

Technical Part 1: RadICS Digital I&C Platform Topical Report

RadICS Digital I&C Platform

(Closed Session)

August 30, 2017, Rockville, Maryland

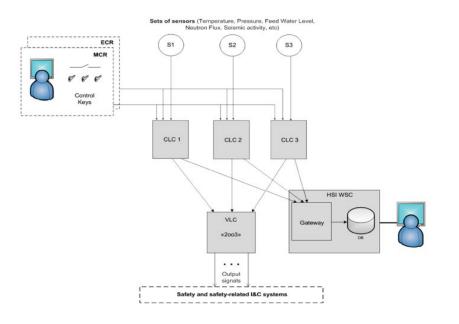
Agenda

- RadICS Platform Overview
- RadICS Platform System Interfaces
- RadICS Platform Modules
- RadICS Platform Safety Features

RadICS Platform Overview

RadICS Platform Overview

Product Highlights

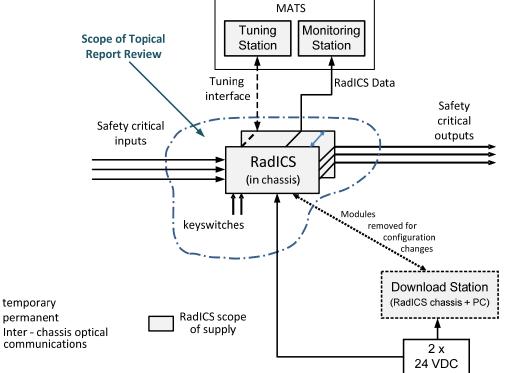


RPC Radiy

Typical System Configurations

Configuration Flexibility:

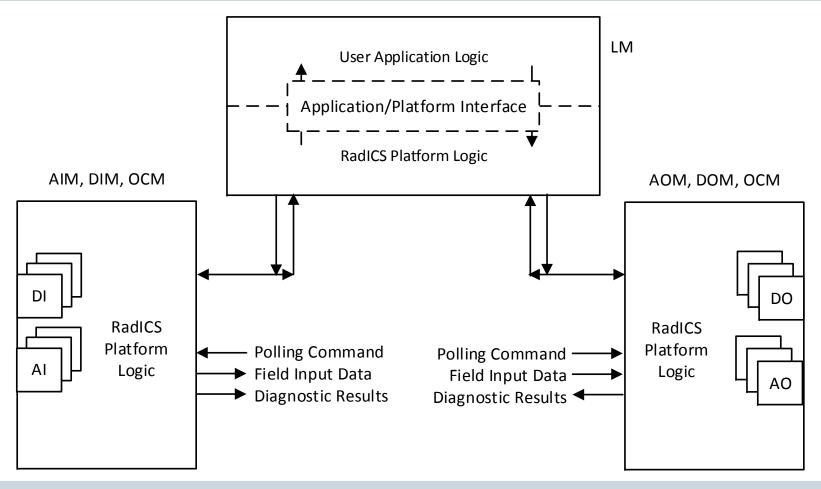
- > 2, 3, or 4 channel systems
- Separate trip processing and voting layers



Used for Safety I&C Systems:

- Reactor Trip System
- Engineered Safety Feature Actuation System
- Reactor Power Control and Limitation System
- Rod Control System

RadICS Platform Context


Modules FPGAs:

- Platform Electronic Design for all modules (i.e., standard programmable logic)
- Application Electronic Design for Logic Modules (i.e., projectspecific programmable logic)

Radiy Product Configuration Toolset:

- Functional Block Library
- Separate libraries for platform and application

RadICS Platform Architecture

Fradiy

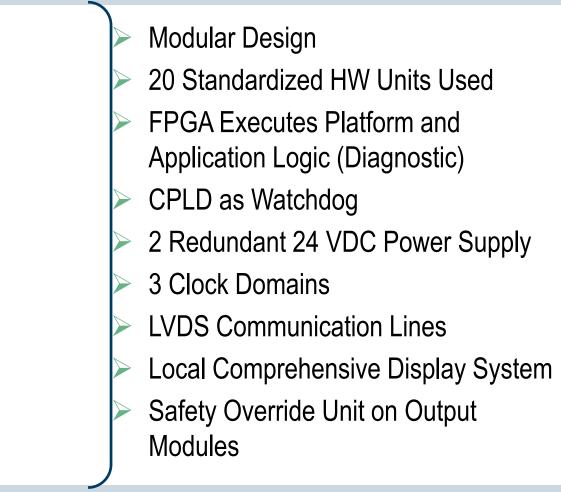
RadICS Platform General Attributes

- ➢ Fail-safe
- Fault-tolerance
- Diversity Capability
- Functional Isolation
- > Determinism
- Self-diagnostic Testing
- Ease of Use
- > Flexibility

- > Modularity
- Scalability
- High Quality Development Process
- Secure Development and Operational Environment
- Maintenance Friendly

RadICS Platform Fundamental Safety Approach

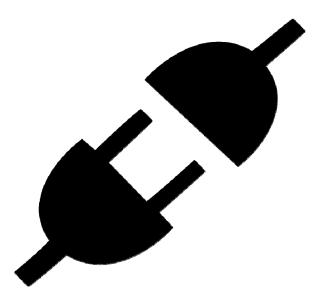
- De-energize to trip
- > Automatic Transitions to the Safe State
- Human Action to Leave the Safe State
- Safety Modules Only
- IEC SIL 3 Capacity by Design
- > Application Logic Functionality
- Controlled Scope and Interfaces


RadICS Platform Maintainability and Operability

On-line Monitoring

- > Operational Parameter Tuning Capability
- Minimized Maintenance Error (e.g., Coding Pegs, I/O Cables Are Rear-connected)
- Hardware Protection
- > Checking of User Configuration and Tuning Values
- User Safety Override
- Hot Swappable Modules (optional)
- > Authentication of the RadICS Module Version

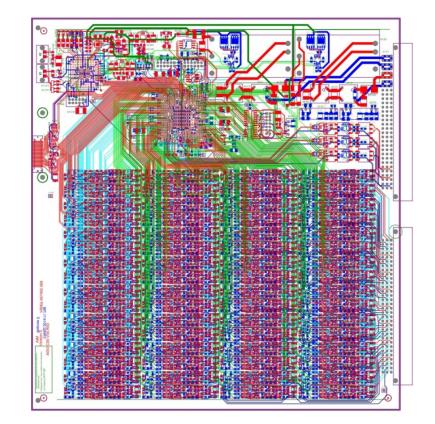
RadICS Module Architecture



RPC Radiy

Hardware Design Principles

- Use components intended for safety applications or proven in use components (FPGAs qualified for SIL3)
- Operation experience and vendor safety recommendations are used in the process of components selection
- Use principle of sufficiency for the chips selection (plan required capacity, avoid unnecessary embedded features)
- More than 3 years on the market (without topology changes)
- Local HMI to provide details on current HW status


RadICS Platform System Interfaces

RPC Radiy

RadICS Modules

RPC Radiy

RadICS Modules (1/6)

Logic Module (LM)

- > Dedicated SRAM FPGA chip for user configurable control logic
- Integrity checks on each communication line
- 14 LVDS full duplex lines for communication with OCM and I/O modules
- 3 galvanic-isolated discrete inputs (2 available, 1 reserved)
- 6 fast discrete outputs with embedded diagnostics of the outputs state
- > 3 fiber optical lines for internal system communications
- > 1 input for Tuning PC programming access key signal
- > 3 Fast Ethernet (100 BASE-FX) optical communication lines

RadICS Modules (2/6)

Analog Inputs Module (AIM)

- > Enhanced I/O diagnostics
- 32 independent analog input channels
- > 18-bit analog/digital (A/D) conversion in each analog input channel
- > 2 LVDS (redundant diagnostic and control data exchange)
- Integrity checks on each communication line
- Signal value accuracy 0.15%
- Built-in calibration

RadICS Modules (3/6)

Digital Inputs Module (DIM)

- Enhanced input diagnostics (i.e., shorted or broken load circuit detection)
- > 32 independent discrete input channels ("dry" contact type)
- 2 LVDS (redundant diagnostic and control data exchange)
- Integrity checks on each communication line

RadICS Modules (5/6)

Analog Outputs Module (AOM)

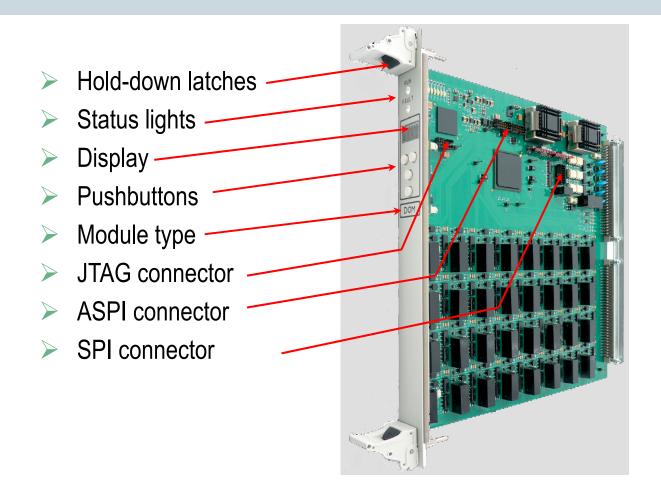
- Enhanced diagnostics of output channels
- > 32 independent analog output channels
- > 16-bit analog/digital (A/D) conversion in each channel
- 2 LVDS (redundant diagnostic and control data exchange)
- Integrity checks on each communication line
- Built-in calibration

RadICS Modules (5/6)

Digital Outputs Module (DOM)

- > Enhanced active output diagnostics
- 32 independent digital form-A optic-relay isolated output channels (switching up to 48 V DC / 0.5 amp)
- 2 LVDS (redundant diagnostic and control data exchange)
- Integrity checks on each communication line
- Fuse and Overvoltage protected outputs

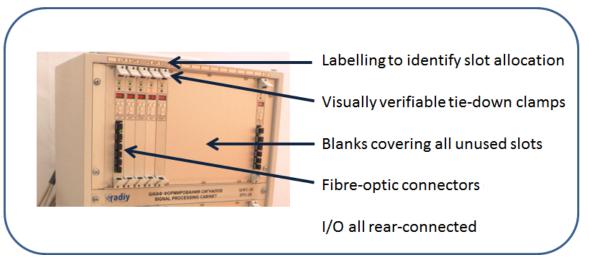
RadICS Modules (6/6)


Optical Communication Module (OCM)

- > 5 fiber optical lines
- 2 Low-Voltage Differential Signaling (LVDS) lines (redundant diagnostic and control data exchange)
- Integrity checks on each communication line
- > 5 RS-232 or RS-485 serial communication interfaces

RPC Radiy

RadICS Modules Maintenance Features (1/2)



RPC Radiy

RadICS Modules Maintenance Features (2/2)

Maintenance Friendly Features

- Full insertion and complete clamp-down are visually verifiable
- > All I/O cables are rear-connected

- Non-interfering local status display on every module
- Comprehensive diagnostics relayed to MATS
- Detection of some maintenance errors (e.g., wrong module in a slot)
- Hot-swap capability
- Validated maintenance documentation
- User Safety-Override

RadICS Platform Electronic Design Features

Non-ProprietaryStandardized Module Electronic Design

Electronic Design Architecture

- High level safety concept for Hardware Modules employed to meet target Safety Integrity Level (from IEC 61508)
 - No matter what configuration of modules is used, an individual module is designed such that failures that are both dangerous and undetected are limited to less than 10 percent
- RadICS design target is to meet same target for each Unit
- Units that are used on more than one module are standardized
 - Design strategy maximizes reuse of proven components and simplifies inter-operation of modules
- Electronic Design of each module performs selfdiagnostics of the Units on the Module

Standardized Module Modes of Operation

LM Modes of Operation

Standardized Module Work Cycle

RadICS Platform Safety Features

RadICS Module Safety Features (1/3)

RadICS Module Safety Features (2/3)

RadICS Module Safety Features (3/3)

Tuning Mode Access Control

RPC Radiy

RadICS Platform Self-Diagnostic Features (1/5)

RadICS Platform Self-Diagnostic Features (2/5)

RadICS Platform Self-Diagnostic Features (3/5)

RadICS Platform Self-Diagnostic Features (4/5)

RadICS Platform Self-Diagnostic Features (5/5)

RadICS Platform Internal Diversity

> Functional Diversity

- Segmentation of Hardware
 Units in Electronic Design
- Separate Clock Domain for Self-Diagnostic Features
- Separate Startup Checks
- Independent Watchdog
- > Technology Diversity
 - FPGA versus CPLD

Thank you for your attention!

Research & Production Corporation Radiy 29, Geroyiv Stalingrada Street, Kropyvnytskyi 25006, Ukraine e-mail: a.andrashov@radiy.com http://www.radiy.com

