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Overview
 Purpose: Validate assumptions in CFD 

calculations for spent fuel cask thermal design 
analyses
 Used to determine steady-state cladding 

temperatures in dry casks
 Needed to evaluate cladding integrity 

throughout storage cycle
 Measure temperature profiles for a wide range 

of decay power and helium cask pressures
 Mimic conditions for above and  belowground 

configurations of vertical, dry cask systems with 
canisters using Dry Cask Simulator (DCS)

 Simplified geometry with well-controlled 
boundary conditions

 Provide measure of mass flow rates and 
temperatures throughout system

 Use existing prototypic BWR Incoloy-clad test 
assembly 2

Belowground Storage
Source: ww.holtecinternational.com/productsandservices/
wasteandfuelmanagement/hi-storm/

Aboveground Storage
Source: www.nrc.gov/reading-rm/doc-collections/fact-
sheets/storage-spent-fuel-fs.html
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Past Validation Efforts
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 Full scale, multi-assembly
 Castor-V/21 [1986: EPRI NP-4887, PNL-5917]

 Unconsolidated, unpressurized, unventilated

 REA 2023 [1986: PNL-5777 Vol. 1]
 Unconsolidated, unpressurized, unventilated

 VSC-17 [1992: EPRI TR-100305, PNL-7839]
 Consolidated, unpressurized, early ventilated design

 Small scale, single assembly
 FTT (irradiated, vertical) [1986 PNL-5571]

 SAHTT (electric, vertical & horizontal) [1986 PNL-5571]

 Mitsubishi (electric, vertical & horizontal) [1986 IAEA-SM-286/139P]

 For all three studies:
 Unconsolidated
 BC:  Controlled outer wall temperature (unventilated)
 Unpressurized 

 None appropriate for elevated helium pressures or modern 
ventilated configurations



Prototypic Assembly Hardware

 Most common 9×9 BWR in US
 Prototypic 9×9 BWR hardware
 Full length, prototypic 9×9 BWR components
 Electric heater rods with Incoloy cladding
 74 fuel rods
 8 of these are partial length
 Partial length rods 2/3  the length of assembly

 2 water rods
 7 spacers
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Nose piece and
debris catcher

BWR channel, water tubes
and spacers

Upper tie plate



Thermocouple Layout

 97 total TC’s internal to assembly
 10 TC’s mounted to channel box

 7 External wall
 24 in. spacing starting at 24 in. level

 3 Internal wall
 96, 119, and 144 in. levels
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Radial Array
24” spacing
11 TC’s each level
66 TC’s total (details below)
Axial array A1
6” spacing
20 TC’s
Axial array A2
12” spacing – 7 TC’s
Water rods inlet and exit – 4 TC’s
Total of 97 TC’s
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Internal Dimensional Analyses
 Internal flow and convection near 

prototypic
 Prototypic geometry for fuel and basket

 Downcomer scaling insensitive to wide 
range of decay heats
 External cooling flows matched using 

elevated decay heat
 Downcomer dimensionless groups
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Parameter

Aboveground
DCS

Low Power
DCS

High Power Cask

Power (kW) 0.5 5.0 36.9

ReDown 170 190 250

RaH
* 3.1E+11 5.9E+11 4.6E+11

NuH 200 230 200

Downcomer

“Canister”Channel
Box

“Basket”



External Dimensional Analyses
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External
cooling
flow path

Parameter

Aboveground

DCS
Low Power

DCS
High Power Cask

Power (kW) 0.5 5.0 36.9

ReEx 3,700 7,100 5,700

RaDH
* 2.7E+08 2.7E+09 2.3E+08

(DH, Cooling / HPV) × RaDH
* 1.1E+07 1.1E+08 4.8E+06

NuDH 16 26 14

 External cooling flows evaluated 
against prototypic
 External dimensionless groups

1 in.1 cm



Aboveground Configuration

 BWR Dry Cask Simulator (DCS) system 
capabilities
 Power: 0.1 – 20 kW
 Pressure vessel
 Vessel temperatures up to 400 °C
 Pressures up to 2,400 kPa
 ~200 thermocouples throughout system 

(internal and external)

 Air velocity measurements at inlets
 Calculate external mass flow rate

 Testing Completed August 2016
 14 data sets collected

 Transient and steady state

 Subject of proposed CFD Round Robin
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Pressure 
Boundary

Hot wire
anemometer



 

Steady State Values vs. Decay Heat
Aboveground Configuration
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 PCT and air flow ↑ as 
simulated decay heat ↑
 Significant increase in 

PCT for P = 0.3 kPa
 Due to air in “canister” 

instead of helium



Belowground Configuration

 Modification to aboveground 
ventilation configuration
 Additional annular flow path

 Testing Completed April 2017
 14 data sets recorded
 Transient and steady state
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Steady State Values vs. Decay Heat
Belowground Configuration
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 Similar performance to 
aboveground configuration
 Within 2% for PCT
 Within 5% for ṁ

45°

Hot wire 
locations



Cross Wind Testing
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 Wind machine installed inside test enclosure
 Three air-driven blowers
 Specially fabricated duct with flow straightening
 Cross winds of up to 5.4 m/s (12 mph)

CFD simulations
by A. Zigh (USNRC)



Reduction of External Air Flow Rate

 Moderate, sustained cross winds 
have significant impact on 
external air mass flow rate
 Reductions of up to 50%
 Thermal impact limited for DCS
 Potentially more significant effect for 

prototypic systems
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Summary
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 Dry cask simulator (DCS) testing complete for all 
configurations
 Over 40 unique data sets collected
 14 each for two primary configurations

– Aboveground and belowground
 13 additional data sets for cross-wind testing
 Main results will be reported in a NUREG/CR

 Comparisons with CFD simulations show favorable 
agreement
 Within experimental uncertainty for nearly all cases
 Additional steady state comparisons for basket, 

“canister”, and “overpack” also show good agreement
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