

Human Reliability Analysis for Implementation of Incipient Fire Detectors in Fire PRAs

U.S. Nuclear Regulatory Commission

Dr. Susan E. CooperGabriel Taylor, PEDr. Amy D'AgostinoNicholas Melly

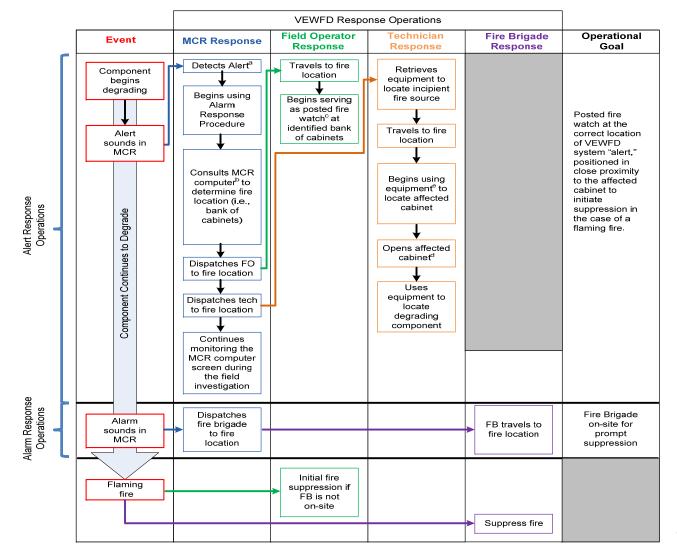
PSA 2017, Pittsburgh, PA September 24 – 28, 2017

Overview

- Introduction
- Approach
 - Human reliability analysis (HRA) plus human factors (HF)
- HF tabletop
- HRA/PRA issue and scope
- Qualitative HRA
- Timing analysis
- Feasibility assessment and quantification
- Conclusions and possible future work

Introduction

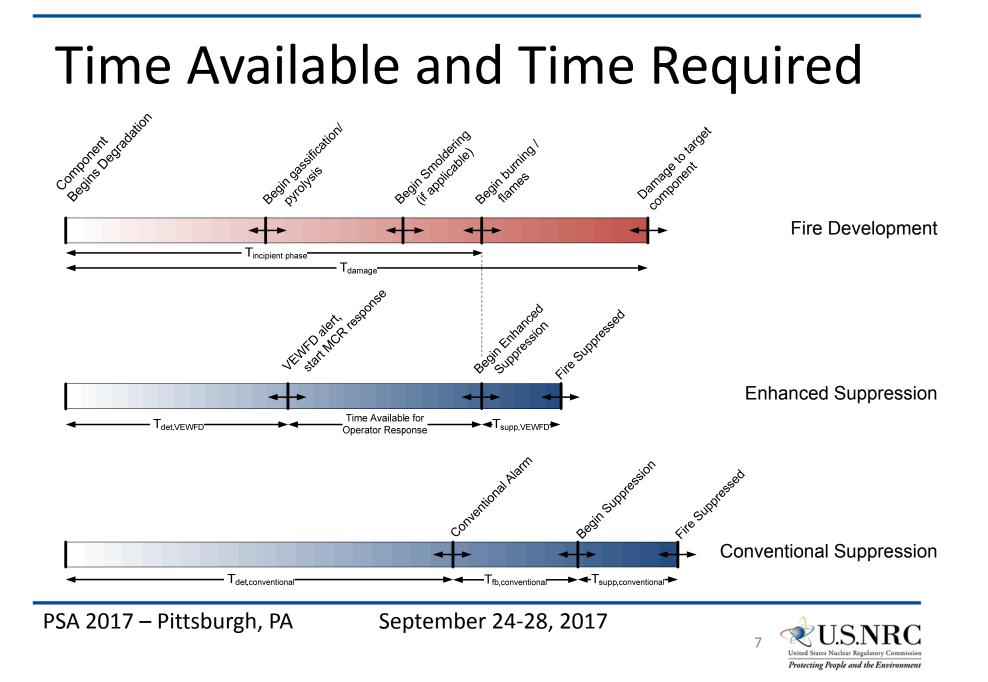
- NUREG-2180, Determining the Effectiveness, Limitations, and Operator Response for Very Early Warning Fire Detection Systems in Nuclear Facilities (DELORES-VEWFIRE), was published in December 2016
- HRA performed:
 - represents how operator response can be modeled to take credit for earlier fire suppression than typically credited in fire PRA (i.e., PRA "credit")
 - is unique compared to typical HRA in support of PRA


HRA Approach

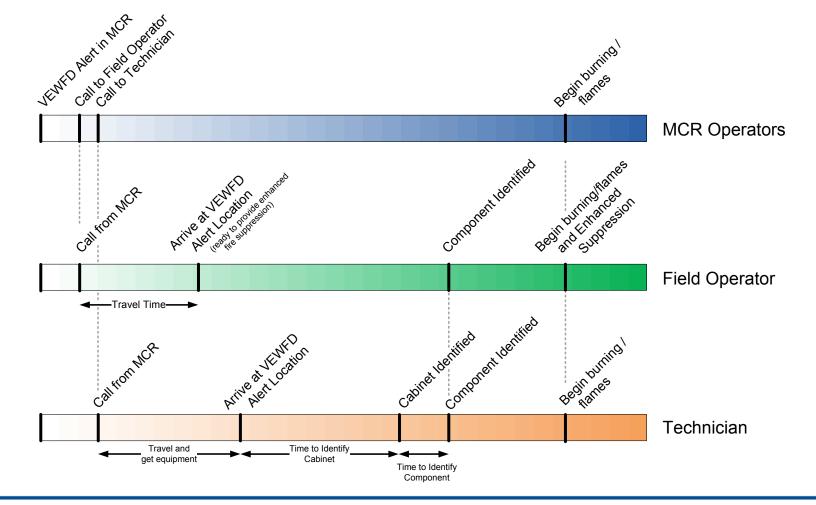
- Similar to that in NUREG-1921, Joint EPRI/NRC-RES Fire HRA Guidelines
 - some additional steps from ATHEANA
- Explicit support from human factors (HF)
- Examples of unique and/or key factors:
 - Actions take place before/without reactor trip
 - Joint response from main control room (MCR) operators, field operators & technician
 - Cues, procedures, training, equipment, etc. not addressed by current HF requirements (e.g., NUREG-0700) that typically support operators
 - Focus on in-cabinet installations with no damage beyond the cabinet of origin
 - Objective is "early" fire suppression
 - Important to differentiate "Alert" vs. "Alarm"
- Use of existing HRA methods depends on ability to "define" operator actions similar to those in typical HRA/PRAs
- As in typical fire PRAs, failure probability for fire suppression is represented with non-suppression probabilities

Human Factors Tabletop

In-cabinet VEWFD 'Alert' and 'Alarm' for a suppression Strategy



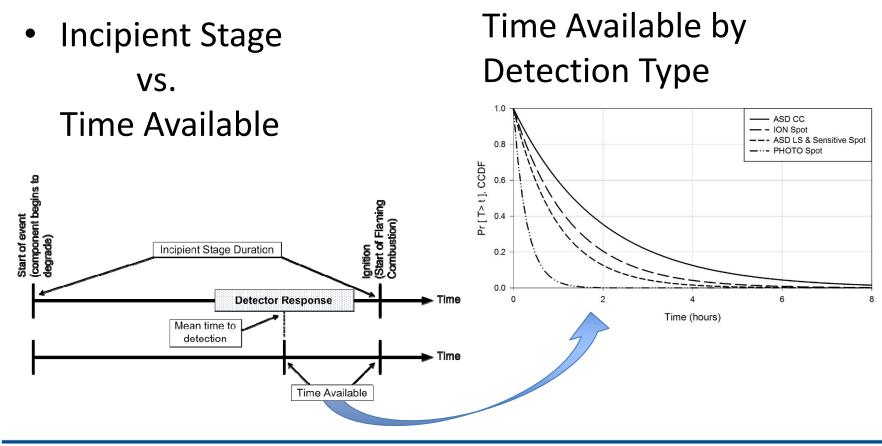
HRA qualitative analysis:


Examples of key results for MCR operator

- VEWFDS "alert" & "alarm" indications are located on front panels in the MCR
- MCR operators respond to VEWFD system 'Alerts' with urgency, as reinforced by procedures and training
- Alarm response procedures (ARPs) guide the MCR operator response to the VEWFD signals
- MCR operators dispatch the field operator (FO) closest to the detector in 'Alert' state
- Nuisance alerts/alarms are minimal
- VEWFD system 'Alert' / 'Alarm' signals are audible, according other MCR alarm standards

Timing – Operators/Technician

PSA 2017 – Pittsburgh, PA



Key timing considerations

- System time window
 - Determined from operational experience in fire events database
 - Defined from start of component degradation to flaming conditions
 - Wide range of incipient durations is represented by a probability distribution
- Time available for operator response
 - Defined from time of VEWFDS alert to flaming conditions
 - Time when cue occurs is dependent on which detector technology is used & setpoints used in detector installation
- Time required for operator response
 - Determined from plant inputs on operator response (including travel time)

Time Available

•

Distributions of

PSA 2017 – Pittsburgh, PA

Time Required Inputs

Start of response	Who and Where?	Action(s) required for success	Time required (minutes)
Alert signal	MCR operator; MCR	Detect signal, use alarm response procedures, identify location of detector, and call to dispatch field operator	1-2
Alert signal	MCR operator; MCR	Dispatch technician to detector location	1
Call from MCR	Field operator in plant	Travel to location of VEWFD system in "alert": standby as fire watch by cabinet(s)	2-8
Call from MCR	Technician	Obtain necessary equipment and travel to location of VEWFD system in "alert"	5-11
Arrival at location	Technician	Uses equipment to identify cabinet	1 cabinet: 0
			3 cabinets: 5
			6 cabinets: 10
			10 cabinets: 15
Cabinet identified	Technician	Uses equipment to identify degraded component in cabinet	3-4

PSA 2017 – Pittsburgh, PA

Feasibility assessment

- NUREG-1921 provides several feasibility assessment criteria
 - Sufficient time
 - Sufficient manpower
 - Sufficient cues
 - Proceduralized & trained
 - Accessible location
 - Equipment & tools available
- "Sufficient time" is focus of HRA in NUREG-2180
 - time available must be larger than time required

Feasibility Assessment

Cloud Chamber VEWFD

Time required	Sample in probability distribution for time available	Time available from <i>alert</i>	Feasible?
3-10 minutes	1	0-12 minutes	Yes
J-10 minutes	2	>12 minutes AND < 30 minutes	Yes
	3	> 30 minutes AND < ~1 hour	Yes
	4	> ~ 1 hour	Yes

PSA 2017 – Pittsburgh, PA

HRA quantification

- Existing HRA methods were used (e.g., CBDT, SPAR-H)
- Human error probabilities (HEPs):
 - MCR operator response: 1E-4 (all cases)
 - Field operator (ready for fire suppression): Base HEP = 1E-3
 - Adjusted with respect to time available
- Note: Technician's role is not explicitly required for this strategy/analysis

HEP Calculations

Cloud Chamber VEWFD

Sample	Time available from <i>alert</i>	Split Fraction from Table 10-1	Base HEP	Base HEP x Split Fraction
1	0-12 minutes	0.1	1E-3	1E-4
2	>12 minutes AND < 30 minutes	0.13	1E-3	1.3E-4
3	> 30 minutes AND < ~1 hour	0.17	1E-3	1.7E-4
4	> ~ 1 hour	0.60	1E-4	6E-5
TOTAL HEP (ξ)				4.6E-4

Conclusions

- NUREG-2180
 - Published Final December 2016
 - Over 350 Small-scale and Large-scale Tests
 - System performance quantified
 - Through Review of Operating Experience
 - Domestic and International: available time quantified
 - Unique HF Analysis
 - Unique HRA Analysis
 - Spreadsheet tool to quickly evaluate non-suppression
 - Over 6 Years of Effort
 - Best tools, methods, and data available today to evaluate VEWFD system performance in Fire PRA

Possible Future Work

- NUREG-2180 identified data collection is needed (Appendix G)
- EPRI is planning on a new data collection effort
- EPRI & NRC's Office of Nuclear Regulator Research (RES) are exploring a possible new joint project under a Memorandum of Understanding (MOU)

