Summary of a Dry Cask Simulator with Applications to CFD Model Validation

Exceptional service in the national interest

S.G. Durbin and E.R. Lindgren

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SAND2017-#### C

Overview

Source: ww.holtecinternational.com/productsandservices/

wasteandfuelmanagement/hi-storm/

4

- Purpose: Validate assumptions in CFD calculations for spent fuel cask thermal design analyses
 - Used to determine steady-state cladding temperatures in dry casks
 - Needed to evaluate cladding integrity throughout storage cycle
- Measure temperature profiles for a wide range of decay power and helium cask pressures
 - Mimic conditions for above and belowground configurations of vertical, dry cask systems with canisters using Dry Cask Simulator (DCS)
 - Simplified geometry with well-controlled boundary conditions
 - Provide measure of mass flow rates and temperatures throughout system
- Use existing prototypic BWR Incoloy-clad test assembly

Past Validation Efforts

- Full scale, multi-assembly
 - Castor-V/21 [1986: EPRI NP-4887, PNL-5917]
 - Unconsolidated, unpressurized, unventilated
 - REA 2023 [1986: PNL-5777 Vol. 1]
 - Unconsolidated, unpressurized, unventilated
 - VSC-17 [1992: EPRI TR-100305, PNL-7839]
 - Consolidated, unpressurized, early ventilated design
- Small scale, single assembly
 - FTT (irradiated, vertical) [1986 PNL-5571]
 - SAHTT (electric, vertical & horizontal) [1986 PNL-5571]
 - Mitsubishi (electric, vertical & horizontal) [1986 IAEA-SM-286/139P]
 - For all three studies:
 - Unconsolidated
 - BC: Controlled outer wall temperature (unventilated)
 - Unpressurized

- FIGURE 4-1. SAHTT Assembly
- <u>None</u> appropriate for elevated helium pressures or modern ventilated configurations

Prototypic Assembly Hardware

Upper tie plate

BWR channel, water tubes and spacers

- Most common 9×9 BWR in US
- Prototypic 9×9 BWR hardware
 - Full length, prototypic 9×9 BWR components
 - Electric heater rods with Incoloy cladding
 - 74 fuel rods
 - 8 of these are partial length
 - Partial length rods 2/3 the length of assembly
 - 2 water rods

Thermocouple Layout

Internal Thermocouples Radial Array 24" spacing 11 TC's each level 66 TC's total (details below)

- Axial array A1 6" spacing 20 TC's
- Axial array A2 12" spacing – 7 TC's Water rods inlet and exit – 4 TC's Total of 97 TC's
 - 24" & 96" levels a b c d e f g h i a b c d e f g

72" & 144" levels

- 97 total TC's internal to assembly
- 10 TC's mounted to channel box
 - 7 External wall
 - 24 in. spacing starting at 24 in. level
 - 3 Internal wall
 - 96, 119, and 144 in. levels

Internal Dimensional Analyses

External Dimensional Analyses

 External cooling flows evaluated against prototypic

External dimensionless groups

Aboveground		
DCS	DCS	Cask
Low Power	High Power	Cask
0.5	5.0	36.9
3,700	7,100	5,700
2.7E+08	2.7E+09	2.3E+08
1.1E+07	1.1E+08	4.8E+06
16	26	14
	A DCS Low Power 0.5 3,700 2.7E+08 1.1E+07 16	AbovegroundDCSDCSLow PowerHigh Power0.55.03,7007,1002.7E+082.7E+091.1E+071.1E+081626

Aboveground Configuration

- BWR Dry Cask Simulator (DCS) system capabilities
 - Power: 0.1 20 kW
 - Pressure vessel
 - Vessel temperatures up to 400 °C
 - Pressures up to 2,400 kPa
 - ~200 thermocouples throughout system (internal and external)
 - Air velocity measurements at inlets
 - Calculate external mass flow rate

Testing Completed August 2016

- 14 data sets collected
 - Transient and steady state
- Subject of proposed CFD Round Robin

Steady State Values vs. Decay Heat Aboveground Configuration

Sandia

Belowground Configuration

- Modification to above ground ventilation configuration
 - Additional annular flow path
- Testing Completed April 2017
 - 14 data sets recorded
 - Transient and steady state

Steady State Values vs. Decay Heat Belowground Configuration

Sandia National

Cross Wind Testing

- Wind machine installed inside test enclosure
 - Three air-driven blowers
 - Specially fabricated duct with flow straightening
 - Cross winds of up to 5.4 m/s (12 mph)

CFD simulations by A. Zigh (USNRC)

2.00e+00 1.50e+00 1.00e+00 5.02e-01

Reduction of External Air Flow Rate

- Moderate, sustained cross winds have significant impact on external air mass flow rate
 - Reductions of up to 50%
 - Thermal impact limited for DCS
 - Potentially more significant effect for prototypic systems

Summary

- Dry cask simulator (DCS) testing complete for all configurations
 - Over 40 unique data sets collected
 - 14 each for two primary configurations
 - Aboveground and belowground
 - 13 additional data sets for cross-wind testing
 - Main results will be reported in a NUREG/CR
- Comparisons with CFD simulations show favorable agreement
 - Within experimental uncertainty for nearly all cases
 - Additional steady state comparisons for basket, "canister", and "overpack" also show good agreement