Module III – Fire Analysis
Fire Fundamentals: Definitions

Joint EPRI/NRC-RES Fire PRA Workshop
August 21-25, 2017
What is a Fire?

- Fire:
 - destructive burning as manifested by any or all of the following: light, flame, heat, smoke (ASTM E176)
 - the rapid oxidation of a material in the chemical process of combustion, releasing heat, light, and various reaction products. (National Wildfire Coordinating Group)
 - the phenomenon of combustion manifested in light, flame, and heat (Merriam-Webster)
 - Combustion is an exothermic, self-sustaining reaction involving a solid, liquid, and/or gas-phase fuel (NFPA FP Handbook)
What is a Fire?

- Fire Triangle – hasn’t change much…
- Fire requires presence of:
 - Material that can burn (fuel)
 - Oxygen (generally from air)
 - Energy (initial ignition source and sustaining thermal feedback)
- Ignition source can be a spark, short in an electrical device, welder’s torch, cutting slag, hot pipe, hot manifold, cigarette, …
Materials that May Burn

- Materials that can burn are generally categorized by:
 - Ease of ignition (ignition temperature or flash point)
 - Flammable materials are relatively easy to ignite, lower flash point (e.g., gasoline)
 - Combustible materials burn but are more difficult to ignite, higher flash point, more energy needed (e.g., wood, diesel fuel)
 - Non-Combustible materials will not burn under normal conditions (e.g., granite, silica...)
 - State of the fuel
 - Solid (wood, electrical cable insulation)
 - Liquid (diesel fuel)
 - Gaseous (hydrogen)
Combustion Process

- Combustion process involves . . .
 - An ignition source comes into contact and heats up the material
 - Material vaporizes and mixes up with the oxygen in the air and ignites
 - Exothermic reaction generates additional energy that heats the material, that vaporizes more, that reacts with the air, etc.
 - Flame is the zone where chemical reaction is taking place

- Flame - A flame is the visible (light-emitting) part of a fire. It is caused by an exothermic reaction taking place in a thin zone where fuel vapors and oxygen in the air meet.
What is Fire?

- Fuel gas
- Heat flux
- Solid fuel
- Flammable mixture
- Oxygen in air
- Spark
Flame Characteristics

- Flame characteristics
 - Flame color depends on the material burning and how it burns
 - The nature of the combustion products
 - How hot material burns
 - How “cleanly” the material burns
 - How efficient the burning is, oxygen availability
 - Most flames are visible to the naked eye
 - What you actually see is glowing particulate (e.g. soot)
 - Fuels that burn cleanly (less soot), have less visible flames
 - e.g., Hydrogen produces a nearly invisible flame
 - Flame temperature can range from 1,500°F to 3,500°F
Definitions

Three “modes” of heat transfer are in play during a fire:

- **Conduction** – Heat transfer through a solid material or between two adjacent stationary solids directly through the contact interface between them
 - Example: Cooling your hand by putting it on a cold surface

- **Convection** – Heat transfer between a moving fluid and the surface of a solid or liquid material
 - Example: Blowing across a spoonful of hot soup to cool it

- **Radiation** – Heat transfer between two objects separated by open space via the transfer of electromagnetic energy. Requires that the objects be within line of sight of each other and separated by a relatively transparent medium (e.g., air or vacuum).
 - Example: Warming your hands by the camp fire
Effects of a Fire

What does a fire do to its surroundings?

- A fire generates heat, smoke and various combustion products
 - Heat is the main adverse effect of concern in a nuclear power plant
- Heat generated by the fire is transferred to nearby targets mainly by radiation and convection
 - Conduction plays a role in fuel heating and heat absorption into a target but, for most cases, not in direct transfer of heat from the fire to targets
- Products of combustion also include carbonaceous soot and other species such as HCl, HCN, water vapor, CO, CO₂, ...
 - Smoke and soot can adversely affect equipment
 - Smoke can hinder plant operators and fire response
 - HCl and HCN can be irritants for plant personnel
 - CO kills…
Fire Plume

- **Fire plume**: the buoyant stream of heated air and combustion products rising above a fire
- The fire plume forms quickly over the fire…
 - The fire produces very high temperature combustion products which rise from the fuel surface due to buoyancy
 - Rising combustion products draw in and mix with fresh air from the surroundings (**entrainment**)
 - Some of the available oxygen is consumed in the combustion process
 - Entrained air is heated as it absorbs energy from the fire
 - The mixture of hot gases rises forming the fire plume
 - The plume can envelope items above the fire with very hot gases
 - The energy carried away by the fire plume generally accounts for over half of the energy generated by a fire
The fire plume (continued)

- The fire plume typically carries away ~40%-70% of total heat production from the fire

- The Convective fraction (X_c) is the fraction of the net energy produced by the fire and emitted into the surroundings via heated gasses in the plume
 - $X_c \sim 0.6$ is a typical assumption for most fires

- The fire plume is very important to fire PRA. We often analyze fires where important plant cables are located in the fire plume.
 - Temperatures are higher in the fire plume than anywhere other than the flame zone itself
Definitions

So what happens when the plume hits the ceiling?

- **Ceiling Jet** – When the fire plume hits the ceiling, the flowing gasses turn 90° and form a relatively thin layer of flowing gas just below the ceiling
 - Important to the activation of sprinklers and fire detectors (more later…)

…and when the ceiling jet hits the walls?

- **Wall plume** – if/when the ceiling jets reaches a wall, the gasses will turn downward flowing down the wall
 - The wall absorbs energy from the gasses cooling them
Definitions

In the longer term, the compartment will fill with hot gasses…

- **Hot Gas Layer** – As a fire progresses within an enclosure, the heated air and combustion products tend to collect as a heated layer between the ceiling and somewhere above the floor (sometimes called the smoke layer or upper layer as well)

vs. …

- **Lower or Cold Gas Layer** – The gasses that remain between the bottom of the HGL and the floor and that generally remain at near ambient temperatures

- The **depth** of the HGL (distance from the ceiling to the bottom of the HGL) will be determined largely by ventilation conditions (e.g., an open door, open window…)

Radiative Heating from a Fire

- Radiative heat is produced by the luminous flames and emitted in all directions
 - Some radiative energy points back towards the fuel and acts to evaporate more fuel to continue the combustion process (thermal feedback)
 - The rest points away from the fire into the surroundings
 - The radiative fraction \((X_r) \) is the fraction of the net energy produced by the fire and emitted into the surroundings via radiation:
 - \(X_r = 1.0 - X_c \)
 (if it’s heat from the fire and it’s not convection, it must be radiation…)
 - \(X_r \sim 0.4 \) is typical
Flame Spread and Fire Propagation

- Flame spread is the propagation of combustion across a fuel surface, to an adjacent fuel material, or to nearby items
 - Radiation, convection, and conduction can all act to heat fuels near the existing burn region
 - Ignition can occur when temperatures ahead of the existing flame reach the point of ignition, and the flame spreads

- Flame spread *usually* refers to spread across or within a single object or fuel package
- Fire propagation *usually* refers to fire spread from one object to another
- Neither is universal so be careful…
Definitions

- **Pyrolysis** – the breakdown of the molecules of a solid material from exposure to heat into gaseous molecules that may combust in the flame.

- **Smoldering** – A slow combustion process without visible flames that occurs in a porous solid fuel
 - e.g., charcoal briquettes in the barbeque or wood in a fire pit as the fire burns down
 - Generally occurs because of limited oxygen access to the burning surfaces. It can generate large quantity of carbon monoxide which is lethal if inhaled.
Definitions

- **Piloted ignition** – Ignition of a combustible or flammable material in the presence of a pre-existing flame (the “pilot” flame)

 vs. …

- **Non-piloted (or spontaneous) ignition** – Ignition of a combustible or flammable material without an ignition source, which is generally caused by raising material temperature above its **auto-ignition temperature**.

- Piloted ignition generally occurs at a lower temperature than spontaneous ignition
 - the pilot flame provides that extra “oomph” to achieve ignition

- **Spontaneous combustion** is a little different – the initiation of combustion due to self heating of a fuel without an external heating source or pilot flame (e.g., a pile of oily rags…)
Definitions

- **Diffusion Flame** – The flame of a burning material (liquid or solid) where the combustion process occurs at the interface where vaporized fuel comes into contact with the oxygen in the air (e.g., flame on top of a candle or the wood in a fireplace.)

 vs. …

- **Pre-mixed Flame** – The flame of burning gaseous material that is mixed with air upstream of the flame (e.g., the flame of a gas range or gas fired furnace)

- Most of the fires we are concerned with involve diffusion flames
Definitions

- **Laminar Flame** – a flame with smooth, regular and very uniform flow of gases
 - In a laminar flame the mixing of air and fuel vapors is not very efficient and the flame zone is very narrow
 - Laminar flames ~3,500 °F (~1925 °C) e.g., a candle flame

- **Turbulent Flame** – a flame with a more irregular and chaotic flow of gases including the formation of large vortices
 - Turbulent flames are more efficient because mixing entrained air with fuel vapors/products creates a larger region where combustion can occur
 - Turbulent flames ~1,500 °F (~815 °C), e.g., most real fires

- Most flames greater than a few inches tall demonstrate turbulent (non-laminar) behavior because of increased gas velocities caused by increased heat.
Definitions

Some key fire characteristics…

- **Mass Loss Rate (Burning Rate)** – The rate of mass loss of a burning material in a fire
 - May be expressed as either mass released per unit time (g/s) or mass released per unit area per unit time (g/cm²·s).

- **Heat Release Rate (HRR)** – The energy released from a fire per unit time (kW)
 - HRR is generally expressed as net energy release which accounts for thermal feedback to the fuel and combustion efficiency – i.e., the net rate of energy released by the fire

- **Heat Flux** – the rate of heat transfer expressed as energy delivered per unit time per unit area (kW/m²). Heat flux is a good measure of fire hazard.
Definitions

- **Heat Release Rate Profile** – The fire’s HRR expressed as a function of time
 - Example: NRC/SNL electrical cabinet fire tests . . .
 - A complete HRR profile may involve 5 stages:
 - Incipient
 - Growth
 - Steady state or peak burning
 - Decay
 - Burnout

![Graph showing HRR profiles](image)

Figure 8. Heat Release Rate Plots for Scoping Tests #1 through 5
Definitions

- **Fire in the Open** – A fire occurring in a large or unconfined space such that there is no feedback between the fire and the ambient environment vs. …

- **Compartment Fire (Enclosure Fire)** – A fire occurring in an enclosed space such that the fire impact its surroundings creating a feedback effect; e.g.
 - The walls get hot and feed radiant energy back to the fire
 - A HGL forms and feeds radiant energy back to the fire
 - The HGL descends to the floor and reduces the oxygen available to the fire

- We deal mainly with compartment fires
Definitions

- **Fuel Limited Fire** – A fire where the fuel burning rate is limited only by the surface burning rate of the material.
 - Plenty of oxygen…

vs. …

- **Oxygen Limited Fire** – A fire (typically inside a compartment or enclosure) where the fuel burning rate is limited by oxygen availability
 - Not enough air for fire to grow beyond a certain point

- We tend to deal primarily with fuel limited fires, but cabinet fires, for example, may be oxygen limited
Definitions

- **Lower flammability limit** – the minimum concentration of fuel vapor in air in a pre-mixed flame that can sustain combustion
 - A mixture that is too lean (not enough fuel) will not burn
- **Upper flammability limit** – the maximum concentration of fuel vapor in air that can sustain combustion
 - A mixture that is too rich (too much fuel) will not burn
- **Stoichiometric ratio** - the optimum theoretical mix of fuel and air to achieve complete combustion of that fuel
 - Fuel burns completely and consumes all available oxygen
- **Fuels will burn in air only if the concentration is between the lower and upper flammability limits**
Definitions

- **Zone-of-Influence (ZOI)** – The area around a fire where radiative and convective heat transfer is sufficiently strong to damage equipment or cables and/or heat other materials to the point of ignition.

- **Fire Modeling vs. Fire Analysis Tasks** – Fire modeling is the analytical process of estimating the behavior of a fire event in terms of the heat flux impinging material near the fire and behavior of those materials as a result of that.
Definitions

We classify cable insulation materials based on two major categories:

- **Thermoplastic (TP):** capable of softening or fusing when heated and of hardening again when cooled (Merriam-Webster)
 - TP materials melt when heated and solidify when cooled

- **Thermoset (TS):** capable of becoming permanently rigid when heated or cured (Merriam-Webster)
 - On heating TS materials may soften, swell, blister, crack, smolder and/or burn but they won’t melt

- Both types are used in U.S. NPPs
- Much more on cables to come.
Questions…

… before we move on?

- Up next:
 - Fundamental concepts of fire behavior, modeling and analysis