Extremely Low Probability of Rupture (xLPR) Project

xLPR Code Acceptance Criteria

David Rudland USNRC

> xLPR External Review Board Meeting February 20, 2013

Acceptance Group Members

- Bob Hardies NRC
- David Rudland NRC
- Tim Lupold NRC
- Robin Dyle EPRI
- Al Csontos NRC
- Stephen Dinsmore NRC

Topics of on-going Discussion Three Questions

- What constitutes acceptable inputs?
 - Code model input, data, configuration
 - Technical basis for the code
 - Code structure

TODAY'S FOCUS

- What constitutes acceptable results?
 - Guidance on risk limits as an NRC regulatory position for LBB
 - In other than regulatory applications other criteria may apply
- What constitutes an acceptable delivery vehicle for this information?
 - Regulatory guide
 - Lead plant application

2/20/2013

Initial Application is for LBB

- Acceptance Criteria Still Under Development
 - Nascent ideas are presented here, still a work in progress
- We expect that the xLPR project will evaluate changes in risk (Δ -Risk)
 - Is stress corrosion cracking active (or not)
 - Changes in inspection periodicity
 - Mitigation activities
 - Repairs

ECTRIC POWER

Acceptance Criteria being Considered

- Regulatory Guide 1.174 provides guidance on
 - Core Damage Frequency (CDF) and ΔCDF
 - Large Early Release Frequency (LERF) and ΔLERF
- Advantage
 - Criteria developed
 - NRC has experience with RG1.174 approach

2/20/2013

▲ CDF → Region I No Changes Allowed Region II **Region I** Small Changes Track Cumulative Impacts Region III 10⁻⁵ Very Small Changes More Flexibility with **Region II Respect to Baseline CDF** Track Cumulative Impacts 10-8 **Region III** 10-5 10-4 $CDF \rightarrow$ △ LERF → Region I No Changes Allowed Region II **Region I** Small Changes Track Cumulative Impacts 10^{-6} Region III Very Small Changes More Flexibility with **Region II Respect to Baseline LERF** Track Cumulative Impacts 10-7 **Region III** 10-5 10-6 LERF ---> vg 5

Thoughts on xLPR Outputs & Comparison to RG 1.174 Limits

- xLPR output: failure probability/year
- Dependencies of interest
 - Effect of operational time
 - Effect of break size
- Quantiles
 - Mean values of failure probability used far from RG limits
 - Close to limits uncertainties need to be quantified (xLPR does this)
- Conversion of failure probability to CDF to compare with RG1.174 limits
 - Multiply failure probability by conditional core damage probability
 - Distinguish between different break sizes
 - e.g., CDF_{total} = 10⁻² * LBLOCA + 10⁻⁴ * MBLOCA + 10⁻³ * SBLOCA
- LERF evaluation also needed
 - Conversion from CDF may be justified
 - e.g., LERF = CDF ÷ X
 - Magnitude of X depends on effect of pipe break on containment. As effect increases, so will X.

vg 6

2/20/2013

What Constitutes Failure?

- **Definition:** Any LOCA is a failure
- Potential mitigating factors
 - Not all cracks progress rapidly to LOCA or rupture
 - Some leak
 - Cracks that leak noticeably for a long time would be repaired before they rupture, so should not be counted as ruptures

vg 7

- Crack has to leak noticeably
 - Operators can reliably detect 10 GPM
- Cracks that leak >10 GPM get repaired if there is sufficient time between leak detection and rupture

How Much Time Between Leak and Rupture?

Some definitions considered so far:

- If, at the next time step, a LOCA has occurred, then there was not enough time to notice the leak and shut down
- Define LOCA as a leak greater than charging pump capacity
 - Plant specific, but typically 55 GPM
 - Therefore recommend selecting 50 GPM
- If, at the next time step the leak rate >50GPM, then a LOCA has occurred

2/20/2013

LECTRIC POWER

Failure Criteria

Some definitions considered so far:

- One candidate
 - Leak > 50 GPM AND
 - Leak at t-1 < 10 GPM</p>
- Another candidate
 - Leak >50 GPM AND
 - Leak at t-2 < 10 GPM</p>

LECTRIC POWER ESEARCH INSTITUTE

Summary

- Ideas thus far
 - Use established guidelines of RG1.174 for CDF & LERF
 - Define failure as any LOCA
 - Define a LOCA as being a leak rate exceeding the capacity of a single charging pump
- Work is continuing

