
30441R00045 Revision B

REACTOR-BASED MOLYBDENUM-99 SUPPLY SYSTEM PROJECT

TARGET COOLING SYSTEM FLOW TEST REPORT

Prepared by General Atomics for the U.S. Department of Energy/National Nuclear Security Administration and Nordion Canada Inc.

Cooperative Agreement DE-NA0002773

REVISION HISTORY

Revision	Date	Description of Changes	
А	110CT17	Initial Release	
В	120CT17	Revised with updated figures and references	

POINT OF CONTACT INFORMATION

	PRE	PARED BY:				
Name Position Email Phone						
Candace Gray	Engineer	Candace.Gray@ga.com	858-455-3394			
J. Armando Chavez	Engineer	Juan.Chavez@ga.com	858-455-2465			
APPROVED BY:						
Name Position Email Phone						
Oscar Gutierrez	Task Lead	Oscar.Gutierrez@ga.com	858-455-3655			
Katherine Partain	Quality Engineer	Katherine.Partain@ga.com	858-455-3225			
Kathy Murray	Project Manager	Katherine.Murray@ga.com	858-455-3272			

DESIGN CONTROL SYSTEM DESCRIPTION

R & D DV&S DESIGN	DISC	QA LEVEL	SYS
T&E	Ν	Ш	N/A

ii

TABLE OF CONTENTS

REVISION HISTORY	ii			
POINT OF CONTACT INFORMATIONii				
DESIGN CONTROL SYSTEM DESCRIPTIONii				
ACRONYMS	v			
1 PURPOSE AND SCOPE	1			
2 APPLICABLE DOCUMENTS	1			
3 FULL SCALE SYSTEM FLOW TESTING	1			
3.1 Description of Test Rig	1			
3.2 Test Procedures				
3.2.1 Target Assembly Pressure Drop Test				
3.2.2 Pump Coast-down Test				
3.2.3 Labyrinth Seal Bypass Test				
4 TEST RESULTS				
4.1 Target Assembly Pressure Drop Test1				
4.2 Pump Coast-down Test Results1				
4.3 Labyrinth Seal Bypass Test Results1				
APPENDIX A - EQUIPMENT AND INSTRUMENTATION USED IN TESTING A-				
APPENDIX B – GOULDS PUMP SPECIFICATION AND TEST DATAB-				
APPENDIX C - RAW PRESSURE DROP DATA SUMMARY C-	1			
APPENDIX D – CALCULATION FOR EXTRAPOLATING GA △P TEST VALUES AT 20°C				
(CONSTANT) TO ANSYS-FLUENT PREDICTION VALUES AT 34°C (TARGET	_			
ASSEMBLY AVERAGE) D-				
APPENDIX E - TARGET ASSEMBLY PRESSURE DROP TEST DATA SHEETS E-	1			
APPENDIX F – MEASURING & TEST EQUIPMENT (M&TE) LIST WITH CERTIFICATES OF CALIBRATIONF-	1			
APPENDIX G - LABORATORY NOTEBOOK REFERENCEG-	1			

iii

Target Cooling System Flow Test Report

30441R00045/B

LIST OF FIGURES

Figure 1 – Target Cooling System Test Loop P&ID	.4
Figure 2 – 3D Model of the Target Cooling System Test Loop Design	.5
Figure 3 – GA Target Cooling System Test Loop Setup	.6
Figure 4 – Gasket Seal Location	.7
Figure 5 – Bypass Flow Paths for Labyrinth Path and Cartridge Pins	10
Figure 6 - Target Assembly Pressure Drop Test Results	12
Figure 7 – Pump Coast-down Results at Various Flows with 25% Margin on ∆P	13
Figure 8 – Bench Bypass Test Article Setup	14
Figure 9 – Full Labyrinth Seal Bypass System Setup with Standpipe	15
Figure 10 – Full System Bypass Test Results	17

LIST OF TABLES

Table 1: GA Test Pool and MURR Pool Comparison	2
Table 2 - Test Cases	9
Table 3 – Pressure Drop Data Summary	11
Table 4 - Bypass Test Loading Conditions and Requirements	15
Table 5 - Bypass Test Results	16

iv

30441R00045/B

ACRONYMS

Acronym	Description	
GA	General Atomics	
GPM	Gallons Per Minute	
HX	Heat Exchanger	
LOPF	Loss of Pump Flow	
Mo-99	Molybdenum 99	
MURR	Missouri University Research Reactor	
P&ID	Piping and Instrumentation Diagram	
PSI	Pounds per Square Inch	
PSIA	Pounds per Square Inch Absolute	
PSID	Pounds per Square Inch Differential	
PSIG	Pounds per Square Inch Gauge	
ТА	Target Assembly	
TCS	Target Cooling System	
TCSTL	Target Cooling System Test Loop	

v

1 PURPOSE AND SCOPE

As with all nuclear fission assemblies, cooling must be provided to remove heat generated from fission reactions. Validating the analysis of the target system cooling water flow behavior is vital to ensuring proper function of the cooling system when it is installed in the MURR pool. The specific purpose of these tests was to confirm the analysis of the flow and pressure drop through the target assembly (TA), to measure and validate the bypass flow through the cartridge, and to measure the pump coast-down time during a simulated loss of pump flow (LOPF) event. This report describes these tests in detail and provides the results.

2 APPLICABLE DOCUMENTS

DOCUMENT NUMBER	DOCUMENT TITLE		
30441P00026	Target Cooling System Flow Test Procedure		
30441R00017	ANSYS Target Cartridge, Housing Structural Analysis Design Calculation Report		
30441R00019	Target System Cooling Calculation Report		
30441R00032	RELAP Accident Analysis and FRAPTRAN Target Rod Transient Analysis Design Calculation Report		
30441R00038	Computational Fluid Dynamics Analysis of Target Housing Design Calculation Report		
QAPD-30441-II	Quality Assurance Program Document QAPD-30441-II Reactor- Based Molybdenum 99 Supply System (RB-MSS)		

A list of applicable documents is provided below.

3 FULL SCALE SYSTEM FLOW TESTING

The main objective of the target cooling system (TCS) flow testing was to validate the pressure drop through a target assembly, simulate a loss of pump flow (LOPF) event, and measure the bypass flow through the labyrinth seal.

3.1 Description of Test Rig

The TCS tests were conducted at the General Atomics (GA) Torrey Pines campus in Building G35. The target cooling system test loop (TCSTL) duplicates as best as possible the piping system, location of target assembly at proper water depth, key flow instrumentation, and primary parameters to be implemented at MURR. Table 1 shows a parameter comparison between the TCSTL at GA and the reactor system at MURR.

Parameters	GA Test Pool	MURR Pool	
Diameter	6 feet	10 feet	
Depth	27.5 feet	30 feet	
Target Assembly Water Depth	Same as MURR	25.8 feet	
Number of Target Assemblies	1 TA and 1 bypass valve	2	
Pipe Size	Same as MURR	3 inches	
Pump Same as MURR		Model: 3796 MTi Size: 3x3-13	
Heat Exchanger	Pressure drop simulated via valve (HV-305)	HX is part of cooling skid	
Water Chemistry	5.5 nominal pH Conductivity ~ 2 µS/cm	5.5 nominal pH Conductivity < 2 μS/cm	

Table 1: GA Test Pool and MURR Pool Comparison

The target assembly water depth (25.8 feet) was measured from the top of the operating water level at MURR to the bottom of the TA. An underwater pressure transducer (PT-335 with \pm 0.1% accuracy), was attached to the target inlet which is approximately three feet above the bottom of the TA.

The process flow is detailed in Figure 1 with the piping and instrumentation diagram (P&ID). Figures 2 and 3 show the TCSTL setup. It is important to note that the suction line in the TCSTL has the same overall size and liquid volume as the layout at MURR required to ensure proper pump priming. The supply line from the pump to the TA is slightly shorter in length compared to the MURR design and does not contain the main heat exchanger (HX). As a result, a valve (HV-305) was added to simulate the highest system pressure drop. The water pH and conductivity were tested weekly to ensure the water chemistry standards were maintained. Appendix A specifies the equipment and instrumentation used for testing.

The test equipment in the TCSTL consists of:

- One fiberglass surrogate pool
- One target assembly (consisting of a cartridge, diffuser, target housing, and 11 stainless steel surrogate target rods)
- One surrogate bypass valve (HV-200 shown in Figure 1)
- One self-priming pump (refer to Appendix B for pump specifications and performance test from pump manufacturer)
- Target cooling system piping (PVC), support structures and valves designed to mimic the setup at MURR.

Target Cooling System Flow Test Report

- Instrumentation (including flow meters, pressure gauges, and an underwater pressure transducer).
- Transparent graduated standpipe.

Large Vent Valve Ø Vent PI 308 8 Clear DPI 310 4" Pipe Graduated Tube Figure 1 – Target Cooling System Test Loop P&ID 3" Pipe 4" Pipe HV-305 FT 110 HV-302 FT 100 PI 335 HV-100 DPI 320 PI 302 HV-200 Vent Analog 8 HV-110 McMaster HV-301 2" Flanged Fill Port Gauge SN:E452434 VFD 4" Pipe DPI 302 Water Cooling Pump P-310 FV-105 3" Pipe Instrumentation Legend PT 335 **T** DPI – Differential Pressure Gauge FT – Flow Meter PI – Pressure Gauge PT – Pressure Transmitter TT - RTD LLL 2" Flanged Drain Port

4

30441R00045/B

Attachment 11

Target Cooling System Flow Test Report

Target Cooling System Flow Test Report

30441R00045/B

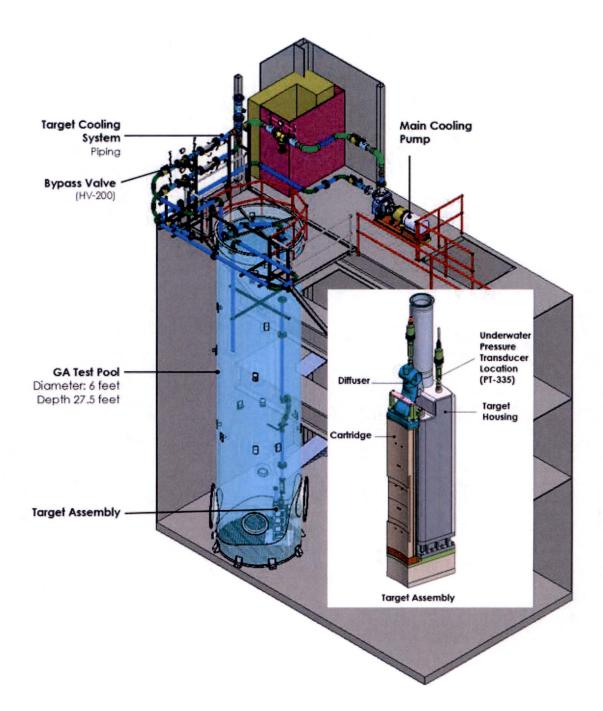


Figure 2 – 3D Model of the Target Cooling System Test Loop Design

Target Cooling System Flow Test Report

30441R00045/B

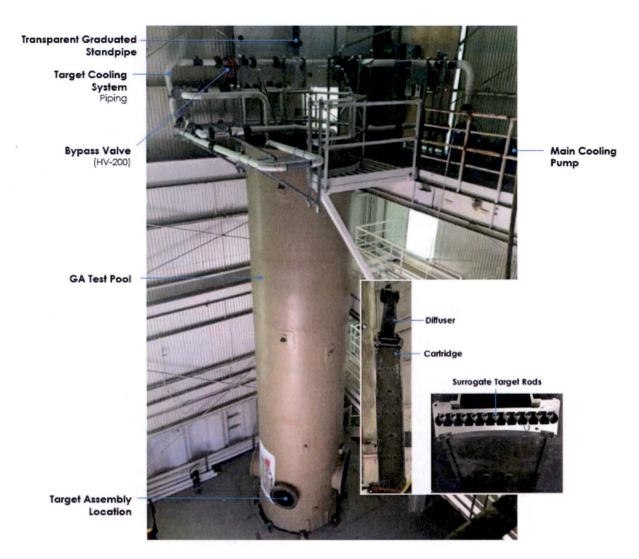


Figure 3 – GA Target Cooling System Test Loop Setup

3.2 Test Procedures

3.2.1 Target Assembly Pressure Drop Test

The objective of this test was to verify the pressure drop from the target inlet through the diffuser outlet as a function of flow rate. Test flows values were set to 85%, 100% and 115% of the nominal target assembly flow rate (107 GPM at 100%), which is the calculated nominal flow rate from analysis document 30441R00021. This flow rate was measured to within the $\pm 0.5\%$ accuracy of the flowmeter used for the tests. A gasket seal was placed on the TA upper and bottom cartridge flanges to ensure that accurate flow and pressure drop measurements were made by eliminating these as potential bypass paths. Figure 4 shows the upper and lower gasket seal locations. The diffuser outlet pressure was calculated by taking the measured absolute pressure reading from PT-335 and subtracting 14.7 psi (to convert the pressure from absolute to

30441R00045/B

gauge) and 9.9 psi (to account for the 22.8 feet of static water head above the transducer). The raw data from the pressure transducer were automatically recorded on a data logger and are summarized in Appendix C.

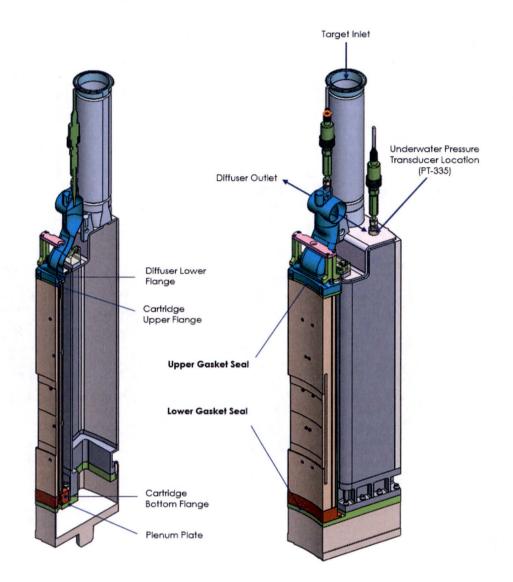


Figure 4 – Gasket Seal Location

7

Procedure:

- 1. Install the target assembly into the pool.
- 2. Check to see that the cartridge is secured in the housing and that the locking mechanism is engaged.
- Check the fill level of the surrogate pool to the normal MURR operating pool level (water height = 25.8 feet).

- 4. Open system valves and control frequency of pump to 85% flow through the system.
- 5. Turn on pump.
- Record start and stop times to calculate duration. Manually record system pressures, pressure drops, and temperature data from the instrumentation gauges every 5 mins. Pressure to the target assembly will be recorded electronically at 1 sec intervals. Run flow test for 15 min.
- 7. Turn off pump.
- 8. Control frequency of pump to increase the flow rate to 100% flow through the system.
- 9. Turn on pump.
- 10. Record start and stop times to calculate duration. Manually record system pressures, pressure drops, and temperature data from the instrumentation gauges every 5 mins. Pressure to the target assembly will be recorded electronically at 1 sec intervals. Run flow test for 15 min.
- 11. Turn off pump.
- 12. Control frequency of pump to increase the flow rate to 115% flow through the system.
- 13. Turn on pump.
- 14. Record start and stop times to calculate duration. Manually record system pressures, pressure drops, and temperature data from the instrumentation gauges every 5 mins. Pressure to the target assembly will be recorded electronically at 1 sec intervals. Run flow test for 15 min.
- 15. Turn off pump.
- 16. Secure all equipment.

3.2.2 Pump Coast-down Test

The objective of this test was to record the flow rate entering a target assembly as a function of time during a simulated loss of pump flow (LOPF) event at room temperature with the decay heat removal valves in the closed position. Valve HV-320 was adjusted in order to test for the worst case system pressure drop by analysis in document 30441R00019. This system pressure drop analysis has 25% margin built into it for the 85% and 100% flow cases and 13% margin for the 115% flow case. The margin on the 115% case was limited by pump performance. Table 2 provides a summary of the flow and pressure drop parameters used for this test. The decay heat removal valve (FV-105), in the test rig remained closed during this test to ensure all the flow went through the target assembly.

Procedure:

1. Install the target assembly into the pool.

Target Cooling System Flow Test Report

- 2. Check to see that the cartridge is secured in the housing and that the locking mechanism is engaged.
- 3. Check the fill level of the surrogate pool to the normal MURR operating pool level (water height 25.8 feet).
- 4. Open all system valves and control frequency of pump to 85% flow through the target assembly.
- 5. Turn on pump.
- 6. Open all bleed valves to release any trapped air. Once all the air is released, close the bleed valves.
- 7. Adjust valves HV-100 and HV-200 to have equal flow for each flow meter.
- Adjust valve HV-305 and increase the frequency of the pump to obtain the expected △P (see Table 2) across PI-335 and PI-302.
- 9. Manually record system pressure data from the instrumentation gauges (PI-335, PI-302, and DPI-310).
- 10. Ensure data loggers are connected to the flow meters.
- 11. Turn off power to the pump.
- 12. Record flow rate manually at 1 sec intervals until the flow reaches 0 GPM. Flow rate will also be recorded electronically at 1 sec intervals.
- 13. Turn on pump.
- 14. Repeat steps 7-12 for the 100% and 115% flow cases shown in Table 2.

Table 2 - Test Cases

Test Case Description	Expected ∆P (psid)	Source	
85% Flow with 25% Margin on ΔP	27 9	30441R00019	[
100% Flow with 25% Margin on ΔP	88.1	30441R00019	5a, d, e, f
115% Flow with 13% Margin on ΔP	44,9	Pump limit	

3.2.3 Labyrinth Seal Bypass Test

The objective of this test was to measure the bypass flow between the cartridge bottom flange and the target housing lower plenum. The full scale test was performed with the locking mechanism torqued to 30 in-lbs (each bolt). The lower gasket seal (Figure 4) was removed and the outlet of the diffuser was blocked such that the water volume lost was through the labyrinth seal and the pins in the cartridge. The expected bypass through the cartridge pins is small (much less than 1 GPM), as the internal pressure should help "self-seal" the leak path (Figure 5). The leak through the pins and the leak through the labyrinth seal were measured as a single leak.

Figure 5 – Bypass Flow Paths for Labyrinth Path and Cartridge Pins

Procedure:

- 1. Remove the cartridge from the pool.
- 2. Block the diffuser outlets to prevent water flow.
- 3. Remove the lower gasket seal on the cartridge bottom flange.
- 4. Insert cartridge back into the housing inside of the pool.
- 5. Check to see that the cartridge is secured in the housing and that the locking mechanism is engaged. Torque down cartridge locking mechanism to 30 in-lbs.
- Check the fill level of the surrogate pool to the normal MURR operating pool level (water height = 25.8 feet).
- 7. Torque down cartridge locking mechanism to 30 in-lbs.
- 8. Turn on pump.
- 9. Fill the pipe going to the target assembly with water. The transparent graduated standpipe should be filled to approximately 42 inches of water (Figure 9).
- 10. Turn off pump and close valves HV-200 and HV-302.
- 11. Pressurize the pipe going to the target assembly with compressed air to the value obtained for the pressure drop through the target assembly for the 115% flow case, which is the highest pressure and flow conditions the cartridge will ever see.
- 12. Measure and record the water drop in the transparent standpipe as a function of time ensuring static pressure stays above the required value.

5a, d, e, f

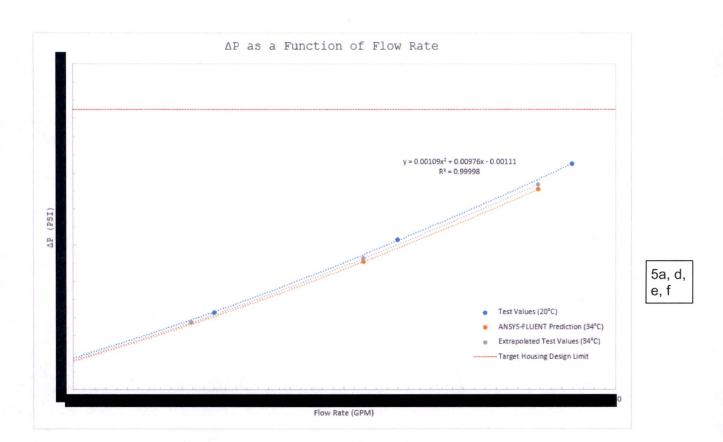
13. Let system run for 30 sec.

14. Secure all equipment.

4 TEST RESULTS

4.1 Target Assembly Pressure Drop Test

The design analysis of the pressure drop from the target inlet through the diffuser outlet detailed in document 30441R00038 has been validated by agreement to within 2% of the expected range of the extrapolated test data. The tests were run at slightly higher volumetric flow rates when compared to the values used in the analysis. The polynomial equation shown in Figure 6 was obtained from the test data in Appendix C – Raw Pressure Drop Data Summary. The polynomial equation was used to determine the pressure drop at 20°C for each corresponding flow rate. The results are shown in Table 3. All tests at GA were run with an inlet temperature to the target of 20°C. During normal operation at MURR however, the target inlet temperature will be 29°C with a TA average temperature of 34°C, which was the temperature used in the ANSYS-FLUENT analysis. To account for the temperature difference between the operating conditions at MURR and the test values to a system with an average temperature of 34°C. Table 3 lists the test values at 20°C, and both the extrapolated test values and the analysis prediction values at a TA average temperature of 34°C. The test data extrapolation resulted in a less than 2% decrease in the pressure drop values when adjusting the temperature from 20°C to 34°C.

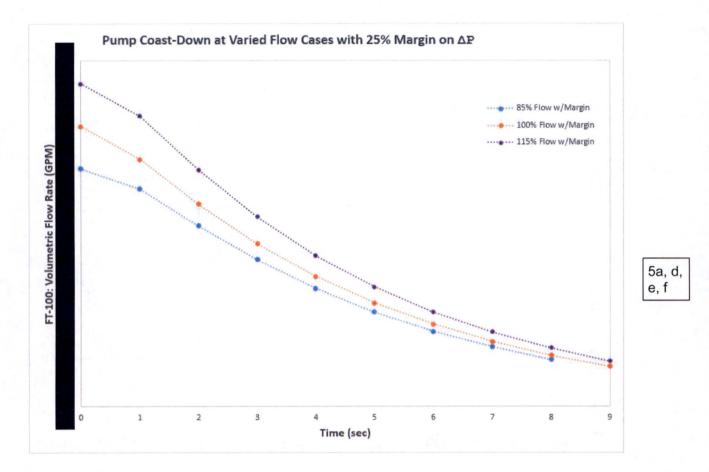

The flow values used in the analysis did not include the bypass effect and assumed all the flow would go through the cartridge to cool the target rods. For 100% flow (107 GPM) at 34°C average TA temperature, ANSYS-FLUENT predicted **from** psi and the extrapolated test value at 34°C average TA temperature yielded **from** psi. The difference between the two values is 1.5%. Figure 6 shows the pressure drop through the TA as a function of flow rate for both the analysis and test values. It also shows that the pressure drop values are within the design limit of **from** psi for the target housing, which has built in margin (refer to Table 2 in document 30441R00017 for more details). For reference, the test data sheets have been provided in Appendix E – Target Assembly Pressure Drop Test Data Sheets.

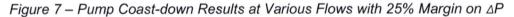
ΔP Source	ΔP at 91 GPM (psi)	ΔP at 107 GPM (psi)	ΔΡ 123 GPM (psi)	
Test Values (20°C)	0.0	1.3.5	17.7	
Test Values (Extrapolated to 34°C)	9.7	13.3	17.4	5a, d, e
ANSYS-FLUENT Prediction (34°C)	9.5	13.1	17.1	

Table 3 -	Pressure	Drop	Data	Summary
	110000010	DIOP	Dutu	ourning y

Target Cooling System Flow Test Report

30441R00045/B


4.2 Pump Coast-down Test Results


A loss of pump flow (LOPF) event can be caused by loss of electrical power, pump failure, or system blockage. This test only covered the loss of electrical power event. The LOPF impacts both target assemblies and includes pump coast-down and fluid momentum to ease the transition from forced flow to natural circulation flow. Although the decay heat removal valves in the MURR system can be opened to improve the natural circulation cooling during LOPF, the butterfly valve (FV-105) remained closed during this test.

This test measured the amount of time it takes the pump to coast down to 15% flow when the pressure drop through the system is increased to the highest value by analysis which has 25% margin (see Table 2 for values). The pump coast-down times for three different flow cases are shown in Figure 7. It took approximately 9 seconds for the flow rate to decrease significantly from 100% flow (~112.8* GPM – see Table 4 for flow values with bypass flow included) to about 15% flow (16.2 GPM).

Target Cooling System Flow Test Report

30441R00045/B

4.3 Labyrinth Seal Bypass Test Results

A bench test was initially conducted to obtain the required torque value for the final system to produce an acceptable leak rate through the labyrinth seal. The results from the bench test demonstrated the labyrinth seal required a torque of 30 in-lbs to each bolt in the final system in order to operate below the maximum 5% total flow. An image of the bench test article can be seen in Figure 8. The torque value from the bench tests was then applied and used on the locking mechanism in the full scale test.

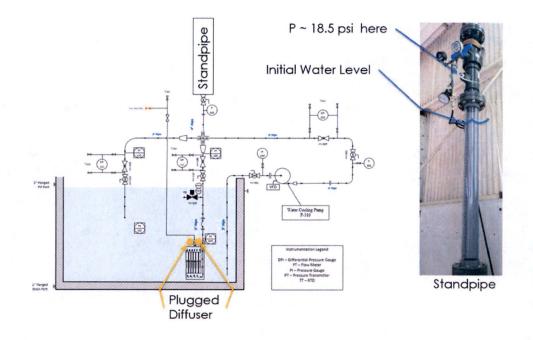

Target Cooling System Flow Test Report

Figure 8 – Bench Bypass Test Article Setup

Figure 9 shows the setup for the full scale test. Similar to the bench test, a transparent standpipe was installed in the location shown in the P&ID. The standpipe is made from clear PVC to be able to measure the water that is going through labyrinth seal and the cartridge pins.

Target Cooling System Flow Test Report

Figure 9 – Full Labyrinth Seal Bypass System Setup with Standpipe

The maximum allowed bypass for the three different flow cases and the pressure requirements for the labyrinth seal are summarized in Table 4. The tests were run at the worst case pressure condition which was derived from the 115% case shown in Table 4. The tests ensure that the pressure was always greater than 17.4 psi, for instance Run 1 was executed at 18.6 psi (Table 5). The cartridge was unlocked, lifted out of its seating position, re-seated and locked back down again to thirty in-lbs for each test to simulate and measure the consistency of the seal through several runs. Eleven cartridge lifting and re-seating operations were performed and results can be seen in Figure 10.

Flow Case	Flow Rate (GPM)	5% Max Allowed Bypass (GPM)	Cartridge Pressure Report 30441R00017
85%	95.9*	4.8	
100%	112.8*	5.6	13.5
115%	129.7*	6.5	17.4

5a, d, e, f

*Flow values include the 5% maximum bypass flow through the cartridge pins and labyrinth seal.

Target Cooling System Flow Test Report

30441R00045/B

9/12/2017			9/14/2017	4.5%	9/15/2017					9/17/17
Run 1 @ 18.6 psi back pressure	Run 2 @ 18.8 psi back pressure	Run 3 @ 19.2 psi back pressure	Run 4 @ 19.0 psi back pressure	Run 5 @ 18.8 psi back pressure	Run 6 @ 19.0 psi back pressure	Run 7 @ 18.6 psi back pressure	Run 8 @ 18.9 psi back pressure	Run 9 @ 18.8 psi back pressure	Run 10 @ 18.7 psi back pressure	Run 11 @ 18.6 psi back pressure
GPM	GPM									
3.78	4.43	3.96	4.23	3.41	3.38	3.43	3.21	3.29	4.23	3.09

Table 5 - Bypass Test Results

The tests confirm that the labyrinth path slows the amount of water bypassing the cartridge, satisfying the maximum design requirement of 5%. The allowed bypass at 115% flow case is 6.5 GPM and the highest bypass measured in the tests is less than 4.5 GPM, including the cartridge pins. The average of the eleven runs is 3.7 GPM providing margin to the design requirement.

Target Cooling System Flow Test Report

30441R00045/B

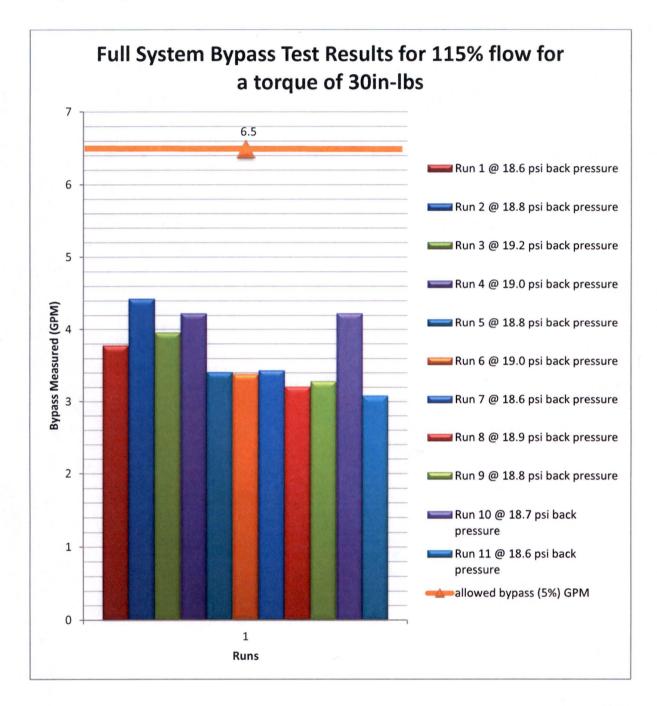


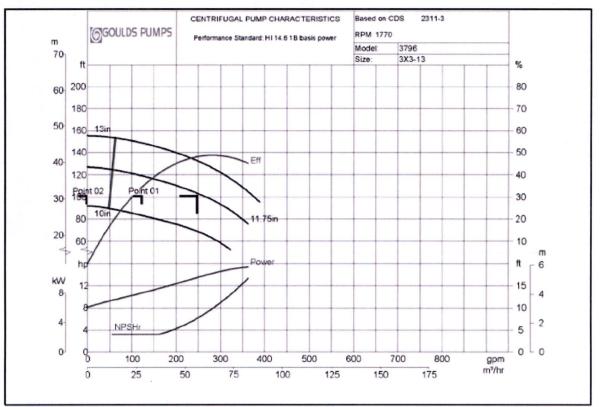
Figure 10 – Full System Bypass Test Results

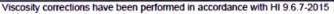
APPENDIX A – Equipment and Instrumentation Used in Testing								
Equipment / Instrument	Make / Model	Measuring Range						
Pressure Gauge (PI-335)	OMEGA PN: DPG409-015CG	Pressure Range: ±15 psi Accuracy: ± 0.08%						
Pressure Gauge (PI-302)	OMEGA PN: DPG1001B-60G	Pressure Range: 0 to 60 psi Accuracy: ± 0.10%						
Pressure Gauge (PI-308)	OMEGA PN: DPG1001B-60G	Pressure Range: 0 to 60 psi Accuracy: ± 0.10%						
Analog Pressure Gauge (E452434)	Ashcroft PN: 45 1082AS 02L XC4 30#	Pressure Range: 0 to 30 psi Accuracy: ± 0.25%						
Differential Pressure Gauge (DPI-302)	OMEGA PN: DPG409-030DWU	Pressure Range: 0 to 30 psi Accuracy: ± 0.08%						
Differential Pressure Gauge (DPI-310)	OMEGA PN: DPG409-030DWU	Pressure Range: 0 to 30 psi Accuracy: ± 0.08%						
Differential Pressure Gauge (DPI-320)	OMEGA PN: DPG409-050DWU	Pressure Range: 0 to 50 psi Accuracy: ± 0.08%						
Pressure Transmitter (PT-335), DL	Keller Preciseline PN: 0308.00301.051307.54	Pressure Range: 0 to 100 psi Accuracy: ± 0.1%						
Flow Meter (FT-100), DL	McCrometer PN: VW03AE14AA	Flow Range: 100 GPM to 140 GPM Accuracy: ± 0.5%						
Flow Meter (FT-110), DL	McCrometer PN: VW03AE14AA	Flow Range: 100 GPM to 140 GPM, Accuracy: ± 0.5%						
Pump (P-310)	Goulds Pumps Model: 3796 MTi Pump Size: 3x3-13 Self-Priming Pump	Speed: 1770 RPM Flow: 250 GPM Head: 102 FT Efficiency: 48.0% Total Power: 13.5 HP NPSHr: 7.8 FT						
VFD	Allen Bradley PowerFlex 525 AC Drive PN: 25B-D037N114	480 VAC, 3 Phase 25 HP, 18.5 kW Normal Duty 20 HP, 15 kW Heavy Duty						

APPENDIX A - Equipment and Instrumentation Used in Testing

A-1

Target Cooling System Flow Test Report


30441R00045/B


Model: 3796	Size: 3	x3-13 (Group: MTi	60Hz	RPM: 1770	Stages:	
			ar overstoor and the of a place of the set			and an and the second secon	
Job/Inq.No. :	Opti-Temp- HEX F	Feed Pumps					
Purchaser :	OPTI TEMP						
End User :	Opti-Temp	Iss	sued by : Bran	don Bond	Rev.	: 0	
Item/Equip.No. :	ITEM 001 (Base C	Offer) Qu	otation No. : DF1	6-10-25 01	Date	: 01/25/2017	
Service :	Self Priming to HE	X Skid					
Order No. :	6058869	Ce	ertified By : Brando	n Bond	SN/S	O: N736H003	
Operating Con	ditions		Pump P	erformance			
Liquid:	Water	Published Efficiency	48.5 %	Suction	Specific Speed:	5,018 gpm(US) ft	
Temp.:	110.0 deg F	Rated Pump Efficien	icy: 48.0 %	Min. Hy	draulic Flow:	56.9 gpm	
S.G.Nisc.:	1.000/1.000 cp	Rated Total Power:	13.5 hp	Min. Th	ermal Flow:	N/A	
Flow:	250.0 gpm	Non-Overloading Po	wer: 15.4 hp				
TDH:	102.0 ft	Imp. Dia. First 1 Stg	(s): 11.7500 in				
NPSHa:		NPSHr:	7.8 ft	Shut of	Head:	127.1 ft	
Solid size:		Max. Solids Size:	0.3750 in	% Susp (by wtg)			

APPENDIX B - Goulds Pump Specification and Test Data

Vapor Press:

Notes: 1. Elevated temperature effects on performance are not included.

CONNECTIONS TABLE WEIGHTS WEIGHTS ARE APPROXIMATE PLAN 01 PARTS LIST - ARMORED TEFLON HOSE (RECIRCULATION FROM PUMP CASE TO SEAL) WET DRY SIZE OTY PURPOSE STATUS FOR USE BY NO TYPE ITEM MATERIAL DESCRIPTION PART NAME LBS KG 185 KG CUSTOMER CASING FILLER PLUGGED TA 1-1/2 NPT 1 ARMORED TEFLOR MOSE WITH SHIVEL FITTING 31655/ TEFLON HOSE 472 214 415 188 PHNP TB CASING DRAIN PL UGGE D CUSTOMER 1-1/2 NPT 1 1 FITTINGS A-20 COUPL ING 2 1 2 NPT CASING BYPASS PLAN 01 GOULDS TC 1/2 1 122 DRIVER 270 122 270 BEARING FRAME DRAIN PLUGGED CUSTOMER TF 1/2 NPT 1 68 BASEPLATE 150 68 150 OIL FILL PLUGGED CUSTOMER TY NPT 3/4 1 TOTAL 894 405 837 379 COUPLING SPECIFICATIONS MFR; T.B. WOODS SIZE: 7# TYPE: SC GUARD PROVIDED: YES X NO MATERIAL: CARBON STEEL MECHANICAL SEAL SPECIFICATIONS 22.63 -6.75 24.00 -MFR: JOHN CRANE [575] [171] [610] TYPE: SINGLE CARTRIDGE -CLASS 150# F.F. 3" DISCHARGE APPROX. - 3.75 GLAND TYPE: FLUSH QUENCH DRAIN 6.63 [95] DRIVER SPECIFICATIONS [168] CLASS 150# F.F. MFR,: WEG COUPLING GUARD-3" SUCTION APPROX FRAME: 2561 CARBON STEEL POWER: 20 HP RPM: 1800 PHASE: 3 11.50 HERIZ: 60 WOLTS: 460 [292] 6.00 ENCLOSURE: SEVERE DUTY/WILL AND CHENICAL PREWIUM EFFICIENCY [152] MODEL : 3796 GROUP : NTI 10,00 SIZE: 3X3-13 LUBRICATION: FLOOD OIL [254] BEARING ARRANGEMENT: BALL/BALL BASEPLATE: CAST IRON CERTIFIED FOR CONSTRUCTION ONLY WHEN SIGNED. SIGNATURE: B.BOND DATE 1/16/17 . 6.00 6.00 CUSTOMER DATA 4.13±.38 [152] [152] 4X . Ø . 75 HOLES 4.13 Customer: PROFESSIONAL PUMP [105±9] Goulds Serial No: N736H003 Customer P.O. No: 6058869 [105] - 15.00 ---[381] 1.25 49.50 Item No: ITEM 001 End User, Opti-Temp [1257] Service: Self Priming to HEX Skid 52.00 PUMP OUTLINE DRAWING NOTES [1321] MODEL 3796 FLANGES CONFORM TO ANSI STANDARDS. BOLT ∜ITT HOLES STRADDLE & . (816.5 STEEL OR B16.1 IRON) **GOULDS PUMPS** ROTATION CCW VIEWED FROM COUPLING END. DIMENSIONAL TOLERANCE TO PIPED CONNECTIONS DRAWING SCALE: 0,090 DINENSIONS IN INCHESION) IS ±0.50 (13) EXCEPT FOR PUMP SUCTION AND DISCHARGE. **DRANK** CHECKED APPROVID COPYRIGHT 2011 ROUTING OF PIPELINES IS APPROXIMATE AND MAY 848 1/16/17 888 1/16/17 BHB 1/16/17 VARY AFTER ASSEMBLY ERE#1 B REV REFER TO MECHANICAL SEAL DRAWING FOR ۲ B1-736H003 0 +-} GLAND DETAIL SHEET & Dd &

Target Cooling System Flow Test Report

Attachment 11

30441R00045/B

		INSPECTION A	ND TEST PLAN					Form EF-3170, Re 19-May-2006
Ģ	oulds Pumps				CUSTOMER	PROFESSION	AL PUMP	
					P.O. #	6068869		
	Y	DATE:	1/17/2017)		N736H003		
~		REVISION:	0	1		3796 MTi	Sector Sector	Net of the last
	Engineered for life	ISSUED BY:	B. LUCCHESI	1	PUMP SIZE	3x3-13		
				,	EQUIPMENT TAG			
					SERVICE	Self Priming t	UCY CLIA	
					SERVICE	Sen Priming t	O HEA SKID	
	INSPECTION			Character to be	QC	Inspection	Test Codes	
REF. #	REQUIREMENTS	PROCEDURE	Acceptance Criteria	Checked	Form/Verifying Document	OOULDS	CUSTOMER	Notes
1	QCP. REPRESENTS A GOULDS QUALITY CO THE LATEST PROCEDURE/STD. REVISION W SPECIFIC REVISION HAS BEEN APPROVED F	ILL BE APPLICABLE IF NO						
1	Configure order per customer specifications.	Purchase Order						
2	Casting inspection requirements	ITT Engineering Standard E-2373	M00-0P-55					Responsibility Casting Suppl
3	ASSEMBLY	and the second second second second second second	distance a second standard second	Charles and the second	And the second second	Section 200	State Faller Frank	and the second second
4	Impelier Balance	QCP, 641 ISO 1940	ISO 1940 G6.3	Residual Unbalance	Report	1	R	
5	Assembled Hydrostatic Test	QCP 551	No Leakage	Integrity of assembled pump and seal installation	NA	1	NA	
6	Hydraulic Performance Test	QCP 560	Hydraulic Institute	Pump Head- Capacity-Power	Test Report	- I	A	Performance Co Approval Prior Shipment
7	Blast and Coating Compliance	Top of Basepiate and Pump Components: Goulds standard ANSI paint system Motor WEG standard paint		Surface Preparation Paint Thickness	NA	1	R	e.
8	Documentation Review	NA	Customer Order	Acouracy/ Completeness of documents	NA	R	R	
9	Shipment Preparation	QCP-520	N/A	Adequacy of packaging and shipment preparation	NA		2	
10	Confirmation of Conformance to PO	CUSTOMER PO	Customer PO		Certificate of Conformance			
11	Release To Ship	CUSTOMER PO			Performance Curve Approval		A/H	
	H = Hold Point	W - Witness V - Verify	S = Surveillance R = Record/Review	A = Approval	1		1	1

Attachment 11

30441R00045/B

B-3

Rev 0 - Initial submittal.

Target Cooling System Flow Test Report

30441R00045/B

Pape 3	>	of	30
	11	39	5

A	No. of Concession, name	Margine West	of the subscript of	Statistics of the local division of the loca
	PT		ER	
				-

CERTIFICATE	OFC	ONFORM	ANCE

Date:

February 28, 2017

Supplier:

Opti Temp Inc 1500 International Drive Traverse City, MI 49686 PH: 231.946.2931

General Atomics Purchase Order: Part Number: (Below)	4500066103
Main Pump	

	Main Pump
1	MODEL:3796 MTi SIZE:3x3-13, Self Priming Pump w/ I-Alert
1	Drive (Motor) 480V/3ph/60Hz
1	25B-D037N114, PowerFlex 525 AC Drive, 480 VAC, 3 Phase, 25 HP, 18.5 kW Normal Duty; 20 HP, 15 kW Heavy Duty, Frame E, IP20 NEMA / Open Type, Filter.
1	Crating
1	Testing

Serial Number- Motor: 1033917920, Pump: N736H003, Coupler: No Serial Number Quantity: 1 Each Items Above Quantity:

I hereby certify that all items furnished against your contract/purchase order 4500066103 are in conformance with the requirements, specifications, and drawings applicable to that order.

Signature

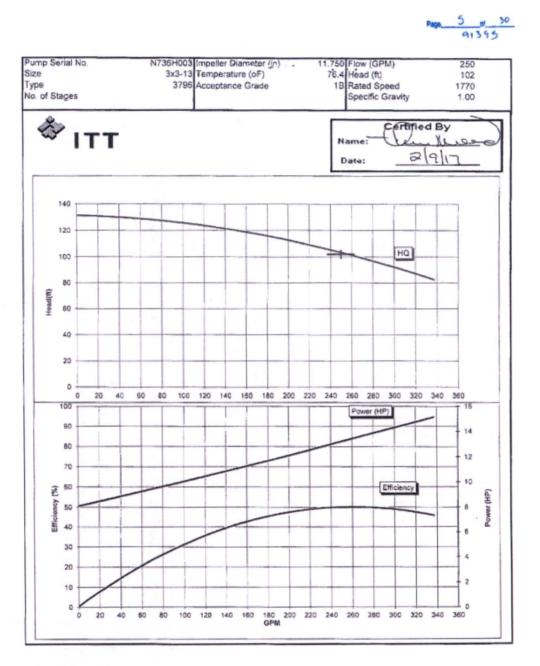
Vice President, Engineering Title

2.28.2017

Date

1500 International Drive, Traverse City, MI 49686 P: 231.946.2931 F: 231.946.0128 www.optitemp.com

30441R00045/B


Page 4 0 30

Ф _{IT}	т		Goulds Pu d Product		1	• •	·		Perkim	nance Te	st Repo	rt	
ustom			nal Pump							Test Typ		Non-With	Dess
		rder No.:				Model:		3796		Seal De		Single C	
Inder	Serial N	io :	N736H0	03		Size:		3x3-13		Imp. Dia		11.750	in
nfo.	Item No.:		0			Pump	Pint.			Ord. Imp		11.750	in
10.00	Quantity		1			Constru		316		Dwg. No		100-539	
	Test Lo		ANSI-St	2box	-	Flow M	100 C 100 C 100 C	4In Mag	2	Gauge C		0.00	ft
fest	Torque		TS3	11102		Suct. G			9	Suct I.D		3.068	in
nfo.	Rotation		CW			Disch.				Disch, I.		3.068	100- F.
	Rated S		GW	1970		-		and the second second second		Cust. Mt			in
	Rated F			1770		Test Sp Test Fk		1770 250	rpm	Factor:	r. a svc	20/1.25	
Rating	Rated H				gpm				gpm		.		
nfo.				102		Test He		102	ft	Cust. S.		1.00	
	Rated E			48		Atm. Pr	ess.:	33.03	ft	Seal Typ		Single Ca	art
	Rated P	'ower:		13.50	php	1				Torque i		9.00	
Remark	cs:									Accepta	nce	1B	
									-	Grade:			
			Perl	ormance	at Test	Speed	and Sp	ecific G	ravity = 1	1.0******			
	Suct.	Spec	Vel.	Disch.	Total	Temo	Cana	Torque					
Pt. No.	Head	Gravity	Head	Head	Head	Deg F		Correc	Power	Speed	Eff		
	(abs ft)	-arranty	(ft)	(ft)	(ft)	2481		(in-lbs)	(bhp)	(rpm)	(%)		
1	56.1	0.9990	0.0	154.7	131.6	76.4	190117	289	8.1	1765	0.1		
2	55.9	0.9990	0.0	149.6	126.7	76.4	58	323	9.1	1765	20.5		
3	55.5	0.9990	0.0	145.0	122.6	76.5	112	362	10.1	1765	34.3		
4	55.0	0.9990	0.0	141.1	119.1	76.6	157	393	11.0	1765	42.8		
5	54.2	0.9990	0.0	132.6		76.6	208	438	12.3	1765	47.8		
6	53.2	0.9990	0.0	120.8		76.7	260	479	13.4	1764	49.2		
7	52.5	0.9990	0.0	111.9	92.5	76.7	296	504	14.1	1764	49.0		
8	51.5	0.9990	0.0	99.7	81.3	76.8	336	532	14.9	1763	46.4		
******	And Spe	nance at l ecific Gra	Rated Spo vity = Total		1770	npm	Eff =	(Capac	ity X Tot	Notes al Head)	K Spec (Grav)/(Pov	wer X 3960
Pt. No.	Cap	pacity	Head	Por	wer	Eff							
		ipm)	(ft)	(b)		(%)	-						
1		0.3	132.5		2	0.1							
2		8.2	127.6		.1	20.5							
3		12.7	123.4		1.2	34.3							
4		57.1	120.0		.1	42.8							
5	2	08.9	112.3	12	.4	47.8	1						
6		80.6	101.4		6.6	49.2							
7	2	97.0	93.3		1.3	49.0							
8	3	37.3	82.0	15	5.1	46.4							
					Test D	ate:	2/9/17	,		Test Nu	mber		
Tested	By:						ALC: NO. 1						
Tested	By:	-				sed By:							

Customer: OPTI TEMP Serial No: N73BH003 Customer P.O. No: 6058869 Item No: ITEM 001 (Base Offer) End User: Opti-Temp Service: Sett Priming to HEX Skid

Target Cooling System Flow Test Report

30441R00045/B

Customer: OPTI TEMP Serial No: N736H003 Customer P.O. No: 6058869 Item No: ITEM 001 (Base Offer) End User: Opti-Temp Service: Self Priming to HEX Skid

Target Cooling System Flow Test Report

30441R00045/B

Time	Flow Rate (GPM)	PT-335 Absolute Pressure Reading (psia)	Absolute to Gauge Conversion (psig)	Static Water Head Adjustment (psig)	
10:15:14 AM	0				
10:15:16 AM	0	21.0			
10:15:18 AM	0				
10:15:20 AM	0				
10:15:22 AM	0				
10:15:24 AM	0	2 1 5			
10:15:26 AM	0				
10:28:06 AM	93	1.5	100		
10:28:08 AM	93	A BARK			
10:28:10 AM	93				
10:28:12 AM	.93			0.7	
10:28:14 AM	93	24.8	26-1	10.2	
10:28:16 AM	93		and the second second	10-4	
10:28:18 AM	93	201 B		10.2	
10:55:56 AM	110			14.2	
10:55:58 AM	110		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	14.2	
10:56:00 AM	110				
10:56:02 AM	110		2.0	144	
10:56:04 AM	110			A MARINE	
10:56:06 AM	110		2.13	13.4	
10:56:08 AM	110		200 2 48	-4	
11:13:20 AM	126		28.3	18.4	
11:13:22 AM	126		2.8	1.4	
11:13:24 AM	126		0.5	18.4	
11:13:26 AM	126	1	Page 1	19.6	
11:13:28 AM	126	13		104	
11:13:30 AM	126		28.5	18.6	
11:13:32 AM	126	2.2		1 2 .0	

APPENDIX C – Raw Pressure Drop Data Summary

5a, d, e, f

APPENDIX D – Calculation for Extrapolating GA △P Test Values at 20°C (Constant) to ANSYS-FLUENT Prediction Values at 34°C (Target Assembly Average)

The pressure drop in a turbulent flowing fluid is governed by the equation:

 $\Delta P = (f L/d + K) (\rho V^2/2)$

f is the friction factor and governs the frictional component of the flow,

The friction pressure drop is linearly a function of the density, p and the friction factor, f.

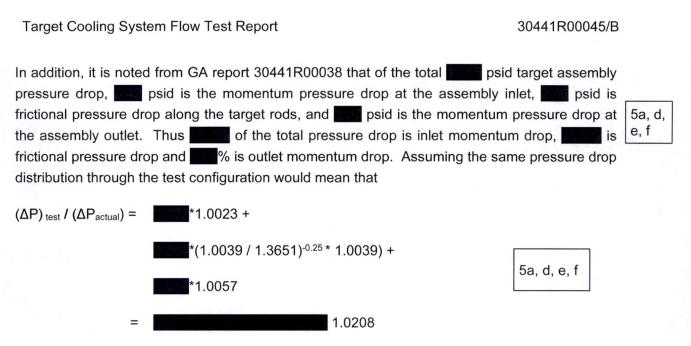
f, in turn, is approximately a function of the Reynolds number to the -0.25 power¹, and Re is a function of ρ/μ .

Thus, $(\Delta P_{\text{friction}})_{\text{test}} / (\Delta P_{\text{friction}})_{\text{actual}} = (f\rho)_{\text{test}} / (f\rho)_{\text{actual}} = f_{\text{test}} / f_{\text{actual}} * \rho_{\text{test}} / \rho_{\text{actual}} = (\rho_{\text{test}}/\mu_{\text{test}})^{-0.25} / (\rho_{\text{actual}}/\mu_{\text{actual}})^{-0.25} * \rho_{\text{test}} / \rho_{\text{actual}} =$

[(ptest / pactual) / (µtest/µactual)]^{-0.25} * ptest / pactual

K governs the momentum and area change component of the pressure drop.

Thus, the momentum pressure drop is linearly a function of the density, p.


So, $(\Delta P_{momentum})_{test} / (\Delta P_{momentum})_{actual} = \rho_{test} / \rho_{actual}$

Our test is basically carried out with water at 20°C, but the real flow through the target will be at an average temperature of 34°C, with the inlet at 29°C and the outlet at 39°C.

For the target flow at 2 atm:

	Test conditions	Actual conditions	Test/Actual
ρ (kg/m3) _{avg}	998.2536	994.4179	1.0039
ρ (kg/m3) _{inlet}	998.2536	995.9924	1.0023
ρ (kg/m3) _{outlet}	998.2536	992.6396	1.0057
µ (kg/m sec) _{avg}	0.001002	0.000734	1.3651

D-1

Thus the measured pressure drops for the target assembly will be about 2.1% higher for the test than the actual system.

¹Blasius, P. R. H. 1913. Das Aehnlichkeitsgesetz bei Reibungsvorgangen in Flüssigkeiten. Forschungsheft 131, 1-41.

D-2

APPENDIX E – Target Assembly Pressure Drop Test Data Sheets

85 %	Flow Ca		Operator:								2.34	Date: 7/6
(Hz		40			QA Review:	Mond	L	D	ate: 76 17	-		,
Time	Time Elasped (min)	PI-335 (psig)	PI-302 (psig)	DPI-310 (psig)	PI-308 (psig)	FT-110 (GPM)	FT-100 (GPM)	DPI-320 (psig)	McMaster Gauge S/N: E452434 (psig)	DPI-302 (psig)	Onto Recital Electronically PT-335 (psig)	Thermocouple
10:29	0	-4.5	14.2	2.7	11.0	93	93	1.5	10.5	.1		
10:34	5	- 4.5	14.2	2.7	11.0	93	93	1.5	10.5	.7		
10:39	10	- 4.6	14.1	2.7	11.0	93	93	1+5	10.5		/	TH'F
10:44	15	-4.6	14.1	2.7	11.0	93	93	1.5	10-5	•7		74°F
	A	((va	ilves		Target Cool Section 3.3	DA1 ing System	Flow Test (WA 30441P000	ter 25 10 26_A)	op a li slight	s: 15 YF to ty closed t L-tang	D & 30 Hz bleed system 4v-z00 to flow meters
	6 Flow Ca				Target Cool Section 3.3	DA1 ing System .2 - Target A	Flow Test (Assembly Pr	Wax 30441P000 ressure Dro	ter 25 10 26_A) p Test	alight	to by closed to Latence	bleed system AV-200 to flow meters
NCO 9 VFD Fre (H	6 Flow Ca quency			Kuche	Target Cool Section 3.3	DA1 ing System .2 - Target A Da	TA SHEET Flow Test (Assembly Pr te: 7161	WM 30441P000 ressure Dro	ter 25 10 26_A) p Test	olight	to by closed to Latence	bleed system 44-200 to flow meters
VFD Fre	6 Flow Ca quency	ise		Kuche	Target Cool Section 3.3	DA1 ing System .2 - Target A Da	TA SHEET Flow Test (Assembly Pr te: 7161	WM 30441P000 ressure Dro	ter 25 lo [°] 26_A) p Test Operator:	olight	to by closed to Latence	D & 30 Hz bleed system 4-200 to flow meters Date: 711 Therms couple (*F)
VFD Fre	6 Flow Ca quency z) Time Elasped	15E 41 PI-335	Operator	Herder DPI-310	Target Cool Section 3.3 QA Review PI-308	DA1 ing System 2 - Target A Da	FILE FLOOD	Win 30441P000 ressure Dro 17 D DPI-320	Arr 25 10 26_A) pTest Operator: Date: 7/6/13 McMaster Gauge S/N: E452434	511941	to y closed l L-Inne Chin Rewided Electronically PT-335	bleed system AV-200 to flow meters Date: 71
VFD Fre (H Time	6 Flow Ca quency z) Time Elasped (min)	PI-335 (psig)	Operator PI-302 (psig)	Person	QA Review PI-308 (psig)	DA1 ing System 2 - Target A Da 	FT-100 (GPM)	Wia 30441P000 ressure Dro 17 DPI-320 (psig)	Arr 25 10 26_A) p Test Operator: Date: 7/6/13 McMaster Gauge S/N: E452434 (psig)	DPI-302	to y closed l L-Inne Chin Rewided Electronically PT-335	bled system 4-200 to flow meters Date: 711 Thermo coupling (*F)
VFD Fre (H Time [0:41 16:52_	6 Flow Ca quency z) Time Elasped (min) 0	PI-335 (psig) -5.%	Operator PI-302 (psig) 20.5	DPI-310 (psig) 3.6	Q4 Review PI-308 (psig) 16-2	DA1 ing System 2 - Target A Da :	FT-100 (GPM) (10)	Wa 30441P000 ressure Dro 17 DPI-320 (psig) 2, 2.	Aer 25 10 26_A) p Test Operator: Date: 7/6/03 McMaster Gauge \$/N: E452434 (psig) 14.5	DPI-302 (psig)	to y closed l L-Inne Chin Rewided Electronically PT-335	bled system 4-200 to flow meters Date: 71 Thermo coupling (°F) 74°F
VFD Fre [H 10:41 10:57	6 Flow Ca quency z) Time Elasped (min) 0 5	PI-335 (psig) -5.% -5.8	Operator PI-302 (psig) 20.5	DPI-310 (psig) 3.6 3.7	QA Review PI-308 (psig) 16-2 16-2	DA1 ing System 2 - Target A Da FT-110 (GPM) 10 b	FT-100 (GPM) (10 (10 (10) (10) (10)	Wa 30441P000 ressure Dro (7 0 0 0 0 0 (psig) 2,2 2,2 2,2 2,2	Arr 25 10 26_A) p Test Operator: Date: 7/6/13 McMaster Gauge S/N: E452434 (psig) 14.5 14.5	DPI-302 (psig) .8	to y closed l L-Inne Chin Rewided Electronically PT-335	bled system AV-200 to flow meters Date: 71 Thermo coupl (°F) 74°F 74
VFD Fre (H Time	6 Flow Ca quency z) Time Elasped (min) 0 5 10	PI-335 (psig) -5.% -5.8 -5.8	Operator PI-302 (psig) 20.5 2.0.5	DPI-310 (psig) 3.6 3.7 3.6	Target Cool Section 3.3 QA Review PI-308 (psig) 16-2 16-2 16-7	DAT ing System 2 - Target A Da 	FT-100 (GPM) 110	Wa 30441P000 ressure Dro 17 DPI-320 (psig) 2.2 2.2 2.2 2.2	ter 25 10 26_A) p Test Operator: Date: $7/5/(3)$ McMaster Gauge 5/N: E45234 (psig) 14.5 14.5 14.5	DPI-302 (psig) .8 .9	to y closed l L-Inne Chin Rewided Electronically PT-335	bleed system 44-200 to flow meters Date: 711 Therms coupling (°F) 74°F 74 74 74

E-1

Target Cooling System Flow Test Report

30441R00045/B

DATA SHEET Target Cooling System Flow Test (30441P00026_A) Section 3.3.2 - Target Assembly Pressure Drop Test

-

VFD Fre (H		52.7			QA Review:	Mth	~	D	ate: 7/4/1-	7		Date:_7
Time	Time Elasped (min)	PI-335 (psig)	PI-302 (psig)	DPI-310 (psig)	PI-308 (psig)	FT-110 (GPM)	FT-100 (GPM)	DPI-320 (psig)	McMaster Gauge S/N: E452434 (psig)	DPI-302 (psig)	Pris Recepted Electronically PT-335 (psig)	Temp
1:68	0	- 6.9	27.0	4.3	21.7	112	126	3.0	19.0	1.1	/	74.2
11:13	5	- 6.8	27.0	4.3	21.8	112	126	2.9	19.0	1.0	1	74.2
11:18	10	. 4.7	26.9	4.3	21.7	112	126	2.9	19.0	1.0		74.2
1: 23	15	-6.8	26.9	4.3	21.7	112	126	2.9	19.0	1.0		74.2

11'08 52.7 He

E-2

APPENDIX F – Measuring & Test Equipment (M&TE) List with Certificates of Calibration

M&TE Name	M&TE Asset No.	Calibration Due Date		
Pressure Gauge (PI-335)	QC-15-240	9/29/2018		
Pressure Gauge (PI-302)	QC-15-238	12/22/2018		
Pressure Gauge (PI-308)	QC-15-239	12/22/2018		
Differential Pressure Gauge (DPI-302)	QC-15-242	12/20/2018		
Differential Pressure Gauge (DPI-310)	QC-15-243	12/12/2018		
Differential Pressure Gauge (DPI-320)	QC-15-246	2/20/2019		
Pressure Transmitter (PT-335)	QC-15-259	5/30/2019		
Torque Wrench	QC-05-147	12/6/2017		

F-1

ORMATION

APPENDIX G – Laboratory Notebook Reference

Test	Lab Notebook Page No.
Target Assembly Pressure Drop Test	Page 8
Pump Coast-down Test	Page 11
Labyrinth Seal Bypass Test	Page 14

All test data were recorded in Lab Notebook No. 13569.