in-plant component [] ove vas used to q requirements	cisely i onent? rsized o ualify t ensitive rientati	dentical M Yes [] whe comport dentical M Yes [dentical M Yes [dentical] dentical M Yes [dentical] dentical] d	fied? [] Yes X No e in tests (or ne deviation. (as to model, size,] No If "No", is ersized? nent, does the type , Section 5.?

)

-7-

•

,

	Were the qualification tests per one component? [] Yes [] No	rformed	in sequence and on <u>only</u>
	If "Yes" identify sequence, (e., thermal, etc.):	g., rad	liation, seismic, cyclic,
15.	If "aging"* was performed, ident mechanisms:	tify th	
16.	Identify loads imposed (assumed qualification tests (analysis) p) on th perform	e component for the ed:
	a. [] Plants (shutdown loads)	b.	[] Extreme environment
•	c. 🕅 Seismic load	d.	Stothers OPERATIONA
17.	Have component design specificat assure they envelope all expecte accident conditions? 53 Yes []	d oper	
18.	•	nique packi	ng, limitations on
18.	Does the component utilize any u (Examples are special gaskets or nonferrous materials, or special	nique packi coati	ng, limitations on ngs or surfaces.)
18.	Does the component utilize any u (Examples are special gaskets or nonferrous materials, or special [] Yes \$ No If "Yes", identify:	al mai	ng, limitations on ngs or surfaces.)
	Does the component utilize any u (Examples are special gaskets or nonferrous materials, or special [] Yes by No If "Yes", identify: Does component require any speci practices, (including shorter pe	al mai	ng, limitations on ngs or surfaces.) nțenance procedures or between maintenance), '

-8-

• •

, ,

.

. .

.

•

, , ,

21. Information Concerning Qualification Documents for the Component

Report Title Company/Organization Preparing Report Company/Organization Reviewing Report Report Number Date SEISMIC ANALYSIS NSR Z7 NUCLEAR VALVE DIVISION COMBUSTION ENGINEERING 77850-2 OF 16-12-16 INCH, BOOLD STAINLESS JUNE OF BORG WARNER CORP. REV.D 1978 STEEL MOTOR OPERATOR GATE VALVE EBAI initoriju

.

.

.

.

,

¥

;

	۲. ۲. ۲. ۲. ۲.	PUMP AND VALVE	6
		OPERADILITY ASSURANCE REVIEW	
		Name: PVNGS - UNIT 1 2. Docket No.: STN 50-528/529/5	530
		ULITITY: ARIZONA PUBLIC SERVICE	50
•	4,	NSSS: <u>COMBUSTION: ENGINEERING</u> . W PHR [] BWR : NE: <u>BECTHEL</u>	
11.		Supplier: NSSS [] BOP	
	2.	Location: 8. Building/Room Auxiliary Building	
•		b. Elevation <u>40 Ft.</u>	
	-	C. System SAFETY INJECTION SYSTEM	
•	3.	Component number on in-house drawings: TAG NO: SI-404	
	4.	If component is a [] Pump complete II.5. (SIA-V-404)	
		If component, is a particle complete 11.5.	•
•	5.	General Pump Data	
		a. Pump b. Prine-mover	
•	Name		
	Mfg.	· · · · · · · · · · · · · · · · · · ·	•
	Mode		-
	S/N		
	Туре		•
•			

a. The component, whether pump or valve, is considered to be an <u>assembly</u> composed of the body, internals, prime-mover (or actuator) and functional accessories.

ŝ,

.

.

.

a. Pump (continued)	b. Prime-mover (continued)
Size	Size
Weight	Weight
Mounting Method	Mounting Method
Required B.H.P.	H.P
<u>Parameter</u> <u>Design</u> <u>Operating</u>	Power requirements: (include normal, maximum and minimum). <
Press	Electrical
-Temp	
Flow	
Head	•
Required NPSH at maximum	If MOTOR list:
flow	Duty cycle
Available NPSH	Stall current
Operating Speed	Class of insulation
Critical Speed	·,
·	•
	•
List control signal inputs:	
	4
۵۵ با این او این او این این او ای ۱	

* Functional accessories are those sub-components not supplied by the manufacturer that are required to make the pump assembly operational, (e.g., coupling, lubricating oil system, etc.)

-2-

	CLASS 2 , ACTIVE VALVE
6. General <u>Valve</u> Data	CE P.O. No. 9601325
a. Valve TAG NOS SI-404	b. Actuator (if not an integral unit)
Name SWING CHECK VALVE	Name NOT APPLICABLE
MFg. NVD / BORG WARNER	Mfg.
Model 79120	
s/N 22630	S/N
Type CHECK VALVE	Туре
Size <u>4" 1500# S.S. 1</u>	Size
	Weight
Mounting BUTT WELDED Method IN PIPE LINE	
Required N/A	Torque
Parameter Design Operating	Power requirements: (include normal, maximum and minimum).
3600 PSIG Press @ 100°F 2050 PSIG	Electrical NONE
Temp <u>350°F</u> <u>300°F</u>	
Flow 1165 GPM	
Max AP across valve 20.1 PSIG	· · ·
Closing time @ max $\Delta PN/A$	
Closing time $\theta \max \overline{\Delta}P = \frac{N/A}{N/A}$ Opening time $\theta \max \overline{\Delta}P = \frac{N/A}{N/A}$	Other: [] Pneumatic [] Hydraulic
Opening time $\theta \max \overline{\Delta P} = \frac{N/A}{A}$	Other: [] Pneumatic [] Hydraulic None
Opening time θ max $\overline{\Delta P}$ N/A Power requirements for functional	Other: [] Pneumatic [] Hydraulic
Opening time θ max $\overline{\Delta}P$ <u>N/A</u> Power requirements for functional accessories, (if any) <u>N/A</u>	Other: [] Pneumatic [] Hydraulic None

-3-

.

•

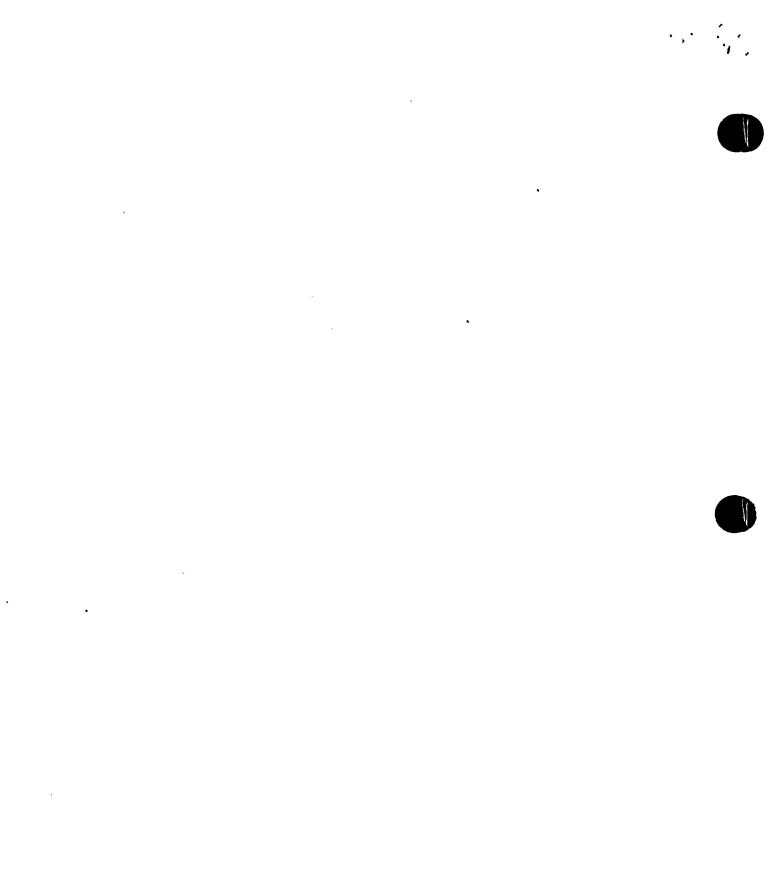
.

, . . .

.

1.

.


.

.

II. [•]	FUNCT	TION				•						-		
	1.	Brie	efly des	cribe c	omponent	ts nor	mal a	nd	safe	ty fund	tion	s: <u>Nor</u>	MAL	-
	Fu	scr	ION :	Non	ε. <u>ς</u>	AFE	<u>[4 </u>	Eur	NCT	ion s			<u></u>	-
	1)	Ts	DLATE	s Lo	w Pr	ESSC						SIS F		
	<u>Hi</u>	P	RESSU				•					BACK-U		
	OF			ZOM	RCS	IN	CAS	ε	OF	UPS	IRE	AM C	<u>HEC</u> K	VAL
	FA1 2.	The	ze. compone	nts nor	maī sta	te is:			[]	Operat	ing	🗙 Sta	Indby	
	3.	Safe	ety func	tion:										
		a.		rgency tdown	reactor	T	t).	[]	Contai remova		; heat		`
		c.	[] Con	tainmer	nt isola	tion	C	1.	X	Reactor	r hea	it remova	1	
		e.	X Rea	ctor co	ore cool	ing	1	f.	[]	releas	e of mate	gnificant radio- erial to t	:	
		g.	Doe of If	s the o one or "Yes",	componen more of identif	t fund the f Y.	tion follow	to wing	mit [.] , eve	igate t ents?	he co X Ye	onsequenc es [] No	es D	
			X LOC	A	X HE	LB			X	MSLB		•		
هن			N Oth	er			NER	170	R	TUBE	R	UPTUR	<u>E</u>	•
	4.	Saf	ety real				,							
		[]	Intermit	tent O	peration		🔣 Du	ring	j po	stulate	d ev	ent		
			Continue							postul				
	μ	If app	compone proximate	nt oper e lengt	ation is h of tim	requ ne com	ired ponen	foll t mu	lowi ust	ng an e remain	oper	, give ational.	•	
		ł,	1	YEA	R				(e.	g., hou	irs,	days, et	c.)	

-4-

.

•

5	5.	For VALVES:
F		does the component [] Fail open [] Fail closed [] Fail as is N/A
		Is this the fail safe position? [] Yes [] No 🔀 N/A
-		Is the valve used for throttling purposes? [] Yes 💢 No
		Is the valve part of the reactor coolant pressure boundary? [] Yes No
		Does the valve have a specific limit for leakage? 💢 Yes [] No
IV. <u>Q</u>	UAL	IF "Yes" give limit: <u>MAIN SEAT LEAKAGE 10 CC/HP/INCH</u> OF NOM. VALVE SIZE
1	•	Reference by specific number those applicable sections of the design codes and standards applicable to the component: A. ASME B.I.P.V. CODE, SECT III B. MSS-SP-61, HYDROSTATIC TESTING OF STEEL VALVES - 1961
	•	C. ANSI - BIG. 25 BUTT WELDING ENDS - 1972
2	2.	C. ANSI - BIG.25 BUTT WELDING ENDS - 1972 Reference those qualification standards, used as a guide to qualify the component: <u>SAME AS 'A' È B' OF IV.1 ABOVE</u>
	3.	C. ANSI - B16.25 BUTT WELDING ENDS - 1972 Reference those qualification standards, used as a guide to
		C. ANSI - $B16.25$ BUTT WELDING ENDS - 1972 Reference those qualification standards, used as a guide to qualify the component: <u>SAME AS 'A" È B' OF IV.1 ABOVE</u> Identify those parts of the above qualification standards deleted
		C. ANSI - $B16.25$ BUTT WELDING ENDS - 1972 Reference those qualification standards, used as a guide to qualify the component: <u>SAME AS A" & B OF IV, 1 ABOVE</u> Identify those parts of the above qualification standards deleted or modified in the qualification program.
		C. ANSI - $B16.25$ BUTT WELDING ENDS - 1972 Reference those qualification standards, used as a guide to qualify the component: <u>SAME AS A" & B OF IV, 1 ABOVE</u> Identify those parts of the above qualification standards deleted or modified in the qualification program.
		C. ANSI - $B16.25$ BUTT WELDING ENDS - 1972 Reference those qualification standards, used as a guide to qualify the component: <u>SAME AS A" & B OF IV, 1 ABOVE</u> Identify those parts of the above qualification standards deleted or modified in the qualification program.
3		C. ANSI - $B16.25$ BUTT WELDING ENDS - 1972 Reference those qualification standards, used as a guide to qualify the component: <u>SAME AS A" & B OF IV, 1 ABOVE</u> Identify those parts of the above qualification standards deleted or modified in the qualification program.
3	3.	C. ANSI - B16.25 BUTT WELDING ENDS - 1972 Reference those qualification standards, used as a guide to qualify the component:

۰,

•

.

d. Margin is the difference between design basis parameters and the test parameters used for equipment qualification.

•

If component is a PUMP, complete I	V.7.	
If component is a VALVE, complete	IV.8.	
7. Pump operability has been dem [] Test [] Combination	onstr	ated by: [] Analysis
Identify PUMP tests performed	:	•
a. [] Shell hydrostatic (ASME Section III)	b.	<pre>[] Bearing temperature evaluations</pre>
c. [] Seismic loading	d.	[] Vibration Jevels
. e. [] Exploratory vibration	f.	[] Seal leakage @ hydro press
(Fundamental freq)		
g. [] Aging: [] Thermal	h.	[] Flow performance
[] Mechanical		Are curves provided [] Yes
		[] No
i. [] Pipe reaction end	j.	[] Others
loads (nozzle loads)		
k. [] Extreme environment:		
[] Humidity		·
[] Chemical	•	
[] Radiation		•
8. Valve operability has been de	emonst	crated by: []Analysis
Identify VALVE tests performe	d:	
a. Shell hydrostatic (ASME Section III)	b.	[] Cold cyclic List times: Open Closed
c- X Seismic loading (ANALYSIS)	d.	[] Hot cyclic List times: Open Closed
e. [] Exploratory vibration	ıf.	Main seat leakage
(Fundamental freg		7

•

N

:

••

v

•

¢

•

· ·

|

•

.

3

۰ ۲

.

*

		-7-	-	•
	g.	[] Aging: [] Thermal [] Mechanical	h.	[] Back seat leakage
ų	i.	<pre>[] Pipe reaction end</pre>	j.	[] Disc hydrostatic
		loading		
	k.	[] Extreme environment	1.	[] Flow interruption capability
		[] Humidity		
		[] Chemical		
		[] _. Radiation	•	•
	11 •	[] Flow characteristics	n.	[] Others
•		Are curves provided?		•
		[] Yes 🗙 No		
	If "	ations from design requir Yes", briefly describe an ysis) or to the component	y cha	inges made in tests (or 🍊
10.	Was etc. inst	the test component precis) to the in-plant compone alled component [] oversi	ely i nt? zed o	dentical (as to model, size, 文] Yes [] No If "No", is r [] undersized?
11.	test	<u>ype</u> test was used to qual meet the requirements of es [] No	ify t IEEE	he component, does the type 323-1974, Section 5.?
12.	If "	omponent orientation sens Yes", does installed orie ntation? [X] Yes [] No	itive ntati	Yes []No [] Unknown on coincide with test
13.	duri	he component mounted in t ng testing (i.e., welded, es []No [4] Unknown	he sa same	me manner in-plant as it was number and size bolts, etc.)

,

*

<u>ج</u>

•, •

	one component? [] Yes [] No	formed	in sequence and on <u>only</u>
	<pre>If "Yes" identify sequence, (e.g. thermal, etc.):</pre>	, rad	liation, seismic, cyclic,
15.	If "aging"* was performed, identimechanisms:		
16.	Identify loads imposed (assumed) qualification tests (analysis) pe		
,	a. [] Plants (shutdown loads)	b.	[] Extreme environment
	c. 🗙 Seismic load	d.	Others OPERATIONAL
17.	Have component design specificati	ana h	·····
	assure they envelope all expected accident conditions? X Yes []	oper	
	assure they envelope all expected	oper No ique packi	ating, transient, and . or special materials? ng, limitations on
	assure they envelope all expected accident conditions? X Yes [] Does the component utilize any un (Examples are special gaskets or nonferrous materials, or special	oper No ique packi	ating, transient, and . or special materials? ng, limitations on
18.	assure they envelope all expected accident conditions? [2] Yes [] Does the component utilize any un (Examples are special gaskets or nonferrous materials, or special [] Yes [2] No	l oper No nique packii coati	ating, transient, and . or special materials? ng, limitations on ngs or surfaces.)
18.	assure they envelope all expected accident conditions? [A] Yes [] Does the component utilize any un (Examples are special gaskets or nonferrous materials, or special [] Yes [] No If "Yes", identify: Does component require any specia practices, (including shorter per	oper No packi coati	ating, transient, and . or special materials? ng, limitations on ngs or surfaces.) ntenance procedures or between maintenance),

-8-

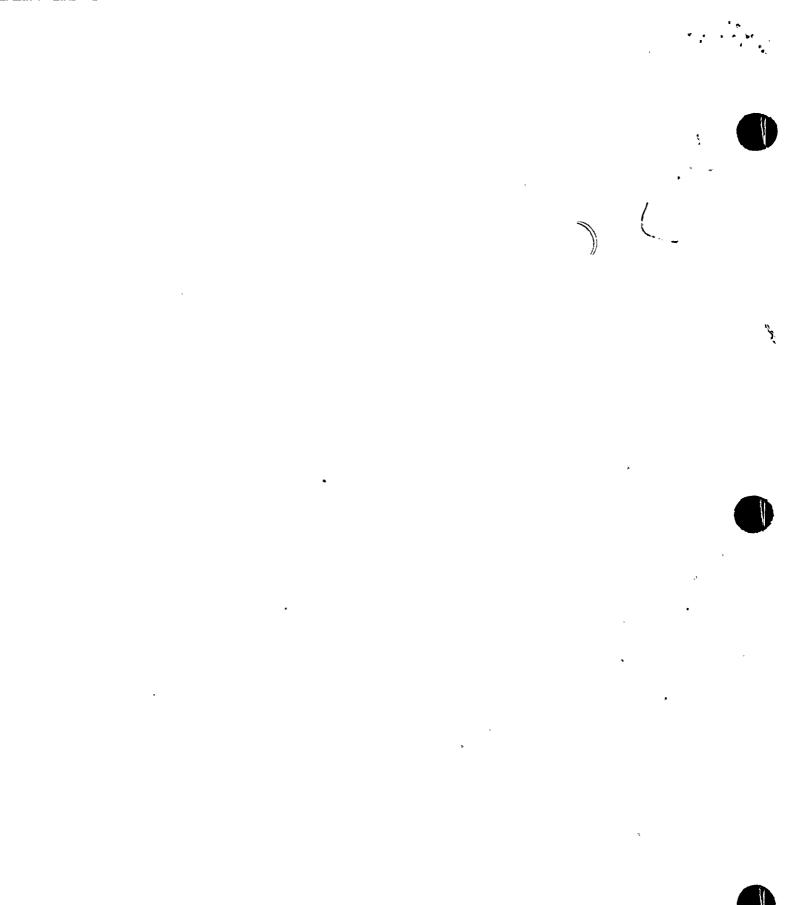
۰,

•

· · · · .

> . •

• .


•

21. Information Concerning Qualification Documents for the Component

Report Number	Report Title	Date	Company/Organization Preparing Report	Company/Organization Reviewing Report
NSR 79120 Rev A	SEISMIC ANALYSIS OF 4", 1500 LB S.S. SWING CHECK VALVES	12/7/78		
		-		
	•		Υ Υ Υ Υ Υ Υ Υ Υ Υ Υ Υ Υ Υ Υ Υ Υ Υ Υ Υ	• •

•

· · · · ·	4	PUHP AND VALVE
میں بھی میں ان		GPERABILITY ASSURANCE REVIEW
1	PLAN	T INFORMATION
	1.	Name: PVNGS - UNIT 1 2. Nocket No.: STN 50-528 529 530
	3.	ULIIILY: ARIZONA PUBLIC SERVICE
	4.	NSSS: COMBUSTION : ENGINEERING . N PHR [] BHR :
•	•	NE: BECTHEL
11.		Supplier: DINSSS [] BOP
		•
	2.	Location: a. Building/Room AUXILIARY BLDG.
•		h. Elevation <u>88 Ft.</u>
		C. System CHEMICAL & VOLUME CONTROL
•	3.	Component number on in-house drawings: TAG NO.: CH-505
	4.	If component is a [] Pump complete II.5. $(APS + CHB - UV - 505)$
		If component is a Walve complete 11.5.
		General Pump Data
	٩	a. Pump b. Prine-mover
•	Name	
	Mfg.	
	Model	
	S/N _	
	Туре	
•	- •	· · · · · · · · · · · · · · · · · · ·

a. The component, whether pump or valve, is considered to be an <u>assembly</u> composed of the body, internals, prime-mover (or actuator) and functional accessories.

•

. .

. .

Ň •

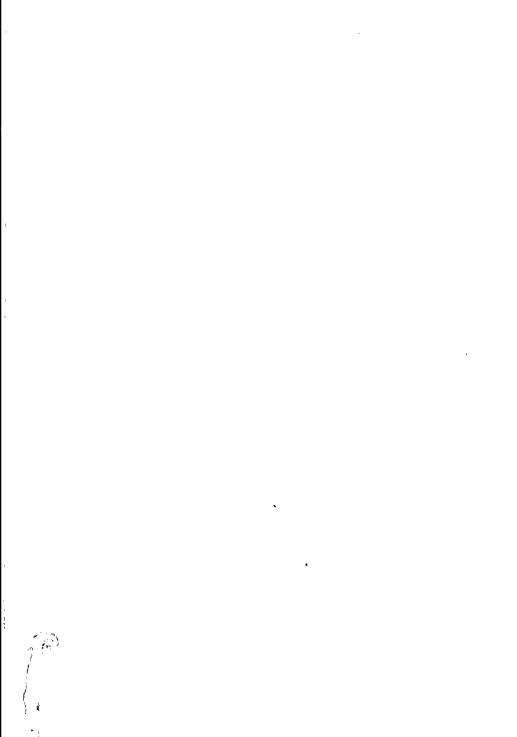
a. Pump (continued)	b. Prime-mover (continued)
Size	
Weight	Weight
Mounting Method	Mounting
Required B.H.P.	
<u>Parameter</u> <u>Design</u> <u>Operating</u>	Power requirements: (include normal, maximum and minimum).
Press	Electrical
•Temp	
Flow	· · · · · · · · · · · · · · · · · · ·
Head	Other
	······································
Required NPSH at maximum	If MOTOR list:
flow	Duty cycle
Available NPSH	Stall current
Operating Speed	
Critical Speed	
	· · · ·
	•
List control signal inputs:	· · · · · · · · · · · · · · · · · · ·
	·

* Functional accessories are those sub-components not supplied by the manufacturer that are required to make the pump assembly operational, (e.g., coupling, lubricating oil system, etc.)

-2-

·

.


•

٠

• • •

6. General <u>Valve</u> Data
a. Valve TAG# CH-505 b. Actuator (if not an integral DwG No. 54A6467 unit)
Name PNEUMATIC OPER VALUE Name
MFg. FISHER CONTROLS MFg.
Model 667DBQ SIZE 50 ACT. Model
S/N 6548710 S/N
Type DIAPGM OP GLOBE Type
Size 1 VALVE, 34 PORTS Size
Weight 250 ± 25 LBS Weight
Mounting Butt WELDED Mounting Method IN PIPE LINE Method
Required 10 MIN., 15 ft LBS Max. Torque For Packing Gland NursTorque
Parameter Design Operating Power requirements: (include normal, maximum and minimum).
Press 2485 PSIG 100 PSIG Electrical 105 VDC MINIMUM
Temp 650°F 180°F To 140 VDC MAX SUPPLY
Flow 22.0 GPM: TO ASCO VALVE
Max AP across valve 2485 PSID @ O FLOW, GPSIG @ FULL FLOW
Closing time e-max AP Other: M Pneumatic [] Hydraulic
Opening time a max AP 5 SEC 80 PSIG MINIMUM TO
Power requirements for functional 125 PSIG MAXIMUM
accessories, (if any) AIR SUPPLY TO FILTER
REGULATOR AND BOOSTER RELAY
List control signal inputs:

-3-

-

.

•

				SWITCHES EA	110-3	<u>. .) u</u>	<u> </u>	
III.	FUNC							
	1.		_	be components nor		-	.	
	Fu	INCT			-			N AND ALLOWS
								W. EMERGENCY
	FL	INCT	'ION .	VALUE CL	oses	A	ND ISON	LATES RADIOACTIVI
	<u> </u>	<u>ELEF</u>	ISE TO	DUTSIDE	CON	TAIL	NMENT.	
	2.	The	components	normal state is:	:	X	Operating	[] Standby
	3.	Safe	ety function	::				
		a.	[] Emergen shutdow	ncy reactor wn	b.	נז	Containment removal	heat
		c.	🗙 Contain	nment isolation	d.	[]	Reactor heat	t removal
		е.	[] Reactor	r core cooling	f.	X	Prevent sign release of n active mater environment	radio- rial to
		g.	Does th of one If "Yes	he component func or more of the f s", identify.	tion to following	miti g evi	igate the con ents? X Ye	nsequences s [] No
			LOCA	HELB		X	MSLB	•
-			X Other	PREVENTS ROD	DIDACTIV	124		
	4.	Saf	ety requirem		•	•		INMENT.
		[]	Intermittent	t Operation	Durin	g por	stulated even	nt
			Continuous O				postulated (•
		If	component op	peration is requi	ired foll	lowir ust r	ng an event, remain opera	give tional.
		•••	36-1+R	S OPERATION	\$ MAI	NTA (e.	AIN INTEGRI g., hours, d	ays, etc.) Post DBE
				· · ·		•		

-4-

-

		•
	5.	For VALVES:
		does the component [] Fail open 💥 Fail closed / [] Fail as is
		Is this the fail safe position? 🔀 Yes [] No
		Is the valve used for throttling purposes? [] Yes 💢 No
		Is the valve part of the reactor coolant pressure boundary? Yes [] No
		Does the valve have a specific limit for leakage? 🗙 Yes [] No
		If "Yes" give limit: <u>IO CC/HR/INCHOF NOM, VALVE</u> SIZE (MAIN SEAT)
IV.	QUAL	IFICATION (MAIN SEAT)
•	1.	Reference by specific number those applicable sections of the design codes and standards applicable to the component:
		A ASME SECTION II DIV 1, SUMMER 1975 ADDENDA
		A ASME SECTION III DIV 1, SUMMER 1975 ADDENDA B. MSS-SP-61, HYDROSTATIC TESTING OF VALUES 1961 C. ANSI - BIG. 25, BUTT WELDING ENDS - 1972
	2.	Reference those qualification standards, used as a guide to qualify the component:
		······································
	3.	Identify those parts of the above qualification standards deleted or modified in the qualification program.
		Deleted: Modified:
		Эла аво.
		· · · · · · · · · · · · · · · · · · ·
•	4.	Have acceptance criterias been established and documented in the test plan(s) for the component? [] No
	5.	What is the expected failure mode that would keep the pump or valve assembly from performing its safety function? <u>NONE</u>
	6.	Are the margins* identified in the qualification documentation?
	U •	El Yes X No ,

*

-5-

d. Margin is the difference between design basis parameters and the test parameters used for equipment qualification.

If co		ent is a PUMP, complete IV	1.7.	
	•	ent is a VALVE, complete I		
7.	•	operability has been demo		ated by: [] Analysis
	Iden	tify PUMP tests performed:	5	`
	a.	[] Shell hydrostatic (ASME Section III)	b.	[] Bearing temperature evaluations
	c.	[] Seismic loading	d.	[] Vibration levels
•	e.	[] Exploratory vibration	f.	[] Seal leakage @ hydro press
ц		(Fundamental freg)		•
	g.	[] Aging: [] Thermal	h.	[] Flow performance
		[] Mechanical		Are curves provided [] Yes
				ои []
	i.	[] Pipe reaction end	j.	[] Others
	_	loads (nozzle loads)		
	k.	[] Extreme environment:		
•		[] Humidity		
•		[] Chemical		· · · · · · · · · · · · · · · · · · ·
		[] Radiation		·
8.	.Va]y	ve operability has been de Test Combination	monst	rated by: []Analysis
		ntify VALVE tests performe	•	
	a.	Shell hydrostatic (ASME Section III)	b.	Cold cyclic List times: Open Closed
	C-	Seismic loading	d.	[] Hot cyclic List times: Open Closed
	e.	[] Exploratory vibration	f.	Main seat leakage
	<i>,</i> >	(Fundamental freg		

-6-

. .

•

۸ ۰

. .

•

*

L.					-7-		·				
		g.	[]Agir	ig:【]Ther 【]Mech	mal	h.	[] Bac	k seat	leakag	e	• • • • •
		i.	[]Pipe	reaction	end	j.	N PLU N Dis	c hydro	static		
			10ac	ling							
) Ir	k.	ţ.	reme enviro Humidity Chemical	nment	1.	[] Flo	w inter	ruption	ı capab	ility
			t.	Radiation			•				
		m.		character		n.	[]Oth	ers	<u></u>		
•	•	•	Are	curves pro	vided?				• ·		•
			[]'Yes	Γή No					-	•	
		If "	Yes", br	rom design iefly desc	require	ement y cha	nges mad	iried? de in t	Yes ests (c	i [] No ir	כ
	-	If "	Yes", br	rom design	require	ement y cha	s ident nges ma	iried? de in t	Yes ests (c	i [] No ir)
•		If " anal 	Yes", br ysis) or	rom design iefly desc	require ribe any mponent precise component	ement y cha to c	dentica	Iried? de in t the dev (as t [] No	Yes ests (c iation. o model If "No	, size,	
		If " anal Was etc. inst If <u>t</u>	Yes", br ysis) or the test the test to the alled co ype test	rom design iefly desc to the co component in-plant (] was used e requireme	require ribe any mponent precise componen oversiz to qual:	ement y cha to c ely i nt? v ify t	dentical r [] unc he compo	I (as to le in t the dev	Yes ests (c iation. o model If "No i? ioes th	, size, ", is e type	
	11. 12.	If " anal Was etc. inst If <u>t</u> test [] Y Is c If "	Yes", br ysis) or the test) to the alled co <u>ype</u> test meet th es [] N omponent Yes", do	rom design iefly desc to the co component in-plant (] was used e requireme	require ribe any mponent precise componer oversiz to qual ents of on sensi	ement y cha to c ely i nt? v ify t lEEE itive	dentical dentical dentical dentical dentical dentical r [] unc he compo 323-197	I (as to le in t the dev (as to lersized onent, o 4, Sect	Yes ests (c iation. o model If "No i? loes th ion 5.	, size, , size, , is e type ? Unknown	
	11. 12. 13.	If " anal Was etc. inst If <u>t</u> test []Y Is c If " orie Is t duri	Yes", br ysis) or the test) to the alled co <u>ype</u> test meet th es [] N omponent Yes", do ntation? he compon ng testi	rom design iefly desc: to the con- component in-plant (mponent [] was used e requireme o i orientatic es installe	require ribe any mponent precise componen oversiz to quali ents of on sensi ed orien] No ed in the welded,	ement y cha to c ely i nt? o ify t lEEE itive tatione sau	dentical den	I (as the dev l (as the dev l (as the fill of the dev l (as the dev)) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a)	Yes ests (c iation. o model If "No i? foes th ion 5. lo [] th test ant as	, size, , size, ", is e type ? Unknown it was	
	11. 12. 13.	If " anal Was etc. inst If <u>t</u> test []Y Is c If " orie Is t duri	Yes", br ysis) or the test) to the alled co <u>ype</u> test meet th es [] N omponent Yes", do ntation? he compon ng testi	rom design iefly desc: to the con- component in-plant (mponent [] was used e requireme o i orientationes installe [] Yes [ment mounter ng (i.e., v	require ribe any mponent precise componen oversiz to quali ents of on sensi ed orien] No ed in the welded,	ement y cha to c ely i nt? o ify t lEEE itive tatione sau	dentical den	I (as the dev l (as the dev l (as the fill of the dev l (as the dev)) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a)	Yes ests (c iation. o model If "No i? foes th ion 5. lo [] th test ant as	, size, , size, ", is e type ? Unknown it was	

ļ

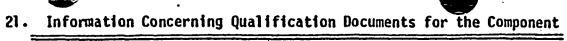
•

.

. •

	one component? Yes [] No		
	If "Yes" identify sequence, (e.g. thermal, etc.):		iation, seismic, cyclic,
15.	If "aging"* was performed, identimechanisms:	fy th	e significant aging
-16 .	Identify loads imposed (assumed) qualification tests (analysis) per		
	a. [] Plants (shutdown loads)	b.	[] Extreme environment
	c. X Seismic loadS	d.	X Others 1. VALUE DESIGN PRES
17.	Have component design specification assure they envelope all expected accident conditions? X Yes [] M	oper	
18.	Does the component utilize any un (Examples are special gaskets or p nonferrous materials, or special o [] Yes X No	packi	ng, limitations on
	If "Yes", identify:		
19.	Does component require any special practices, (including shorter peri		
	If "Yes", identify:		
20.	Is the qualified life for the comp [] Yes No If "Yes", what is		

-


-

ي ٿي. س

. , .

.

Report Number	Report Title	Date	Company/Orga Preparing Re	anization eport	•	Company/Organization Reviewing Report
1-67701 -C,		51.4 /.78		CONTROLS .	Co.	COMBUSTIUN ENGINEERING
FQP-8-1 REV A	FISHER QUALIFICATION SUMMARY RPT.	12/78	FISHER	CONTROLS	Co.	COMBUSTION ENGINGERING

-9-

.:V. /	2 PUMP AND	VALVE
بېزىشىد. ۱	OPERABIL'ITY ASSI	JRANCE REVIEW
X	PLANT INFORMATION	,
	1. Name: PVNGS - UNIT 1	2. Docket No.: STN 50-528/529/530
	3. ULITITY: ARIZONA PUBLIC	SERVICE
	4. INSSS: COMBUSTION : EN	GINEERING NPHR [] BHR
	5. AVE: BECTHEL	
11.	GENERAL COMPONENT [®] INFORMATION	•
	1. Supplier: MASSS [] BOP	
	2. Location: 8. Building/	ROOM AUXILIARY BLDG.
	b. Elevation	<u>88 Ft.</u>
	c. System S	AFETY INJECTION SYSTEM
~	3. Component number on in-house	brawings: <u>% 77620-2 (TAG No. SI-626)</u>
	4. If component is a [] Pump comp	plete II.5. $\begin{pmatrix} A.R.S. \# \\ S1B - UV - 62C \end{pmatrix}$
	If component is a XValve co	
	5. General Pump Data	•
	a. Pump	b. Prime-mover
•	Name	
	Mfg	
	Model	**************************************
	`S/N	**************************************
æ	Type	
•		P (, *

a. The component, whether pump or valve, is considered to be an <u>assembly</u> composed of the body, internals, prime-mover (or actuator) and functional accessories.

v.

.

· .

.

h

nt.

. 1

۲

•

a. Pump (continued)	b. Prime-mover (continued)
Size	Size
Weight	
Mounting Method	Mounting
Required B.H.P.	H.P
Parameter Design Operating	Power requirements: (include normal, maximum and minimum).
Press	Electrical
-Temp	* <u></u>
Flow	
Head	Other
Required NPSH at maximum	If MOTOR list:
flow	Duty cycle
Available NPSH	Stall current
Operating Speed	Class of insulation
Critical Speed	• • • • • • • • • • • • • • • • • • •
	•
	·····
List control signal inputs:	· · · · · · · · · · · · · · · · · · ·

-2-

^{*} Functional accessories are those sub-components not supplied by the manufacturer that are required to make the pump assembly operational, (e.g., coupling, lubricating oil system, etc.)

,

.

· · · · ·

. . .

•

. .

۰× ۲۰

۰. م

.

, , ,

6. General Valve Data Valve: TAG No. SI-626 a. Actuator (if not an integral b. unit) Name HPSI HEADER VALVE MOTOR OPERATOR Name MFg. NUCLEAR VALVE DIV'N OF BORG WARNER LIMITORQUE Mfg. Model SMC .04 Model P/N = 77620 - 226963 S/N S/N D002053 Type MOTOR DPERATED GLOBE Type ᄊ SMC-04 -71/2 Z INCH Size Size 45 lbs 55 lbs Weight Weight Mounting BUTT WELD, IN PIPELINE Mounting CAP SCREWS Method Required PER ASSY DWG. Torque Torque Design Power requirements: (include Parameter Operating normal, maximum and minimum). 2485 Press(PSIG) 2050 Electrical + 10 % 0.48 HP NOMINAL@ 460 VAC 35D 300 Temp(f - 25% 7.5 AMPS MAX. @ LOCKED ROTOR Flow(GPM) 283 Max ΔP across valve 2050 20 WATTS @ 120V FOR HEATER Other: [] Pneumatic [] Hydraulic Closing time @ max AP. 10 SEC, 10 SEC. Opening time - e-max - AP-Power requirements for functional accessories, (if any) SEE ACTUATOR OPENS & HAND SWITCH ON -OFF. SIAS List control signal inputs:

-3-

.

.

. , 14 . .

`

۰ . ۲

•

z

N K

List functional accessories:* LIMITORQUE SMC-04-71/2 MOTOR OPERATOR

III. FUNCTION

Briefly describe components normal and safety functions: THE VALVE IS 1. DURING NORMAL PLANT OPERATIONS. THE VALVE OPENS WHEN A SAFETY CLOSED INJECTION ACTUATION SIGNAL (SIAS) OCCURS TO ALLOW HIGH PRESSURE RCS COLD LEG FROM SAFETY INJECTION PUMPED FLUID INTO THE RAS & THEN THE RWT UNTIL FROM THE CONTAINMENT SUMP. Standby 2. The components normal state is: [] Operating 3. Safety function: M Emergency reactor b. [] Containment heat a. shutdown removal c. [] Containment isolation d. [] Reactor heat removal M Reactor core cooling f. [] Prevent significant e. release of radioactive material to environment Does the component function to mitigate the consequences g. of one or more of the following events? 🕅 Yes [] No If "Yes". identify. X LOCA [] HELB **M** MSLB [] Other 4. Safety requirements: During postulated event X Intermittent Operation M Following postulated event [] Continuous Operation If component operation is required following an event, give approximate length of time component must remain operational. RECIRC. FROM CONTAINMENT SUMP FOR = 1YR. (e.g., hours, days, etc.) Functional accessories are those sub-components not supplied by the

Functional accessories are those sub-components not supplied by the manufacturer that are required to make the valve assembly operational, (e.g., limit switches).

5. For VALVES:

IV.

does the component [] Fail open [] Fail closed 🕅 Fail as is Is this the fail safe position? 🛛 🛃 Yes [] No Is the valve used for throttling purposes? XYes [] No Is the valve part of the reactor coolant pressure boundary? X Yes [] No Does the valve have a specific limit for leakage? 🔀 Yes [] No ' IF "Yes" give limit: MAIN SEAT LEAKAGE < 10 CC/HR/INCH OF NOMINAL VALVE SIZE. QUALIFICATION Reference by specific number those applicable sections of the 1. design codes and standards applicable to the component: A. ASME, $B \notin PV$, SECT. III, WINTER 1975 ADDENDA. B. MSS-SP-61, HYDROSTATIC TESTING OF STEEL VALVES - 1961. C. ANSI - B16.25, BUTT WELDING ENDS - 1972. 2. Reference those qualification standards, used as a guide to qualify the component: SAME AS "A" & "B" OF IN. 1. ABOVE, 3. Identify those parts of the above qualification standards deleted or modified in the qualification program. Deleted: Modified: • -----Have acceptance criterias been established and documented in the 4. test plan(s) for the component? SY Yes [] No What is the expected failure mode that would keep the pump or 5. valve assembly from performing its safety function? NONE

6. Are the margins* identified in the qualification documentation?
[] Yes X No

-5-

d. Margin is the difference between design basis parameters and the test parameters used for equipment qualification.

2 ٠

•

.

• ... •

. • • ٠ •

1 a .

•

÷

				•
If	compor	nent is a PUMP, complete IV	1.7.	
If	compo	ment is a VALVE, complete	[V.8.	
7.		o operability has been dem Test [] Combination	onstr	ated by: [] Analysis
	Ide	ntify PUMP tests performed		
	а.	[] Shell hydrostatic (ASME Section III)	b.	[] Bearing temperature evaluations
	c.	[] Seismic loading	d.	<pre>[] Vibration levels</pre>
•	e.	[] Exploratory vibration	f.	[] Seal leakage @ hydro press
		(Fundamental freq)		•
	g.	[] Aging: [] Thermal	h.	[] Flow performance
		[] Mechanical		Are curves provided [] Yes
				[] No
	i.	[] Pipe reaction end	j.	[] Others
		loads (nozzle loads)		,
•	k.	[] Extreme environment:	•	
		[] Humidity	۲	· · · · · · · · · · · · · · · · · · ·
		[] Chemical		
		[] Radiátion		
8.	Val []	ve operability has been de Test St Combination	monst	crated by: [] Analysis
	Ide	ntify VALVE tests performe	d:	
	ð.	Shell hydrostatic (ASME Section III)	b.	Cold cyclic List times: Open Closed
	C-	[] Seismic loading	d.	[] Hot cyclic List times: Open Closed
	e.	[] Exploratory vibration	ıf.	🔀 Main seat leakage
		(Fundamental freg.)	

-6-

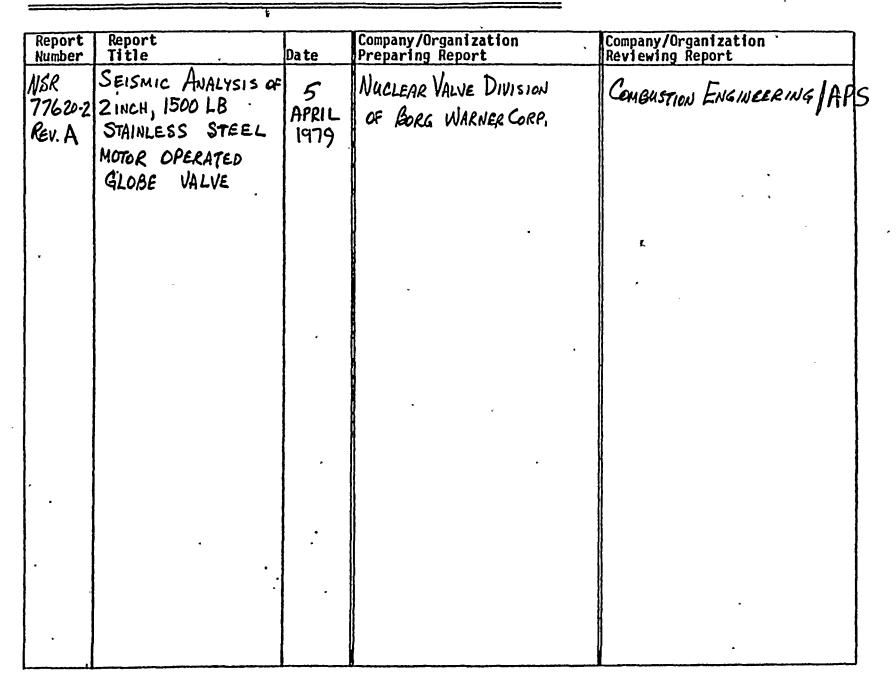
••••

• •

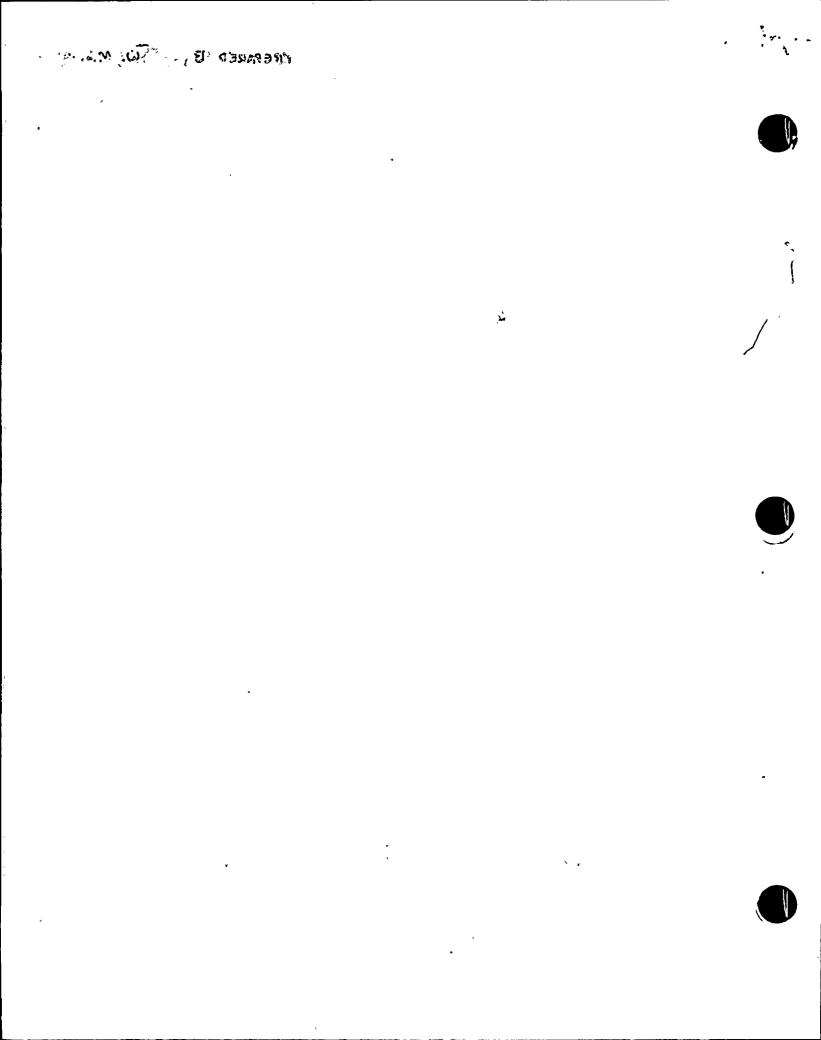
t •

• •

.


`

•


test meet the requirements of IEEE 323-1974, Section 5.? [] Yes [] No Is component orientation sensitive? [] Yes 53 No [] Unknown If "Yes", does installed orientation coincide with test orientation? [] Yes [] No		· -7
<pre>loading k. [] Extreme environment 1. [] Flow interruption capabil [] Humidity [] Chemical [] Radiation m. [] Flow characteristics n. [] Others</pre>	g.	[] Aging: [] Thermal h. 🔀 Back seat leakage [] Mechanical
<pre>k. [] Extreme environment 1. [] Flow interruption capabil [] Humidity [] Chemical [] Radiation m. [] Flow characteristics n. [] Others</pre>	i.	[] Pipe reaction end j. 🔂 Disc hydrostatic
[] Humidity [] Chemical [] Radiation m. [] Flow characteristics n. [] Others Are curves provided? [] Yes [] No As a result of any of the tests (or analysis), were any deviations from design requirements identified? [] Yes ≶ No If "Yes", briefly describe any changes made in tests (or analysis) or to the component to correct the deviation. 		loading
<pre>[] Chemical [] Radiation m. [] Flow characteristics n. [] Others Are curves provided? [] Yes [] No As a result of any of the tests (or analysis), were any deviations from design requirements identified? [] Yes [] No If "Yes", briefly describe any changes made in tests (or analysis) or to the component to correct the deviation. Was the test component precisely identical (as to model, size, etc.) to the in-plant component? Are [] No If "No", is installed component [] oversized or [] undersized? If type test was used to qualify the component, does the type test meet the requirements of IEEE 323-1974, Section 5.? [] Yes [] No Is component orientation sensitive? [] Yes Are No [] Unknown If "Yes", does installed orientation coincide with test orientation? [] Yes [] No Is the component mounted in the same manner in-plant as it was during testing (i.e., welded, same number and size bolts, etc.)</pre>	k.	[] Extreme environment 1. [] Flow interruption capabili
[] Radiation m. [] Flow characteristics n. [] Others Are curves provided? [] Yes [] No As a result of any of the tests (or analysis), were any deviations from design requirements identified? [] Yes ≸ No If "Yes", briefly describe any changes made in tests (or analysis) or to the component to correct the deviation. Was the test component precisely identical (as to model, size, etc.) to the in-plant component? \$ Yes [] No If "No", is installed component [] oversized or [] undersized? If <u>type</u> test was used to qualify the component, does the type test meet the requirements of IEEE 323-1974, Section 5.? [] Yes [] No Is component orientation sensitive? [] Yes \$ No [] Unknown If "Yes", does installed orientation coincide with test orientation? [] Yes [] No Is the component mounted in the same manner in-plant as it was during testing (i.e., welded, same number and size bolts, etc.)		[] Humidity
m. [] Flow characteristics n. [] Others		[] Chemical
Are curves provided? [] Yes [] No As a result of any of the tests (or analysis), were any deviations from design requirements identified? [] Yes \$\$ No If "Yes", briefly describe any changes made in tests (or analysis) or to the component to correct the deviation. Was the test component precisely identical (as to model, size, etc.) to the in-plant component? \$\$ Yes [] No If "No", is installed component [] oversized or [] undersized? If <u>type</u> test was used to qualify the component, does the type test meet the requirements of IEEE 323-1974, Section 5.? [] Yes [] No Is component orientation sensitive? [] Yes \$\$ No [] Unknown If "Yes", does installed orientation coincide with test orientation? [] Yes [] No Is the component mounted in the same manner in-plant as it was during testing (i.e., welded, same number and size bolts, etc.)	I	[] Radiation
<pre>[] Yes [] No As a result of any of the tests (or analysis), were any deviations from design requirements identified? [] Yes XA No If "Yes", briefly describe any changes made in tests (or analysis) or to the component to correct the deviation. Was the test component precisely identical (as to model, size, etc.) to the in-plant component? XA Yes [] No If "No", is installed component [] oversized or [] undersized? If type test was used to qualify the component, does the type test meet the requirements of IEEE 323-1974, Section 5.? [] Yes [] No Is component orientation sensitive? [] Yes XA No [] Unknown If "Yes", does installed orientation coincide with test orientation? [] Yes [] No Is the component mounted in the same manner in-plant as it was during testing (i.e., welded, same number and size bolts, etc.)</pre>	п.	[] Flow characteristics n. [] Others
As a result of any of the tests (or analysis), were any deviations from design requirements identified? [] Yes Si No If "Yes", briefly describe any changes made in tests (or analysis) or to the component to correct the deviation. Was the test component precisely identical (as to model, size, etc.) to the in-plant component? Si Yes [] No If "No", is installed component [] oversized or [] undersized? If type test was used to qualify the component, does the type test meet the requirements of IEEE 323-1974, Section 5.? [] Yes [] No Is component orientation sensitive? [] Yes Si No [] Unknown If "Yes", does installed orientation coincide with test orientation? [] Yes [] No Is the component mounted in the same manner in-plant as it was during testing (i.e., welded, same number and size bolts, etc.)		Are curves provided?
<pre>deviations from design requirements identified? [] Yes \$\$ No If "Yes", briefly describe any changes made in tests (or analysis) or to the component to correct the deviation. Was the test component precisely identical (as to model, size, etc.) to the in-plant component? \$\$ Yes [] No If "No", is installed component [] oversized or [] undersized? If type test was used to qualify the component, does the type test meet the requirements of IEEE 323-1974, Section 5.? [] Yes [] No Is component orientation sensitive? [] Yes \$\$ No [] Unknown If "Yes", does installed orientation coincide with test orientation? [] Yes [] No Is the component mounted in the same manner in-plant as it was during testing (i.e., welded, same number and size bolts, etc.)</pre>		[] Yes [] No
etc.) to the in-plant component? So Yes [] No If "No", is installed component [] oversized or [] undersized? If <u>type</u> test was used to qualify the component, does the type test meet the requirements of IEEE 323-1974, Section 5.? [] Yes [] No Is component orientation sensitive? [] Yes So No [] Unknown If "Yes", does installed orientation coincide with test orientation? [] Yes [] No Is the component mounted in the same manner in-plant as it was during testing (i.e., welded, same number and size bolts, etc.)		
[] Yes [] No Is component orientation sensitive? [] Yes S No [] Unknown If "Yes", does installed orientation coincide with test orientation? [] Yes [] No Is the component mounted in the same manner in-plant as it was during testing (i.e., welded, same number and size bolts, etc.)	etc. inst) to the in-plant component? 🔀 Yes [] No If "No", is
If "Yes", does installed orientation coincide with test orientation? [] Yes [] No Is the component mounted in the same manner in-plant as it was during testing (i.e., welded, same number and size bolts, etc.)		ype test was used to qualify the component, does the type
during testing (i.e., welded, same number and size bolts, etc.)	test	ype test was used to qualify the component, does the type meet the requirements of IEEE 323-1974, Section 5.?
	test [] Y Is c If "	ype test was used to qualify the component, does the type meet the requirements of IEEE 323-1974, Section 5.? [] No component orientation sensitive? [] Yes S& No [] Unknown Yes", does installed orientation coincide with test

-	Were the qualification tests per one component? [] Yes [] No	formed	in sequence and on <u>only</u>		
	If "Yes" identify sequence, (e.g thermal, etc.):	., rac	liation, seismic, cyclic,		
15.	mechanisms:	ify th			
	·		· · · · · · · · · · · · · · · · · · ·		
16.	Identify loads imposed (assumed) qualification tests (analysis) p				
*	a. [] Plants (shutdown loads)	b.	[] Extreme environment		
	c. 🔀 Seismic load	d.	Stothers OPERATIONAL		
	Have component design specifications been reviewed in-house to assure they envelope all expected operating, transient, and . accident conditions? 🔊 Yes [] No				
17.	assure they envelope all expecte	d oper			
17. 18.	assure they envelope all expecte accident conditions? 😒 Yes []	d oper No nique packi	ating, transient, and . or special materials? ng, limitations on		
	assure they envelope all expecte accident conditions? SY Yes [] Does the component utilize any u (Examples are special gaskets or nonferrous materials, or special	d oper No nique packi coati	ating, transient, and . or special materials? ng, limitations on ngs or surfaces.)		
	assure they envelope all expecte accident conditions? SY Yes [] Does the component utilize any u (Examples are special gaskets or nonferrous materials, or special [] Yes SY No	d oper No nique packi coati	ating, transient, and . or special materials? ng, limitations on ngs or surfaces.) ntenance procedures or		
18.	assure they envelope all expecte accident conditions? SY Yes [] Does the component utilize any u (Examples are special gaskets or nonferrous materials, or special [] Yes SY No If "Yes", identify: Does component require any speci practices, (including shorter per	d oper No nique packi coati coati	ating, transient, and . or special materials? ng, limitations on ngs or surfaces.) ntenance procedures or between maintenance);		

21. Information Concerning Qualification Documents for the Component

-9-

PUMP AND VALVE OPERABILITY ASSURANCE REVIEW

.

I.	PLAN	T_INFORMATION	≓
•	1.	Name: PALD VERDE Unit No	. 1 2. Docket No.: STN 50-528 579 53
	3.	Utility: ARIZONA PUR	
	4. .	NSSS: COMBUSTION EN	GINEEING [] BWR
	5.	A/E: BECHTEI	-
II.	GENE	RAL COMPONENT* INFORMATION	•
	1.	Supplier: [] NSSS [X] BOP	
. • •;	2.	Location: a. Building/	ROOM AUXILIARY BLDG.
• *	•	b. Elevation	88 FT.
		c. System	NUCLEAR COOLING WATER
	3.	Component number on in-house	drawings: <u>IJNCB-UV-401</u>
•	4.	If component is a [] Pump com	plete II.5.
		If component is a 🕅 Valve co	mplete II.6.
	5.	General <u>Pump</u> Data	
		•	b. Prime-mover
	Name	* · · · · ·	Nате
	Mfg.		Mfg
•	'Mode'	·	Model
	S/N		S/N
	Туре	1	Туре
			•

* The component, whether pump or valve, is considered to be an <u>assembly</u> composed of the body, internals, prime-mover (or actuator) and functional accessories.

..

μ

1

4

,

,

•

r

Weight	
Mounting Method	Mounting The Method
Required B.H.P.	H.P.
Parameter Design Operating	Power requirements: (include normal, maximum and minimum).
Press	Electrical
Temp	· .
Flow	
Head	Other
• • • •	· · ·
Required NPSH at maximum	If MOTOR list:
flow	Duty cycle
Available NPSH	Stall current
Operating Speed	Class of insulation
Critical Speed	۰ م مرب المان المراجع
List functional accessories:*	· .
· ·	•*

* Functional accessories are those sub-components not supplied by the manufacturer that are required to make the pump assembly operational, (e.g., coupling, lubricating oil system, etc.)

10.60:000

اددر که دست

-2-

.

r.

, , , ,

. .

4 _____

.

6. General Valve Data Valve Actuator (if not an integral a. unit) NUCLEAR COOLINE WATER Name Supply-CONTAINMENT ISOL LIMITORQUE Name VLV Mfq. TRATT HENRY Mfg. IMITORQUE HIBC Model NXL SMB 0002-100 Model D-0116-1-1 291114 S/N S/N BUTTERFLY MOTOR + GEAR *۲* ۲ Туре .Type 0:26 HP 10 INCH Size Size 257 lhs Weight Weight Mounting FLANGED DNE END Mounting DOLTED Method. WELDED OTHER END Method Required 1835 bs ·Torque CAPACITY; 15,600 IN- 165 Torque Parameter Design Operating Power requirements: (include normal, maximum and minimum). Press(PSIG) 150 75 Electrical 480 VAC 60 HZ NORMAL · MAX MIN 120 Temp (° F) 200 VOLTAGE 460 345 206 1988 0.55 Flow (GPM) NA AMPS 0-55 0.26 H'P 0.26 Max AP across valve JJPSI Closing time $0 \max \overline{\Delta} P = 10 5cc$ Other: [] Pneumatic [] Hydraulic Opening time @ max $\overline{\Delta P}$ 10 SEC Power requirements for functional accessories, (if any) 480 V , 3 3 List control signal inputs: CIAS

-3-

V	NITH LIMITORQUE OPERATOR
FUNC	CTION
1.	Briefly describe components normal and safety functions:
	This component has no normal function: safel
¥	unction is to close on CIAS, "
2.	The components normal state is: [] Operating 🕅 Standb
3.	Safety function:
	a. [] Emergency reactor b. [] Containment heat shutdown removal
	c. [] Containment isolation d. [] Reactor heat removal
•	e. [] Reactor core cooling f. [] Prevent significant release of radio- active material to environment
	g. [] Does the component function to mitigate the consequences of one or more of the following events? [X] Yes [] No If "Yes", identify.
	[] LOCA [] HELB [] MSLB
	[] Other
4.	Safety requirements:
	🕅 Intermittent Operation 🛛 🕅 During postulated event
	[] Continuous Operation [] Following postulated event
	If component operation is required following an event, give approximate length of time component must remain operational.
	30 DAYS - REMAINS GLOSED AFTER DBA .: (e.g., hours, days, etc.)

* Functional accessories are those sub-components not supplied by the manufacturer that are required to make the valve assembly operational, (e.g., limit switches).

-4-

1.

. .

-

•

.

.

*

4

•

	5.	For VALVES:				
		does the component [] Fail open [] Fail closed 🕅 Fail as is				
		Is this the fail safe position? [] Yes [] No				
		Is the valve used for throttling purposes? [] Yes 🕅 No				
		Is the valve part of the reactor coolant pressure boundary? [] Yes 🛛 🕅 No				
		Does the valve have a specific limit for leakage? 🕅 Yes [] No				
	•	IF "Yes" give limit: TESTS WERE ZERO LEAKAGE				
IV.	QUAL	IFICATION BUBBLE TIGHT.				
	1	Reference by specific number those applicable sections of the design codes and standards applicable to the component:				
		ASME SECT. II, II, II, ANSI B16.5, B16.11, N45.2.2, N101.2,				
		N101.4, NEMA ICS, AWWA - C-504 -				
	2.	Reference those qualification standards, used as a guide to qualify the component: $___EEE-323-1974$; $_IEEE-382-1972$				
	•	1EEE-344-1975				
		· · · · · · · · · · · · · · · · · · ·				
	3.	Identify those parts of the above qualification standards deleted or modified in the qualification program.				
		Deleted: Modified:				
	•	.*				
		··				
	4.	Have acceptance criterias been established and documented in the test plan(s) for the component? [3] Yes [] No				
	5.	What is the expected failure mode that would keep the pump or valve assembly from performing its safety function?				
	c	LOSS OF POWER Supply				
	6.	Are the margins* identified in the qualification documentation? [2] Yes [] No				
-						

d. Margin is the difference between design basis parameters and the test parameters used for equipment qualification.

-5-

. .

· ; •

1.1

ı

.

. .

If c	component is a PUMP, complete IV.7.	•
	component is a VALVE, complete IV.8.	
7.	Pump operability has been demonstrated by: [] Analysis [] Test [] Combination	
•	Identify PUMP tests performed:	
*	a. [] Shell hydrostatic b. [] Bearing temperature (ASME Section III) evaluations	r
r	c. [] Seismic loading d. [] Vibration levels	
	e. [] Exploratory vibration f. [] Seal leakage @ hydro pre	
• •	(Fundamental freq)	
	g. [] Aging: [] Thermal h. [] Flow performance	
	[] Mechanical Are curves provided [] Yes	•
	[] No	• •
	i. [] Pipe reaction end j. [] Others	•
	loads (nozzle loads)	· .
	k. [] Extreme environment:	
•	[] Humidity	
	[] Chemical	
	[] Radiation	
8.	Valve operability has been demonstrated by: [] Analysis [] Test [] Combination	
	Identify VALVE tests performed:	
	a. [3] Shell hydrostatic b. [5] Cold cyclic List times: (ASME Section III) Open 3	enalytid T
	c. 🕅 Seismic loading d. [] Hot cyclic List times: Open Closed	
	e. 🕅 Exploratory vibration f. 🕅 Main seat leakage	
	(Fundamental freg 233Hz)	

. •

-6-

μ

` * • •

Ĩ

.

1

1 ·

۸ .

κ.

g.	Ø	Aging	i: Xİ T Mim	hermal lechanical	h.	[] Ba	ack	seat	leakage	9		3
i.	[]	Pipe		on end	j.	Kj di	isc	hydro	ostatic			
		loadi	ing									
k .	Ø		me env Humidi	ironment	1.	[X] F1	low	inter	ruption	n ca	apabil	lity
			Chemic	-			•	•			•	
		\bowtie	Radiat	ion			•				•	
m.	[]	Flow	charac	teristics	n.	[] Ot	ther	s				
	. []		• •	provided?, wet applican open closed service.	lila · ·	• • •	• 	e				
dev	a res iatio	sult o ons fr	f any om des	of the tes ign requir	ts (on ement:	s iden	ntif	ied?	[] Yes	s [X No	÷
dev If	a res iatio "Yes"	sult o ons fr ', bri	of any com des efly d	of the tes	ts (on ement: y char	s iden nges m	ntif nade	ied? in t	[] Yes ests (o	s (pr	첫 No	•
dev If ana Was etc ins	a res iatio "Yes" lysis the .) to talle	test test	f any om des efly d to the compon in-pla ponent	of the tes ign requir escribe an component ent precis nt compone [] oversi	ts (or ements y char to co ely fo nt? [zed or	s iden nges m orrect Jentic] Yes " [X] u	al s prinder	ied? in t e dev (as t J No rsize	[] Yes ests (c iation. o model If "Nc d?	5 { pr , s	ize, is	•
dev If ana Was etc ins If	a res iatio "Yes" lysis the .) to talle type t mee	test test	f any om des efly d to the compon in-pla ponent was us requi	of the tes ign requir escribe an component ent precis nt compone	ts (or ement: y char to co ely ic nt? [zed or ify th	s iden nges m orrect dentic] Yes "[X] u ne com	al s [2 inder	ied? in t e dev (as t (as t S No rsize ent,	[] Yes ests (d iation. o model If "No d? does th	5 { pr , s)",	ize, is	
dev If ana Was etc ins If tes [] Is If	a res iatio "Yes" lysis the .) to talle t mee Yes compo "Yes"	test test test test test test to the test to the test to the test	f any om des efly d to the compon in-pla ponent was us requi orient s inst	of the tes ign requir escribe an component ent precis nt compone [] oversi ed to qual	ts (or ement: y char to co ely ic nt? [zed or ify th IEEE itive?	s iden nges m prrect dentic] Yes [] u ne com 323-1	al s pone 974 Yes	ied? in t e dev (as t J No rsize ent, , Sec	[] Yes ests (o iation. o model If "No d? does th tion 5. No []	5 [pr , s)", ne t ? Unk	ize, is ype	

.....

•

Υ

•

14.	Were the qualification tests performed in sequence and on <u>only</u> one component? [] Yes [] No For actuator
	If "Yes" identify sequence, (e.g., radiation, seismic, cyclic, thermal, etc.): <u>Ladiation exposure followed aging</u>
	and seismin qualification (actuator).
15.	If "aging"* was performed, identify the significant aging mechanisms: <u>Thermal</u> , <u>Radiation</u>
•	
ż	··
16.	Identify loads imposed (assumed) on the component for the qualification tests (analysis) performed:
	a. [] Plants (shutdown loads) b. [] Extreme environment
	c. [X] Seismic load d. [] Others
17.	Have component design specifications been reviewed in-house to assure they envelope all expected operating, transient, and accident conditions? [X] Yes [] No
17. 18.	assure they envelope all expected operating, transient, and
	assure they envelope all expected operating, transient, and accident conditions? [X] Yes [] No Does the component utilize any unique or special materials? (Examples are special gaskets or packing, limitations on nonferrous materials, or special coatings or surfaces.)
	assure they envelope all expected operating, transient, and accident conditions? [X] Yes [] No Does the component utilize any unique or special materials? (Examples are special gaskets or packing, limitations on nonferrous materials, or special coatings or surfaces.) [X] Yes [] No If "Yes", identify: <u>SEATING MATERIAL IS EPT</u> Does component require any special maintenance procedures or practices, (including shorter periods between maintenance). [X] Yes [] No
18.	assure they envelope all expected operating, transient, and accident conditions? [X] Yes [] No Does the component utilize any unique or special materials? (Examples are special gaskets or packing, limitations on nonferrous materials, or special coatings or surfaces.) [X] Yes [] No If "Yes", identify: <u>SEATING MATERIAL IS EPT</u> Does component require any special maintenance procedures or practices, (including shorter periods between maintenance).
18.	assure they envelope all expected operating, transient, and accident conditions? [X] Yes [] No Does the component utilize any unique or special materials? (Examples are special gaskets or packing, limitations on nonferrous materials, or special coatings or surfaces.) [X] Yes [] No If "Yes", identify: <u>SEATING MATERIAL IS EPT</u> Does component require any special maintenance procedures or practices, (including shorter periods between maintenance). [X] Yes [] No
18. 19.	assure they envelope all expected operating, transient, and accident conditions? [2] Yes [] No Does the component utilize any unique or special materials? (Examples are special gaskets or packing, limitations on nonferrous materials, or special coatings or surfaces.) [2] Yes [] No If "Yes", identify: <u>SEATING MATERIAL IS EPT</u> Does component require any special maintenance procedures or practices, (including shorter periods between maintenance). [3] Yes [] No If "Yes", identify: <u>Epoxy MATERIAL (EPT) WILL BE</u>

٠<u>:</u>

.....

· · манан Кананан

-: }

0

, , , , , ,

.

.

·

21. Information Concerning Qualification Documents for the Component

Company/Organization Preparing Report Company/Organization Reviewing Report Report Number Report Title Date JM-605 SEISMIL REPORT FOR BECHTEL H. PRATT CO. AUG. -106 10" 1100 VALVE WITH 1978 SMB 0002 . HIBC DPERATOR JM-605 FUNCTIONAL QUAL, HAL H.PRATT BECHTEL -143 Co. REPORT FOR BUER OPERATED ACTIVE 1979 VALVES NOU. LIMITORQUE . JM-221B LINITORQUE REPORT BECHTEL 1980 B0058 - 349 <u>.</u>.. 144. : "

ι φ

,

· .

•

.

	I-J-SGE-UV-180
	· · · · · · · · · · · · · · · · · · ·
	AND VALVE ASSURANCE REVIEW
	ASSARACE REFIER
I. <u>PLANT INFORMATION</u>	
1. Name: <u>PALO VERDE Un</u>	it No. 1 2. Docket No.:
3. Utility: ARIZONA	PUBLIC SERVICE
4. NSSS: COMBUSTION	ENGINEERING NPWR [] BWR
5. A/E: BECHTEL	POWER CORPORATION
II. <u>GENERAL COMPONENT* INFORMATION</u>	
: 1. Supplier: [] NSSS 🕅 BC)P
2. Location: a. Build	Ing/Room MAIN STEAM SUPPORT STRUCTURE
b. Eleva	tion140'.
	MAIN STEAM
	use drawings: J-SGE-UV-180
4. If component is a [] Pump	
If component is a 🕅 Valv	
5. General <u>Pump</u> Data	NOT APPLICABLES
a. Pump	b. Prime-mover
Name)	. Нате
Mfg	Mfg
Model	Model
Ś/N	S/N
Туре	Туре
	• /
	alue to considered to to an ecostic

...

* The component, whether pump or valve, is considered to be an <u>assembly</u> composed of the body, internals, prime-mover (or actuator) and functional accessories.

.

،ζ

l

`

, *****

hi F

•		· ·	
	• •		
	-2	NOT APPLICAB	
·•	a. Pump (continued)	b. Prime-mover (continued)	,
	Size	Size	
	Weight	Weight	•
	Mounting Method	Mounting Method	, , , ,
• · · ·	Required B.H.P.	H.P	
	Parameter Design Operating	Power requirements: (include normal, maximum and minimum).	*
	Press	Electrical	•
	: Temp	· · · · · · · · · · · · · · · · · · ·	• •
		······································	, *
	Flow		· · , , , , , , , , , , , , , , , , , ,
, · · ·	Head	Other	
		·	* <i>*</i>
	Required NPSH at maximum	If MOTOR list:	• *
	flow	Duty cycle	
	. Available NPSH	Stall current	
•	Operating Speed	Class of insulation	, v
	Critical Speed	• ; • •	
	List functional accessories:*	``.	•
•••		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	,
	/		•
• •			
	List control signal inputs:		
			•
٠.			
	/		•

a war sayar ar i a Parra

* Functional accessories are those sub-components not supplied by the manufacturer that are required to make the pump assembly operational, (e.g., coupling, lubricating oil system, etc.)

μ

÷

r

· · ·

.

General Valve Data Valve Actuator (if not an integral unit) MAIN STEAM ISOLATION VALVE 1-J-SGA-UV-180 Name MAIN STEAM LSOLATION Name HYDRAULIC ACTUATOR ALVE . DARLING ANCHOR Mfg. Mfa. ANCHOR .DARLING. CUSTOM BUILT 64324-C Model Model E 9023-1-2 ·· 001 S/N S/N Type DOUBLE DISC WEDGE SELF CONTAINED Type 28" x 24"x 28" .68"L 33 DIA Size Х Size Weight 19850 LBS .7600 Weight LBS Mounting Mounting WEĽĎED BOLTED ENDS. Method Method BODY /BONNET - 3500 FT-LBS BONNET / YOKE LEGS - 1150 11 YOKE LEGS / ACTUATOR - 1400 11 Required NOT APPLICABLE Torque Torque Operating Power requirements: (include Parameter Design normal, maximum and minimum). 1270 PSIG 1037 PSIA Electrical Press NORMAL 125 V - DC 549 $T_{emp} / (F) = 575$ Flow (LB/HR 3971050 140 V - DC. MAX. 4545000 MIN. 115V - DCMax AP across valve 983 PSI Closing time @ max AP 5.0 SEC. MAX Other: M Pneumatic M Hydraulic Opening time @ max Tp 5.0 MIN. MAx ACTUAL - GO SEC. (OPERATING) Power requirements for functional JOFOR SOL.VLV. & NAMCO LIMIT SW - 125 V DC. @ FOR ACTUATOR - AIR PR- 80-125 PSI accessories, (if any) Na PR. - 3750 PSI FAST OPEN AND CLOSE SLOW OPEN List control signal inputs: AND EXERCISE (MAIN STEAM TEST AND CLOSE ISOLATION ·SIGNAL)

-3-

I. <u>FUN</u>	Briefly describe components normal and safety functions: O NORMALLY
•	EN TO SUPPLY MAIN STEAM FROM STM GENERATOR TO H.P. TURBINE
-	FETY FUNCTION - CLOSES TO PREVENT STEAM FLOWING FROM THI
STI	M. "GEN. TO THE TURBINE" INLET MANIFOLD & TO PREVENT
·	ACK.FLOW IN THE STEAM GENERATOR PRESSURE DROPS BELOW THE TURBINE INLET MANIFOLD PRESSURE.
2.	
3.	Safety function:
·····	a. [] Emergency reactor b. [] Containment heat
•	shutdown i removal
•	c. 🕅 Containment isolation d. 🕅 Reactor heat removal
	e. [] Reactor core cooling f. [] Prevent significant release of radio-
•	active material to environment
	g. [] Does the component function to mitigate the consequences
•	of one or more of the following events? [3] Yes [] No If "Yes", identify.
*	X LOCA X HELS X MSLS
•	[] Other
4.	Safety requirements:
	[1] Intermittent Operation [1] During postulated event
	[] Continuous Operation [] Following postulated event
•	If component operation is required following an event, give
	approximate length of time component must remain operational.
	REMAIN CLOSED 30 DAYS. (e.g., hours, days, etc.)
	tional accessories are those sub-components not supplied by the

-4-

¦:•

5.	For VALVES:	
·	does the component [] Fail open [] Fail closed [] Fail as is	
	Is this the fail safe position? [] Yes [] No	•
•••	Is the valve used for throttling purposes? [] Yes [] No	
• .	Is the valve part of the reactor coolant pressure boundary? [] Yes [X] No	4.4
	If "Yes" give limit: 2 0.001 % VWO FLOW, BREAK DO	
1	IFICATION (3) D.1 % NWO FLOW, BREAK UPSTRI VALVE Reference by specific number those applicable sections of the	
	design codes and standards applicable to the component: ANSI - SI.2 (1962), ASME B&PV SECT. II, III, IX, I	ष्टाः :
	ASTM- E-94 , NEMA, OSHA; MSS-SP-45 & 61, TEEE - 279, 308	
2.	Reference those qualification standards, used as a guide to qualify the component:	
	DIEEE - 323-1974 @ IEEE - 344-1975	
• •.•	3 LEEE - 382 - 1972	· · ·
3.	Identify those parts of the above qualification standards deleted or modified in the qualification program. NONE	
• •	Deleted: Modified:	• • •
"• 、	• • • • • • • • • • • • • • • • • • •	
	· · ·	
4.	Have acceptance criterias been established and documented in the test plan(s) for the component? [X] Yes [] No	Å
5.	What is the expected failure mode that would keep the pump or valve assembly from performing its safety function?	
	NONE	
6.	Are the margins* identified in the qualification documentation? [] No	

parameters used for equipment qualification.

-5-

۵. ۲

*

•

•

•	If c	ompone	ent is a PUMP, complete IV.7	7.
*	If c	ompone	ent is a VALVE, complete IV.	.8 NOT APPLICABLE
	7.	Pump .[] Te	operability has been demonsest [] Combination	
		Ident	tify PUMP tests performed:	
	۰.	٥.	[] Shell hydrostatic b. (ASME Section III)	• [7] Bearing temperature evaluations
•	•	.c.	[] Seismic loading d.	. [] Vibration levels
	,	é. `	[] Exploratory vibration f	[] Seal leakage @ hydro press
	• •	•	(Fundamental freq)	
-	•	g.	[] Aging: [] Thermal / h.	. [] Flow performance
		·	[] Mechanical	Are curves provided [] Yes
-				[] No
		'i.	[] Pipe reaction end j.	. [] Others
	٩		loads (nozzle loads)	· · · · · · · · · · · · · · · · · · ·
		_k.	[] Extreme environment:	
			[] jumidity	د من المراجع الم
		•	[] Chemical	·
			[] Radiation	·
	8.	Valv [] T	e operability has been demon est 🔯 Combination	nstrated by: [] Analysis
		Iden	tify VALVE tests performed:	•
		a.	Shell hydrostatic b. (ASME Section III)	<pre>D. [] Cold cyclic List times:</pre>
		c.	🕅 Seismic loading · d	I. [X] Hot cyclic List times: Open 800 Closed 1200
•	' •	e.	X Exploratory vibration f	F. [] Main seat leakage
			(Fundamental freq)	· .

-6-

: :.

	1	•			
•	· · · · · · · · · · · · · · · · · · ·	· 7-			
	g. 🕅 Aging: 🕅 Thermal	h. [] Back seat leakage			
•	i. 🔀 Pipe reaction end	j. 🕅 Disc hydrostatic			
	 k. Ø Extreme environment Ø Humidity Ø Chemical Ø Radiation 	1. [] Flow interruption capability			
•	<pre>m. [] Flow characteristics Are curves provided? [] Yes [] No</pre>				
9.	As a result of any of the tests (or analysis), were any deviations from design requirements identified? [X] Yes [] No If "Yes", briefly describe any changes made in tests (or analysis) or to the component to correct the deviation.				
•	4 WAY SOLENOID VALVES TO WITHSTAND AN ATMOSPHERIC PRESSURE OF 21 PSIG.				
10.	Was the test component precisely identical (as to model, size, etc.) to the in-plant component? [] Yes [3] No If "No", is installed component [3] oversized or [] undersized?				
11.	If type test was used to qualify the component, does the type test meet the requirements of IEEE 323-1974, Section 5.?				
12.	Is component orientation sensitive? [X] Yes [] No [] Unknown If "Yes", does installed orientation coincide with test orientation? [X] Yes [] No				
13.	Is the component mounted in the same manner in-plant as it was during testing (i.e., welded, same number and size bolts, etc.)				

•

ام دارمه رویس به است. استاری ۲۰ ایرانی ایران داری

.*

•

þ

• •

••

...,

,

· · ·

· · ·

, . . .

٠

- 15. If "aging"* was performed, identify the significant aging mechanisms: USE OF 10°C RULE, CHAMBER TEMP. MAINTAINED @ 250°F FOR 13.2 DAYS. AIR VELOCITY WITHIN CHAMBER = 250 EPM.
- 16. Identify loads imposed (assumed) on the component for the qualification tests (analysis) performed;
 - . [] Plants (shutdown loads) b. 🔯 Extreme environment
 - c. 🕅 Seismic load

14.

- [] Others
- 17. Have component design specifications been reviewed in-house to assure they envelope all expected operating, transient, and accident conditions? [2] Yes [] No
- 18. Does the component utilize any unique or special materials? (Examples are special gaskets or packing, limitations on nonferrous materials, or special coatings or surfaces.) [X] Yes [] No
 - IF "Yes", identify: 1 JOHN CRANE 241 AND 1625 GF PACKING RINGS 2 SOLENOID VALVE COILS 3 LIMIT SWITCHES PRESS. TRANSMITTERS. (5) PRESSURE SWITCHES.
- 19. Does component require any special maintenance procedures or practices, (including shorter periods between maintenance).
 [X] Yes [] No
 - IF "Yes", identify: 2/2. YEARS OR LESS MAINT./REPLACEMENT OF NON-METALLIC IE. ACTUATOR COMPONENTS, SEALS, SOLENOID COILS.
- 20. Is the qualified life for the component less than 40 years? [X] Yes [] No If "Yes", what is the qualified life? NON METALLICS HAVE A 2/2 YEAR QUALIFIED LIFE.
- * As outlined in Section 4.4.1 of IEEE-627 1980.

21. Information Concerning Qualification Documents for the Component

Report Number	Report Title	Date	Company/Organization Preparing Report	Company/Organization Reviewing Report
E 9023 - QR-2 REV. A	QUALIFICATION AND OPERABILITY ASSURANCE REPORT FOR MAIN STEAM AND FEEDWATER ISOLATION VALVES		ANCHOR DARLING	BECHTEL
438 47- 2. Rev. C	ACTUATOR QUALIFICATION TEST REPORT	7-14-78	WYLE LABORATORIES	BECHTEL
E 6210 - IC REV.A	STATIC SEISMIC	4/79	ANCHOR DARLING	BECHTEL
117415	QUALIFICATION TESTS FOR ROSEMOUNT PRESSURE TRANSMITTER MODEL 1152	9 24 75	ROSEMOUNT.	BECHTEL
RPT NO NIL' REV. 1	QUALIFICATION OF NAMCO CONTROL LIMIT SWITCHE MODEL EA-180	9 5(78	DR. EDWARD J. WALTER & ASSOCIATES.	BECHTEL
		-		

. ;

٠.

5

	n ka nana na na na na na
مود بر مارد دور در مورد بر مارد در در در مورد بر مارد بر	
	(M-CTA-PO1)
	PUMP AND VALVE
	OPERABILITY ASSURANCE REVIEW
	PLANT INFORMATION
	1. Name: PALO VERDE Unit No. 1 2. Docket No.:
-	3. Utility: ARIZONA PUBLIC SERVICE
	4. NSSS: COMBUSTION ENGINEERING NPWR [] BWR
	5. A/E: BECHTEL POWER CORPORATION
II.	GENERAL COMPONENT* INFORMATION
	1. Supplier: [] NSSS [X] BOP
	2. Location: a. Building/Room OUTSIDE AREA ADJACENT TO
	b. Elevation GROUND LEVEL-100 LONDENSATE STORAGE TANK
	C. System CONDENSATE TRANSFER
	3. Component number on in-house drawings: M-CTA-POD M-CTB-POT
	4. If component is a 🔀 Pump complete II.5.
	If component is a [] Valve complete II.6.
	5. General <u>Pump</u> Data
	a. Pump b. Prime-mover
	Name CONDENSATE TRANSFER PUMP Name CONDENSATE TRANSFER PUMP MOTOR
· ·	MFg. INGERSOLL - RAND MFg. WESTINGHOUSE
	Model 2 X 10 AN Model TBFC (FRAME # 213T)
	S/N 057766 S/N 7903-01-002 SER
	Type HICRIZANIAL CENTRIFUGAL Type LLT. SQUIRREL CAGE
	TYPE B (NEMA)

* The component, whether pump or valve, is considered to be an <u>assembly</u> composed of the body, internals, prime-mover (or actuator) and functional accessories.

,

, where we are a set of the set o

. .

et i there is you

.

.

107

•	
	a. Pump (continued) b. Prime-mover (continued) (Overall, Incl. Pump & Molor) # Size $(60.5"L) \times (30.5H) \times (29.25W)$ Size $(17.70"L) \times (10.86"H) \times (11.20"W)$
	Weight 1085 LBS (Pumpe) Weight 140 LBS
•••• • • • •	Mounting Method BOLTED TO FOUNDATION Method PAD MOUNTED, BOLTED DOWN.
• •	Required B.H.P. 3.36 H.P. 5
	Parameter Design Operating Power requirements: (include normal, maximum and minimum).
	Press (1516) 50
	Temp (OF) 200 120 60 HZ, 3 PHASE, FULL LOAD
	Flow (GPM) 130 130 CURRENT - 7.0 AMPS.
	Head (FT) 61 61 Other SPACE HEATERS
	(30W, 120V, 1¢)
	Required NPSH at maximum If MOTOR list:
· · · · ·	flow 6.5 FT. Duty cycle INTERMITTENT
• •	Available NPSH 24 FT Stall current 43, AMPS.
	Operating Speed 1750 Class of insulation H
•••	Critical Speed 155.3 HZ (RESONANCE)
	List functional accessories: * O CCUPLING - THOMAS (BY REXNORD)
	2) BEARING TEMP THERMOCOUPLES 3 MOTOR SPACE HEATERS
-	(a) MOTER CONTROL CENTER.
•	List control signal inputs: ((SIAS) SAFETY INJECTION ACTUATION
	SIGNAL @ CCREFAS.) CONTROL EMERGENCY FILTERATION ACTUATION
	SIGNAL 3 (CRVIAS) CONTROL ROOM VENTILATION ISOLATION
•	ACTUATION SIGNAL @ (LOP) LOSS OF OFF-SITE POWER

* Functional accessories are those sub-components not supplied by the manufacturer that are required to make the pump assembly operational, (e.g., coupling, lubricating oil system, etc.)

-2-

.

۰. ۲

,

`• •

. . .

۰ . ۶۰ . ۲۰ ۰

, .

.

NOT APPLICABLE. General Valve Data 6. b. Actuator (if not an integral unit) Valve ۲. ·•. Name Name . . Mfg. Mfg. . .. Model Model ۰. . ۰۰., S/N S/N •••• • • • . . Туре Туре Size Size . Weight Weight • Mounting Mounting Method Method . . . Required Torque Torque Design Operating Power requirements: (include Parameter normal, maximum and minimum). • . Electrical Press Тетр Flow Max AP across valve Closing time \emptyset max $\overline{\Delta}P$ Other: [] Pneumatic [] Hydraulic Opening time $0 \max \overline{\Delta P}/$ Power requirements for functional accessories, (if any) List control signal inputs: .

-3-

۲ ۲

. .

•

.

. .

2

	List functional accessories:*
· · · · · · · · · · · · · · · · · · ·	FUNCTION
-	 Briefly describe components normal and safety functions:
••••	NORMAL AND
	SAFETY FUNCTION IS TO DELIVER EMERGENCY MAKE-UP
· · ·	TO DIESEL GENERATOR COOLING WATER SYSTEM, ESSENTIAL
•	. COOLING & CHILLED WATER SYSTEM AND SPENT FUEL PO
	2. The components normal state is: [] Operating 🕅 Standby
	3. Safety function: (INTERMITTENT)
	a. [3] Emergency reactor b. [] Containment heat shutdown i removal
	c. [] Containment isolation d. [] Reactor heat removal
	e. [] Reactor core cooling f. [] Prevent significant release of radio- active material to environment
	g. [] Does the component function to mitigate the consequences of one or more of the following events? [3] Yes [] No If "Yes", identify.
	N LOCA N HELS N MSLS
	[] Other
	4. Safety requirements:
	🕅 Intermittent Operation 🛛 🕅 During postulated event
	[] Continuous Operation 🛛 🕅 Following postulated event
	If component operation is required following an event, give approximate length of time component must remain operational.
	30 DAYS. (e.g., hours, days, etc.)

.....

۱ -

3 .

.

٧ x

. . .

, ,

•

i.

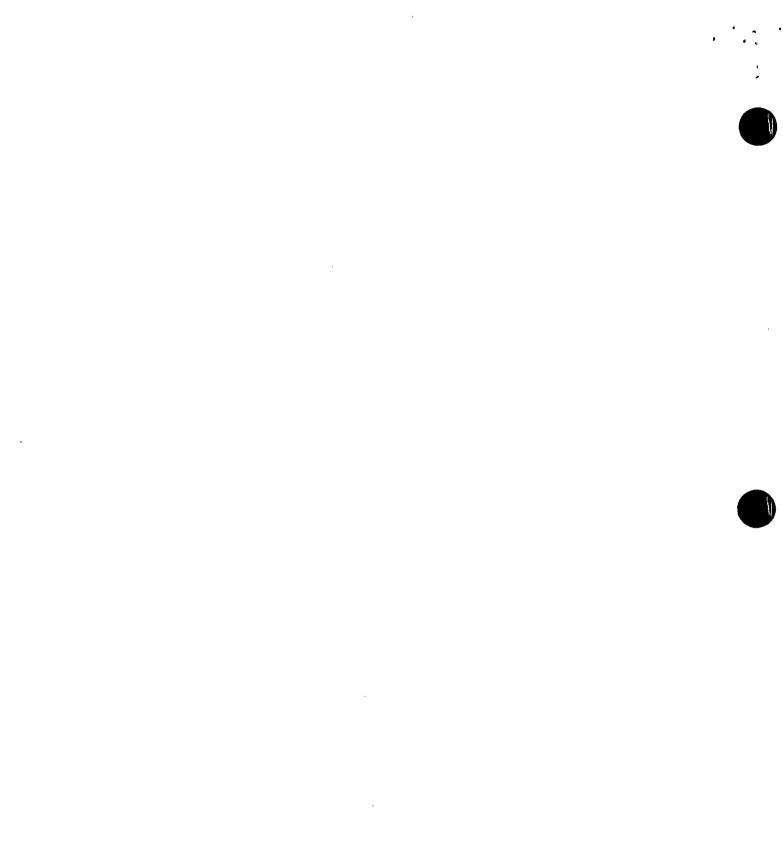
•	5.	For VALVES: NOT . APPLICABLE
•		does the component /[] Fail open [] Fail closed [] Fail as is
•	••	Is this the fail safe position? [] Yes [] No
-	•••	Is the valve used for throttling purposes? [] Yes [] No
•	•	Is the valve part of the reactor coolant pressure boundary? [] Yes [] No
•		Does the valve have a specific limit for leakage? [] Yes [] No
	•••••	If "Yes" give limit:
IV.	QUAL	IFICATION
	۱.	Reference by specific number those applicable sections of the design codes and standards applicable to the component:
		ASME SEC. III & XI, ANSI, ASTM, HIS,
	• •	NEMA, OSHA
	2.	Reference those qualification standards, used as a guide to qualify the component:
•	• •,•,	IEEE - 323 - 1974 & LEEE - 344 - 1975
•	3.	Identify those parts of the above qualification standards deleted or modified in the qualification program.
		Deleted: Modified:
	' •	NONE NONE
	•	
	4 . -	Have acceptance criterias been established and documented in the test plan(s) for the component? [3] Yes [] No
	5.	What is the expected failure mode that would keep the pump or valve assembly from performing its safety function?
	5. 6.	

parameters used for equipment qualification.

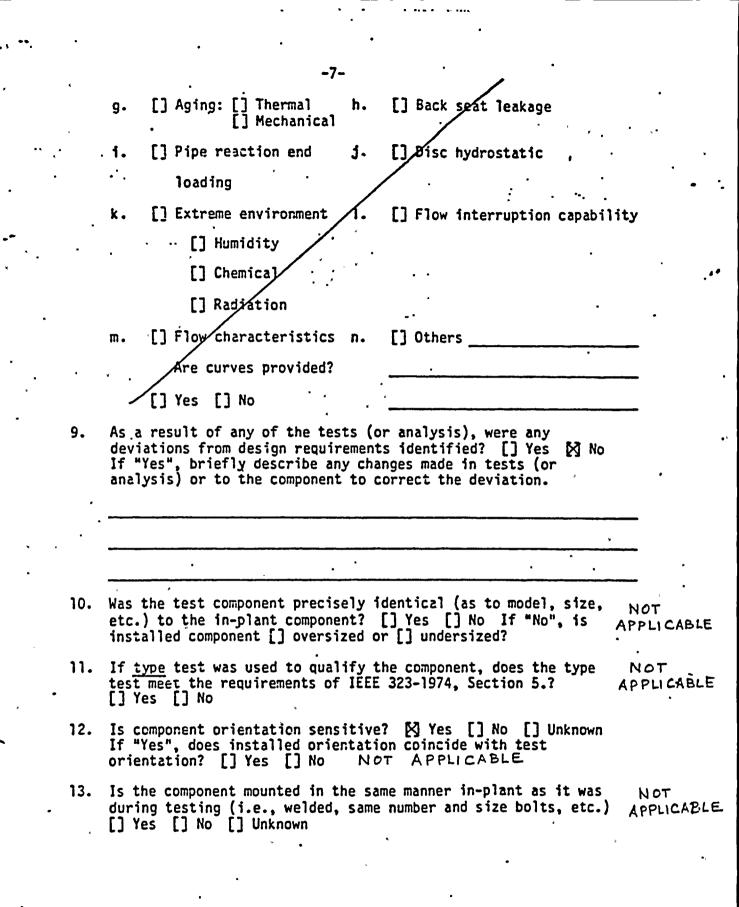
• 2

--

.


-.

		· •	
		:	· · · ·
If co	ompone	ent is a PUMP, complete IV.7	7,
If co	ompone	ent is a VALVE, complete IV.	.8.
7.	Pump [] Te	operability has been demons est [] Combination	strated by: 🕅 Analysis
• *	Ident	ify PUMP tests performed:	
۰.	٥.	Shell hydrostatic b. (ASME Section III)	[] Bearing temperature evaluations
•	c.	🕅 Seismic loading d	[] Vibration levels
•	ē.	X Exploratory vibration f.	. 🔯 Seal leakage @ hydro press
•	• •	(Fundamental freq. <u>61.3</u>)	
	g.	[] Aging: [] Thermal h.	. [3] Flow performance
h		[] Mechanical	Are curves provided 🔯 Yes
			[] No
	i.	A Pipe reaction end j	. [] Others
	· ·	loads (nozzle loads)	· · · · · · · · · · · · · · · · · · ·
	_k.	[] Extreme environment:	· · · · · · · · · · · · · · · · · · ·
	ŧ	[] Humidity	
	•	[] Chemical	· · · · · · · · · · · · · · · · · · ·
		[] Radiation	·
8.	Valv [] T	e operability has been deno est [] Combination	nstrated by: [] Analysis <u>NOT APPLICAB</u>
	Iden	tify VALVE tests performed:	•
	8.	[] Shell hydrostatic b (ASME Section 111)	. [] Cold cyclic List times: Open Closed
	c.	[] Seismic loading · d	. [] Hot cyclic List times: Open Closed
	e.	[] Exploratory vibration f	. [] Main seat leakage
		(Fundemental freq)	•


-6-

•••

.

.

If "Yes" identify sequence, (e.g., radiation, seismic, cyclic,	
thermal, etc.):	•••
15. If "aging"* was performed, identify the significant aging mechanisms:	
NON - METALLICS HAVE 5 YEAR QUALIFIED	• • • •
LIFE BASED ON AGING ANALYSIS	
16. Identify loads imposed (assumed) on the component for the qualification tests (analysis) performed;	
a. [] Plants (shutdown loads) b. [] Extreme environment	·
c. 🕅 Seismic load d. [] Others	•
······································	•
17. Have component design specifications been reviewed in-house to assure they envelope all expected operating, transient, and accident conditions? [X] Yes [] No	
18. Does the component utilize any unique or special materials? (Examples are special gaskets or packing, limitations on nonferrous materials, or special coatings or surfaces.) [3] Yes [] No	• •
IF "Yes", identify: D GASKET- PE 800 2 WATER SEAL CAGE-TF	E
3 GASKET - HYDROIL 4 OIL THROIVERS - GLASS FILLED URETH	ANE
. 19. Does component require any special maintenance procedures or practices, (including shorter periods between maintenance). X Yes [] No	•
IF "Yes", identify: REFER TO MAINTENANCE MANUAL	
· 20. Is the qualified life for the component less than 40 years? [] Yes [] No If "Yes", what is the qualified life? NON - METALLICS HAVE 5 YEAR QUALIFIED LIFE	
* As outlined in Section 4.4.1 of IEEE-627 1980.	

••••

.

21. Information Concerning Qualification Documents for the Component

Donont	Deport'	r	Company (Opganization	Company (Oursel and the
Report Number	Report _ Title	Date	Company/Organization Preparing Report	Company/Organization Reviewing Report
EAS-TR -7904- PST REV. 1	STRUCTURAL INTEGRITY ANALYSIS FOR CONDENGATE TRANSFER PUMP 2×10 AN .	JUNE 9 1979	INGERSOLL - RAND	BECHTEL
NA68903	SEISMIC ANALYSIS CF MOTOR	AUG 4; 1977	WESTINGHOUSE .	BECHTEL
MM 9112	QUALIFICATION DOCUMENT FOR CLASS IE MEDIUM MOTORS (OUTSIDE THE CONTAINMENT) PER IEEE-323-1974	JAN 18, 1980	WESTING HOUSE	BECHTEL
		•		

1

. :

ų.

.

۲ ۲

a

	OPERABILITY ASSURANCE REVIEW
[.	PLANT INFORMATION
	1. Name: <u>ANPP</u> Unit No. <u>1-3</u> 2. Docket No.:
	3. Utility: ARIZONA PUBLIC SERVICE
	4. NSSS: <u>COMBUSTION ENGINEERING (STSTEM 80)</u> [] PWR [] BWI
	5. A/E: BECHTEL POWER CORPORATION
I.	GENERAL COMPONENT* INFORMATION
	1. Supplier: [] NSSS [X] BOP
	2. Location: a. Building/Room YARD OUTSIDE AREA
•	b. Elevation <u>108'0"</u>
	C. System ESSENTIAL SPRAY POND SYSTEM
	3. Component number on in-house drawings: <u>BECHTEL TAG NO. M-SPA-</u>
	4. If component is a [X] Pump complete II.5.
	If component is a [] Valve complete II.6.
	5. General <u>Pump</u> Data
	a. Pump b. Prime-mover
	Name ESSENTIAL SPRAY POND PUMP Name ESSENTIAL SPRAY POND PUMP A
	Mfg. BINGHAM WILLAMETTE COMPANY Mfg. GENERAL ELECTRIC
	Model Model 5x6338 x C125 A
	S/N 1A042 S/N ERJ31400

Ś.,

Ŋ.

.-m 045

.•

* The component, whether pump or valve, is considered to be an <u>assembly</u> composed of the body, internals, prime-mover (or actuator) and functional accessories.

: 2

1שו ע וע ו

.

۵ ۹ ۱.9

.

.

·

· · ·

	• •
a. Pump (continued) (outlet)x(ind	b. Prime-mover (continued)
Size 20'x 60" (H+ DIA) 24"x 38"	Size _ 84 1/8" x 36" x 51 1/8"
Weight 17,000 Pounos	Weight 8200 Pounds
Mounting Method <u>concrete Mounted</u> (Prr)	Mounting <u>Hethod</u>
Required B.H.P. 589 @ DESIGN	H.P. <u>600 HP</u>
<u>Parameter</u> <u>Design</u> <u>Operating</u>	Power requirements: (include normal, maximum and minimum).
Press (P\$14) 100 52	Electrical 4000 Volts
Temp(°F) 200 95	3 PHASE
Flow (GPM). 16,300 16; 900	60 HZ
Head (Fe) 120 118	Other <u>SPACE HEATERS I PHASE 600 WAT</u>
•	THERMOCOUPLES (BEAZING)
Required NPSH at maximum	If MOTOR list:
flow SUBMERGENCE 6'-0"	Duty cycle DISCONTINUOUS 60 HZ
Available NPSH <u>6'-6"</u>	Stall current <u>492 AMPs</u>
Operating Speed	Class of insulation <u>CLASS</u> F
Critical Speed 2500 RPM	•. • •
List functional accessories:*	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	
ELECTRICAL STARTERS AND	SWITCHGEAR
FOUNDATIONS AND ANCHOR .	BOLTS
List control signal inputs: <u>Acru</u>	<u> 9TION UPON: START OF DIESEL GENERA</u> TOR
A SAFETY INJECTION ACTUATION SI	GNAL A CONTROL ROOM EMERGENCY
	GNAL <u>A CONTROL ROOM EMERGENCY</u> CONTROL ROOM VENTILATION ISOLATION

* Functional accessories are those sub-components not supplied by the manufacturer that are required to make the pump assembly operational, (e.g., coupling, lubricating oil system, etc.)

_

the star

n

e k

ι

.

•

--- ۰ ۰

•

ا دو او شر و شر

,

6. General <u>Valve</u> Data N/A	· ·
a. Valve	b. Actuator (if not an integral unit)
Name	Name
Mfg	Mfg
Model	Mode1
s/n	S/N
Type	Туре
Size	Size
Weight	Weight
Mounting Method	Mounting Method
Required	Torque
Parameter Design Operating	Power requirements: (include no mal, maximum and minimum).
Press	Electrical
Temp	
Flow	·
Max ÄP across valve	·
Closing time @ max $\overline{\Delta}P$	Other: [] Pneumatic [] Hydraulic
Opening time @ max $\overline{\Delta P}$	·
Power requirements for functional	
accessories, (if any)	<u> </u>
	<u> </u>
List control signal inputs:	
	er

-3-

. FU	NCTI	<u>N</u>
1.	81	riefly describe components normal and safety functions:
I. F.	ROUI	DES COOLING WATER TO ESSENTIAL COOLING WATER HEAT EXCHA
•		, NG NORMAL OR EMERGENCY PLANT SHUTDOWN . 2. PROVID
		NG WATER TO THE DIESEL GENERATOR HEAT EXCHANGER
•		<i>THE DIESEL GENERATOR IS RUNNING</i> . he components normal state is: [] Operating [] Standb
3.		afety function:
	5	. [X] Emergency reactor b. [X] Containment heat shutdown removal
	С	. [] Containment isolation d. 🕅 Reactor heat removal
• .	e	Reactor core cooling f. [] Prevent significant release of radio- active material to environment
	g	. [] Does the component function to mitigate the consequences of one or more of the following events? [X] Yes [] No If "Yes", identify.
		🔯 LOCA 🔯 HELS 🐼 MSLS
		[] Other
4.	S	Safety requirements:
	נ] Intermittent Operation 🛛 🕅 During postulated event
	Б	X Continuous Operation 🛛 🕅 Following postulated event
	I	If component operation is required following an event, give approximate length of time component must remain operational.
	,	30 DAVS (e.g., hours, days, etc.)

-4-

	5.	For VALVES:
		does the component [] Fail open [] Fail closed [] Fail as i
		Is this the fail safe position? [] Yes [] No
		Is the valve used for throttling purposes? [] Yes [] No
		Is the valve part of the reactor coolant pressure boundary? [] Yes [] No
		Does the valve have a specific limit for leakage? [] Yes [] No
	ا د	If "Yes" give limit:
IV.	QUAL	IFICATION
	1.	Reference by specific number those applicable sections of the design codes and standards applicable to the component:
		ASME SECTION III AND SECTION XI
		· , · · · · · · · · · · · · · · · · · ·
	2.	Diference all a first and a second
	۲.	Reference those qualification standards, used as a guide to qualify the component:
	۲.	qualify the component:
	٤.	qualify the component: <u>APPLICABLE SECTIONS NRC REG GUIDE 1.48. MAY 1973</u>
	3.	qualify the component: <u>APPLICABLE SECTIONS NRC REG GUIDE 1.48. MAY 1973</u> <u>AND ZEEE 323 - 74 '334'-74 & 344-75</u> Identify those parts of the above qualification standards deleted or modified in the qualification program.
		qualify the component: <u>APPLICABLE SECTIONS NRC REG GUIDE 1.48. MAY 1973</u> <u>AND ZEEE 323'-74 '334'-74 & 344-75</u> Identify those parts of the above qualification standards deleted
		qualify the component: <u>APPLICABLE SECTIONS NRC REG GUIDE 1.48. MAY 1973</u> <u>AND IEEE 323-74 334-74 & 344-75</u> Identify those parts of the above qualification standards deleted or modified in the qualification program. N/A
		qualify the component: <u>APPLICABLE SECTIONS NRC REG GUIDE 1.48. MAY 1973</u> <u>AND IEEE 323-74 334-74 & 344-75</u> Identify those parts of the above qualification standards deleted or modified in the qualification program. N/A
		qualify the component: <u>APPLICABLE SECTIONS NRC REG GUIDE 1.48. MAY 1973</u> <u>AND ZEEE 323 - 74 334 - 74 & 344 - 75</u> Identify those parts of the above qualification standards deleted or modified in the qualification program. N/A
		qualify the component: <u>APPLICABLE SECTIONS NRC REG GUIDE 1.48. MAY 1973</u> <u>AND ZEEE 323 - 74 334 - 74 & 344 - 75</u> Identify those parts of the above qualification standards deleted or modified in the qualification program. N/A
	3.	qualify the component:
	3.	qualify the component:

-5-

. . .

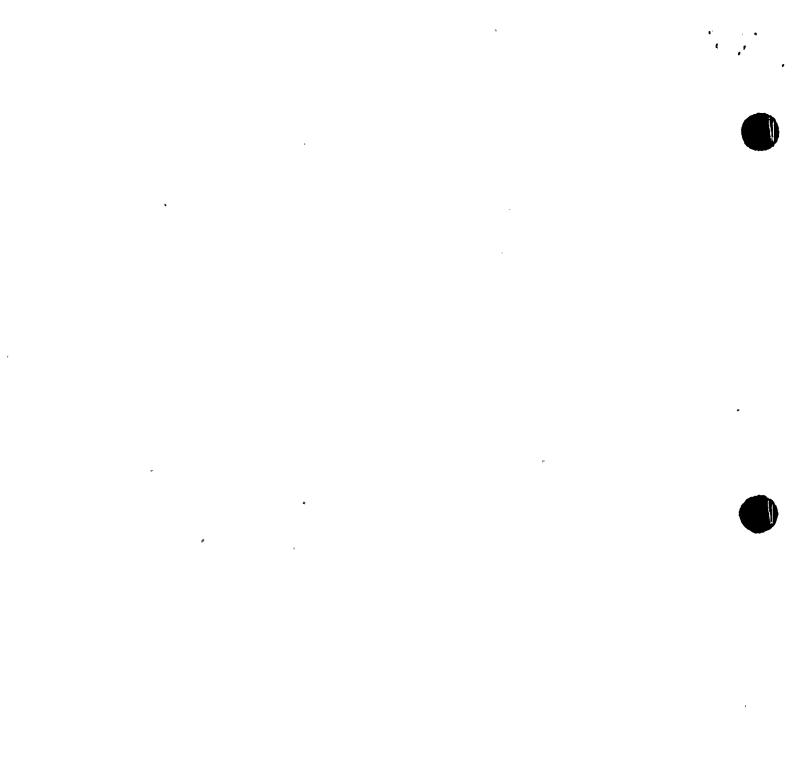
ŝ

If c	emper	ent is a PUMP, complete IV	1.7.	•
If c	emper	nent is a VALVE, complete 1	IV.8.	
7.		e operability has been dem Test 🔯 Combination	nstra	ated by: [] Analysis
	Ider	tify PUMP tests performed:	:	
	ð.	☑ Shell hydrostatic .→ (ASME Section III)	b	Bearing temperature evaluations Moroe QUALIFICATION REPORT
	c.	[X] Seismic loading	d.	Vibration levels
	e.	X Exploratory vibration	f.	🛛 Seal leakage 0 hydro press
•	· ·	(Fundamental freq. <u>32.27</u>)	wie /	sec
	g.	🕅 Aging: 🕅 Thermal	h.	, 🕅 Flow performance
		[] Mechanical		Are curves provided 🔀 Yes
			z	[] No
	1.	Pipe reaction end STRESS ANALYSIS loads (nozzle loads)	Ĵ.	[] Others
	_k.	[] Extreme environment:		
,		[] Humidity		
		[] Chemical	•	
		[] Radiation		
8.		ve operability has been der Test [] Combination	nonsti	rated by: [] Analysis
	Ide	ntify VALVE tests performed	1:	
	a.	<pre>[] Shell hydrostatic (ASME Section III)</pre>	b.	[] Cold cyclic List times: Open Closed
	c.	[] Seismic loading	d.	[] Hot cyclic List times: Open Closed
	e.	[] Exploratory vibration	f.	[] Main seat leakage
		(Fundamental freq)		

÷

-6-

i. [k. [] Pipe r loadin] Extrem [] H [] H [] R [] R	[] Thermal [] Mechanical eaction end g e environment umidity hemical adiation haracteristics rves provided?	j. 1.	[] D1 [] F1		static	capability
k. [m. [As a r	loadin] Extrem [] H [] C [] R [] R] Flow c Are cu	g e environment umidity hemical adiation haracteristics	1.	[] F1	ow inter	·	capability
 m. [As a r] Extrem [] H [] C [] C [] R [] R] Flow c Are cu	e environment umidity nemical adiation haracteristics				Tuption	capability
 m. [As a r	[] H [] C [] C [] R [] R [] R [] R [] R [] R [] R [] R	umidity nemical adiation haracteristics				ruption	capabilit <u></u>
[As a r	[] C [] R] Flow c Are cu	nemical adiation haracteristics	n.	[] Ot			•
E As a r	[] R] Flow c Are cu	adiation haracteristics	n.	[] Ot			
E As a r] Flow c	haracteristics	n.	[] Ot			
E As a r	Are cu		n.	[] Ot			•
- As a r		rves provided?			hers		,
- As a r]Yes [`
As a r	*] No					
•••••••		· · ·			a		
etc.)	to the in	omponent precis n-plant compone onent [] oversi	nt?	X Yes	[] No	If "No"	
test m	e test wa eet the n [] No	as used to qual requirements of .	ify t IEEE	:he com 323-1	ponent, 974, Sec	does the tion 5.0	type 4
If "Ye	s", does	rientation sens installed orie X Yes [] No					nknown
orient			he sa				


•

•

-7-

•.•

..

-

	· -8-
14.	Were the qualification tests performed in sequence and on <u>only</u> one component? [] Yes [X] No
	If "Yes" identify sequence, (e.g., radiation, seismic, cyclic, thermal, etc.):
	· · · ·
15.	If "aging"* was performed, identify the significant aging mechanisms: <u>N.A. (NO JIGNIFICANT AGING MECHANISMS)</u>
	······································
16.	Identify loads imposed (assumed) on the component for the qualification tests (analysis) performed:
<i>.</i>	a. [] Plants (shutdown loads) b. [] Extreme environment
	c. [] Seismic load d. [] Others <u>NOTELE LOADS, DEADWEIGHT</u>
	AND INTERNAL PRESSURE OF 150 PSI
17.	Have component design specifications been reviewed in-house to assure they envelope all expected operating, transient, and accident conditions? [] Yes [] No
18.	Does the component utilize any unique or special materials? (Examples are special gaskets or packing, limitations on nonferrous materials, or special coatings or surfaces.) [X] Yes [] No
	If "Yes", identify: BUNA-N ORINGS AND GASKETS HAVE
	A SYEAR REPLACEMENT LIFE
19.	Does component require any special maintenance procedures or practices, (including shorter periods between maintenance). [] Yes [] No
	If "Yes", identify:
20.	Is the qualified life for the component less than 40 years? [] Yes [2] No If "Yes", what is the qualified life?

* As outlined in Section 4.4.1 of IEEE-627 1980.

21. Information Concerning Qualification Documents for the Component

Report Number	Report Title	Date	Company/Organization Preparing Report	Company/Organization Reviewing Report
1A041/46	ESSENTIAL SPRAY POND PUMP SEISMIC	11/1/79	BINGHAM WILLAMETTE	BECHTEL
	ANALYSIS			
	BECHTEL LOG NO.			•
	M095-80			
491 HA -	QUALIFICATION REPORT OF GE VERSICAL	3/20/79	GENERAL ELECTRIC	BECHTEL
483	INDUCTION MOTOR		i.	
	BECHTEL LOG		• • •	· ·
	M095 - 74			
	•			· · · ·
11041 .	INSTRUCTION MANUAL	2/17/82	BINGHAM WILLAMETZE	BECHTEL
	۰.	v	· · · · · · · · · · · · · · · · · · ·	
57537	AGING ANALYSIS FOR ESP PUMPS	7/9/81	WYLE	BECHTEL .
	•			148e
				:
			•	

-9-

_						•		н <i>ра VV-3</i> (нр- <i>VV</i> -3
•	•		OPERA		<u>ND_VALVE</u> SSURANCE_R	EVIEW		
					· · ·			•
I.		INFORMATION	,	خ				Ţ.
				-			et No.:_	5TN 50-528K
		Utility: <u>ARI</u>						
		NSSS: COM						DWR [] BWR
	5. /	VE: Birn	πL	RUSA	Cinet	· · · · · · · · · · · · · · · · · · ·	•	· · · · · · · · · · · · · · · · · · ·
II.	GENER.	AL COMPONENT*	INFOR	RMATION				
	1.	Supplier: []				•		
•••	2. i	Location:	a.	Buildi	ng/Room	Auxil	PRY	BLD.
•			b.	Elevati	on <u> </u>	<u>o' .</u>		
			c.	System	HYDIO	DEN A	RIAGE	(HP)
	3.	Component num						
-	4.	If component	is a [] Pump c	omplete II	.5.		•
	•	If component	is a Ģ	Valve	complete 1	I.6.	•	
	5. 6	General <u>Pump</u>	Data	•	• • • • •			
	ė	a. Pump	1.	•	b. Pr	ime-move	er /.	
	Name _	<u>*</u> *1	<u> V A</u>	• . 	Name		N/A	•
	Mfg.				Mfg	• 		
•	Model		_					,
	S/N			·····				··· ··· · · · · · · · · · · · · · ·
	Туре	•			Type			
	_				•			

.

.

, ******

, D . . .

e -

÷Ô,

N/A	N/A
#/-	

a. Pump (continued)	6	• Prime-mover (continued)
Size	s	ize
Weight	w	eight
Mounting Method	M	ounting 📜
Required B.H.P.	_ н	.P.
Parameter Design Operating	P	ower requirements: (include ormal, maximum and minimum).
Press	ε	lectrical
Temp		· · ·
Flow	 	
Head	0	ther
·	_	
Required NPSH at maximum	I	f MOTOR list:
flow	D	uty cycle
Available NPSH	S	tall current
Operating Speed	_ · C	lass of insulation
Critical Speed	·. 	·.
List functional accessories:*		•
	<u></u>	
List control signal inputs:		···

* Functional accessories are those sub-components not supplied by the manufacturer that are required to make the pump assembly operational, (e.g., coupling, lubricating oil system, etc.)

Hg. <u>DEESSOR INDUSTIONS</u> lodel <u>5500W</u> S/N <u>H649AAY</u> Sype <u>(Indee (Inde</u>)	b. Actuator (if not an integral unit) I Name <u>Kercek</u> Mfg. <u>Korokk</u> Model <u>7NAB1-43</u> S/N <u>B5520.D3</u>
Hg. <u>DEESSOR INDUSTIONES</u> lodel <u>5500W</u> S/N <u>H649AAY</u> Sype <u>(Indei (Indi</u>)	Mfg. <u>KOTORK</u> Model <u>7NAB1-93</u>
lode] <u>5500W</u> S/N <u>H649AAY</u> Sype <u>(nai)</u>	Model
ype (100-1 (100)	
spe (nair (nav)	S/N <u>B5520.D3</u>
all is the	Type <u>Electicic</u> AC.
ize <u>2- 60</u>	Size APPROX 30× 19×20
leight	Weight 128 16s
lounting Arran FERENTIAL	Mounting Method <u>Bolt</u>
Required N/A -	Torque
Parameter Design Operating	Power requirements: (include normal, maximum and minimum).
Pres(1314) 60 60	Electrical VOLTAGE 460/414/4
Temp(°F) <u>350 /80</u>	AMOS @ Fullow / STALLED 1.3/2.
Tow (672) 60. 50	HIP (R.P.M . 13 / 43
lax AP across valve 70 psic,	•
Closing time θ max $\overline{\Delta}P$ Cycle \mathcal{C} Dpening time θ max $\overline{\Delta}P$	
	NOT APPLICA ELE
accessories, (if any)	
List control signal inputs:	AS

۰,

.:

-3-

-

.

.

* * . _ *

.

	List	functional accessories:* <u>NONE</u>
II.	FUNC	TION
	1.	Briefly describe components normal and safety functions:
	SA	FETY FUNCTION: THE HOWE MUST OPERATE (OPEN OR CL
	Du	RING . & AFTER AN SSE OR OBE.
		AIS VALUE IS NEPANALLY CLOSED
		· · · · ·
	2.	The components normal state is: [] Operating 🕅 Standby
	3.	Safety function:
		a. [] Emergency reactor b. [] Containment heat shutdown removal
		c. [] Containment isolation d. [] Reactor heat removal
	• •	e. [] Reactor core cooling f. Prevent significant release of radio- active material to environment
		g. [] Does the component function to mitigate the consequences of one or more of the following events? [X] Yes [] No If "Yes", identify.
		DI LOCA [] HELB . [] HSLB
		[] Other
	4.	Safety requirements:
		X Intermittent Operation X During postulated event
		[] Continuous Operation 🛛 🕅 Following postulated event
	•	If component operation is required following an event, give approximate length of time component must remain operational.
		30 Days AFTER EUCNT (e.g., hours, days, etc.)

۰,

f

5.	For VALVES:	
	does the component [] Fail open [] Fail closed [] Fail as is	•
	Is this the fail safe position? [] Yes [] No	•
	Is the valve used for throttling purposes? [] Yes 🕅 No	
	Is the valve part of the reactor coolant pressure boundary? [] Yes [3] No	
	Does the valve have a specific limit for leakage? [3] Yes [] No	
•	If "Yes" give limit: MAIN SEAT RCC /HR/IN DIA.	
	IFICATION	
Ι.	Reference by specific number those applicable sections of the design codes and standards applicable to the component:	•
	ASME BEPV CODE SECTION ITT DIVI SUB-ECTION ND	
	1974 EDITION WITH SUMMER OF 1975 ADDONDA. SPECIFICA	13/m 22
2.	Reference those qualification standards, used as a guide to qualify the component: DESIGN SPECIFICATION 10407-13P	H 221A
	: ICEE 323-1974 627-1980, 344-1975 38.2-1978	-
	NUC'S OSES	
3.	Identify those parts of the above qualification standards deleted or modified in the qualification program.	•
	Deleted: Modified:	_
•	••	μ.
1		•
	· · · · · · · · · · · · · · · · · · ·	•
4.	Have acceptance criterias been established and documented in the test plan(s) for the component? [X] Yes [] No	•
5.	What is the expected failure mode that would keep the pump or valve assembly from performing its safety function? <u>Loss of</u>	
	AC POWER SUPPLY	r r
5.	Are the margins* identified in the qualification documentation? [3] Yes [] No	•

d. Margin is the difference between design basis parameters and the test parameters used for equipment qualification.

مېر د د د د د د مېره د خو د د . مېره د د د د مېره د خو د مېره د د د مېره د د مېره د د مې ••

	If	component is a PUMP, complete IV. component is a VALVE, complete IV	
/Α	7.	Pump operability has been demon [] Test [] Combination	strated by: [] Analysis
1		' Identify PUMP tests performed:	· ·
		a. [] Shell hydrostatic b (ASME Section III)	. [] Bearing temperature evaluations
		c. [] Seismic loading d	. [] Vibration levels
	1	e. [] Exploratory vibration f	. [] Seal leakage @ hydro press
		(Fundamental freq)	
		g. [] Aging: [] Thermal h	. [] Flow performance
		[] Mechanical	Are curves provided [] Yes
•			. [] No
		i. [] Pipe reaction end j	. [] Others
		loads (nozzle loads)	
		k. [] Extreme environment:	
		[] Humidity	
		[] Chemical	
		[] Radiation	
·	8.	Valve operability has been demo	nstrated by: [] Analysis
		Identify VALVE tests performed:	·
		a. [7] Shell hydrostatic b (ASME Section III)	Cold cyclic List times: Open <u>27</u> Closed <u>27</u>
		c. 🔀 Seismic loading d	. [] Hot cyclic List times: Open • Closed
		e. 🕅 Exploratory vibration f	. 🕅 Main seat leakage

· ·

-6-

- • • • •				- 7-		+ ACTUATUL	TETT OFFLY
- . •	۹.	g.	段 Aging: 反 Thei 反 Meci	•	[] Back seat lea		
		1.	[] Pipe reaction	•	[] Disc hydrosta	tic	,
			loading				v
		k.	X Extreme enviro	onment 1.	[] Flow interrup	ユ tion capability	,
			🕅 Humidity	•			
			, 🕅 Chemical				
			🕅 Radiation	n		•	
		μ.	[] Flow character	ristics n.	[] Others		• • • • • •
			Are curves pro	ovided?		· ·	NOT APPLICAB
			[] Yes [] No	· · ·	••		•
	9.	devi If "	result of any of ations from design (es", briefly desc	n requireme cribe any c	(or analysis), were nts identified? [] hanges made in tests	Yes [X] No s (or	
	9.	devi If "	result of any of ations from design (es", briefly desc	n requireme cribe any c	<pre>nts identified? []</pre>	Yes [X] No s (or	• • •
		devi If " anal Was etc.	result of any of ations from design (es", briefly deso ysis) or to the co the test component the test component to the in-plant	n requireme cribe any c component to t precisely component?	nts identified? [] hanges made in tests	Yes [X] No s (or ion.	•
	10.	devi If " anal Was etc. inst If <u>t</u> test	result of any of ations from design (es", briefly deso ysis) or to the co the test component to the in-plant alled component [] ype test was used	n requireme cribe any component to precisely component? oversized to qualify	nts identified? [] hanges made in tests correct the deviat identical (as to mo [] Yes [X] No If	Yes [X] No s (or ion. odel, size, * "No", is - s the type	•
	10.	Was Was etc. inst. If <u>t</u> US Y Is c If "	result of any of ations from design (es", briefly deso ysis) or to the co the test component) to the in-plant alled component [] ype test was used meet the requirem es [] No	n requireme cribe any component to component to t precisely component? oversized to qualify ments of IE ion sensiti ed orienta	nts identified? [] hanges made in tests correct the deviat identical (as to mo [] Yes [] No If or [] undersized? the component, does	Yes [X] No s (or ion. odel, size, * "No", is s the type 5.? [] Unknown	• •
	10. 11. 12.	devi If " anal Was etc. inst If <u>t</u> test DJ Y Is c If " orie Is t duri	result of any of ations from design (es", briefly desc ysis) or to the co the test component) to the in-plant alled component [] ype test was used meet the requirem es [] No pomponent orientation (es", does install ntation? [] Yes he component mount	t precisely component to precisely component? oversized to qualify nents of IE ion sensiti ed orienta [] No ced in the welded, sa nown	nts identified? [] hanges made in tests correct the deviat identical (as to mo [] Yes [] No If or [] undersized? the component, does EE 323-1974, Section ve? [] Yes [] No tion coincide with t same manner in-plant me number and size t	Yes [3] No s (or ion. odel, size, * "No", is s the type 5.? [] Unknown test t as it was polts, etc.)	
	10. 11. 12.	devi If " anal Was etc. inst If <u>t</u> test DJ Y Is c If " orie Is t duri	result of any of ations from design (es", briefly desc ysis) or to the co the test component) to the in-plant alled component [] ype test was used meet the requirem es [] No component orientation (es", does install intation? [] Yes he component mount ing testing (i.e.,	t precisely component to precisely component? oversized to qualify nents of IE ion sensiti ed orienta [] No ced in the welded, sa nown	nts identified? [] hanges made in tests correct the deviat identical (as to mo [] Yes [] No If or [] undersized? the component, does EE 323-1974, Section ve? [] Yes [] No tion coincide with t same manner in-plant	Yes [3] No s (or ion. odel, size, * "No", is s the type 5.? [] Unknown test t as it was polts, etc.)	

٠., `•

.- •

.

	PUST TUSTS, PRESSURIZATION AGING TOTE & FUNCTIONAL, PADIATION DUS, DIANT VIRIATION & SETSAUC. , DBE(LOCA) & FUNCTIONAL	ACIN
15.	If "aging"* was performed, identify the significant aging mechanisms: (MREANICAL, PRESSURATION PARATICAL)**	•
• '	TING/SERDEDARCHIE + RADIATION X	-
•	. * VALVE ONLY	•
16.	Identify loads imposed (assumed) on the component for the qualification tests (analysis) performed:	•
	a. 🕅 Plants (shutdown loads) b. 🕅 Extreme environment	•
	c. [3] Seismic load d. [] Others	•
. 17.	Have component design specifications been reviewed in-house to assure they envelope all expected operating, transient, and accident conditions? [3] Yes [] No	÷
18.`	Does the component utilize any unique or special materials? (Examples are special gaskets or packing, limitations on nonferrous materials, or special coatings or surfaces.) [] Yes [X] No	
	If "Yes", identify:	
19.	Does component require any special maintenance procedures or practices, (including shorter periods between maintenance).	
	If "Yes", identify:	
20	Is the qualified life for the component less than 40 years?	

-8-

.

1

21. Information Concerning Qualification Documents for the Component

Report Number	Report Title	Date	Company/Organization Preparing Report	Company/Organization Reviewing Report
P221A 137,	SUSALL QUALIFICATION FRIOCEOURS PT-76 (VALVE ASSENBLY)	9-10-78	DRESSER VALUE CO	BECHTRE POWER CORP.
180,	CALVE ASSCNALY.)	167-81	DEFERE ATAC CO	
162	QUALLACATION TEST REPORT FOR ROTURE	12-19-78	WYLE LAD OLATORIES	
	IGNATI THEPMIL AGING TYPE-TEST PROGRAM	2-4-81	NYIE LABULATURICS	
<i>20</i> 0 .	IGNATI THERMAL AGING TUPE TEST REPORT TR-3029	ા-ાંક-કડ	RUTURK	· ·
201	16 NATI THERMAL AGING TYPE TEST REPORT TR- 3030	1-18-82	POTURK	
	NOCCOR CIVILIAN AND CALL		WYLE LABORATORIES	

-9-

, ,

`

•

•

•

.

•				-
•			.•	. · ··· · F221
•••` * ••			•	À FA - V-C
- 1	٠	PUMP AND	VALVE W	ب ۲
		. OPERABILITY ASSU	RANCE REVIEW	¢
I.	PLAN	T INFORMATION	ĩ	·
	1.	Name: <u>PVNGS</u> Unit No	.1,2132. Docket	: No.: 5TN . 50-528/529
	3.	Utility: AZIZONA PUBL	•	/
	4.	NSSS: COMPLESTION EN		[X] PWR [] BWR
	5.	A/E: BOCHEL RWER		•
II.	GENE	RAL COMPONENT* INFORMATION	<u> </u>	***************************************
	1.	Supplier: [] NSSS 🕅 BOP	· · · ·	`
		Location:, a. Building/		A
	•	b. Elevation	_	
ы		•		NATER (AF)
	3.	Component number on in-house		
	•••			
	4.	If component is a [] Pump com	olete II.5.	•
	4.	If component is a [] Pump comp If component is a \bowtie Value co		•
		If component is a 🕅 Valve co		· · · · · ·
	4. 5.	If component is a \mathbb{A} Valve conditional Pump Data \mathbb{N}/\mathbb{A}	mplete II.6.	N/A
	5.	If component is a \mathbb{A} Valve conditional Pump Data \mathbb{N}/\mathbb{A} . a. Pump	mplete II.6. b. Prime-mover	
	5. Name	If component is a \mathbb{A} Valve condition General <u>Pump</u> Data \mathbb{N}/\mathbb{A} a. Pump	mplete II.6. b. Prime-mover Name	
	5. Name Mfg.	If component is a 🕅 Valve con General <u>Pump</u> Data N/A a. Pump /	mplete II.6. b. Prime-mover Name Mfg	
•	5. Name Mfg. Mode	If component is a A Valve co General <u>Pump</u> Data N/A a. Pump	mplete II.6. b. Prime-mover Name Mfg Model	
•	5. Name Mfg. Mode	If component is a X Valve co General <u>Pump</u> Data N/A a. Pump	mplete II.6. b. Prime-mover Name Mfg	

.

	· ./.
J/A	N/A
-2-	

a. Pump (continued) Size Weight Mounting Method Required B.H.P	b. Prime-mover (continued) Size Weight Mounting T Method H.P
Parameter Design Operating	Power requirements: (include normal, maximum and minimum).
Press	Electrical
Flow Head	Other
Required NPSH at maximum flow	If MOTOR list: Duty cycle
	Stall current
	Class of insulation
Critical Speed	
List functional accessories:*	· .
· · ·	
List control signal inputs:	

* Functional accessories are those sub-components not supplied by the manufacturer that are required to make the pump assembly operational, (e.g., coupling, lubricating oil system, etc.)

6. General <u>Valve</u> Data	•
a. Valve	b. Actuator (if not an integral unit)
Name ANCHOR / DARLING	
Mfg. ANCHOR/DARLING VALVE CO	.Mfg
Model STO No. 5746-3, 86, 100	Model
S/N 3.1124	S/N
Type SS. SWING CHECK	Туре
Size <u>8" - 160 #</u>	Size
Weight 300 / Kr. (Ayonon)	Weight
Mounting Chreitmip COZENTIAL Method BUTT WELD	Hounting Method
Required N/A -	Torque
Parameter Design Operating	Power requirements: (include normal, maximum and minimum).
Press(PSIG) 30 * 25	Electrical
Temp(07) 120 75	
Flow(GPM) 1010 1010	· · ·
Max DP across valve	•
Closing time $\theta \max \overline{\Delta} P N/\Lambda$	Other: [] Pneumatic [] Hydraulic
Opening time $e \max \overline{\Delta P} \frac{N/A}{N}$	
Power requirements for functional	
accessories, (if any) N/A	
List control signal inputs:	NIA
* Design pressure of 4	he sijstem. M.Fr. design
press. of the value	<u>is 275 psi maxo, 150 psi</u>
rated.	

-3-

ľ

.

FUNC	TION I I
1.	Briefly describe components normal and safety functions:
1	NON ACTIVE VALVE; SAFETY FUNCTION - PIZESERVE
	HE PLESSULE-RETAINING INTEGRITY OF THE SYSTEM
_D	WELING AN SSE AND OBE. NORMAL OPERATION:
Pac	GERVE PRESSURG INTEMATRY & ALLOW FLOW IN ONLY ONE DIA
2.	The components normal state is: [] Operating [] Standby
3.	Safety function:
	a. M Emergency reactor b. [] Containment heat shutdown removal
	c. [] Containment isolation d. 🕅 Reactor heat removal
	e. Reactor core cooling f. [] Prevent significant release of radio- active material to environment
	g. [] Does the component function to mitigate the consequences of one or more of the following events? [X] Yes [] No If "Yes", identify.
	N LOCA A HELE DI HELE
	[] Other
4.	Safety requirements:
	[] Intermittent Operation 🛛 🕅 During postulated event
	🕅 Continuous Operation 🧴 💆 Following postulated event
	If component operation is required following an event, give approximate length of time component must remain operational.
	7 days

-4-

•

	5.	For VALVES:					
		does the component [] Fail open [] Fail closed [] Fail as is	NOT APPLICAT				
		Is this the fail safe position? [] Yes [] No	. •				
		Is the valve used for throttling purposes? [] Yes 🕅 No					
		Is the valve part of the reactor coolant pressure boundary? [] Yes [] No					
		Does the valve have a specific limit for leakage? [] Yes [] No	-				
		If "Yes" give limit: MAIN SUM DOMLICE (MSS SI	~~I)·				
IV.	QUAL	IFICATION	•				
	1.	Reference by specific number those applicable sections of the design codes and standards applicable to the component:	· · · ·				
		ASME BEPV CODE SUTTON ITT. DIV. 1. SUBSCETTON ND	•				
		1974 EDITION WITH SUMMER OF 1975 ADDENDA . SHEIFRATION 1040)7-13PN				
	2.	Reference those qualification standards, used as a guide to qualify the component: $ASM \in B \leq PY CODE$ SECTION THE \leq	• • • •				
1		IEEE 627-1980					
		· · · · · · · · · · · · · · · · · · ·					
	3.	Identify those parts of the above qualification standards deleted or modified in the qualification program.	·				
		Deleted: Modified:					
	•	·*					
		٢	,				
		,					
	4.	Have acceptance criterias been established and documented in the test plan(s) for the component? [2] Yes [] No					
	5.	What is the expected failure mode that would keep the pump or valve assembly from performing its safety function?					
	6.	Are the margins* identified in the qualification documentation?	,				

• •

••

. If	cemper	nent is	s a PUMP, complete I	 ¥ .7. .	
If	cemper	nent is	a VALVE, complete	IV.8.	
7.		epera Test	bility has been dem	enstr	ated by: [] Analysis
N/A	Ider	ntify 	UMP tests performed	:	
1	a.		ell hydrostatic NSME Section III)	b.	[] Bearing temperature evaluations
	c.	[] Se	eismic loading	d.	[] Vibration levels
	e.	[] E;	ploratory vibration	,. f.	[] Seal leakage @ hydro press
	••	. (Func	iamental freq)	۰.	
	g.	[] Ag	ging: [] Thermal	h.	[] Flow performance
			[] Mechanical		Are curves provided [] Yes
•			•••••		[] No
	i.	[] P:	ipe reaction end	J.	[] Others
		10	oads (nozzle loads)	1	
	k.	[] E:	xtreme environment: "		
		•	[] Humidity		
			[] Chemical		••• * *••••••••••••••••••••••••••••••••
-			[] Radiation		
. 8.			rability has been de	monst	rated by: 🕅 Analysis
	Ide	ntify '	VALVE tests performe	d:	
	a.	风 Si (4	hell hydrostatic ASME Section III)	b.	[] Cold cyclic List times: Open Closed
	c.	[] s	eismic loading	d.	[] Hot cyclic List times: Open Closed
	е.	[] E	xploratory vibration	f.	🕅 Main seat leakage
		(Fun	damental freg)		

•2

-6-

•

`

•

· · ·

×

	-7 -		* ANALYSI
g.	[] Åging: [] Thermal [] Mechanical	h.	[] Back seat leakage GASKETS
۴.	[] Pipe reaction end	j.	[] Disc hydrostatic
	loading		ः च
k.	[] Extreme environment	1.	[] Flow interruption capabilit
	[] Humidity		
	[] Chemical		•
	[] Radiation		
m.	[] Flow characteristics	n.	[] Others
¥	"Are curves provided?		
		•	
dev If	[] Yes [] No a result of any of the tes iations from design requir 'Yes", briefly describe an lysis) or to the component	eme <mark>nt</mark> y cha	s identified? [] Yes [X] No nges made in tests (or
dev If	a result of any of the tes iations from design requir 'Yes", briefly describe an	eme <mark>nt</mark> y cha	s identified? [] Yes [X] No nges made in tests (or
dev If anal 	the test component precise	ement y cha to c ely i nt?	s identified? [] Yes [X] No nges made in tests (or orrect the deviation. dentical (as to model, size, [X] Yes [] No If "No", is
devi If anal Was etc. inst If <u>t</u>	the test component precise) to the in-plant component [] oversi	ement y cha to c ely i nt? zed o ify t	s identified? [] Yes [X] No nges made in tests (or orrect the deviation. dentical (as to model, size, [X] Yes [] No If "No", is r [] undersized? he component, does the type
devi If anal Was etc. inst If <u>t</u> test [] Y Is c If	the test component precise alled component [] oversis type test was used to qual the test may be a precise the test component precise the test was used to qual the test the requirements of tes [] No	ement y cha to c ely i nt? zed o ify t IEEE itive	s identified? [] Yes [] No nges made in tests (or orrect the deviation. dentical (as to model, size, [] Yes [] No If "No", is r [] undersized? he component, does the type 323-1974, Section 5.? N/¢ ? [] Yes [] No [] Unknown

۰ ۰ ۰

-

.

. . .

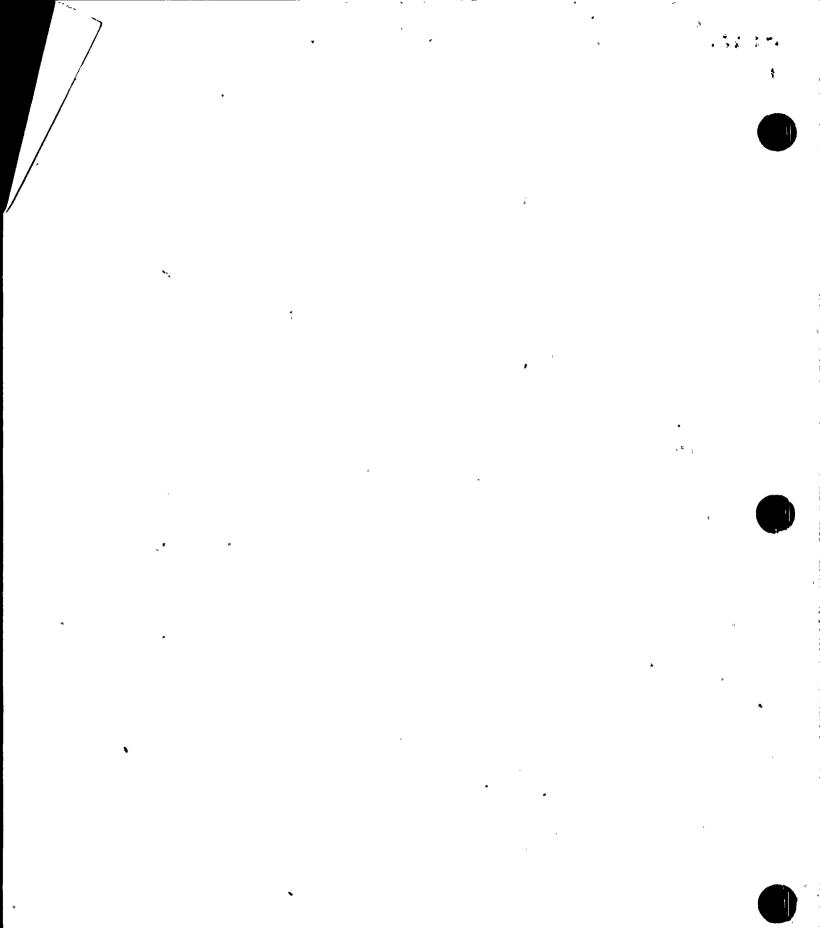
14.	Were the qualification tests performed in sequence and on <u>only</u> one component? [] Yes [] No N/A
	If "Yes" identify sequence, (e.g., radiation, seismic, cyclic, thermal, etc.):
15.	If "aging"* was performed, identify the significant aging mechanisms: $TIMC / TLAPEPATLIZE + PAISIATICN ANALYSIS$
,	FOR GASRETS. AND PACKING
	•
16.	Identify loads imposed (assumed) on the component for the gualification tests (analysis) performed:
	a. [] Plants (shutdown loads) b. [] Extreme environment
	c. [X] Seismic load d. [] Others
17.	Have component design specifications been reviewed in-house to assure they envelope all expected operating, transient, and accident conditions? [3] Yes [] No
18.	Does the component utilize any unique or special materials? (Examples are special gaskets or packing, limitations on nonferrous materials, or special coatings or surfaces.) [] Yes [] No
	If "Yes", identify:

-8-

19. Does component require any special maintenance procedures or practices, (including shorter periods between maintenance). [] Yes [] No

If "Yes", identify: _

20. Is the qualified life for the component less than 40 years? [] Yes [X] No If "Yes", what is the qualified life?


* As outlined in Section 4.4.1 of IEEE-627 1980.

21. Information Concerning Qualification Documents for the Component

Report Number	Report . Title	Date	Company/Organization Preparing Report	Company/Organization Reviewing Report
1211 5. 2218 - 382	SERGMACC. ANALYSIS FOR PO ITEM & 55 ES"-150" S.S. SWING CASTA VALVE	6/32	Arrara / Ser 119, VALSE	Ector.
EM- 600 -5	NUCLEAR ENVIRONNIAL EVALUATION REDOLT OF VALUE PREKING & GASEKETS USED IN ANKHON/DALLING, VALUES	-	WYLE LABORATORIS	BECHITËL 114h. :

-9-

i (

.

.