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TO EVALUATE REQUIREMENTS IN TECHNICAL SPECIFICATIONS 

As requested in several NRR user-need memoranda (References 2-5 in the 
enclosure), we have developed risk-based methods to evaluate and improve the 
technical basis for requirements in technical specifications. 

These methods are implemented in the form of reliability analysis tools to 
supplement PRA. These tools evaluate the impact of technical specification 
requirements on PRA input parameters, such as unavailability and initiating 
event frequency. Used in conjunction with PRA, these tools can analyze the 
risk impact of technical specification issues such as: 

• • • • 

Surveillance test intervals, including 
Allowed outage times 
Action statements requiring shutdown 
Preventive maintenance schedules 

effects of test-caused transients 

The research to develop these tools is largely completed. The results are 
being documented in the reports listed in Table 1, on Page 7 of the enclosure. 
Half of these reports have been completed. Reports remaining to be completed 
are listed in Table I with the date the draft will be completed. 

NRR has used some of these tools to evaluate proposed changes in individual 
technical specifications. Also, these tools are being used to evaluate 
technical specifications for the South Texas plant and for the Advanced 
Boiling Water Reactor. 

The availabiJi~y of these tools at the same time PRAs for many plants are 
being completed under the IPE Program, will help facilitate their wide use in 
the evaluation of the risk implications of technical specifications 
requirements'·: Also, these tools can be applied to other operational safety 
issues. For example, the results ~f this research formed much of the · 
technical basis for the New York Power Authority's 1992 Commission briefing on 
a pilot project to develop risk-based regulation . 
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The capability of these tools is illustrated with examples in the enclosure. 

Applying these tools to other issues could be the objective of follow-on 
research. For example, we are discussing with the NR~ staff possible needs 
for follow-on research to provide: 

• Risk assessment of preventive maintenance strategies (to improve NRC 
guidelines for inspecting or auditing the "balance" between beneficial 
and adverse aspects of mai11tenance, as outlined in the maintenance 
ru 1 e) . 

• Guidelines for auditing dependent failures (to supplement NRC guidelines 
for risk-based inspection). 

• Simplified methods to evaluate the risk impact of technical 
specification action statements (to facilitate staff review). 

The RES staff contact for this research is Carl Johnson, (301) 492-3548. 

Enclosure: 
Risk-Based Methods to Evaluate 

Requirements in Technical 
Specifications 
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Eric S. Beckjord, 01fr~ctor 
Office of Nuclear Reg\Jlatory Research 
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Enclosure to Research Information Letter on 
Risk-Based Methods to Evaluate Requirements in Technical Specifications 

RISK-BASED METHODS TO EVALUATE 
REQUIREMENTS IN TECHNICAL SPECIFICATIONS 

A. Regulatory Issues 

B. Approach Using Reliability Methods to Supplement PRA 

C. Capabilities of Tools 

D. Regulatory Applications 

E. Restrictions on Applications 

F. References 

Research performed by: 
BNL, SNL, INEL, SAIC,'.& Avaplan Oy 
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RISK-BASED METHODS TO EVALUATE REQUIREMENTS 
IN TECHN(CAL SPECIFICATIONS 

A. Re~ulatory Issues 

In 1990, when NRR reported to the Commission on progress toward 
improving technical specifications, the Commission encouraged the staff 
"to move forward aggressively with the risk-based technical 
specifications program .... H (1] 

To support this effort, NRR requested RES to develop methods to evaluate 
the risk implications of the following issues (2, 3, 4, 5): 

• Risk impact of allowed outage times (AOTs} and surveillance test 
interval! (STis} 

At power 
During shutdown 
Effects of test-caused transients on optimum test intervals 

• Action statements that require shutting down the reactor if 
equipment needed during shutdown fails (for example, failure of 
residual heat removal or standby service water) 

• Risk implications of taking equipment out-of-service for 
maintenance 

Rolling maintenance schedule 
Optimizing the frequency of scheduled maintenance 
Emergency diesel generators (EDGs} 

• Improved technical specification defenses against dependent 
failures 

• Configuration management. 
Conceptual framework for risk-based configuration management 

8. Approach Using Reliability Methods to Supplement PRA 

We have developed the requested methods for analyzing the risk impact of 
requirements in technical specifications. The approach has been to 
develop reliability engineering methods to assess the impact of these 
requirements in terms of PRA input parameters, e.g, unavailability of 
safety systems and frequency of initiating events. Thus, these 
reliability engineering tools can be used with existing PRAs to evaluate 
the risk implications of technical specification issues. This 
conceptual approach is illustrated in Figure 1. 

The capabilities of these tools are illustrated in the following 
examples. 
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C. Examples and Capabilities of Tools 

l. Risk Impact of Surve i 11 ance Test Intervals, Including Test-Caused 
Transients 

In evaluating the risk impact of surveillance test intervals, 
these tools can evaluate the balance between the beneficial 
effects of testing (e.g., limiting fault-exposure time} and 
adverse effects (e.g., test errors that cause transients}. For 
examp1e, Figure 2 illustrates the beneficial and adverse effects 
of testing main steam isolation valves at a particular plant as 
the test interval varies between 1 week and 6 months. In this 
example, the optimum test interval, from a risk perspective, is 
about 2 months, with little penalty for slightly longer test 
intervals [6). This example of quantitative analysis is 
consistent with the 3-month test interval recommended on the basis 
of qualitative judgements [7]. 

2. Risk impact of Action Statements That Require Shutdown 

Another example of the capability of these tools is to evaluate 
the risk impact of action statements that require shutting the 
plant down, if an allowed outage time is exceeded. Of particular 
interest are systems that are needed during shutdown. For 
example, Figure 3 compares the risk of shutting down vs. 
continuing to operate if one or more trains of standby service 
water (SSW) fail. The main i~sights from Figure 3 are as 
follows. The risk of continued operation is comparable with the 
risk of shutdown. Also, if all three SSW trains fail, the level 
of risk is high. The action involving the least risk is to remain 
at power and repair at least one train promptly. 

These insights suggest consideration of a possible modification of 
the limiting conditions for operation, as illustrated in Figure 4. 
In this example, the first part of the AOT (up to J day) would be 
used to diagnose whether at least one SSW train can be repaired 
promptly, and if so, to complete the repair. If it is estimated 
that repair of at least l train will take longer than 2 days, the 
plant would be shut down. Thus the AOT for multiple trains out
of-service would be 2 days (whereas the current AOT for double 
train failure is 8 hours) .. The AOT for a single train failure 
would remain 3 days .. Additional information on this method, and 
examples for SSW and RHR, are described in reference 8. (BNL is 
applying a similar approach to an example of a PWR auxiliary 
feedwater system, and will report the r~sults in March 1994.) 

3. Sche~uling EOG Maintenance During Power Operation vs. During 
Shutdown 

An example of the risk impact of taking an EOG -0ut of service for 
mafntenance during reactor power operation .and during shutdown is.i, 
illustrated in Figures 5 & 6 [9]. The main insights are that, for:" 
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this example BWR, the risk impact of taking an EOG out of service 
during the first few days of hot and cold shutdown is comparable 
with power operation. However, the risk impact is substantially 
reduced during refueling when the ~ecay heat is low and the water 
level is high. These results provide the following insights 
regarding scheduling EOG preventive maintenance: 

• In general, preventive maintenances of short duration (e.g., 
less than an AOT) can be scheduled during power operation. 
Shutting the reactor down specifically to perform short
duration maintenances does not appear to reduce the risk, if 
other important systems are not degraded. 

• On the other hand, preventive maintenunces of long or 
uncertain duration (e.g., overhauls) should in general be 
scheduled during refueling when the decay heat is low and· 
the water level is high. 

These insights are illustrated in more detail in Figure 7. These 
results are based on analysis of only two plants [9, 10). 
Analysis of additional plants is r.ot planned. 

4. Rolling Maintenance Schedule 

Figure 8 illustrates the capability of risk analysis to aid in 
evaluating a "rolling maintenance schedule." [11] In this 
example, the risk increases substantially during the first 3 weeks 
of the 12 week rolling schedule that was analyzed. A modifi~d 
schedule that moves EOG maintenance from the first 3 weeks, when 
the risk is high, to a later period, when the risk is low, would 
reduce the average risk. 

5. Optimizing Maintenance Intervals 

.The maintenance rule requires licensees to ensure that the objective of 
preventing failures through maintenance is appropriately balanced 
against the objective of minimizing unavailability due to preventive 
maintenance. This research has developed a Markov approach to analyze 
and' adjust the frequency of preventive maintenance in order to minimize 
system unavailability. This approach balances the adverse effect of 
preventive maintenance (e.g. , increase the unavailability cont ri but ion 
due to time out-of-service fo~ maintenance} vs. the risk b~nefit of 
preventive maintenance (e.g., reduced unavailability contribution due to 
failures). The potential of this Markov analysis method to help 
optimize preventive maintenance i~terval~ is illustr~ted -in Figure 9 
[11]. However, this method needs to be tested with plant data. 

Ji,• 
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D. Regulatory Applications 

NRR has used some of these tools to evaluate proposed changes in 
individual technical specification applications, and to evaluate 
Technical Specifications for the South Texas plant and for the Advanced 
Boiling Water Reactor. 

Application of these methods to evaluate the risk impact of technical 
specification requirements involves the following resources. for 
generic evaluation, such as evaluation of requirements in the standard 
technical specifications, the analyst needs a PRA program, such as IRRAS 
and its data base, to analyze a sample of several plants. For plant
specific analysis, the analyst needs the plant-specific_PRA on a 
computer program such as IRRAS. Evaluation of an individual requirement 
woul~ take on the order of a staff week. The analyst could be an NRC 
staff member or a contractor. 

Although technical specif·ication improvements are voluntary, the 
potential for enhanced safety and reduced cost appear to interest the 
industry. For example, the New York Power Authority integrated many of 
these tools into their 1992 Commission briefing on a pilot project to 
develop risk-based regulation. (13] · 

The availability of these methods, at the same time that PRAs for many 
plants are being completed under the IPE Program, will provide a 
capability for widespread use of risk-based methods to improve technical 
specifications. 

Another ootential application of these methods involves maintenance. 
For example, these risk-based methods can help to evaluate both the 
optimum frequency of scheduled maintenance, and also the balance between 
scheduling maintenance during plant operation vs. during shutdown. 

E. Restrictions on Applications 

These tools share the strengths and weaknesses of PRA. They are useful 
to evaluate technical specification requirements that can be quantified· 
in terms of equipment availability and initiating events. Thus, the 
tools are directly useful to develop a risk-basis for setting AOTs, 
STis, and action statements for electro-mechanical components in front-
1 ine safety systems and support systems. However, in setting test 
requirements for much of the routine instrumentation in these safety 
systems, these tools are only useful to help develop qualitative 
engineering judgements regarding the relative importance of the 
instruments and reasonable STis. 

In addition, these methods do ·not incorporate uncertainty analysi1 as i 
built-in feature. The user should include uncertainty analysis where 

,_uncertainties are important, .as for example when the results are to be 
compared to safety goals, or when comparing alternative courses of 
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action where the alternatives differ in uncertainty. One appro;~ch, for 
example, is to estimate the uncertainties and use mean values. 

In summary, these tools can provide a risk perspective to aid 
engineering judgement in setting requirements in technical 
specifications. 
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Table 1 

PRODUCTS: METHODS FOR EVALUATING TECHNICAL SPECIFICATION REQUl~EMENTS 

l. rne;-~-~~-,~l -;~~~{/;1~WtJ~~~-" ] 
::i11rveillance Test Intervals 
-.---··-·-Risk°i"mpact-·a-f-surve i l lance requirements, 

including effects of test-caused risks 
NUREG/CR-5 775 

11--------------------------~'C""'. ·--------------·-
ill.Q.l!..~.Q. __ Q_y_t C?_gg_JJ.me...?.. 
• Risk impact of allowed outage times NUREG/CR-5425 
~·-------------·---------+---------------<! 

!li:;.E 9 n_.~_tAt~.!l1~.G1:?_BgfilJJ.rlng_~.b.!!J_Q..9~.!1 
NUREG/CR-5995 

SSW 
• Comparison of risk of shutdown vs. 

continued power operation, if RHR or 
is inoperable at a B~R 

I,, • Similar comparison for AFW at a PWR BNL letter report 
11------------··---·----------·--_._-----'-( ___ 3/'--9_4.~) -----ii 

I ~§_! .. r!J~.~~·~f~impai:t of scheduled maintenance 

• Risk impact of EOG unavailability due to 
maintenance. (Results used as input to 
SECY-93-044) 

NUREG/CR-6002 
(draft 1/94) 

BNL & SNL Letter Reports 

NUREG/CR-5994 
{draft 1/94) 

• Technical s')ecification defenses against NUREG/CR-6140 
d ependen t _ _I~_i_l _ur_e_s ___________ ~ ___ .... (_d_ra_f_t __ l.:..../9_4-')--·-

1£?.s;J::..nJ.il.LSfil..I . .i.f_iJ;_ii_l_i_qn_Ji~ir..~m~n ts . Our i ng 
2.D.i!l!Jfl \'.ID 
• PWR 

• BWR 

~UREG/CR
(ita ft 2/94) 

NUREG/CR-
( draft 4/94) 

1~~~~~~~~~~~~~~~~~-~~~-+---~'--~~-'---'-~~·-·-

lD.i!'~i.\ ted Surve i 11 a nee 
• Potential risk-benefits of integrating 

selected surveillances and preventive 
maintenances 

INEL Letter report 

11-~~-~~--~~~~~--~~----~i---~-~--- -~ 

Con .fJ.9..l!nJ.J..Q!Lll an a g ~!!!fil\1 
• Conceptual outline of risk-based, 

operational configuration control 

Handbook 
-.--summary of principles & methods to assess 

risk impact of requirements in technical 
specifications 
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• Technical Specifications 
RELIABILITY ANALYSIS TOOLS 
TO ADDRl3SS SPECIFIC ISSUES: • Maintenance 

• Performance Assessment 

Mitigate 
Consequences 

Figure 1. Conceptual approach to develop methods to evaluate the risk impact of 
requirements in technical specifications 
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EOG Preventive Maintenance During Power Operation vs. During Shutdown. 
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Figure 8. Example of analysis of risk impact of rolling maintenance schedule. 
(This bounding analysis assumes that all equipment scheduled 
for maintenance during a week is out~f-service all week.t 
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Figure 9. Example of method for exploring the risk impact of preventive-maintenance interval. 

In this example, Aod = Degradation rate """ incipient failure rate = 1 o· 4 /hr 
Ad, = Failure rate, given component is degraded 1 o-4/hr 
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