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Regulatory Research on RPV Internals (RVIs)

 Regulatory framework for RVls

» RES supports the NRC regulatory decision making authority by
providing required technical basis

* NRC-sponsored research on RVis

— Irradiation-assisted degradation of stainless steel plate and weld
materials

— Embrittlement of CASS

 Regulatory perspective

— High impact on license renewal and inspection decision, and aging
management strategy

— Subsequent license renewal guidance documents (NUREG-2191 and
NUREG-2192)
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S —— Materials Science Logic

» For a Given System =» It is Important to Know

> Why Ex.: What =& Material Degradation
How »> Build up of Stresses

> When What ? . .

= Where 1. Void Swelling

2. Defect Structure

= How 3. Blisters, Gas Bubbles
Due to Radiation
When leere

During Normal

Reactor Internals
Operation

5



Materials science based logic

U S NRC for modeling general material

Prot cti gP opl andth Envi rrrrrrr degradatlon

Model— Based on the changes of stress /

strain in materials using
Analytical modeling
Finite element analysis techniques

SEM - Topological Changes
TEM - Microstructural

Changes
Changes in the
Chemical < i~ physical structure
changes
l On the Surface or Within the Structure

: : 1 Mechanical properties
Changes in the chemical composition  Hardness using Nano indentation 6

using Atom Probe Tomography (APT)  G¢rycture using X-ray diffraction (XRD)
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» Materials Investigated:

- Stainless Steels (304 L, 304L SA, 304 CW, 316 CW)
- Cast Stainless Steels (CF-3, CF-8 and CF-8 M grade)

> Neutron irradiation condition

- Stainless Steels (1- 40 dpa) * using either LWR or fast reactor neutron
irradiation

- Cast Stainless Steels (0.089 to 3 dpa) under LWR irradiation condition
» Test environment

- LWR condition

» Tests conducted on these steel materials
- Crack growth rate (CGR)
- Fracture toughness (FT)
- Microstructural Examination - Using
- Scanning electron microscope (SEM)

- Transmission electron microscope (TEM)
- Atom probe tomography (APT)

- High energy X-ray diffraction using Synchrotron Radiation Facility
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Recent NRC Research on RPV Internals

- Effect of radiation on mechanical properties



Engineering Stress (MPa)
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Ref: Y. Chen et al., NUREG/CR - 7128(2012)

Defect structure & precipitates act as obstacles to dislocation motion that lead to
matrix strengthening - increase in yield strength & decrease in ductility

In general, cavities (voids) are strong barriers, large faulted dislocation loops are ¢
intermediate barriers, & small loops & bubbles are weak barriers



Yield Stress (MPa)

U SNRC Increase in yield stress -
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Irradiation temperature 90-427°C, test temperature 100-427°C

1000

1000
o 800
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| 316 =
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N 316L .
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0 | | | | | | , | | .
0 2 4 6 8 10 12
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Ref: Y, Chen et al., NUREG/CR - 7128(2012)

YS of SA SS increases from 180-250 to =800 MPa at 3-5 dpa
YS of cold worked SS increases from 500-700 to =1000 MPa at 3-5 dpa
Effect of fast reactor and LWR irradiation on the YS of materials is the same
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Micro-chemical changes at the

\) * USNRC grain boundary of steels versus
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S| L R neutron irradiation

Fast Meutron Fluence (E =1 MeV)x 10 “nicm*
.. D 2 4 ] a8 10 12 14

Grain Boundary Cr Concentration . %)

Dose (Ddpa) Ref: Chopra, NUREG/CR - 7027(2010)

« Radiation induced segregation (RIS) results in grain boundary (GB) depletion
of Cr, Mn, Mo & enrichment of Ni, Si, P, C, B

« Segregation depends strongly on irradiation temperature, dose, & dose rate

 In LWRs, RIS increases with neutron dose, peaks at intermediate temp,
& increases at lower dose rates 11

« At 300°C, saturates at =5 dpa



Grain Boundary Cr Concentration, wt%

0

USNRC

UNITED STATES NUCLEAR REGULATORY COMMISSION

Protecting People and the Environment

Dose Dependence of grain boundary
Cr, Ni & Si contents for stainless steels
irradiated in LWRs and fast reactors

Ref: Data from Edwards et al.,

35 B
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RIS results in GB depletion of Cr and the enrichment of Ni, Si.
Stronger RIS in LWRs than BOR-60 (except data from Fujimoto fast HP), particularly

above 5 dpa

Irradiation temperature comparable, differences most likely due to dose rate

12
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Slow Strain Rate Test (SSRT)
Results

13
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48 c'lpa, Cw
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Stress (MPa)
Stress (MPa)

~ 304L, SA, 9.6 dpa

Test PWR Environment
Test temp. = 315°C
Strainrate =74 x 107 s ]
0 5 10
Strain (%)

10 doa. SA

» Temperature: 315°C
PWR water

: Flow: 20 mi/min
 Strainrate: 7.4¢107 5"

0 5
Strain (%) Ref: Y. Chen et al., NUREG/CR — 7018(2010) and 6965 (2008)
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304L SA, 10 d _
pa Large dimples

Microstructure of SA and
CW type 304L SS

304L CW, 10 dpa
Small dimples with some brittle areas

Ee
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SA samples possess fully ductile features while brittle features can be seen in CW samples.
Ref: Y, Chen et al., NUREG/CR — 7018(2010) and 6965 (2008) 15




Microstructure of irradiated

3 USNRC type 304L CW SS
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10-dpa 48-dpa
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Small dimples with some brittle areas More brittle areas in higher dose sample
and cleavage on sample surface.

Ref: Y, Chen et al., NUREG/CR — 7018(2010) and 6965 (2008)



U S NRC Yield stress - dose effects

s el SA versus CW

Protecting People and the Environment

1400 T T T T T TTT T T T T TTT | T T T T T T 1T
: . . a : 1500 T L - ‘ {—
oy | | 5 . i " Type 316 SS 3 b~
IR EVTT e > s Y Z Material Codes B5 & B6 !
i Cold worked —>‘ % ] [ ) | 1
B . : ° J r ! ! ]
- - ° - r — = ; —0O
1000 | vemmomm e USRI cont ol R e g @ % | !
— s - S < J r ! ! ! ]
& - Solution-annealed o 8 © ] 1000 3 Cold-worked |
S 800 | \ ........... g g NN NN [ | | 1
g I 8 8a & ¢ QI ’ R R S S
o i N8\\@ 8 < o . 5 e : ‘ ]
o 0600 —---ooooooooo G R IR R R EASSNERERNNNS ORSRRR: = n ! ! ‘
> - é . O ' - o Solution-annealed : ]
> L i 500 o ‘ i
400 Lo Y\ U USRS ] n ]
L 8 : . i ‘ i
i : o] Halden, Tested at 290°C ] n ® BOR-60 320°C
200 AR, S BOR-60, SA, tested at 315°C |- [ O  BOR-60, 320°C
L . BOR-60, CW, tested at 315°C | | L ! : B  Halden, 290°C
0 B 1 1 [ R i 1 1 Lol 1 1 [ N | |_ 0 L 1 T L1 ‘ L1 1 1 L0 ]
0.1 1 10 100 0 10 20 30 40 50
Dose (dpa) Dose (dpa)

Ref: Y, Chen et al., NUREG/CR — 7018(2010) and 6965 (2008)

The increase of yield stress by CW is not affected by irradiation beyond 10 dpa.
The yield stress differences between SA and CW materials are consistent
between 10 to 48 dpa.

The yield stress seems to saturate at 5-10 dpa.
17
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o ] = 18
Inter-granular (IG) cracking is severe in the high-S Type 304 SS



HP Type 304L SS SA with
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Ref: Y, Chen et al., NUREG/CR - 7018(2010) and 6965 (2008)

» A load drop beyond yield is observed for all HP 304L samples, regardless of their
oxygen content.
* The low-O specimens are more ductile than the high-O specimens.

* No IG cracking was observed in low-O specimens .
Note: RA - reduction in area of cross-section of a sample

19
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RA<76%, dimples 48 dpa Low-O
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Fracture morphology was unchanged with increasing dose from 10 to 48 dpa.
Dimples remain the dominant features on failure surface.

RA was similar to that of 10-dpa, ~60% for high-O, and ~80% for low-O specimens.

20
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Results Obtained from CASS
Samples

21
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CF-3 (~24% o) at ~320°C CF-8 (23% d) at ~320°C
600 -
400 +

Estimated lower bound value

.r'--

Jo (k)/m?)

Unaged Aged Unaged Aged
Ref: Y. Chen et al., NUREG/CR - 7084(2015)
= Neutron irradiation reduced fracture toughness (Jg) in both
unaged and aged CASS alloys.
= The decreases in Jo were much more significant in the unaged
samples, suggesting a dominant role of irradiation in causing
embrittlement.

22



J versus crack extension

<3 USNRC as a function of
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Ref: Chen et al., Env. Deg. Conf., 2017

= Decreased resistance in crack propagation in 2.9-dpa samples
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Recent NRC Research on RPV Internals

— TEM analysis of the microstructure of irradiated stainless
steels and CASS

24



i U S NRC TEM obtained from irradiated
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&

Ref: Yong et.al., To be published in J. Nucl. Mater., (2017)

Bright field imaging of dislocation loops at g020 for 20 dpa (A) and (B), g011 2%
for 20 dpa(C) and (D). g011 for 40 dpa. Note: ‘g’ refers to electron beam orientation.



Defect size and density of

<3 US.N R (C irradiated 304 SA - high sulfur

UNITED STATES NUCLEAR REGULATORY COMMISSION "

Protecting People and the Environment sta I n I e s s ste e I
—_ 10” " T v T v T r T v T

o =
'E 3){102? :_ = DEHSIT}-‘ 414 —
= F ® Size =
2 6x10” | =
n C QO
o - " " 412 E
T 4x10” | ! o
o [ O
& ! ©
- <4 10 c
c o
2 . =
‘g’ 2x10™ | _ S
S ATTTTTTTY ! 1 =
n ; ] —
(] { Q

: 1 1 ] ] ] 6
0 10 20 30 40 50 60
Dose (dpa)

Ref: Chen et al., JNM, 466 (2015) 560

Density and average size of Frank loops represented as a function of 26
neutron dose (dpa) for irradiated 304 SA-High S stainless steel



T'U.S.NRC TEM observation:

e @i\ et Rl Effect of irradiation
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CF-3 Aged

Ref: Chen et al., JNM, 466 (2015) 560

= Thermal aging and neutron irradiation resulted in similar
precipitation microstructure.

27
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G phase precipitates

200 fam

Dark fleld images of G phase precipitate at g-020(A) and exact zone aX|s(B) at [001] for 20 dpa
A irradiated CASS

Ref Chen et al., JNM 466 (2015) 560
Diffraction pattern (A) and dark field (B) of G phase precipitate at [013] for 40 dpa irradiated CASS 28
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25

0

Transmission electron micrographs obtained from CF-8 grade CASS. The micrographs were obtained
with the beam direction B close to <110>: (A) BF field image of austenite and ferrite phases, (B) Relrod
DF image of dislocation loops, (C) dark filed image of the fine precipitates in austenite grain using the
ultra-reflections in (D), and (D) diffraction patterns showing the coherence of the precipitates with the
matrix, (E) diffraction patterns showing the reflection streaks arising from dislocation and (F) the size

distribution of dislocation loops. Ref: Chen et al., JNM, 466 (2015) 560

29
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Das et al., J. Nucl. Mater., 1977 30
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U S NRC TEM of He-ion implanted

o st e ecu o comissoy 1Y) O) |yb denum-helium bubbles

Protecting People and the Environment

™ . {
g F e
1. ey ;
oy P

s el 48

v‘ oy ANy ..Q\_“a:i\!

250°C with 25 keV He* ions. ( B) As far (A) after further irradiation. Four bubble super lattice reflection appear with in the ring.
lon dose 4.5 X 10'7 He* ions/cm?2. (C) Bubble super lattice reflections around the bcc matrix reflection in a (111) sample. Insertis
the enlargement of (000) region shows faint second order reflections. Dose 2X 10'7- 40 keV He* ions/cm2at 400°C. (D)
Transmission electron micrograph showing alignment of helium bubbles in (001) molybdenum sample. Dose 2X 10'7, 40 keV
He* ions/cm?at 400°C. (E) Transmission electron micrograph of surface blistering in molybdenum after bombardment with 10
keV He* to a Dose of 2X 10" ions/cm2at 400°C. [ Ref: Mazey etal., J. Nucl. Mater., 64,145 (1977). 31
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Atom Probe Tomography (APT)

32
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» What are these precipitates/phases:
= APT will tell the
» compositional change

> location of the elements
Example — segregation of chromium
— depletion of a specific elemental constituent

33



APT Analysis:
Cr map
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Aged and
Irradiated

o

¥: -ir.

As cast

50 nm

Ref: Li et al., JNM, 466, 201 (2015)
= Irradiation and thermal aging resulted in similar segregations of Cr and
Fe (a/a’ decomposition).
=  The extent of segregation was more evident in the irradiated samples >
with prior aging.
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LIRTY APT Analysis (cont.):
\Q\BUSNRC Aged, irradiated CASS samples
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Ref: Yong et al., To be published in J. Nucl. Mater., (2017)

Iso-surfaces of Mn(Gold)-Ni(Green)-Si(Gray) clusters and interfaces of Cr (Blue)
enriched a' phases: Aged(33.58%Cr-7.47%Mn-13.39%Ni-5.6%Si) and Irradiated 36
(33.57%Cr-6.72%Mn-14.31%Ni-
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High Energy X-ray Data
Processing and Analysis

37
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0

4 . .
[ . ) Mechanical Properties
Microstructure .
(low-temperature embrittlement,

(dislocation loops, extended :> irradiation creep, high-
dislocation structure, voids, He temperature embrittlement,
bubbles, phase transformation, etc.) irradiation-assisted stress
L ’ corrosion cracking)

v

» Why we want to correlate microstructure to mechanical
properties:
= Enable us to develop a predictive model

Example hardness to internal physical structure

Physical structural change relates to development of new stress
New Stress field can be modeled using finite element analysis (FEA)
FEA then can predict where failure can occur.

38
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oL ——— beamline infrastructure

Simultaneous WAXS/SAXS measurement:
* In situ with deformation.

 Wide-angle detector array (1.0m - 4.5m downstream)
« Small-angle detector (6.6m downstream)

= To analyze load
partitioning among phases
""4p GE4 iRadMat interfaced

with load frame 9

SAXS detector

Z | GE3
F. Bea;gl stop

Ex. The role of ferrite
in the hardening and

embrittlement
i behavior of CASS.
/ 1 ,/\ o= 'g .
LGB / / Tomography VEA; -
e\ /  detector <Ol A3 A
GE1/ s,‘ it p

V\;Axs N L Monochromatic Y

X GE panels

X-ray 7.62 im 25.4 mm
v
XL
) . 39
Note: WAXS : Wide angle x-ray scattering

SAXS: Small angle x-ray scattering Ref: Zhang X et. al., submitted to Review of Scientific Instruments (2017)



U S NRC High Energy X-ray Data Processing
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Ref: Zhang X et. al., submitted to Review of Scientific Instruments (2017)
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\)\‘\) USNRC Analysis on 304L SS
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> Stainless Steel does not undergo thermal embrittlement.
- Stainless steel is y - austenite - with face centered cubic (fcc) structure

» 304 Stainless Steel suffers from neutron embrittlement at higher

neutron doses.

- Increase in hardness (nano-indentation) suggests that 304 SS was
embrittled

- Such neutron embrittlement in stainless steel is due to structural change.

» What is the evidence of such structural change?
- High energy XRD may provide some evidence

L
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41
Dose (dpa) Ref: Chen et al., Env. Deg. Conf., (2017)



Deformation-induced

\:{{ US.NRC(C, martensitic transformation in
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Protecting People and the Environment 3 1 6 S S

Tr bce (110)

bce (200)

normalized intensity + offset
uoljewuojaq

1.4 1.6
d spacing, Angstroms
Ref: Zhang X et. al., submitted to Review of Scientific Instruments (2017)

» XRD lineout shows increased ferrite/martensite fraction with deformation

« Martensitic transformation is one of the hardening mechanisms (besides
work-hardening) in the deformation of un-irradiated 316 SS. 42
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Analysis of CASS Nano-hardness

43



i UNITED STATES NUCLEAR REGULATORY COMMISSION

iy Cast Austenitic Stainless
¥ USNRC Steels (CASS)
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= CASS >» Dual-phase microstructure of 3 - ferrite and y-austenite

Ref: S.A. David, et al, JOM, June, 2003.
= Beneficial effects of delta ferrite
— Help prevent “hot cracking”
— Provide strength (Hardness of & - ferrite > y-austenite)
— Improve sensitization and SCC resistance 44
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Nano-indentation test to

<9 US.NRC(C distinguish the response of

ferrite and austenite

* Need to separate the different
mechanical responses of ferrite
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In-situ tensile tests on

CASS (CF-8, 23% &) at RT
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Ref: Chen et al., Env.
Deg. Conf., (2017)
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Unaged
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U S NRC Analysis of high energy XRD
ProscingPape v e Evsronmens results

» High energy XRD provides the information
on the distribution of structural changes
along the sample during deformation.

- That is whether the deformation is uniform or not.
- If the deformation is not homogenous, is there any
change in the grain morphology?

» Preliminary investigation suggests that
inhomogeneity is directly related to the grain

size changes during deformation.
- (Ex. Next slide)

Note: More research is needed to establish this conclusion -



\;J;/;USNRC Inhomogeneous deformation

UNITED STATES NUCLEAR REGULATORY COMMISSION = a d u t d I
Protecting People and the Environment I n I rra I a e s a m p e
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2wl
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0 e 11.8 dpa/300°C irr
| 0 20 40
y eng strain (%)

@ 34% macro-strain

@ 20% macro-strair

Observations:
 Deformation starts from the top and propagates to the bottom (Luders Band).
* Necking occurred before band fully propagating through.

 Heavier deformation leads to heavier texture and more phase transformation.
Ref: Zhang X et. al., submitted to Review of Scientific Instruments (2017) 51



microscopy (HEDM)

QS?U.S.NRC High-energy X-ray diffraction

Protecting People and the Environment

total number of grains: 2973
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micro-strain Re: Zhang X et. al., submitted to Review of Scientific Instruments (2017)
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Modeling Effort

53



Materials science based logic

U S NRC for modeling general material

ED STATES NUCLEAR REGULATORY COMMISSION

Prot cting People and the Environmen degradatlon

Model—Based on the changes of stress /

strain in materials using
Analytical modeling
Finite element analysis techniques
Neural network analysis

SEM - Topological Changes
TEM - Microstructural

Changes
Changes in the
Chemical < I~ physical structure
changes
\ On the Surface or Within the Structure
Mechanical properties

Changes in the chemical composition  Hardness using Nano indentation
using Atom Probe Tomography (APT) Structure using X-ray diffraction (XRD) 54



Virtual World — Virtual World

2 Glassy Steels

Cstal Structure

E I P4
Chemical Physical Steel B Glass

Changes Q=D Changes Composition -:::j=[::::- Tans. Temp

Ref: A. S. Rao, “Modeling of High Carbon, High Nickel Steel”, NSWCCD-61-TR-2005/04, Jan. 2005. 57



AL Example: Analytical Modeling
~3 ' USNRC Based Life-Cycle Prediction
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Treat Deformation Process =) Only Precursor for the
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Stresses |™® Result =) Material Failure

Deformation ] NVIechanics
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Ref: Rao, A. S., Trans. Of 21st SMIRT Conf., Nov. 2011. 56
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Deformation Damage and Simulation Methodology

(Systematic Sequence) (Present Adoption)
Image Input | Deformed Surface
| ¥ | Topoloo,%}' (SEM)
Image | Y _
'Enhancement | W f“’el‘*’t '
‘ ¥ | I'ransformation
Image v
Transformation [Analytical Modeling]
v - o '
Image .  Finite Element Anal}'sisJ
Segmentation ¥
L v .
Modeling Tool (Stress A;ml}'sm]
v Stress Distribution as
Image Component _ _
Analvsis Wavelet Transformation 57
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Corroded surface

5054 Aluminum Sample
Sensitized for 75 Days
Accelerated Corrosion 1 Day

| 1 1 ] 1 1
0 | l0.516l 1.034 1.5511 2
0.258 0.7758 1.292 1.809

(Mpa)

WAL T

A AT
IR
vy

AT Aty
_:_Q‘A AT
ol

Normal stress (MPa)
Ref: Rao et. al., NSWCCD Report (2006)

>

>

Example: FEA Modeling on
Failure of Aluminum Alloy

From the stress field
shown in the figure,
the change in the
normal stress was
calculated.

The change in the total
stress including the
contribution from
shear stress was
calculated.

The total stress (von
Mises stress) on the
top layer was
computationally
isolated.

This total stress on the
top layer was plotted

for analysis. 58



Pl Projection of Crack Propagation
| B{{ USNRCDue to Stress in Aluminum Alloy

Protecting People and the Environment

N\

3.02 MPa

|
5950 E75239
340554

S—
L 134E+07 L ZO1E+DT L ZGBE+DT {F)a}
. 101E+07T . 16BE+DT . Z3ISE+0T L A0DZE+OT

Von Mises Stress Field
Rao et.al., Journal of the Computational Mechanics, #365662, 10[2] 2009,

» The figure shows the
total stress distribution
of the top layer of the
stressed aluminum alloy.

» The actual location
where the stress
exceeded the fracture
stress of aluminum alloy
(> 3.02 Mpa) was
identified and located.

» Then the FEA algorithm
will trace the shortest
path the crack will follow
in the event any
additional stress was
applied to the sample.
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2 'USNRC FEA Modeling
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« High energy X-ray diffraction method provides
information on lattice strain.

« TEM provides loop density and size. We can
estimate the stress induced by these defects.

« SSRT and FT results provides information on
fracture mode

 APT provides the distribution, size, and shape
of the ferrite phase.

« Existing XFEM capabilities in ABAQUS will be
used to model crack nucleation, growth and
coalescence of the defects.

 The crack growth in a CT specimen will be
simulated using ABAQUS.

* For the large plastic deformation, we will
adopt local stress and strain failure criteria to
assess the occurrence of the de-bonding of Example of the crack growth in a mono-
ferrite/austenite phase interface and the phase material simulated using XFEM
fracture of ferrite and austenitic matrix. GHEICSCING SR il

60
Note: Modeling to startin FY 18 at the Univ. of Florida and Univ. of Georgia



Model Approach for Crack
\;JS?USNRC Initiation / Growth in Welds
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StressMaps
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X8) S
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NG “Apply Fracture
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Model #1 Model #2 Model #3

Note: Experimental testing of welds at ANL and Modeling effort to startin FY 18 at the Univ. of Georgia
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Radiation induced segregation (RIS) results in GB depletion of Cr, Mn, Mo &
enrichment of Ni, Si, P, C, B. The segregation depends strongly on
irradiation temperature, dose and dose rate.

Atom probe tomography (APT) results suggests that neutron irradiation and
thermal aging resulted in similar segregations of Cr and Fe (o/a’
decomposition).

Intergranular (IG) cracking is severe in the high-sulfur Type 304 SS and No
IG cracking is observed in low-S 304 SS

Neutron irradiation reduced fracture toughness in both unaged and aged
CASS alloys.

For CASS samples irradiated to 2.9 dpa, resistance in crack propagation is
decreased.

TEM microstructure of irradiated CASS suggests that dislocation loops are
the main irradiation-induced microstructure in austenite and in ferrite a
mixture of dislocation loops and G-phase precipitates are present.

The hardness of &- ferrite and y-austenite can be measured more accurately

using nano-indentation technique. 6
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Q\s USNRC  summary cont.

Protecting People and the Environment

The hardness of y-austenite phase of CASS is not affected by the thermal
treatment, however, the hardness of 5- ferrite increases with thermal aging.

While the hardness of y-austenite phase of CASS is not affected by the low
dose irradiation, the hardness tend to increase with neutron dose above 20
dpa. The hardness of 6- ferrite increases with neutron irradiation.

High energy X-ray diffraction is a powerful and sensitive technique to
observe subtle changes in internal microstructure of austenite or ferrite
phase.

Neutron irradiation of the 316 stainless steel changes the deformation mode
from homogeneous to localized.

Martensitic phase transformation plays an important role in the work-
hardening mechanism.

FEA modeling provides reasonably accurate prediction on the crack
propagation in materials subjected to external stress.
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APT Atom probe tomography
BWR Boiling water reactor

CASS Cast stainless steel

CGR Crack growth rate

CW Cold worked

dpa Displacement per atom
FEA Finite element analysis

FT Fracture toughness

GB Grain boundaries

High-O High oxygen

High-S High sulfur concentration
HP High performance

IG Intergranular

Low-O Low oxygen concentration
Low-S Low sulfur concentration
LWR Light water reactor

PWR Pressurized water reactor
RIS Radiation induced segregation

Acronyms
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* RVI Reactor vessel internal

« RA Reduction in area of the cross-section of a sample
« SAXS Small angle x-ray scattering

« SA Solution annealed

« SEM Scanning electron microscope (microscopy)

- SS Stainless steel

« SSRT Slow strain rate test

« TEM Transmission electron microscope (microscopy)
- TG Transgranular

« WAXS Wide angle x-ray scattering

« XRD x-ray diffraction

« YS Yield stress
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