TABLE 15.0-1

•→14

RESULTS SUMMARY OF TRANSIENTS EVENTS APPLICABLE TO BWRs (For Original Rated Power 2894 Mwt)

14←●					,		,				
Paragraph I.D.	Figure I.D.	Description	Maximum Neutron Flux (% NBR)	Maximum Dome Pressure (psig)	Maximum Vessel Pressure (psig)	Maximum Steam Line Pressure (psig)	Maximum Core Average Surface Heat Flux (% of Initial)	Minimum Critical Power Ratio	Frequency Category ⁽¹⁾	Duration of No. of Valves First Blowdown	of Blowdown Duration of Blowdown (sec)
15.1		DECREASE IN CORE COOLANT TEMPERATURE									
15.1.1	15.1-1	Loss of feedwater heater, automatic flow control	112.3	1,046	1,085	1,035	106.07	(2)	a	0	0
15.1.1	15.1-2	Loss of feedwater heater, manual flow control	121.0	1,060	1,099	1,047	113.88	0.12	a	0	0
15.1.2	15.1-3	Feedwater control failure, max demand	176.3	1,191	1,222	1,188	106.45	0.11	a	16	6
15.1.3 (3)	15.1-4	Pressure regulator fail - open	104.31	1,127	1,159	1,127	100.27	(2)	a	16	5
15.1.4		Inadvertent opening of safety or relief valve	See Text								
15.1.6		RHR shutdown cooling malfunction decreasing temp	See Text								
15.2		INCREASE IN REACTOR PRESSURE									
15.2.1	15.2-1	Pressure regulation downscale failure	160.8	1,186	1,219	1,182	102.69	0.09	a	16	7

TABLE 15.0-1 (Cont) (For Original Rated Power 2894 Mwt)

•	-;	>1	.4	
1	4	,		

14←●						-		-	-		
Paragraph I.D.	Figure I.D.	Description	Maximum Neutron Flux (% NBR)	Maximum Dome Pressure (psig)	Maximum Vessel Pressure (psig)	Maximum Steam Line Pressure (psig)	Maximum Core Average Surface Heat Flux (% of Initial)	Minimum Critical Power Ratio	Frequency Category ⁽¹⁾	Duration c No. of Valves First Blowdown	f Blowdown Duration of Blowdown (sec)
15.2.2	15.2-2	Generator load rejection, bypass on	189.3	1,191	1,219	1,185	102.63	0.08	a	16	6
15.2.2	15.2-3	Generator load rejection, bypass off	237.7	1,204	1,232	1,198	104.88	0.11	a	16	7
15.2.3	15.2-4	Turbine trip, bypass on	164.1	1,189	1,217	1,184	100.92	0.07	a	16	6
15.2.3	15.2-5	Turbine trip, bypass off	216.0	1,203	1,231	1,198	103.22	0.09	a	16	7
15.2.4	15.2-6	All MSIV closure	105.15	1,178	1,207	1,174	100.10	(2)	a	16	5
15.2.5	15.2-7	Loss of condenser vacuum	168.7	1,190	1,217	1,184	100.90	(2)	a	16	6
15.2.6	15.2-8	Loss of auxiliary power transformer	104.2	1,171	1,186	1,170	100.05	(2)	a	16	5
15.2.6	15.2-9	Loss of all grid connections	121.08	1,187	1,211	1,182	100.03	(2)	a	16	8
15.2.7	15.2-10	Loss of all feedwater flow	104.2	1,046	1,085	1,035	100.06	(2)	a	0	0
15.2.8		Feedwater piping break	See Table	15.0-3, e	vent 15.6.6	5					
15.2.9		Failure of RHR shutdown cooling	See Text								
15.3		DECREASE IN REACTOR COOLANT SYSTEM FLOW RATE									

TABLE 15.0-1 (Cont) (For Original Rated Power 2894 Mwt)

•	$\rightarrow 14$
1	1_

14←●	-								-		
Paragraph I.D.	Figure I.D.	Description	Maximum Neutron Flux % NBR	Maximum Dome Pressure (psig)	Maximum Vessel Pressure (psig)	Maximum Steam Line Pressure (psig)	Maximum Core Average Surface Heat Flux (% of Initial)	Minimum Critical Power Ratio	Frequency Category	Duration of No. of Valves First Blowdown	DI Blowdown Duration of Blowdown (sec)
15.3.1	15.3-1	Trip of one recirculation pump motor	104.2	1,047	1,085	1,036	100.0	(2)	a	0	0
15.3.1	15.3-2	Trip of both recirculation pump motors	104.2	1,168	1,182	1,165	100.0	(2)	a	16	5
15.3.2	15.3-3	Fast closure of one main recirc valve	104.2	1,049	1,085	1,037	100.0	(2)	a	0	0
15.3.2	15.3-4	Fast closure of two main recirc valves	104.2	1,175	1,188	1,171	100.12	(2)	a	0	0
15.3.3	15.3-5	Seizure of one recirculation pump	104.2	1,167	1,184	1,164	100.14	(2)	С	16	5
15.4		REACTIVITY AND POWER DISTRIBUTION ANOMALIES									
15.4.1.1		RWE - Refueling	See Text						b		
		5									
15.4.1.2		RWE - Startup	See Text						b		
15.4.2		RWE - At power	See Text						a		
15.4.3		Control rod mis- operation	See 15.4.	1 and 15.4	. 2						
15.4.4	15.4-3	Abnormal startup of idle recirculation loop	122.8	993	1,007	987	161.14	(2)	a	0	0

TABLE 15.0-1 (Cont) (For Original Rated Power 2894 Mwt)

•→14
11/

14←●			-				•				
Paragraph I.D.	Figure I.D.	Description	Maximum Neutron Flux % NBR	Maximum Dome Pressure (psig)	Maximum Vessel Pressure (psig)	Maximum Steam Line Pressure (psig)	Maximum Core Average Surface Heat Flux (% of Initial)	Minimum Critical Power Ratio	Frequency Category ⁽¹⁾	Duration of No. of Valves First Blowdown	f Blowdown Duration of Blowdown (sec)
15.4.5	15.4-4	Fast opening of one main recirc valve	472.4	998	1,009	984	149.56	(2)	a	0	0
1 - 4 -	15 4 5		252 5		1 0 0 5	070	140 50	(0)			
15.4.5	15.4-5	Fast opening of both main recirc valves	353.7	982	1,005	978	140.50	(2)	a	0	0
15.4.7		Misplaced bundle accident	See Text						b		
15 5		INCREASE IN REACTOR									
15.5		COOLANT INVENTORY									
15.5.1	15.5-1	Inadvertent HPCS pump start	104.2	1,046	1,085	1,035	100.12		a	0	0
15.5.3		BWR transients	See appro	priate Eve	nts in 15.1	and 15.2					

- (1) a = moderate
 b = infrequent
 c = limiting fault
- (2) $\Delta CPR < 0.12$
- (3) The pressure regulator failure-open is no longer a postulated single failure scenario; no Ovation TCPS single failure scenarios are postulated that could result in all valves open. This specific USAR section is maintained for historical purposes.

TABLE 15.0-1A

RESULTS SUMMARY OF TRANSIENTS EVENTS APPLICABLE TO BWRs

			Maximum			Maximum	Maximum Core Average				of Blowdown
			Neutron	Maximum	Maximum	Steam Line	Surface	Minimum		No. of	Duration
Paragraph	Figure		Flux % original	Dome Pressure	Vessel Pressure	Line Pressure	Heat Flux (% of	Critical Power	Frequency	Valves First	of Blowdown
I.D.	I.D.	Description	NBR	(psiq)	(psig)	(psig)	Initial)	Ratio	Category	Blowdown	(sec)
		p		(Fo=D)	(11)	(Feed)					(222)
15.1		DECREASE IN CORE COOLANT TEMPERATURE									
15.1.1	15.1-1	Loss of feedwater heater, automatic flow control	112.3	1,046	1,085	1,035	106.07	(2)	a	0	0
15.1.2 (NOTES 6,8)	15.1-2	Loss of feedwater heater, manual flow control	121.0	1,060	1,099	1,047	113.88	0.12	a	0	0
15.1.2	15.1-3	Feedwater control	176.3	1 1 0 1	1 000	1,188	106.45	0.11	_	16	
(NOTES 1,8)	15.1-3	failure, max demand	176.3	1,191	1,222	1,188	106.45	0.11	a	16	6
15.1.3 (NOTE 10)	15.1-4	Pressure regulator fail - open	105.31	1,127	1,159	1,127	100.27	(2)	a	16	5
15.1.4		Inadvertent opening of safety or relief valve	See Text								
15.1.6		RHR shutdown	See Text								
		cooling malfunction decreasing temp									
15.2		INCREASE IN REACTOR PRESSURE									
15.2.1 (NOTES 2,8)	15.2-1	Pressure regulation downscale failure	160.8	1,186	1,219	1,182	102.69	0.09	a	16	7

TABLE 15.0-1A (Cont)

Paragraph I.D.	Figure I.D.	Description	Maximum Neutron Flux % original NBR	Maximum Dome Pressure (psig)	Maximum Vessel Pressure (psig)	Maximum Steam Line Pressure (psig)	Maximum Core Average Surface Heat Flux (% of Initial)	Minimum Critical Power Ratio	Frequency Category ⁽¹⁾	Duration of No. of Valves First Blowdown	f Blowdown Duration of Blowdown (sec)
15.2.2	15.2-2	Generator load rejection, bypass on	189.3	1,191	1,219	1,185	102.63	0.08	a	16	6
15.2.2 (NOTES 3,8)	15.2-3	Generator load rejection, bypass off	237.7	1,204	1,232	1,198	104.88	0.11	a	16	7
15.2.3	15.2-4	Turbine trip, bypass on	164.1	1,189	1,217	1,184	100.92	0.07	a	16	6
15.2.3 (NOTES 4,8)	15.2-5	Turbine trip, bypass off	216.0	1,203	1,231	1,198	103.22	0.09	a	16	7
15.2.4 (NOTES 5,9)	15.2-6	All MSIV closure	118.9	1,229	1,262	1,228	100.1		a	9	
15.2.5	15.2-7	Loss of condenser vacuum	168.7	1,190	1,217	1,184	100.90	(2)	a	16	6
15.2.6	15.2-8	Loss of auxiliary power transformer	104.2	1,171	1,186	1,170	100.05	(2)	a	16	5
15.2.6	15.2-9	Loss of all grid connections	121.08	1,187	1,211	1,182	100.03	(2)	a	16	8
15.2.7	15.2-10	Loss of all feedwater flow	104.2	1,046	1,085	1,035	100.06	(2)	a	0	0
15.2.8		Feedwater piping break	See Table	15.0-3, e	vent 15.6.6						
15.2.9		Failure of RHR shutdown cooling	See Text								
15.3		DECREASE IN REACTOR COOLANT SYSTEM FLOW RATE									

TABLE 15.0-1A (Cont)

Paragraph I.D.	Figure I.D.	Description	Maximum Neutron Flux % original NBR	Maximum Dome Pressure (psig)	Maximum Vessel Pressure (psig)	Maximum Steam Line Pressure (psig)	Maximum Core Average Surface Heat Flux (% of Initial)	Minimum Critical Power Ratio	Frequency Category ⁽¹⁾	Duration of No. of Valves First Blowdown	of Blowdown Duration of Blowdown (sec)
15.3.1	15.3-1	Trip of one recirculation pump motor	104.2	1,047	1,085	1,036	100.0	(2)	a	0	0
15.3.1	15.3-2	Trip of both recirculation pump motors	104.2	1,168	1,182	1,165	100.0	(2)	a	16	5
15.3.2	15.3-3	Fast closure of one main recirc valve	104.2	1,049	1,085	1,037	100.0	(2)	a	0	0
15.3.2	15.3-4	Fast closure of two main recirc valves	104.2	1,175	1,188	1,171	100.12	(2)	a	0	0
15.3.3	15.3-5	Seizure of one recirculation pump	104.2	1,167	1,184	1,164	100.14	(2)	С	16	5
15.4		REACTIVITY AND POWER DISTRIBUTION ANOMALIES									
15.4.1.1		RWE - Refueling	See Text						b		
15.4.1.2		RWE - Startup	See Text						b		
15.4.2 (NOTES 7,8)		RWE - At power	See Text						a		
15.4.3		Control rod mis- operation	See 15.4.	1 and 15.4	.2						
15.4.4	15.4-1	Abnormal startup of idle recirculation loop	122.8	993	1,007	987	161.14	(2)	a	0	0

TABLE 15.0-1A (Cont)

Paragraph I.D.	Figure I.D.	Description	Maximum Neutron Flux % original NBR	Maximum Dome Pressure (psig)	Maximum Vessel Pressure (psig)	Maximum Steam Line Pressure (psig)	Maximum Core Average Surface Heat Flux (% of Initial)	Minimum Critical Power Ratio	Frequency Category ⁽¹⁾	Duration c No. of Valves First Blowdown	f Blowdown Duration of Blowdown (sec)
15.4.5	15.4-2	Fast opening of one main recirc valve	472.4	998	1,009	984	149.56	(2)	a	0	0
15.4.5	15.4-3	Fast opening of both main recirc valves	353.7	982	1,005	978	140.50	(2)	a	0	0
15.4.7		Misplaced bundle accident	See Text						b		
15.5		INCREASE IN REACTOR COOLANT INVENTORY									
15.5.1	15.5-1	Inadvertent HPCS pump start	104.2	1,046	1,085	1,035	100.12		a	0	0
15.5.3		BWR transients	See appro	priate Eve	nts in 15.1	and 15.2					

(1) a = moderate
 b = infrequent
 c = limiting fault

(2) $\Delta CPR < 0.12$

TABLE 15.0-1A (Cont)

Notes:

- (1) The Feedwater Controller Failure case has been re-analyzed at 3039 MWt core power with normal and reduced feedwater temperature. Results of the re-analyses are reported in Table 15.0-1B.
- (2) Pressure Regulator Downscale Failure case has been re-analyzed at 3039 MWt core power with normal and reduced feedwater temperature. The results of the reduced feedwater temperature case are reported in Table 15.0-1B. The normal feedwater temperature case is bounded by the reduced feedwater temperature.
- (3) The Generator Load Rejection with no Bypass option case has been re-analyzed at 3039 MWt core power with normal and reduced feedwater temperature, at full and partial arc turbine control valve (TCV) options. Results of the re-analyses are reported in Table 15.0-1B. The reduced feedwater temperature case is bounded by the normal feedwater temperature, and the partial arc is bounded by the full arc TCV mode of operation.
- (4) The Turbine Trip with no Bypass option case has been re-analyzed at 3039 MWt core power with normal and reduced feedwater temperature, at full and partial arc turbine control valve (TCV) options. Results of the re-analyses are reported in Table 15.0-1B. The reduced feedwater temperature case is bounded by the normal feedwater temperature, and the partial arc is bounded by the full arc TCV mode of operation.
- (5) DELETED
- (6) The Loss of Feedwater Heater event is re-analyzed at 3100 MWt core power (2% over 3039 MWt). The resulting delta CPR is 0.11. The results of the re-analyses are reported in Table 15.0-1B. This event is described in detail in Section 15.1, and also in Appendix 15B.
- (7) The RWE event is re-analyzed at 3039 MWt core power. The resulting delta CPR at full power is 0.16. The event is also described in detail in Section 15.4.
- (8) This event is re-analyzed at 3091 MWt (100% TPO rated core power) per Reference 10, App. E. The results of the re-analyses are reported in Appendix 15B.
- (9) This MSIV closure with position scram event is re-analyzed at 3091 MWt consistent with Cycle 19. The results of the re-analyses are reported in Section 15.2.4. The calculated change in Minimum Critical Power Ratio is bounded by the load rejection without bypass and turbine trip without bypass. As such, the MSIV closure event with position scram need not be evaluated each reload. Note that the blowdown through the safety relief valves had not ended by the end of the simulation (~8 seconds after start of the event), but pressure is decreasing rapidly.
- (10) The pressure regulator failure-open is no longer a postulated single failure scenario; no Ovation TCPS single failure scenarios are postulated that could result in all valves open. This specific USAR section is maintained for historical purposes.

TABLE 15.0-1B Summary of Events Analyzed at Power Uprate Conditions

ANALYSIS ID	ANALYSIS NAME	TRANSIENT OUTPUT FILE NAMES (.*)	ODYN PID	SUB EVENTS	POWER (%)	FLOW (%)	STEAM FLOW (%)
100P107F	STANDARD	000E6_E00000_T02_ODYNV09_LRNBP	00264	7SRVOS	100.0	107.0	100.0
100P107F	STANDARD	000E6_E00000_T03_ODYNV09_TTNBP	001A1	7SRVOS	100.0	107.0	100.0
100P107F	STANDARD	000E6_E00000_T04_ODYNV09_FWCF	0019C	7SRVOS	100.0	107.0	100.0
100P107F	STANDARD	000E6_E00000_T05_ODYNV09_PRFDS	00305	7SRVOS	100.0	107.0	100.0
100P107F ⁽¹⁾	STANDARD	00165_E00000_T05_ODYNV09_PRFDS	00A65	7SRVOS	100.0	107.0	88.2

TABLE 15.0-1B (Cont)

TRANSIENT NAME	ODYN PID	ANALYSIS ID	EXPOSURE Mwd/st	PEAK FLUX (N) % ref	PEAK FLUX (Q/A) % init	MAX QFUEL OFUEL PU	MAX NET REACT \$	DCPR G1136	DCPR B684W
	00064	100P107F	EOOOO	429.70	116 77	0 5 0	0.76	0 1021	0 1101
LRNBP	00264	10021075	E00000	429.70	116.77	0.59	0.76	0.1931	0.1191
TTNBP	001A1	100P107F	E00000	407.36	114.49	0.53	0.75	0.1822	0.1022
FWCF	0019C	100P107F	E00000	316.77	111.81	0.00	0.69	0.1430	0.0753
PRFDS	00305	100P107F	E00000	145.65	104.81	0.00	0.29	0.0987	0.0464
PRFDS ⁽¹⁾	00A65	100P107X	E00000	146.80	105.71	0.00	0.29	0.1180	0.0505

TABLE 15.0-1B (Cont)

				G1	136	B68	34W
TRANSIENT NAME	ODYN PID	ANALYSIS ID	EXPOSURE Mwd/st	DCPRB	DCPRA	DCPRB	DCPRA
LRNBP	00264	100P107F	E00000		0.2079		0.1256
TTNBP	001A1	100P107F	E00000		0.1982		0.1086
FWCF	0019C	100P107F	E00000		0.1574		0.0852
PRFDS	00305	100P107F	E00000		0.1120		0.0566
PRFDS ⁽¹⁾	00A65	100P107F	E00000		0.1318		0.0597

TABLE 15.0-1B (Cont)

TRANSIENT NAME	ODYN PID	ANALYSIS ID	EXPOSURE Mwd/st	PEAK FLUX Q/A % init	PEAK DOME PRESSURE RATE psi/sec	PEAK PRESSURE DOME psig	PEAK PRESSURE P(V) psig	PEAK PRESSURE P(SL) psig	MIN DELTA P(UCL) psi	MIN DELTA P(SSV) psi	MIN DELTA P(ECL) psi
LRNBP	00264	100P107F	E00000	116.77	301.0	1269.8	1296.4	1265.6	78.6		203.6
TTNBP	001A1	100107F	E00000	114.49	319.6	1268.2	1295.1	1264.1	79.9		204.9
FWCF	0019C	100P107F	E00000	111.81	329.8	1244.2	1267.8	1242.0	107.2		232.2
PRFDS	00305	100P107F	E00000	104.81	114.1	1255.8	1284.0	1253.2	91.0		216.0
PRFDS ⁽¹⁾	00A65	100P107X	E00000	105.71	108.9	1249.3	1277.0	1247.7	98.0		223.0

(1) Second PRFDS case run with Reduced Feedwater Temperature

INPUT PARAMETERS AND INITIAL CONDITIONS FOR TRANSIENTS

1.	Thermal power level, MWt	
	Warranted value	2,894
	Analysis value	3,015
2.	Steam flow, lb/hr	
	Warranted value	12.45×10^{6}
	Analysis value	$13.07 \times 10^{\circ}$
3.	Core Flow, lb/hr	84.5 x 10 ⁶
4.	Feedwater flow rate ⁽¹⁾ , lb/sec	
	Warranted value	3,458
	Analysis value	3,631
5.	Feedwater temperature, $^\circ extsf{F}$	425
6.	Vessel dome pressure, psig	1,045
7.	Vessel core pressure, psig	1,056
8.	Turbine bypass capacity, % NBR	10
9.	Core coolant inlet enthalpy, Btu/lb	529.9
	Turbine inlet pressure, psig	960
	Fuel lattice	P 8X8R
12.	Core average gap conductance, Btu/sec-ft ² -°F	0.1892
13.	Core leakage flow, %	11
14.	Required MCPR operating limit	
	First core	1.18
	Reload core	1.19
15.	MCPR safety limit	
	First core	1.06
	Reload core	1.07
16.	Doppler coefficient (-)¢/°F	
	Analysis data ⁽²⁾	0.132
17.	Void coefficient (-)¢/% rated voids	
		14.0
	Analysis data for power increase events ^{(2) (4)}	
	Analysis data for power decrease events $^{\scriptscriptstyle(2)}$	4.0
18.	Core average rated void fraction, % ⁽²⁾	42.53
19.	Scram reactivity	
	Scram reactivity Analysis data ⁽²⁾⁽⁴⁾	Fig. 15.0-2
	Control rod drive speed,	
	position versus time	Fig. 15.0-3
21.	Jet pump ratio, M	2.47

22. SRV capacity, % NBR @ 1,210 psig	109.4
Manufacturer	Crosby
Quantity installed	16
23. Relief function delay, sec	0.40
24. Relief function response	
Time constant, sec	0.10
25. Safety function delay, sec	0.0
26. Safety function response	
Time constant, sec	0.2
27. Set points for SRVs	
Safety function, psig	1175, 1185, 1195
	1205, 1215
Relief Function, psig	1125, 1135, 1145
	1155
28. Number of valve groupings simulated	
Safety function, no.	5
Relief function, no.	4
29. SRV reclosure	
Set point - both modes (% of set point)	
Maximum safety limit (used in analysis)	98
Maximum operational limit	89
30. High flux trip, % NBR	
Analysis set point (122 x 1.042)	127.2
31. High pressure scram set point, psig	1,095
32. Vessel level trips, ft above bottom of	
separator skirt bottom	
Level 8 - (L8), ft	5.88
Level 4 - (L4), ft	4.03
Level 3 - (L3), ft	1.94
Level 2 - (L2), ft	(-)2.86
33. APRM simulated thermal power trip, % NBR	
Analysis set point (114 x 1.042)	118.8
34. Time constant, sec	7
35. Nuclear characteristics used in ODYN	End of equilibrium
simulations ⁽⁴⁾	cycle (EOEC)
36. Recirculation pump trip delay, sec	0.14
37. Recirculation pump trip inertia time	Max 5.0
constant for analysis, sec ⁽³⁾	Min 3.0

TABLE 15.0-2 (Cont)

38. Total steam line volume, ft^3	3,275
39. Pressure set point of recirculation pump	
trip - psig (nominal)	1,135

 ⁽¹⁾ Includes control rod drive flow
 ⁽²⁾ Applies only for events analyzed using model described in Reference 1 to Section 15.1. The inertia time constant is defined by the expression:

$$t = \frac{2\pi J_0 n}{g T_0}$$

where:

t = Inertia time constant (sec) $J_O = Pump motor inertia (lb-ft)$ n = Rated pump speed (rps)g = Gravitational constant (ft/sec) $T_O = Pump shaft torque (lb-ft)$

(4)

The transient analyses for RBS are based on end of equilibrium cycle (EOEC) nuclear parameters for a pre-control cell core design. These analyses results described in Chapter 15 are bounding for limiting transients relative to the expected performance of the plant at end of cycle 1 conditions for the control cell core.

TABLE 15.0-2A INPUT PARAMETERS AND INITIAL CONDITIONS FOR TRANSIENTS⁽¹⁰⁾

I

		Original Power	5% Power Uprate
1.	Thermal power level, MWt	Oliginal Fower	5% FOWEL OPTACE
±•	Warranted value	2,894	
	Analysis Value	3,015	3039
	Analysis value	5,015	5055
2.	Steam Flow, lb/hr	_	
	Warranted value	$12.45 \times 10^{\circ}$	
	Analysis Value	$13.07 \times 10^{\circ}$	$13,199 \times 10^{6}$
3.	Core Flow, lb/hr	84.5 x 10°	68.6 x 10° -
5.	COLE LION, ID/III	04.5 X 10	90.4×10^{6}
4.	Feedwater flow rate ⁽¹⁾ , lb/sec		
	Warranted value	3,458	
	Analysis value	3,631	3666.4
-		405	405 5
5.	Feedwater temperature, °F	425	425.7
6.	Vessel dome pressure, psig	1,045	1055
	Vessel core pressure, psig	1,056	1070
8.	Turbine bypass capacity, % NBR	10	9.48
9.	Core coolant inlet enthalpy, Btu/lb	529.9	531.2
	Turbine inlet pressure, psig	960	1012(6)
	Fuel lattice	P8x8R	GE8x8EB GE11
12.	Core average gap conductance,		
	Btu/sec-ft ² -°F	0.1892	0.3657 ⁽⁷⁾
13.	Core leakage flow, %	11	13.9 ⁽⁷⁾
	Required MCPR operating limit		
	First core	1.18	
	Reload core	1.19	1.32
15	MCPR safety limit		
10.	First core	1.06	
	Reload core	1.07	1.10
		±.0,	1.10
16.	Doppler coefficient (-)¢/°F		(7)
	Analysis data ⁽²⁾	0.132	0.139 ⁽⁷⁾
17.	Void coefficient(-)¢/% rated voids		
	Analysis data for power increase	14.0	9.94
	events (2) (4)		
	Analysis data for power decrease	4.0	
	events (2)		
18.	Core average rated void		
	fraction, $\tilde{\aleph}^{(2)}$	42.53	40.01 (7)
19.	Scram reactivity,		1
	Analysis data (2) (4)	Fig. 15.0-2	Same
20		2	
20.	Control rod drive speed,		
	position versus time	Fig. 15.0-3	Same
21.	Jet pump ratio, M	2.47	2.48

TABLE 15.0-2A (Cont)

	Original Power	5% Power Uprate
	109.4 (8)	100.2(8)
22. Installed SRV capacity, % NBR Manufacturer	Crosby	100.2 same
Quantity installed	16	Same
	-	Suite
23. Relief function delay, sec	0.40	Same
24. Relief function response	0.10	G = == =
Time constant, sec	0.10	Same
25. Safety function delay, sec	0.0	Same
26. Safety function response		~
Time constant, sec	0.2	Same
27. Set points for SRVs		
Safety function, psig	1175, 1185, 1195	1231, 1241, 1246
Doliof function main	1205, 1215	1160 1170 1100
Relief function, psig	1125, 1135, 1145, 1155	1163, 1173, 1183
	1122	
28. Number of valve groupings simulated		
Safety function, no.	5	3
Relief function, no.	4	3
29. SRV reclosure Set point-both modes (% of set		
point)		
Maximum safety limit	98	Same
(used in analysis)	89	Same
Maximum operational limit		
30. High flux trip, % NBR		
Analysis set point (122 x 1.042)	127.2	122.0
31. High pressure scram set point,		
psig	1,095	1,125
32. Vessel level analysis trips, ft		
above bottom of separator skirt Level 8 - (L8), ft	5.88	Same
Level 4 - (L4), ft	4.03	Same
Level 3 - (L3), ft	1.94	Same
Level 2 - (L2), ft	(-)2.86	Same
33. APRM simulated thermal power		
trip, % NBR	110.0	115 0
Analysis set point (114 x 1.042)	118.8	115.0
34. Time constant, sec	7	6.6 ⁽⁹⁾
35. Nuclear characteristics used	End of equilibrium	Same as Cycle
in ODYN simulations $^{(4)}$	cycle (EOEC)	7/8 core loading
36. Recirculation pump trip delay,	0.14	Same
Sec		
37. Recirculation pump trip inertia	Max 5.0	Max 6.0 ⁽³⁾
time constant for analysis, sec $^{\scriptscriptstyle{(3)}}$	Min 3.0	Same
	2012 6	3,275
38. Total steam line volume, ft ³	3243.6	5,215
 38. Total steam line volume, ft³ 39. Pressure set point of recirculation 	1,135	1157

Notes:

- (1) Includes control rod drive flow
- (2) Applicable only for events analyzed using model described in Reference 1 to Section 15.1.
- ⁽³⁾ The inertia time constant is defined by the expression:

where:

t

t = Inertia time constant (sec)
J_o = Pump motor inertia (lb-ft)
n = Rated pump speed (rps)
g = Gravitational constant (ft/sec)
T_o = Pump shaft torque (lb-ft)

The 6 second inertia characteristic has been conservatively assumed in T-G trip RPT analysis for several reload cycles (per OPL-3).

- (4) The transient analyses for RBS are based on end of equilibrium cycle (EOEC) nuclear parameters for a pre-control cell core design. These analyses results described in Chapter 15 are bounding for limiting transients relative to the expected performance of the plant at end of cycle 1 conditions for the control cell core.
- (5) Transients were performed at the core flow range of 81% to 107% of rated or 68.6 to 90.4 Million lb-hr (rated core flow is 84.5 Mlb/hr).
- (6) Turbine inlet pressure is measured at Turbine Stop Valve (TSV) inlet conditions.
- (7) Values taken from PANACEA/ODYN/CRNC at increased core flow (ICF) condition (100%P/107%F).
- (8) The Safety and Relief valve setpoints were obtained from OPL-3 at uprate conditions, where the capacities are based at a reference pressure of 1080 psig. The capacities originally developed for this USAR table were based on a reference pressure of 1210 psig. The preuprate OPL-3 information exchange has been shifted to the 1080 psig reference pressure for several cycles.
- (9) The 6.6 value for the SIP time constant has been in use for several reload cycles (per OPL-3).
- (10) The input parameters and initial conditions for the cycle-specific analyses are given in Attachment B to Appendix 15B.

TABLE 15.0-3

SUMMARY OF ACCIDENTS

		Failed H	Fuel Rods
		GE-Calculated	NRC Worst-Case
Section	Title	Value	Assumption
15.3.3	Seizure of one	None	
	recirculation pump		
15.3.4	Recirculation pump shaft break	None	
•→8			
15.4.9	Rod drop accident	<770	770**
8←•			
15.6.2	Instrument line break	None	None
15.6.4	Steam system pipe break outside containment	None	None
15.6.5	LOCA within RCPB	None	100%
15.6.6	Feedwater line break- outside containment	None	None
15.7.1.1	Main condenser gas treatment system failure	N/A	N/A
15.7.3	Liquid radwaste tank failure	N/A	N/A
15.7.4	Fuel handling accident	<125	125
15.7.5	Cask drop accident	None	None
15.8	ATWS	*	

* Special event still under negotiation

•→8 ** See Appendix 15B2.3 for reload core conditions 8←●

TABLE 15.1-1

SEQUENCE OF EVENTS FOR LOSS OF FEEDWATER HEATER, AUTO FLOW CONTROL (FIGURE 15.1-1)

Time <u>(sec)</u>	Event
0	Initiate a 100°F temperature reduction in the feedwater system
5	Initial effect of unheated feedwater starts to raise core power level but the automatic flow control system automatically reduces core flow to maintain initial steam flow
40	Reactor variables settle into new steady state

TABLE 15.1-2

SEQUENCE OF EVENTS FOR LOSS OF FEEDWATER HEATER, MANUAL FLOW CONTROL (FIGURE 15.1-2)

Time (sec)	Event
0	Initiate a 100°F temperature reduction into the feedwater system
5	Initial effect of unheated feedwater starts to raise core power level and steam flow
10	Turbine control valves start to open to regulate pressure
61.9	Initiation of reactor scram on high simulated thermal power
73.0	Narrow range (NR) sensed water level reaches Level 3 (L3) set point
73.2	Trip of recirculation pump power source to low frequency MG speed; RPT initiates due to Level 3 Trip (not included in simulation)
>80(est)	Wide range (WR) sensed water level reaches Level 2 (L2) set point
>80	Recirculation pumps trip off due to Level 2 RPT
>110(est)	HPCS/RCIC flow enters vessel (not simulated)
>120(est)	Reactor variables settle into limit cycle.

TABLE 15.1-3

SEQUENCE OF EVENTS FOR FEEDWATER CONTROLLER FAILURE, MAXIMUM DEMAND (FIGURE 15.1-3)

Time	
<u>(sec)</u>	Event
●→14	
0	Initiate simulated failure of 108 percent upper limit on feedwater flow at a system design pressure of 1,065 psig
32.3	L8 vessel level set point initiates reactor scram and trips main turbine and feedwater pumps
32.4	RPT actuated by stop valve position switches
32.4	Main turbine bypass valves opened due to turbine trip
33.8	SRVs open due to high pressure
36	Water level dropped to low water level setpoint (Level 2)
>66 (est) 14←●	RCIC and HPCS flow into vessel (not simulated)

SEQUENCE OF EVENTS FOR PRESSURE REGULATOR FAILURE -OPEN TO 130% (FIGURE 15.1-4) (NOTE 1)

<u>Time</u> (sec)	Event
0	Simulate steam flow demand to 130 percent
0.5	Main turbine bypass fully opens
8	Turbine control valves wide open
19	Low turbine inlet pressure trip initiates main steam isolation
19.5	MSIV closure initiates reactor scram
22.0	Vessel water level reaches L3 set point. Recirculation pumps trip to low frequency M/G sets.
25.5(est)	SRVs open
26(est)	Vessel water level reaches L2 set point. Recirculation pumps trip due to Level 2 RPT signal.
30.5	SRVs close
41.18	Group 1 SRVs open again to relieve decay heat
46.18	Group 1 SRVs close again
>50 (est)	HPCS and RCIC flow enters vessel (not simulated)

NOTE 1: The pressure regulator failure-open is no longer a postulated single failure scenario; no Ovation TCPS single failure scenarios are postulated that could result in all valves open. This specific USAR section is maintained for historical purposes.

TABLE 15.1-5

SEQUENCE OF EVENTS FOR INADVERTENT SAFETY/RELIEF VALVE OPENING

Time-sec	Event
0	Initiate opening of one SRV
0.5 (est)	Relief flow reaches full flow
15 (est)	System establishes new steady-state operation

TABLE 15.1-6

SEQUENCE OF EVENTS FOR INADVERTENT RHR SHUTDOWN COOLING OPERATION

Approximate Elapsed Time	Event		
0	Reactor at states B or D (Appendix 15A) when RHR shutdown cooling inadvertently activated		
0-10 min	Slow rise in reactor power		
+10 min	Operator may take action to limit power rise; Flux scram occurs if no action is taken		

SEQUENCE OF EVENTS FOR PRESSURE REGULATION DOWNSCALE FAILURE (FIGURE 15.2-1)

Time <u>(sec)</u>	Event	
0	Simulate zero steam flow demand to main turbine and bypass valves	
0 ●→14	Turbine control valves start to close	
0.86	Neutron flux reaches high flux scram set point and initiates a reactor scram	
2.07	Reactor pressure reaches high pressure setpoint and initiates recirculation pump trip	
2.64	SRVs open	
 →13 *Shown for information only. Starting with Cycle 10 this event is no longer required to be analyzed. 13←● 14←● 		

SEQUENCE OF EVENTS FOR GENERATOR LOAD REJECTION WITH BYPASS (FIGURE 15.2-2)

Time (sec)	Event
(-)0.015 (approx.)	Turbine-generator detection of loss of electrical load
0	Turbine-generator load rejection sensing devices trip to initiate TCV fast closure and main turbine bypass system operation
0	Turbine control valve (TCV) fast closure initiates scram trip and RPT
0.07	TCVs closed
0.10	Turbine bypass valves start to open
1.30	SRVs open due to high pressure
7.66	SRVs close

SEQUENCE OF EVENTS FOR GENERATOR LOAD REJECTION WITH FAILURE OF BYPASS (FIGURE 15.2-3)

Time <u>(sec)</u>	Event
(-)0.015 (approx.)	T-G detection of loss of electrical load
0	T-G load rejection sensing devices trip to initiate TCV fast closure
0	Turbine bypass valves fail to operate
0	TCV fast closure initiates scram trip and RPT
•→14 0.08	TCVs closed
1.53	SRVs open due to high pressure
14←●	

SEQUENCE OF EVENTS FOR TURBINE TRIP WITH BYPASS (FIGURE 15.2-4)

Time <u>(sec)</u>	Event
0	Turbine trip initiates closure of main stop valves
0	Turbine trip initiates bypass operation
0.01	Main turbine stop valves reach 90% open position and initiate reactor scram trip and RPT
0.10	Turbine stop valves close
0.10	Turbine bypass valves start to open to regulate pressure
1.34	SRVs open due to high pressure
7.60	SRVs close

SEQUENCE OF EVENTS FOR TURBINE TRIP WITH FAILURE OF BYPASS (FIGURE 15.2-5)

Time <u>(sec)</u>	Event
0	Turbine trip initiates closure of main stop valves
0	Turbine bypass valves fail to operate
0.01	Main turbine stop valves reach 90% open position and initiate reactor scram trip and RPT
0.10	Turbine stop valves close
•→14 1.58 14←●	SRVs open due to high pressure

TABLE 15.2-6

SEQUENCE OF EVENTS FOR CLOSURE OF ALL MSIVs (FIGURE 15.2-6)

Time <u>(sec)</u>	Event
0	Initiate closure of all MSIVs
0.45	MSIVs reach 85% open
0.45	MSIV position trip scram initiated
3.6	SRVs open due to high pressure
>8 (est)	SRVs close

TABLE 15.2-7

RADIOLOGICAL CONSEQUENCES OF MSIV CLOSURE

<u>Isotope</u>	Maximum Concentration Released (Ci/hr)	Restricted Area Boundary Concentration (µ Ci/cc)	<u>ECL(1)</u>	Percent <u>of ECL</u>
•→14 I-131 I-132 I-133 I-134 I-135	$1.2-4^{(2)} 1.0-3 1.5-3 1.1-3 1.3-3$	1.1-13 9.4-13 1.4-12 1.0-12 1.2-12	2.0-10 2.0-8 1.0-9 6.0-8 6.0-9	
Br-83	4.1-6	3.7-15	9.0-8	4.1-6
Br-84	1.3-6	1.2-15	8.0-8	1.5-6
Br-85	7.1-8	6.5-17	1.0-9	6.5-6
Kr-83m	2.8-1	2.5-10	5.0-5	5.1-4
Kr-85m	5.8-1	5.3-10	1.0-7	5.3-1
Kr-85	1.4-2	1.3-11	7.0-7	1.9-3
Kr-87	1.2+0	1.1-9	2.0-8	5.7+0
Kr-88	1.7+0	1.6-9	9.0-9	1.8+1
Xe-131m	2.9-3	2.7-12	2.0-6	
Xe-133m	4.9-2	4.5-11	6.0-7	
Xe-133	1.4+0	1.3-9	5.0-7	
Xe-135m	8.0+0	7.3-9	4.0-8	
Xe-135	4.3+0	3.9-9	7.0-8	
Xe-138	1.6+0	1.5-9 Total perce	2.0-8 ent of ECL	$\frac{7.3+0}{55.4}$

(1) Effluent Concentration Limits (airborne) in unrestricted areas from 10CFR20, Appendix B, Table 2 Column 1.

 $(2) \quad 1.2-4 = 1.2 \times 10^{-4}$

14←●

TYPICAL RATES OF DECAY FOR CONDENSER VACUUM

Cause		Estimated Vacuum Decay Rate
1.	Failure or isolation of steam jet air ejectors	<l hg="" in="" min<="" td=""></l>
2.	Loss of sealing steam to shaft gland seals	Approximately 1 to 2 in Hg/min
3.	Opening of vacuum breaker valves	Approximately 2 to 12 in Hg/min
4.	Loss of one or more cir- culating water pumps	Approximately 4 to 24 in Hg/min

SEQUENCE OF EVENTS FOR LOSS OF CONDENSER VACUUM (FIGURE 15.2-7)

Time <u>(sec)</u>	Event
-3.0 (est)	Initiate simulated loss of condenser vacuum at 2 in of Hg/sec
0.0 (est)	Low condenser vacuum main turbine trip actuated
0.08	Main turbine trip initiates RPT and scram
1.34	SRVs open due to high pressure
5.0	Low condenser vacuum initiates MSIV closure
5.6	Low condenser vacuum initiates bypass valve closure
7.60	SRVs close
8.13	Group 1 SRVs open again to relieve decay heat
14.03	Group 1 SRVs close again
17.42	Group 1 SRVs open again to relieve decay heat
23.45	Group 1 SRVs close again

TRIP SIGNALS ASSOCIATED WITH LOSS OF CONDENSER VACUUM

Vacuum (in of Hg)	Protective Action Initiated
27 to 28	Normal vacuum range
20 to 23	Main turbine trip (stop valve closures)
7 to 10	Main steam isolation valve (MSIV) closure and bypass valve closure

SEQUENCE OF EVENTS FOR LOSS OF NORMAL AND PREFERRED STATION SERVICE TRANSFORMERS (FIGURE 15.2-8)

Time <u>(sec)</u>	Event
0	Loss of normal and preferred station service transformers occurs.
0	Recirculation system pump motors are tripped.
0	Feedwater and condensate pumps are tripped.
2.00	Reactor scram and closure of MSIV occur due to loss of power to the solenoids.
5.10	SRVs open due to high pressure
10.12	SRVs close
12.10	Group 1 SRVs cycle open and close on pressure
21	Vessel water level reaches Level 2 set point
>45 (est)	HPCS and RCIC flow enters vessel (not simulated)

SEQUENCE OF EVENTS FOR LOSS OF ALL GRID CONNECTIONS (FIGURE 15.2-9)

Time <u>(sec)</u>	Event
(-)0.015 (approx.)	Loss of grid causes T-G to detect a loss of electrical load.
0	Turbine control valve fast closure is initiated.
0	T-G power-load unbalance (PLU) trip initiates main turbine bypass system operation.
0	Recirculation system pump motors are tripped.
0	TCV fast closure initiates a reactor scram trip.
0.07	TCVs closed.
0.11	Turbine bypass valves open.
1.33	SRVs open due to high pressure.
2.00	Closure of MSIV due to loss of power.
9.03	SRVs close.
19 (est)	Vessel water level reaches Level 2 set point.
>45(est)	HPCS and RCIC flow enters vessel (not simulated).

TABLE 15.2-13

SEQUENCE OF EVENTS FOR LOSS OF ALL FEEDWATER FLOW (FIGURE 15.2-10)

Time (sec)	<u>Event</u>
0	Trip of all feedwater pumps initiated.
2.33	Vessel water level reaches level 4 and initiates recirculation flow runback.
4.88	Feedwater flow decays to zero.
8.71	Vessel water level (L3) trip initiates scram trip and recirculation pumps trip to low frequency M/G set.
24(est)	Vessel water level reaches Level 2.
24(est)	Recirculation pumps trip due to Level 2 RPT signal.
>50(est)	HPCS and RCIC flow enters vessel (not simulated).

 $\bullet{\rightarrow}14$ $\bullet{\rightarrow}13$ sequence of events for failure of RHR shutdown cooling Configuration for Activity C1 (a)

13←	Time (sec)	<u>Event</u>
194	0	Reactor is operating at 100.3 percent rated when loss of offsite power occurs initiating power plant shutdown.
	0	Concurrently loss of Division power (i.e., loss of one diesel generator) occurs.
	600	Suppression pool cooling initiated to prevent overheating from SRV actuation.
	1465	Controlled depressurization initiated (100°F/hr) using selected safety/relief valves.
	8900	Blowdown to approximately 100 psig completed.
	8900	Personnel are sent in to open RHR shutdown cooling suction valve; this fails.
	9200	ADS valves are opened to complete blowdown to suppression pool, and RHR pump discharge is redirected from pool to vessel via LPCI line. Alternate shutdown cooling path has now been established.
	11,600	Cold Shutdown achieved (200 degrees F RPV Temperature)
	16,146	Maximum Suppression Pool Temperature (183.1 degrees F)

14←●

TABLE 15.2-14a

$\bullet{\rightarrow}14$ sequence of events for failure of rhr shutdown cooling Configuration for Activity C1 (b)

Time <u>(sec)</u>	Event
0	Reactor is operating at 100.3 percent rated power when loss of offsite power occurs initiating plant shutdown.
0	Concurrently loss of Division power (i.e., loss of one diesel generator) occurs.
600	Suppression pool cooling initiated to prevent overheating from SRV actuation.
1465	Controlled depressurization initiated (100°F/hr) using selected safety/relief valves.
8900	Blowdown to approximately 100 psig completed.
8900	Personnel are sent in to open RHR shutdown cooling suction valve; this fails.
9200	ADS valves are opened to complete blowdown to suppression pool, and RHR pump discharge is redirected from pool to vessel via LPCI line. Alternate shutdown cooling path has now been established.
13,368	Maximum Suppression Pool Temperature (177.9 degrees F)
40,586	Cold Shutdown achieved (200 degrees F RPV Temperature)

14←●

INPUT PARAMETERS FOR EVALUATION OF FAILURE OF RHR SHUTDOWN COOLING

Initial Conditions •→14 Rated power (%) 100.3 Suppression pool water volume (ft³) 1.228E5 RHR Hx constant (Btu/sec/°F) 390 Vessel pressure (psia) 1072 Vessel temperature (°F) 553 Primary coolant inventory (1bm) 4.598E5 Pool temperature (°F) 100 Service water temperature (°F) 95 Vessel heat capacity (Btu/lbm/°F) 0.123 HPCS flow rate (lbm/sec) 676.8 Maximum at 0 psid, vessel to drywell pressure difference LPCI flow rate per loop (lbm/sec) 686.1 Maximum at 0 psid, vessel-to-drywell pressure difference LPCI Pump Heat (HP) 700 HPCS Pump Heat (HP) 2500

14←●

SEQUENCE OF EVENTS FOR TRIP OF ONE RECIRCULATION PUMP (FIGURE 15.3-1)

Time (sec)	Event
0	Trip of one recirculation pump initiated
5	Jet pump diffuser flow reverses in the tripped loop
~39.0	Core flow and power level stabilize at new equilibrium conditions.

SEQUENCE OF EVENTS FOR TRIP OF TWO RECIRCULATION PUMPS (FIGURE 15.3-2)

Time (sec)	Event
0	Trip of both recirculation pumps initiated
4.2	Vessel water level (L8) trip initiates scram, turbine trip and feedwater pump trip
4.3	Turbine trip initiates bypass operation
5.8	SRVs open due to high pressure
11.2	SRVs close
17.2	Vessel water level (L2) set point reached
47.2(est)	HPCS and RCIC flow enters vessel (not simulated)

SEQUENCE OF EVENTS FOR FAST CLOSURE OF ONE MAIN RECIRCULATION VALVE (FIGURE 15.3-3)

Time (sec)	Event
0	Initiate fast closure of one main recirculation valve
2	Jet pump diffuser flow reverses in the affected loop
40(est)	Core flow and power approach new equilibrium conditions

SEQUENCE OF EVENTS FOR FAST CLOSURE OF TWO MAIN RECIRCULATION VALVES (FIGURE 15.3-4)

Time (sec)	Event
0	Initiate fast closure of both main recirculation valves
5.15	Vessel level (L8) trip initiates scram and turbine trip
5.15	Feedwater pumps tripped off
5.30	Turbine trip initiates bypass operation
6.46	SRVs open due to high pressure
12.31	SRVs close
17.50	Vessel water level reaches Level 2 set point
47.50(est)	HPCS and RCIC flow enters vessel (not simulated)

SEQUENCE OF EVENTS FOR RECIRCULATION PUMP SEIZURE (FIGURE 15.3-5)

Time (sec)	Event
0	Single pump seizure was initiated.
0.8	Jet pump diffuser flow reverses in seized loop.
3.11	Vessel level (L8) trip initiates reactor scram.
3.11	Vessel level (L8) trip initiates turbine and feedwater pump trips.
3.30	Turbine trip initiates bypass operation.
3.35	Turbine trip initiates recirculation pumps trip.
4.85	SRVs open due to high pressure.
10.2	SRVs close.
12.7	Vessel water level reaches Level 2 set point.
42.7(est)	HPCS/RCIC flow enters the vessel (not simulated).

TABLE 15.4-1

SEQUENCE OF EVENTS FOR ROD WITHDRAWAL ERROR IN POWER RANGE

Elapsed Time	Event
0	Core is operating on thermal limits with a typical control rod pattern.
0	Operator selects and withdraws a single rod or gang of rods continuously.
~1 sec	The local power in the vicinity of the withdrawn rod (or gang) increases. Total core power output increases.
~4* sec	RWL blocks further withdrawal.
~25 sec	Core stabilizes at slightly higher core power level.

^{*}Based on a 1.0-foot RWL increment.

TABLE 15.4-2

SEQUENCE OF EVENTS FOR ABNORMAL STARTUP OF IDLE RECIRCULATION PUMP (FIGURE 15.4-1)

Time <u>(sec)</u>	Event
0	Start pump motor
1.26	Jet pump diffuser flows on started pump side become positive
2.73	Pump motor at full speed and drive flow at about 25% of rated
21.5 (est)	Last of cold water leaves recirculation drive loop
22.0	Peak value of core inlet subcooling
50.0 (est)	Reactor variables settle into new steady state

TABLE 15.4-3

SEQUENCE OF EVENTS FOR FAST OPENING OF ONE RECIRCULATION VALVE (FIGURE 15.4-2)

Time <u>(sec)</u>	<u>Event</u>
0	Simulate failure of single loop control
0.97	Reactor APRM high flux scram trip initiated
3.5 (est)	TCVs start to close upon falling turbine pressure
7.9 (est)	TCVs closed; turbine pressure below pressure regulator set points
>100 (est)	Reactor variables settle into new steady state

TABLE 15.4-4

SEQUENCE OF EVENTS FOR FAST OPENING OF TWO RECIRCULATION VALVES (FIGURE 15.4-3)

Time <u>(sec)</u>	Event
0	Initiate failure of master controller
1.0	Reactor APRM high flux scram trip initiated
4.0 (est)	TCVs start to close upon falling turbine pressure
8.0 (est)	TCVs closed; turbine pressure below pressure regulator set points
>100 (est)	Reactor variables settle into new steady state

TABLE 15.4-5

SEQUENCE OF EVENTS FOR MISPLACED BUNDLE ACCIDENT

- 1. During core loading operation, a bundle is placed in the wrong location.
- 2. Subsequently, the bundle intended for this location is placed in the location of the previous bundle.
- 3. During core verification procedure, the two errors are not observed.
- 4. Plant is brought to full power operation without detecting misplaced bundle.
- 5. Plant continues to operate throughout the cycle.

INPUT PARAMETERS AND INITIAL CONDITIONS FOR FUEL BUNDLE LOADING ERROR

•→8	<u>Input Parameters</u>	<u>Initial Conditions *</u>
8←● 1.	Power, % rated	100
2.	Flow, % rated	100
3.	MCPR operating limit (est)	1.18
4.	MLHGR operating limit, kw/ft	13.4
5.	Core exposure	End of cycle

NOTE:	Core conditions are assumed to be normal operating core at EOC.	for	a h	not,
●→8 * See	Appendix 15B for reload core conditions			

8←●

Revision 8

•→8	RESULTS OF WORST FUEL BUNDLE LOAD ERROR ANALYSIS (INITIAL CORE)	ING
8←●	((
1.	MCPR limit	1.18
2.	MCPR with misplaced bundle	1.08
3.	Δ CPR for event	0.10
4.	LHGR limit	13.4
5.	LHGR with misplaced bundle	14.7
6.	Δ LHGR for event	1.3

•→8

NOTE: See Appendix 15B for reload core conditions $8 \leftarrow \bullet$

TABLE 15.4-8

SEQUENCE OF EVENTS FOR ROD DROP ACCIDENT

Approximate Elapsed Time (sec)

<u>Event</u>

Reactor is operated at 50 percent rod density pattern

Maximum worth control rod blade becomes decoupled from the CRD

Operator selects and withdraws the CRD of the decoupled rod either individually or along with other control rods assigned to the RCIS group

Decoupled control rod sticks in the fully inserted or an intermediate bank position

- 0 Control rod becomes unstuck and drops to the drive position at the nominal measured velocity plus three standard deviations
- <1 Reactor goes on a positive period and the initial power increase is terminated by the Doppler coefficient
- <1 APRM 120 percent power signal scrams reactor
- <5 Scram terminates accident

TABLE 15.4-9

INPUT PARAMETERS AND INITIAL CONDITIONS FOR ROD WORTH COMPLIANCE CALCULATION

<u>Input Parameters</u>		Initial Conditions
1.	Reactor power, % Rated	0.0
2.	Reactor flow, % Rated	0.0
3.	Core average exposure, MWd/t	0.0
4.	Control rod fraction	Approx. 0.50
5.	Average fuel temperature, $^\circ C$	286
6.	Average moderator temperature °C	286
7.	Xenon state	None

TABLE 15.4-10

INCREMENT WORTH OF THE MOST REACTIVE ROD USING A BANK POSITION WITHDRAWAL SEQUENCE $^{\scriptscriptstyle (1)}$

Core Condition (MWD/T)	Control Rod <u>Group</u>	Banked At <u>Notch</u>	Control Rod (I,J)	Drops <u>From-To</u>	Increase <u>In k_{eff}</u>
0.0	7	04	(24,49)	00-08	0.0012
0.0	7	08	(24,49)	00-12	0.0032
0.0	7	12	(24/49)	00-48	0.0079
0.0	7	48	(24,49)	00-48	0.0005

⁽¹⁾ The following assumptions were made to ensure that the rod worths were conservatively high for the BPWS:

a. BOC 1, 0.0 GWD/St average exposure

b. Hot startup

c. No xenond. Rod groups 1-6 withdrawn

e. Sequence A

 $\bullet{\rightarrow}14$ $\bullet{\rightarrow}8$ $&\bullet{}14{\leftarrow}\bullet$ Control rod drop accident radiological consequence analysis parameters

Des	cri	ption of Input/Assumption	<u>Design Basis Input and/or</u> <u>Assumption</u>
estin		ta and assumptions used to timate radioactive source from stulated accident	
	1.	Power Level	3100 MWt
	2.	Number of damaged rods 100% Power Event Low Power Event (gap release)	850 GE 8x8 50 GE 8x8
	3.	Total Rods in core GE 8x8 GE 9x9 GE 10x10	38,688 (62 rods per assembly) 46,176 (74 rods per assembly) 57,408 (92 rods per assembly)
	4.	Number of assemblies damaged Design Basis - Maximum Fuel Damage (based on 8x8) Limited CRDA	850/62 = 13.7
		(Based on 8x8)	50/62 = 0.8
Not	e:	For the CRDA scenario GE8 fuel is reload cycle.	bounding. This is confirmed each
	5.	Core Activity available for release	Table 15.4-11A
	6.	Radial Peaking Factor	2.00
	7.	Assumed % fuel melt Design Basis - Maximum Fuel Damage Limited CRDA	100% 0%
	8.	Gap Activity Release Fractions	Per RG 1.183, Table 3 and Appendix C 10% noble gases, 10% iodines, 12% alkali metals
	9.	Fuel Melt Release Fractions	Per RG 1.183, Appendix C 100% noble gases, 50% iodines
	10	.Fuel Release Duration Design Basis- Maximum Fuel Damage	Instantaneous
		Limited CRDA	10 sec. burst
В.	est	ta and assumptions used to timate activity released to e environment.	
	1.	Condenser Leak Rate Design Basis CRDA Limited CRDA	Per RG 1.183, Appendix C 1% per day for 24 hours, 4000 cfm for 20 minutes, 1% per day for next 24 hours
	2.	Condenser Iodine Release Fractions	Per RG 1.183, Appendix C 97% Elemental, 3% Organic

I

$\bullet \rightarrow 14 \bullet \rightarrow 8 \quad 8 \leftarrow \bullet \quad 14 \leftarrow \bullet$

<u>Des</u>	scrip	ption of Input/Assumption	<u>Design Basis Input and/or</u> <u>Assumption</u>
	3.	Condenser Radioactive Decay During Holdup	Credited
	4.	Condenser Volume	106,460 ft ³
C.	Dis	persion Data	
		EAB X/Q Data 0-2 hrs LPZ X/Q Data 0-8 hrs 8-24 hrs 1-4 days 4-30 days	7.51E-04 sec/m ³ 7.79E-05 sec/m ³ 5.23E-05 sec/m ³ 2.21E-05 sec/m ³ 6.40E-06 sec/m ³
	3.	Control Room X/Q Data Main Air Intake 0-2 hrs 2-8 hrs 8-24 hrs 1-4 days 4-30 days	3.02E-3 sec/m ³ 2.47E-3 sec/m ³ 1.05E-3 sec/m ³ 9.01E-4 sec/m ³ 6.74E-4 sec/m ³
D.	D. Control Room Parameters		
	1.	Free Air Volume	188,000 ft ³
	2.	Unfiltered In-leakage Rate	300 cfm
	3.	Outside Air Ventilation Rate	1700 cfm
	4.	Intake Iodine Filter Efficiency Design Basis CRDA Aerosol Elemental and Organic Limited CRDA Aerosol Elemental and Organic	0% 0% 99% 98%
	5.	Time for Control Room Ventilation Isolation per Operator Action Design Basis CRDA Limited CRDA	Not credited 20 minutes
	6.	Emergency Mode Recirculation Rate (Post-isolation Mode)	2000 cfm
	7.	Control Room Breathing Rates and Occupancy Factors	Per RG 1.183
$\bullet ightarrow$	14 •	→2 2←• 14←•	

TABLE 15.4-11A

RBS CRDA CORE ACTIVITY

<u>Isotope</u>	EOC Core Inventory (Ci/MWt)
Kr-85	3.66E+02
Kr-85m	7.02E+03
Kr-87	1.35E+04
Kr-88	1.89E+04
Rb-86	6.31E+01
I-131	2.70E+04
I-132	3.92E+04
I-133	5.52E+04
I-134	6.06E+04
I-135	5.17E+04
Xe-133	5.26E+04
Xe-135	1.99E+04
Cs-134	6.11E+03
Cs-136	2.00E+03
Cs-137	3.95E+03

CRDA ACTIVITY RELEASED TO THE ENVIRONMENT (CURIES)

<u>Isotope</u>

1.61E+01
3.08E+02
5.93E+02
8.30E+02
3.33E-05
5.93E+00
8.61E+00
1.21E+01
1.33E+01
1.14E+01
2.31E+03
8.74E+02
3.22E-03
1.05E-03
2.08E-03

<u> 100% Power Event</u>

●→14 14**←**●

NOTE: $1.26E+02 = 1.26 \times 10^2$

TABLE 15.4-13

•→14

14←●

CONTROL ROD DROP ACCIDENT RADIOLOGICAL CONSEQUENCES

<u>Receptor</u>	Regulatory Limit <u>(TEDE)</u>	Design Basis Event Dose (TEDE)	Limited CRDA Dose (TEDE)	
EAB	6.3	1.0	4.91	
LPZ	6.3	0.4	0.51	
Control Room	5	4.4	1.30	

●→2 2←●

TABLE 15.5-1

SEQUENCE OF EVENTS FOR INADVERTENT STARTUP OF HPCS (FIGURE 15.5-1)

Time (sec)	Event
0	Simulate HPCS cold water injection
3	Full flow established for HPCS
7	Depressurization effect stabilized

SEQUENCE OF EVENTS FOR STEAM LINE BREAK OUTSIDE CONTAINMENT*

(sec)	Event
0	Guillotine break of one main steam line outside primary containment
0.5 (Approx.)	High steam line flow signal initiates closure of MSIVs
<1.0	Reactor begins scram
≤5.5 •→10	MSIVs fully closed

- ~60 SRVs open on high vessel pressure. The valves open and close to maintain vessel pressure at approximately 1,000 psi
- ~190 RCIC and HPCS would initiate on low water level, L2, (RCIC considered unavailable, HPCS assumed single failure and therefore not available)
- ~800 ADS receives signal to initiate on low water level, L1; ADS bypass timer starts
- All ADS timers timed out. ADS valves are ~1300 actuated initiating rapid depressurization of vessel
- ~1400 Reactor water level above core begins to drop slowly due to loss of steam through the SRVs; reactor pressure still at approximately 1,000 psi
- ~1420 LPCS system initiates injection
- LPCI system initiates injection ~1450
- ~1600 Reactor vessel water level recovers back to initial level: no fuel rod heatup and no fuel rod failure.

10←•

*See also Section 6.3.3.7.7.

MAIN STEAM LINE BREAK RADIOLOGICAL CONSEQUENCE ANALYSIS PARAMETERS

Description of Input/Assumption	<u>Design Basis Input and/or</u> <u>Assumption</u>
I. Data and assumptions used to estimate radioactive source from postulated accident.	
1. Power Level	3100 MWt
2. Maximum Pre-accident Spike Iodine Concentration	4 μCi/gm DE I-131
3. Maximum Equilibrium Iodine Concentration	0.2 µCi/gm DE I-131
4. Noble Gas Source Term	Based on 310,000 µCi/sec at 30 minutes, corrected to time equal zero.
5. Alkali Metals	Reactor coolant activity design concentration ratioed to account for 102% power.
II. Data and assumptions used to estimate activity released to the environment.	101 102 8 power.
1. Mass Release	Steam, 11,620 lbm Liquid, 68,942 lbm
Note: This data corresponds to that calculated for initial licensing of the plant. Analyses demonstrate these values bound the hot standby conditions for Power Uprated conditions.	liquid, 00,942 ibm
2. Iodine Carryover Fraction	4%
3. Break Isolation Time	5.5 seconds
4. Building Release Rate	Instantaneous ground level release with no credit for plateout, holdup, or dilution.
5. Iodine Species Release Fractions to Environment	Per RG 1.183, Appendix D, 95% Aerosol, 4.85 % Elemental, 0.15% Organic
6. Activity Released to Environment	Table 15.6-3

TABLE 15.6-2 (Cont)

Description of Input/Assumption		<u>Design Basis Input and/or</u> <u>Assumption</u>
III. Dispe	rsion Data	
1. EA	AB X/Q Data 0-2 hrs	6.33E-04 sec/m ³
2. LE	PZ X/Q Data 0-8 hrs 8-24 hrs 1-4 days 4-30 days	7.57E-05 sec/m ³ 5.08E-05 sec/m ³ 2.13E-05 sec/m ³ 6.24E-06 sec/m ³
* Since r ESF fil assumed	ontrol Room X/Q Data * 0-2 hrs 2-8 hrs 8-24 hrs 1-4 days 4-30 days no credit is taken for the ter trains, the X/Q values d in this analysis were based Main Air Intake.	1.42E-03 sec/m ³ 1.08E-03 sec/m ³ 4.57E-04 sec/m ³ 3.50E-04 sec/m ³ 2.58E-04 sec/m ³
IV. Contro	ol Room Parameters	
1. Fr	cee Air Volume	188,000 ft ³
	nfiltered In-leakage Rate	300 cfm
	atside Air Ventilation Rate	1700 cfm
]]]	mergency Mode Filtered Intake/Unfiltered Inleakage Rate (1700 Ifm ventilation rate + 100 cfm inleakage rate)	2000 cfm
●→11 ●-	→3 3←• 11←•	

<u>Isotope</u>	O.2µCi/gm DE* I-131 Case (Ci)	4µCi/gm DE I-131 Case (Ci)
I-131 I-132 I-133 I-134 I-135 Cs-134 Cs-136 Cs-137 Kr-85m Kr-85 Kr-87 Kr-88 Xe-133	1.70E+00 $2.51E+01$ $2.27E+01$ $3.97E+01$ $2.19E+01$ $5.42E-03$ $3.51E-03$ $1.40E-02$ $5.22E-02$ $1.63E-04$ $1.79E-01$ $1.79E-01$ $6.58E-02$	3.40E+01 5.02E+02 4.53E+02 7.94E+02 4.37E+02 5.42E-03 3.51E-03 1.40E-02 5.22E-02 1.63E-04 1.79E-01 1.79E-01 6.58E-02
Xe-135	1.95E-01	1.95E-01

MAIN STEAM LINE BREAK ACTIVITY RELEASED TO ENVIRONMENT

●→14	•→11
14←●	
11←●	

* Dose Equivalent

NOTE: $1.9E+01 = 1.9x10^{1}$

TABLE 15.6-4

MAIN STEAM LINE BREAK ACCIDENT RADIOLOGICAL CONSEQUENCES

Case	EAB Dose	LPZ Dose	Regulatory Limit
	(REM TEDE)	(REM TEDE)	(REM TEDE)
4µCi/gm DE* I-131	1.4	0.2	25
0.2µCi/gm DE I-131	<0.1	<0.1	2.5

Case	Control Room Dose (REM TEDE)	Regulatory Limit (REM TEDE)
4µCi/gm DE I-131	2.2	5
0.2µCi/gm DE I-131	0.2	5

 $\bullet \rightarrow 14 \bullet \rightarrow 11 \bullet \rightarrow 3$

3←● 11←● 14←●

* Dose Equivalent

LOSS-OF-COOLANT ACCIDENT RADIOLOGICAL CONSEQUENCES ANALYSIS PARAMETERS Design Basis Input and/ or Assumptions

I.	Data and assumptions used to estimate radioactive source from postulated accident	
•→14	 A. Power level B. Core Activity available for release C. Gap Activity Release Fractions D. Release fission product species and chemical form 	3,100 MWt Table 15.6-6 Per Table 1 of RG 1.183 Per RG 1.183, Section 3.5
	•→10 Release Rates	
	 A. Primary Containment Leakage Rate 0-24 hours 1-30 days B. Secondary Containment Bypass Leakage Rate 0-24 hours 	0.325 volume % per day 0.179 volume % per day 580,000 cc/hr @ Pa (0.341 cfm)
	1-30 davs	319,000 cc/hr @ Pa

1-30 days	319,000 cc/hr @ Pa (0.188 cfm)
C. Main Steam Line Leakage	
0-25 minutes	$150 \text{ scfh} = 2.52 \text{ cfm}^*$
25 minutes - 30 days	0 scfh
D. Engineered Safety Features Leakage	1 gpm

l

* 150 scfh was converted based on a maximum DW temperature of 330°
 F. The pressure assumed was 7.6 psig (power uprate reports show that the drywell pressure is 22.8 psia @ 121 seconds decreases steadily to ~19 psia at 10 minutes).

See Table 15.6-5A
See Table 15.6-5A
See Table 15.6-5A
300 cfm
2000 cfm
2000 - 300 = 1700 cfm
20 minutes
98%
99%
Per RG 1.183

Table 15.6-5 (Cont)

v. Standby Gas Treatment Parameters A. Positive Pressure Period 30 minutes B. Flow Rates 2,500 cfm Annulus Auxiliary Building 10,000 cfm C. SGTS Iodine Filter Efficiency Elemental/Organic (Charcoal) 90% Particulate (HEPA) 99% Building Volumes VI. A. Drywell 2.36E+05 ft³ B. Containment 1.19E+06 ft³ C. Annulus*** 3.57E+05 ft³ D. Auxiliary Building* 1.16E+06 ft³ E. Control Room 1.88E+05 ft³ F. Suppression Pool** 1.25E+05 ft³ Only 50% of the auxiliary building volume was credited in the actual analysis (values listed are actual volumes) ** The Actual analysis conservatively assumed a volume of $120,000 \, {\rm ft}^3$. *** The annulus volume in this analysis was 1.0 ft³ to minimize mixing of the annulus atmosphere reflecting disabling of the annulus mixing system. VII. Containment Mixing Data A. Blowdown Data $(Drywell \Rightarrow Containment)$ 0-10 minutes 4.74E+05 cfm 10 minutes + 0 cfm B. Hydrogen Mixing Data $(Drywell \Leftrightarrow Containment)$ 0-25 minutes 0 cfm 25 minutes - 1.9 hours 600 cfm 1.9 hours - 30 days (Infinite mixing) 1.0E+08 cfm C. Steaming Data $(Drywell \Rightarrow Containment)$ 0-25 minutes 0 cfm 25 minutes - 1.9 hours 3000 cfm 1.9 hours - 30 days (Infinite mixing) (Included in Hydrogen Mixinq) VIII. Misc. Data A. Dose Conversion Factors Based on Federal Guidance Report 11 & 12 Based on RG 1.183, B. Off-Site Breathing Rates Section 4.1.3 A. Drywell Plateout Coefficients Elemental 1.01hr⁻¹ Particulate RADTRAD default -Powers (10) Model D. ESF Leakage - Halogen Flashing Fraction 0.10 ●→11 10←● 11←● 13←● 14←●

Table 15.6-5A

X/Q VALUES USED IN LOCA ANALYSIS

Release Point	EAB*	LPZ	MCR
SGTS/Containment 0-2 hours 2-8 hours 8-24 hours	6.05E-4 6.05E-4 6.05E-4	7.49E-5 7.49E-5 5.02E-5	2.55E-4 1.92E-4 8.09E-5
1-4 days 4-30 days	6.05E-4 6.05E-4	2.10E-5 6.13E-6	6.22E-5 5.09E-5
Turbine Building 0-2 hours 2-8 hours 8-24 hours 1-4 days 4-30 days	7.51E-4 7.51E-4 7.51E-4 7.51E-4 7.51E-4 7.51E-4	7.79E-5 7.79E-5 5.23E-5 2.21E-5 6.40E-6	4.66E-4 3.83E-4 1.67E-4 1.27E-4 9.33E-5

* The 0-2 hour values conservatively apply for the duration of the accident to ensure the "maximum" 2 hour dose is calculated as required per RG 1.183.

NOTE: $2.55E-4 = 2.55x10^{-4}$

$\bullet \rightarrow 14 \bullet \rightarrow 13 \bullet \rightarrow 10$

TABLE 15.6-6

BWR CORE INVENTORIES

<u>AST Group</u>	Isotope	Core Inventory <u>(CI/MWT)</u>
5	Co-58	2.61E+02
5	Co-60	4.50E+02
1	Kr-85	3.66E+02
1	Kr-85m	7.02E+03
1	Kr-87	1.35E+04
1	Kr-88	1.89E+04
3	Rb-86	6.31E+01
4	Sr-89	2.54E+04
4	Sr-90	2.91E+03
4	Sr-91	3.20E+04
4	Sr-92	3.47E+04
6	Y-90	3.08E+03
6	Y-91	3.28E+04
6	Y-92	3.49E+04
6	Y-93	4.04E+04
6	Zr-95	4.78E+04
6	Zr-97	4.98E+04
6	Nb-95	4.80E+04
5	Mo-99	5.13E+04
5	Tc-99m	4.51E+04
5	Ru-103	4.19E+04
5	Ru-105	2.90E+04
5	Ru-106	1.61E+04
5	Rh-105	2.67E+04
4	Sb-127	2.92E+03
4	Sb-129	8.77E+03
4	Te-127	2.95E+03
4	Te-127m	3.92E+02
4	Te-129	8.62E+03
10←• 13←• 14←•		

Table 15.6-6 (Cont)

<u>AST Group</u>	Isotope	Core Inventory <u>(CI/MWT)</u>
4	Te-129m	1.28E+03
4	Te-131m	3.92E+03
4	Te-132	3.84E+04
2	I-131	2.70E+04
2	I-132	3.92E+04
2	I-133	5.52E+04
2	I-134	6.06E+04
2	I-135	5.17E+04
1	Xe-133	5.26E+04
1	Xe-135	1.99E+04
3	Cs-134	6.11E+03
3	Cs-136	2.00E+03
3	Cs-137	3.95E+03
4	Ba-139	4.92E+04
4	Ba-140	4.74E+04
6	La-140	4.88E+04
6	La-141	4.49E+04
6	La-142	4.33E+04
7	Ce-141	4.49E+04
7	Ce-143	4.15E+04
7	Ce-144	3.69E+04
6	Pr-143	4.06E+04
6	Nd-147	1.80E+04
7	Np-239	5.42E+05
7	Pu-238	1.10E+02
7	Pu-239	1.28E+01
7	Pu-240	1.66E+01
7	Pu-241	5.26E+03
6	Am-241	6.55E+00
6	Cm-242	1.51E+03
6	Cm-244	7.62E+01

NOTE: $6.81E+03 = 6.81x10^3$

$\bullet \rightarrow 11$ 11 $\leftarrow \bullet$ $\bullet \rightarrow 13$ $\bullet \rightarrow 10$

LOSS-OF-COOLANT ACCIDENT RADIOLOGICAL CONSEQUENCES

<u>Release Descriptions</u>	EAB	LPZ	MCR
Containment/Secondary Containment Secondary Containment Bypass/MSIV ESF Liquid Leakage	4.0 13.4 0.4	2.2 6.2 0.6	0.46 3.12 0.16
Total	17.8	9.0	3.7
Regulatory Limit	25.0	25.0	5.00

•→14 10←• 13←• 14←•

 $\bullet \rightarrow 13 \bullet \rightarrow 11 \quad 11 \leftarrow \bullet \quad 13 \leftarrow \bullet$

SEQUENCE OF EVENTS FOR FEEDWATER LINE BREAK OUTSIDE CONTAINMENT

Time (sec)	Event
0	One feedwater line breaks
0+	Feedwater line check valves isolate the reactor from the break
5 (approx)	Reactor scram on low water level
<30	HPCS and RCIC start on low-low water level, L2, and are expected to maintain the water level above the low-low-low level, L1, trip, and eventually restore it to the normal elevation
1 to 2 hr	Normal reactor cooldown procedure established

SEQUENCE OF EVENTS FOR MAIN CONDENSER OFF GAS TREATMENT SYSTEM FAILURE

Approximate <u>Elapsed Time</u>	Event
0 sec	Event begins - system fails.
0 sec	Noble gases are released.
< 1 min	Area radiation alarms alert plant personnel.
< 1 min	Operator actions begin with:
	 Initiation of appropriate system isolations
	2. Manual scram actuation
	3. Assurance of reactor shutdown cooling.
1 hr	Steam jet air ejector is shut down.

GASEOUS RADWASTE SYSTEM FAILURE - PARAMETERS TABULATED FOR POSTULATED ACCIDENT ANALYSIS

est	a and assumptions used to imate radioactive source postulated accidents	Design Basis <u>Assumptions</u>
A. B. C. D. E.	<pre>Fuel damage Release of activity Iodine fractions 1. Organic 2. Elemental 3. Particulate</pre>	NA NA None Table 15.7-3 NA NA NA NA NA
	a and assumptions used to imate activity released	
А. В. С. D. Е. F. G.	Containment leak rate (%/day) Secondary containment leak rate(%/day) Valve movement times Absorption and filtration efficiencies 1. Organic iodine 2. Elemented iodine 3. Particulate iodine 4. Particulate fission products Recirculation system parameters 1. Flow rate 2. Mixing efficiency 3. Filter efficiency Contaiment volumes All other pertinent data and assumptions	NA NA NA NA NA NA NA NA NA NA NA NA NA N

TABLE 15.7-2 (Cont)

			Design Basis Assumptions
III. ●→3	Dispe	ersion data	
		EAB distance (m) X/Qs for EAB (sec/m-)	894 8.58-4
3←• IV.	Dose	data	
	A. B.	Method of dose calculation Dose conversion assumptions	NA Reg. Guides 1.98 and 1.109
	C.	Peak activity concentrations in containment	NA
	D. Do		Table 15.7-4

NOTE: $8.58-4 = 8.58 \times 10^{-4}$

EQUIPMENT FAILURE RELEASE ASSUMPTIONS RELEASE FRACTIONS ASSUMED FOR DESIGN BASIS ANALYSIS

Equipment Piece	Noble Gases	Particulate Daughters	Radioiodine
Holdup pipe	1.00	1.00	NA
Prefilter	NA	0.01	NA
Charcoal adsorbers	1.00	0.01	NA
Steam jet air ejector (1-hr release)	1.00	1.00	NA

GASEOUS RADWASTE SYSTEM FAILURE SYSTEM RUPTURE (DESIGN BASIS ANALYSIS) OFFSITE RADIOLOGICAL EFFECTS

	Do	ose at
	Exclusion	Area Boundary
	eta Skin	γ Whole Body
Noble Gases	(rem)	(rem)
Charcoal bed	6.0-1	6.8-1
Holdup pipe	1.2-2	2.3-2
Steam jet air ejector	3.8-1	5.1-1
(1-hr release)		
Particulates		
•→14		
Prefilter	-	5.6-2
Charcoal bed	-	1.9-4
Holdup pipe	-	3.2-4
Steam jet air ejector	-	2.1-3
(1-hr release)		
14←●		
TOTAL	9.9-1	1.3+0

NOTE: $6.0-1 = 6.0 \times 10^{-1}$

ACCIDENT ANALYSIS ASSUMPTIONS RADIOACTIVE LIQUID WASTE SYSTEM LEAK OR FAILURE (RELEASE TO ATMOSPHERE)

- 1. Design bases activities of Section 11.1, and flows and fractions of primary coolant activities of Section 11.2 are used to develop source terms.
- 2. Noble gases are not considered due to constant venting of radwaste system tanks.
- 3. Halogen partition factor 0.001

4.	Exclusion area boundary	χ/Q (sec/m ³)	Breathing Rate (<u>m³/sec)</u>
	0-2 hr	8.58-4	3.47-4

NOTE: $8.58-4 = 8.58 \times 10^{-4}$

RBS USAR

TABLE 15.7-6

LIQUID RADWASTE SYSTEM TANKS HALOGEN INVENTORIES

	Br-83 (Ci)	Br-84 (Ci)	Br-85 (Ci)	I-131 (Ci)	I-132 (Ci)	I-133 (Ci)	I-134 (Ci)	I-135 (Ci)
Floor drain collector								
tanks 2A, B, and C (total)	8.4-4	1.8-4	1.1-5	5.1-3	9.9-3	4.2-2	4.2-3	1.7-2
• \rightarrow 14 Waste collector								
tanks 1A, B, C, and D (total)	3.6-1	7.2-2	3.6-3	3.6+0	3.3+0	2.0+1	1.9+0	7.6+0
	0.00 1		0.00		0.010	2.0.2	2.00.0	
Recovery sample								
tanks 4A, B, C, and D (total)	1.9-4	1.5-5	6.8-8	2.7-3	1.8-3	1.4-2	6.2-4	4.8-3
14←● Phase separator and backwash								
tanks 6A, B, and 7	2.1+1	4.6+0	2.7-1	1.6+3	6.2+2	1.6+3	1.1+2	4.4+2
Regenerant waste tanks 3A and B	3.2+1	7 0 0	4.0-1	4.0+2	2.8+2	2.2+3	2.2+2	7.0+2
Lanks 3A and B	3.2+1	7.0+0	4.0-1	4.0+2	2.8+2	2.2+3	2.2+2	/.0+2
Waste and regenerant								
evaporators EV-1 and 2	1.5 + 1	7.4-1	4.0-3	5.4+3	3.4+2	1.1+4	3.8+1	9.6+2
- N14								
•→14 Total in all tanks	6.8+1	1.2+1	6.8-1	7.4+3	1.2+3	1.5+4	3.7+2	2.1+3
14~•								

NOTE: $8.4-4 = 8.4 \times 10^{-4}$

OFFSITE DOSES RESULTING FROM LIQUID RADWASTE SYSTEM TANKS RUPTURE

	Whole Body		
	Thyroid	Gamma	Beta
Exclusion area boundary	(rem)	(rem)	(rem)
0-2 hr	5.1+0	4.0-3	1.8-3

NOTE: $4.0-3 = 4.0 \times 10^{-3}$

ACCIDENT ANALYSIS DATA LIQUID RADWASTE TANK RUPTURE RELEASE TO GROUNDWATER

Regenerant Waste Evaporator

Feed rate	25.7 gpm
Concentration factor	42.8
Total operating volume	4,200 gal
Feed stream (regenerant waste tank)	See Table 15.7-9

<u>Nearest Municipal Surface Water Supply - Bayou Lafourche,</u> Louisiana

Travel time	8.72 yr
Dilution factor	1.72+10

NOTE: $1.72 + 10 = 1.72 \times 10^{10}$

REGENERANT WASTE TANK INVENTORY

Isotope	µ <u>Ci/cc</u>	Isotope	μ <u>Ci/cc</u>
Na-24	5.4-2	Ag-110m	1.4-3
P-32	3.9-3	Te-129m	8.1-3
Cr-51	1.2-1	Te-131m	5.6-3
Mn-54	1.4-3	Te-132	2.4-1
Mn-56	5.3-2	Ba-139	1.1-1
Fe-55	2.1-2	Ba-140	2.0-1
Fe-59	1.8-3	Ba-141	3.0-2
Co-58	1.2-1	Ba-142	1.7-2
Co-60	1.1-2	La-142	3.2-2
Ni-63	2.1-5	Ce-141	3.7-3
Ni-65	3.1-4	Ce-143	1.8-3
Cu-64	1.4-1	Ce-144	8.6-4
Zn-65	4.2-3	Pr-143	4.8-3
Zn-69m	1.0-2	Nd-147	3.5-4
Sr-89	7.3-2	W-187	2.7-2
Sr-90	5.6-3	Np-239	3.8+0
Sr-91	3.1-1	Br-83	3.7-1
Sr-92	1.6-1	Br-84	8.3-2
Y-91	8.7-3	Br-85	4.7-3
Y-92	2.0-1	I-131	4.9+0
Y-93	9.1-2	I-132	3.5+0
Zr-95	1.0-3	I-133	3.1+1
Zr-97	2.4-4	I-134	2.6+0
Nb-95	9.8-4	I-135	8.5+0
Nb-98	6.6-3	Rb-89	2.4-3
Mo-99	3.8-1	Cs-134	3.8-3
Tc-99m	2.7-1	Cs-136	2.3-3
Tc-101	3.2-2	Cs-137	1.0-2
Tc-104	4.6-2	Cs-138	5.5-2
Ru-103	2.7-3		
Ru-105	1.8-2		
Ru-106	3.8-4		

NOTE: $5.4-2 = 5.4 \times 10^{-2}$

RADWASTE EQUIPMENT FAILURE ACCIDENT RADIOACTIVITY CONCENTRATIONS AT BAYOU LAFOURCHE WATER SUPPLY

Isotope	Final Activity (µCi/cc)	Fraction of Maximum Permissible Concentrations*
I-129	1.5-22	2.4-15
Sr-90	1.1-11	3.8-05
Y-90	1.1-11	5.7-07
Ru-106	2.4-15	2.4-10
Cs-134	5.0-13	5.6-08
Cs-137	2.1-11	1.0-06
Ce-144	9.5-16	9.5-11
Pm-147	1.0-15	5.1-12
Mn-54	3.2-15	3.2-11
Fe-55	5.6-12	7.0-09
Co-60	8.7-12	1.7-07
Zn-65	1.3-15	1.3-11
Aq-110m	5.9-16	2.0-11
Ni-63	4.9-14	1.6-09
TOTAL		4.0-05

*Maximum permissible concentrations are from 10CFR20, Appendix B, Table II. column 2.

NOTE $1.5-22 = 1.5 \times 10^{-22}$

RBS USAR

TABLE 15.7-11

FUEL HANDLING ACCIDENT RADIOLOGICAL CONSEQUENCE ANALYSIS PARAMETERS

I

Description of Input/Assumption	Design Basis Input and/or Assumption
I. Data and assumptions used to Estimate radioactive source from postulated accident.	
 Power Level Number of damaged rods (GE 9x9) Total number of rods in core Core Activity available for release Radial peaking factor Gap Activity Release Fractions Release fission product species and chemical form Decay time Data and assumptions used to Estimate Activity released to the environment. 	3100 MWt 150 46,176 (Limiting GE 9x9 Fuel) Table 15.7-11A 2.00 RG 1.183 RG 1.183, Appendix B 24 hours
 Building Release Rate Halogen Decontamination Factor III. Dispersion Data 	2 hour linear release rate 200
 EAB X/Q Data 0-2 hrs 2. LPZ X/Q Data 0-8 hrs 8-24 hrs 1-4 days 4-30 days Control Room X/Q Data 0-20 mm 20 min-8 hrs 8-24 hrs 1-4 days 4-30 days 	8.58E-04 sec/m ³ 1.13E-04 sec/m ³ 7.89E-05 sec/m ³ 3.65E-05 sec/m ³ 1.21E-05 sec/m ³ 1.62E-03 sec/m ³ 4.05E-04 sec/m ³ 3.00E-04 sec/m ³ 1.62E-05 sec/m ³
 IV. Control Room Parameters 1. Free Air Volume 2. Unfiltered In-leakage Rate 3. Outside Air Ventilation Rate 4. CR ESF Iodine Filter Efficiency 5. Control Room Breathing Rates 	188,000 ft ³ 300 cfm 1700 cfm 0% (Not credited)
and Occupancy Factors Revision 21 1 of 1	RG 1.183

TABLE 15.7-11A

FUEL HANDLING ACCIDENT CORE ACTIVITY AT REACTOR SHUTDOWN (i.e., Decay Time = 0 hours)

<u>Isotope</u>	EOC Core Inventory (Ci/MWt)
I-131	2.70E+04
I-132	3.92E+04
I-133	5.52E+04
I-134	6.06E+04
I-135	5.17E+04
Kr-85	3.66E+02
Kr-85m	7.02E+03
Kr-87	1.35E+04
Kr-88	1.89E+04
Xe-133	5.26E+04
Xe-135	1.99E+04

	Gap Activity [Ci]	Gap Activity [Ci]	Released to Environment
<u>Isotope</u>	<u>(t=0 hrs)</u>	<u>(t=24 hrs)</u>	[Ci]
Kr-83m	#N/A	#N/A	#N/A
Kr-85	7.37E+02	7.37E+02	7.37E+02
Kr-85m	7.07E+03	1.72E+02	1.72E+02
Kr-87	1.36E+04	2.83E-02	2.83E-02
Kr-88	1.90E+04	5.44E+01	5.44E+01
Kr-89	#N/A	#N/A	#N/A
I-131	4.35E+04	3.99E+04	2.00E+02
I-132	3.95E+04	2.85E+01	1.43E-01
I-133	5.56E+04	2.50E+04	1.25E+02
I-134	6.10E+04	3.50E-04	1.75E-06
I-135	5.21E+04	4.20E+03	2.10E+01
I-136	#N/A	#N/A	#N/A
Xe-131m	#N/A	#N/A	#N/A
Xe-133m	#N/A	#N/A	#N/A
Xe-133	5.30E+04	4.64E+04	4.64E+04
Xe-135m	#N/A	#N/A	#N/A
Xe-135	2.00E+04	3.21E+03	3.21E+03
Xe-137	#N/A	#N/A	#N/A
Xe-138	#N/A	#N/A	#N/A

FUEL HANDLING ACCIDENT ACTIVITY RELEASED TO ENVIRONMENT

•→13 •→10 10←• 13←•

NOTE: $1.90E+02 = 1.90x10^2$

FUEL HANDLING ACCIDENT RADIOLOGICAL CONSEQUENCES

Receptor	Regulatory Limit (REM TEDE)	FHA Dose <u>(REM TEDE)</u>
EAB	6.3	2.6
LPZ	6.3	0.4
Control Room	5	1.7

 $\bullet \rightarrow 13 \bullet \rightarrow 10 \bullet \rightarrow 8 \bullet \rightarrow 2 2 \leftarrow \bullet 13 \leftarrow \bullet 8 \leftarrow \bullet 10 \leftarrow \bullet$

Isotope	µCi/cc	Isotope	µ <u>Ci/cc</u>
Br-83	3.2-13	Cs-134	7.2-6
I-129 I-131	6.3-17 3.7-4	Cs-136 Cs-137	3.8-6 1.8-5
I-131 I-132	1.9-4	Ba-137m	1.7-5
I-132 I-133	5.3-4	Ba-139	2.3-19
I-135	2.6-6	Ba-139 Ba-140	1.8-4
Sr-89	7.2-5	Ba-140 Ba-141	5.8-77
Sr-90	5.9-5	La-140	1.4-4
Sr-91	8.6-6	La-141	7.2-10
Sr-92	1.3-11	La-142	1.3-18
Y-90	3.3-5	CE-141	5.9-6
Y-91m	5.7-6	Ce-143	7.8-7
Y-91	1.7-5	Ce-144	8.5-7
Y-92	4.4-9	Pr-143	4.4-6
Y-93	3.0-6	Pr-144	8.5-7
Zr-95	9.9-7	Nd-147	3.3-7
Zr-97	3.7-8	Pm-147	8.3-10
Nb-95m	9.0-9	Na-24	2.0-5
Nb-95	1.0-6	P-32	1.1-5
Nb-97m	3.6-8	Cr-51	3.5-4
Nb-97	4.0-8	Mn-54	4.6-6
Mo-99	2.7-4	Mn-56	6.2-12
Tc-99m	2.6-4	Fe-55	6.5-5
Ru-103	2.6-6	Fe-59	5.1-6
Ru-105	1.9-9	Co-58	3.4-4
Rh-103m	2.6-6	Ni-63	6.5-8
Rh-105m	1.9-9	Ni-65	2.9-14
Rh-105	6.1-10	Cu-64	3.3-5
Rh-106	4.0-7	Zn-65	1.3-5
Te-129m	7.8-6	Zn-69m	2.8-6
Te-129	7.9-6	Ag-110m	4.0-6
Te-131m	2.2-6	Ag-110	8.0-8
Te-131	4.5-7	W-187	2.4-5
Te-132	1.8-4	Np-239	2.4-3

MAXIMUM CONDENSATE STORAGE TANK INVENTORY

NOTE: $3.2-13 = 3.2 \times 10^{-13}$

CONDENSATE STORAGE TANK RUPTURE ACCIDENT RADIOACTIVITY CONCENTRATIONS AT BAYOU LAFOURCHE WATER SUPPLY

	Final Activity	Fraction of Maximum
Isotope	(µCi/cc)	Permissible Concentration*
Br-83	8.0-17	2.7-11
I-129	1.6-20	2.6-13
I-131	9.3-8	3.1-1
I-132	4.6-8	5.8-3
I-133	1.3-7	1.3-1
I-135	6.5-10	1.6-4
Sr-89	1.8-8	6.0-3
Sr-90	1.5-8	5.0-2
Sr-91	2.2-9	3.1-5
Sr-92	3.3-15	4.7-11
Y-90	8.3-9	4.1-4
Y-91m	1.4-9	4.7-7
Y-91	4.3-9	1.4-4
Y-92	1.1-12	1.9-8
Y-93	7.4-10	2.5-5
Zr-95	2.5-10	4.1-6
Zr-97	9.4-12	4.7-7
Nb-95m	2.3-12	7.5-7
Nb-95	2.6-10	2.6-6
Nb-97	1.0-11	1.1-8
Mo-99	6.8-8	3.4-4
Tc-99m	6.5-8	1.1-5
Ru-103	6.4-10	8.0-6
Ru-105	4.7-13	4.7-9
Ru-106	1.0-10	1.0-5
Rh-103m	6.4-10	6.4-8
Rh-105	1.5-13	1.5-9
Te-129m	2.0-9	6.6-5
Te-129	2.0-9	2.5-6
Te-131m	5.6-10	9.4-6
Te-132	4.5-8	1.5-3
Cs-134	1.8-9	2.0-4
Cs-136	9.6-10	1.1-5
Cs-137	4.6-9	2.3-4
Ba-140	4.6-8	1.5-3
La-140	3.6-8	1.8-3
La-141	1.8-13	6.0-8
Ce-141	1.5-9	1.6-5
Ce-143	2.0-10	4.9-6
Ce-144	2.1-10	2.1-5

Isotope	Final Activity (µCi/cc)	Fraction of Maximum Permissible Concentration*
Pr-143 Nd-147 Pm-147 Na-24 P-32 Cr-51 Mn-54 Mn-56 Fe-55 Fe-59 Co-58 Co-60 Ni-63 Ni-65 Cu-64 Zn-65 Zn-69m Ag-110m W-187 Np-239	1.1-9 8.4-11 2.1-13 4.9-9 2.8-9 8.7-8 1.1-9 1.6-15 1.6-8 1.3-9 8.5-8 8.8-9 1.6-11 7.2-18 8.3-9 3.2-9 7.0-10 1.0-9 5.9-9 6.0-7	$2 \cdot 2 - 5$ $1 \cdot 4 - 6$ $1 \cdot 0 - 9$ $2 \cdot 4 - 5$ $1 \cdot 4 - 4$ $4 \cdot 4 - 5$ $1 \cdot 1 - 5$ $1 \cdot 6 - 11$ $2 \cdot 0 - 5$ $2 \cdot 2 - 5$ $8 \cdot 5 - 4$ $1 \cdot 8 - 4$ $5 \cdot 4 - 7$ $7 \cdot 2 - 14$ $2 \cdot 8 - 5$ $3 \cdot 2 - 5$ $9 \cdot 9 - 6$ $3 \cdot 4 - 5$ $8 \cdot 4 - 5$ $8 \cdot 4 - 5$ $6 \cdot 0 - 3$

TABLE 15.7-15 (Cont)

Total

5.2-1

*Maximum permissible concentrations are from 10CFR20, Appendix B, Table II, Column 2

NOTE: $8.0-17 = 8.0 \times 10^{-17}$

CONDENSATE STORAGE TANK RUPTURE ACCIDENT RADIOACTIVITY CONCENTRATIONS AT WELL 56 (GROUNDWATER)

	Final Activity	Fraction of Maximum
Isotope	(µCi/cc)	Permissible Concentration*
I-129	1.3-19	2.1-12
Sr-90	4.9-8	1.6-1
Y-90	4.9-8	2.4-3
Ru-106	5.0-13	5.0-8
Cs-134	2.8-10	3.1-5
Cs-137	1.5-8	7.6-4
Ce-144	1.5-13	1.5-8
Pm-147	3.7-13	1.8-9
Mn-54	1.8-12	1.8-8
Fe-55	5.4-9	6.8-6
Co-60	1.0-8	2.0-4
Zn-65	5.2-13	5.2-9
Ag-110m	2.4-13	7.9-9
Ni-63	6.2-11	2.1-6
Total		1.6-1

NOTE: $1.3-19 = 1.3 \times 10^{-19}$

^{*}Maximum permissible concentrations are from 10CFR20, Appendix B, Table II, Column 2

TABLE 15.7-17

FUEL HANDLING ACCIDENT - (INSIDE CONTAINMENT) PARAMETERS TABULATED FOR POSTULATED ACCIDENT ANALYSIS DURING TYPE C LEAK RATE TESTING

TABLE 15.7-18

FUEL HANDLING ACCIDENT - (INSIDE CONTAINMENT DURING TYPE C LEAK RATE TESTING) RADIOLOGICAL EFFECTS

TABLE 15.7-19

FUEL HANDLING ACCIDENT - (INSIDE CONTAINMENT) PARAMETERS TABULATED FOR POSTULATED ACCIDENT ANALYSIS WITH CONTAINMENT AIR LOCKS OPEN

TABLE 15.7-20

FUEL HANDLING ACCIDENT - (INSIDE CONTAINMENT WITH CONTAINMENT AIR LOCKS OPEN) RADIOLOGICAL EFFECTS

Table 15.8-1

Initial Conditions for ATWS Analysis

Parameter	Units	Value
• → 14		
Core Power	Mwt (% Rated)	3039
Dome Pressure	psig	1055
Core Flow	Mlbm/hr (% Rated)	68.4 (81)
Steam Flow	Mlbm/hr	13.199
Feedwater Flow	Mlbm/hr	13.169
RPV Water Level	ft above separator skirt	4.2
Core Average Void Fraction		47
Feedwater Enthalpy	BTU/lbm	402.6
Initial Void Reactivity Coefficient	cents/%	-11.2
Initial Suppression Pool Temperature	°F	100
•→11		
Initial Suppression Pool Volume At Minimum Water Level	ft ³	135,500
11←•		

10←●

Table 15.8-2

Name	Unit	Value		
Nominal Closure Time of MSIV	sec	4.0		
 →14 Relief Valve System Capacity (Relief mode, all 16 SRVs assumed to be in service) 	% Rated Steam Flow/ Number of Valves	101/16		
Relief Valve Setpoint Range	psia	1178-1198		
Relief Valve and Sensor Time Delay	sec	0.4		
Relief Valve Opening Time	sec	0.15		
Relief Valve Closure Time Delay	sec	0.3		
SLCS Injection Location		Standpipe		
Sodium Pentaborate Solution Concentration in the Storage Tank ●→12	% by weight	9.5		
Nominal Boron 10 Enrichment	atom %	60		
Nominal SLCS Boron Injection rate 12←●	gpm	41.2		
SLCS Initiation Method		Manual		
RCIC Flow Rate	gpm	600		
RCIC Start/Stop Levels		L2/L8		
ATWS High Pressure RPT Setpoint, Upper Analytical Limit (UAL)	psig	1180		

ATWS - Equipment Performance Characteristics

10←● 14←●

Table 15.8-2 (Cont)

Name	Unit	Value
•→14 ATWS Dome Pressure Sensor and Logic Time Delay 14←•	sec	0.1
ATWS Low Water RPT Setpoint		L2
Recirculation Pump System Inertia Constant	sec	7
RHR Pool Cooling Capacity (each)	BTU/sec	390
Setpoint for Low Water Level Closure of MSIV		L1
Setpoint for Low Steamline Pressure Closure of MSIV	psig	860
Service Water Temperature	°F	95

ATWS - Equipment Performance Characteristics

 $10 \leftarrow \bullet \rightarrow 14 \bullet \rightarrow 12 12 \leftarrow \bullet 14 \leftarrow \bullet$

Table 15.8-3

Typical Sequence of Events of ATWS Main Steamline Isolation Valve Closure Event

Event	Time (sec)		
Main steam line isolation valves begin to close. Control rods do not insert in response to reactor protection system logic.	0		
$\bullet \rightarrow 14$ Main steam line isolation valves closed.	4		
Peak Neutron Flux.	4.0		
ATWS high pressure setpoint reached.	4.25		
Recirculation pumps trip.	4.39		
Main steam safety/relief valves begin to lift in relief mode.	4.46		
Peak vessel pressure reached.	4.71		
Peak Heat Flux.	4.81		
Suppression pool temperature reaches 110°F. Operator initiates level reduction and inhibits the automatic depressurization system logic.	29		
Operator initiates the standby liquid control system.	124		
Boron from Standby liquid control system reaches the reactor core.	230		
Operator initiates RHR in the suppression pool cooling mode.	600		
Peak suppression pool temperature achieved.	1480		
Hot shutdown achieved (neutron flux < 1% of Nuclear Boiler Rated).	1513		

10←● 14←●

RBS USAR

•→10

Table 15.8-4 Summary of Peak Results¹

•→14 •→11

	Neutron Flux		Surface Heat Flux		Bottom Head Pressure		Fuel cladding Temperature ²		Suppression Pool Temperature	
Event 11←●	% Rated	@ Time (sec)	% Rated	@ Time (sec)	psig	@ Time (sec)	°F	@ Time (sec)	°F	@ Time (sec)
MSIV Closure GE-11 GE-8	293	4	131	4.8	1293.9	4.7	736 1185	5 35	177.3	1513
Pressure Regulator Failures - Maximum Demand ⁽³⁾	358	21.9	146	25.3	1295.7	25.2			174.6	1220
GE-11 GE-8							1586 1431	66 66		
Inadvertent Open Relief Valve	100	0.0	100	0.0	1082.2	0.0			145.2	5380
GE-11 GE-8										

¹Results are representative of a typical reload cycle.

² Cladding temperature only calculated for the MSIV closure and pressure regulator - failure downscale cases as these cases result in the highest surface heat flux.

•→11 10←• 11←• 14←•

³ The pressure regulator failure-open is no longer a postulated single failure scenario; no Ovation TCPS single failure scenarios are postulated that could result in all valves open. This specific USAR section is maintained for historical purposes.