GAI REPORT NO. 2521 March, 1984

ROBERT E. GINNA NUCLEAR POWER STATION CONTAINMENT VESSEL TENDONS LOAD CELL EVALUATION

d

٠.,

PREPARED FOR:

ROCHESTER GAS AND ELECTRIC COMPANY

WRITTEN BY: G. T. DeMoss/J. F. Fulton / **REVIEWED BY:** J. 3/26/84 hen and APPROVED BY: 8404160175 840410 PDR ADOCK 05000244 PDR - Gilbert / Commonwealth

.

· .

•

.

and a second and the s

TABLE OF CONTENTS

SECTION		TITLE		PAGE
1.0	INTRODUCTION			1
2.0	EVALUATION PROCEDURE			1
3.0	RESULTS OF EVALUATION			2
4.0	CONCLUSIONS			4
5.0	REFERENCES		r 2	5
TARIFS				

Table 1 - Force and Temperature Data - Tendon 13Table 2 - Force and Temperature Data - Tendon 53Table 3 - Force and Temperature Data - Tendon 93Table 4 - Force and Temperature Data - Tendon 133

FIGURES

```
Figure 1 - Temperatures vs Time - Tendon 13

Figure 2 - Temperatures vs Time - Tendon 53

Figure 3 - Temperatures vs Time - Tendon 93

Figure 4 - Temperatures vs Time - Tendon 126

Figure 5 - Temperatures vs Time - Tendon 133

Figure 6a & 6b - Conduit Internal Temperature vs Force - Tendon 13

Figure 7a & 7b - Conduit Internal Temperature vs Force - Tendon 53

Figure 8a & 8b - Conduit Internal Temperature vs Force - Tendon 93

Figure 9a & 9b - Conduit Internal Temperature vs Force - Tendon 133

Figure 10 - Monthly Average Force vs Time - Tendon 13

Figure 11 - Monthly Average Force vs Time - Tendon 53

Figure 12 - Monthly Average Force vs Time - Tendon 93

Figure 13 - Monthly Average Force vs Time - Tendon 133

Figure 14 - Tendon Locations
```

Gilbert / Commonwealth

1.0 <u>INTRODUCTION</u>

The NRC requested RG&E to establish a short term tendon force monitoring program following the 1980 tendon retensioning program to ensure tendon prestress levels prior to the scheduled July 1981 surveillance. The program actually started in March, 1981 using four 800,000 pound capacity split load cells which had been installed in April, 1969. Their original function had been to monitor tendon force levels during the initial Structural Integrity Test. These load cells were installed beneath the anchorages of tendons 13, 53, 93 and 133.

In addition to the force monitoring, RG&E also instituted a temperature monitoring program. This was to determine the effect of seasonal variations on tendon forces. Thermocouples were installed in each of five tendon conduits (the four tendons previously mentioned plus tendon 126) about two feet down from the top anchorage. Thermocouples were also installed on the exterior surface of the containment building wall adjacent to each of the above five tendons. Tendon 126, although not having a load cell, was included in the temperature monitoring because it passes around a steam line penetration, as does tendon 53.

The long term monitoring program began in August 1981, following calibration of the load cells during the July, 1981 surveillance, and was concluded in July, 1982.

2.0 EVALUATION PROCEDURE

Five variables were presented in the field data supplied for the evaluation (Reference 1):

- a. tendon conduit internal temperature
- b. concrete surface temperature

Gilbert / Commonwealth

- c. containment building internal temperature
- d. average outdoor ambient temperature
- e. tendon force

In an effort to determine the relationships between the data, the following curves were developed for each tendon:

- a. temperature vs time
- b. measured tendon force vs tendon conduit internal temperature
- c. corrected tendon force vs tendon conduit internal temperature
- d. monthly average tendon force vs time

3.0 RESULTS OF EVALUATION

a. Temperature vs Time (Figures 1 through 5) - These figures indicate that, for tendons 13, 93 and 133, the tendon conduit internal temperature closely follows the concrete surface temperature and the outside ambient temperature. The conduit internal temperature, being measured at an elevation where the containment is exposed to outside ambient temperature, is not significantly affected by the containment temperature. For tendons 53 and 126, which are both adjacent to steam penetrations, the conduit internal temperature still basically follows the variations in concrete surface and outdoor temperatures but is somewhat higher in temperature, as would be expected.

It is expected that temperatures further down in each conduit, below the adjacent building roofs, would show less variation with the outside ambient temperature. The temperatures at these locations would be higher, being close to the average of the temperatures inside the containment and the adjacent building.

Measured Tendon Force vs Conduit Internal Temperature
 (Figures 6b through 9b) - Since tendon 126 had no load cell,

Gibert / Commonwealth

it is not included in these figures. For the remaining four tendons (with load cells), the plotted data are scattered, but the data does display the trend of a reduction in tendon force with increasing temperature. It is noted that, since the data covers a twelve month period, the tendon forces are being affected not only by temperature, but by stress relaxation as well. To see the effect of temperature only on the tendon force, the stress relaxation losses over the period of interest must be added to the load cell values.

In order to establish the approximate amount of stress relaxation experienced by each of these tendons over the one-year period, two data sets of equal temperature, as many months apart as possible, were selected for each tendon. From the differences in the force readings, monthly rates of stress relaxation loss were derived and applied to the load cell force readings. Tables 1, 2, 3 and 4 are included to show the tabulation of these values.

c. Corrected Tendon Force vs Tendon Conduit Internal Temp. (Figures 6a through 9a) - Once the tendon forces have been corrected for stress relaxation and are then plotted against temperature, a more linear relationship between tendon force and conduit internal temperature becomes apparent. For the four tendons for which force and temperature was available, the tendon force reduces by about 2 kips for each 10°F increase in the internal temperature of the tendon conduit within the temperature range of available data.

It should be noted that only a small vertical portion (17 ft. average) of the exterior wall is exposed to outside ambient air temperatures, with the balance (94 ft. average) being adjacent to the interior areas of other buildings. Calculations show that if the full length of the tendons were subjected to the temperature change recorded by the conduit

.

-3-

Gilbert /Commonwealth

internal thermocouples, the force change would be about an 8 kips reduction for each 10°F increase in tendon conduit internal temperature.

d. Monthly Average Tendon Force vs Time (Figures 10 through 13) - The tendon load cells were read on the l0th, 20th and 30th of each month (Reference 1). The average of the three values of tendon forces measured each month are plotted as solid dots against time. The result is a curve showing basically a constant or even a slightly increasing tendon force as the testing program progressed from warm weather (Aug. '81) through the winter months up to about April 1982. This trend occurs because the stress relaxation of the tendon is offset by the general trend of decreasing ambient temperatures. Beyond April 1982 the tendon forces fall off as warm weather is encountered. The average tendon force reduced by 15 kips from April 1982 to July 1982, and most of this decline can be attributed to temperature, as discussed below.

The monthly average of the tendon forces has been corrected for stress relaxation in Tables 1, 2, 3 and 4 and entered on Figures 10, 11, 12 and 13 as "X"s. The corrected curves show an average increase in tendon force of 5 kips, which is associated with the decreasing temperature trend as the testing progressed from August 1981 to April 1982. There is an average loss of force of 12 kips as warmer months were again encountered from April 1982 to July 1982. Therefore, of the 15 kips average force loss over this latter period, 12 kips on the average is due to the general increase in ambient temperature which occurred.

4.0 <u>CONCLUSIONS</u>

۰.

The load cell results indicate that the tendon forces were reasonably stable over the period from August 1981 to July 1982, and no abnormal force losses occurred. Most of the fluctuation in

Gilbert / Commonwealth

-4-

, × , , .

•

measured force during this period can be attributed to seasonal variations in outside air temperature.

The results indicate that a tendon could exhibit a force loss as large as 16 kips between two measurements taken first in Winter and then in Summer, and most of this loss would relate to temperature. An approximation of the temperature effect is that tendon force is inversely proportional to temperature, and the tendon force declines about 2 kips for each 10°F increase in outside monthly average ambient temperature.

5.0 <u>REFERENCES</u>

 Ginna Containment Vessel, TENDON LOAD CELL MONITORING REPORT, Jan., 1984. Letter from C.A. Forbes (RG&E) to D.R. Campbell, dated February 2, 1984 (13NI-RG-L0627).

Gibert / Commonwealth

TABLE 1

2

D

Force and Temperature Data

Months	Meas.	TemP.	Stress	F+SR	F+SR
from	Force	Deg. F	Relax.	(K)	Ave.
start	F (K)		SR (K)		(K)
	hang dent haap ding may bade	فيردم مرسط القائم المريد تتجله حافظ		والما البدية است البناء والى ويرة	
Ø	714		0	714	
ହ	710		Ø	710	710
Ø	706	-	Ø	786	
1	708		1	709	
1	798	69	1	709	709
i	798	69	1	709	
2	798	55	2	710	
Z	710	51	2	712	711
2	(10	50	2	(12	
3	719	51	3	713	
2 2	710	51	3 2	713	714
3	712	41	3	(10	
4	710	42	4	714 744	714
4	710	36	4	714 714	114
4 5	710	41	4	719	
2 ਵ	710	31 22	2 =	710	715
.) 5	710	04 22	2	(10 745	(17
ں۔ ج	769	·ごと	20	710	
0	100 784		5	710	712
6	700		2 ·	711	115-
2	708		ě	214	
7	706		ĕ.	712	713
- ' -	786		ĥ	712	110
s	798	32	ž	715	
Ř	796	55	7	713	714
Ř	786	50	ż	713	
ŝ	702	64	8	710	
9	702	<u>\$9</u>	ŝ	710	710
9	702	73	8	710	
10	700	73	8 ·	708	r
10	700	73	8	708	707
10	698	77	8	706	•
11	694	91	9	703	
11	690	95 .	9	699	702
11	694	86	9	703	

·

. ۶ . .

.

, . .

TABLE 2

Force and Temperature Data

Months from start	Meas. Force F (K)	TemP. De9. F	Stress Relax. SR (K)	F+SR (K)	F+SR Ave. (K)
0 0 1	730 726 724 ⁻ 729	76 82 86	0 0 0	730 726 724 721	727
1 1 2	726 726 728	73 76 55	1 1 1	727 727 727 729	725
1220	728 728 728 739	55 64 46	1	729 729 729 732	729
0 3 4	728 728 728	55 55 41	1222	730 730 730 730	731
- 4 4 5	728 730 728	46 46 32	1223	730 732 731	731
ີ ອ້ອຍ ອ້ອຍ	728 728 730	32 37 32	3 3 4	731 731 734	731
.6` 6 7	730 730 730	32 [.] 37 32	4 4 4	734 · 734 734	734
7 7 8	730 728 728	41 41 42	4 4 10	734 732 733	733
883	728 730 728	50 55 55	555	733 735 733	733
999	724 724 722	69 69 . 73	ຽວອ	729 - 729 727	728
10 10 10 · 11	720 720 714	73 78 82 91	0 0 0 7	726 726 721	726
11 11	716 716	95 95	7	723	722

TABLE 3

Force and Temperature Data

.

Months from start	Meas. Force F (K)	Temp. Deg. F	Stress Relax. SR (K)	F+SR (K)	F+SR Ave. (K)
0 0 1	702 698 696	82 86 78 73	ୟ ସ ସ	702 698 696	699
1 1 2	698 698 698	64 64 55	1	699 699 699	699
2229	700 700 700 700	55 55 55	1 1 2	701 701 702	700
0 3 4	700 702 702	46 42 37	2000	702 704 704	703
ተ ቁ ዓ	702 702 702	46 37 32	2225	704 704 705	704
5 5 6	704 704 704 704	32 32 32 37	3 3 4	707 707 708	706 ·
6 6 7	702 702 702	32 32 32 41	4 4 4	706 706 706	707
7 8	702 700 702	41 37 55	4 4 5	706 704 707	705 .
8 8 9	700 700 694	50 64 69	5555	705 705 699	706
9 9 10	694 694 692	73 73 78	5 5 6	699 699 698	699
19 10 11	692 690 688	82 91 95	6 6 7	698 696 695	697
11 11	686 686	91 95	7	693 693	694

Force and Temperature Data

TABLE 4

;:

2.

Months from start	Meas. Force F (K)	TemP. De9. F	Stress Relax. SR (K)	F+SR (K)	F+SR Ave. (K)
9 9 9	726 722 729 729	78 73 	0 0 0	726 722 720 720	723
1 · 1 · 7	722 722 722	69 55 55	1 1 2	723 723 723 724	723
42.2.2 2.2.2	722 722 722	50 51 50	222	724 724 724	724
0 3 3	722 724 722	51 41	222	724 726 725	725
144 44	722 722 722 722	42 37 41 22	334	725 725 725	725
ວ 5 5 ຮ	720 720 720 720	27 27 27 27	445	724 724 725	725
0 6 6 7	720 720 720	37 32 32	5 5 5 5	725 725 725	725
- 7 8	720 720 720 720	41 37 32	0 6 6	726 726 726	726
) 8 9 9	720 720 716	46 64	0 6 6 7	726 726 723	726
9 9 10	716 716 714	69 73 73	778	723 723 722	723
10 10 11	714 712 708	73 77 91	9 9	722 720 717	721
11 11	706 704	95 86	-9 9	715 713	715

Ginna Tendon #53 Plot of Temperatures' vs Time

× ...

FIGURE

N

. . . • •

*

.

Ginna Tendon #93 Plot of Temperatures vs Time

FIGURE 3

Ginna Tendon #126 Plot of Temperatures vs Time

FIGURE 4

۶.

• •

•

· · · · ·

FIGURE 5

|

6

۲.,-

Ginna Tendon #13 Plot of Temperatures vs Time

CIGURE

• • •

.

•

. . V

ч

690 30° 40° 50° 60° 70° 80° 90° TENDON CONDUIT INTERNAL TEMP. (°F) <u>FIGURE 66</u>

e source so

· ·

, , 18-,

.

. r r ,

.

. ж

e de la compañía de la

×

,

. ·

L.

i interior