PROCEDURE TO ASSURE ADEQUATE CORE COOLING

Revision 0

8005080

A. <u>SYMPTOMS</u>

ECCS initiation setpoint has been reached and:

- 1. Reactor water level indication is continuing to decrease with ECCS operating.
- 2. Reactor water level is remaining at a level below the top of the active fuel as indicated by available level indications.
- 3. Reactor water level indication is unavailable.
- 4. Less than design flow is indicated on Feedwater or ECC Systems when design flow is required.

B. AUTOMATIC ACTIONS

None.

C. IMMEDIATE OPERATOR ACTIONS

NOTE

The highest priority action is to have any one ECCS pump injecting. Indication that any one ECCS pump is injecting is a reliable confirmation that inadequate core cooling effects are being mitigated. Confirmation of ECCS injection indication is a reliable backup for water level instrumentation.

1. Recheck and compare water level indications.

a. Panel 902(3)-3

Wide	Range	Yarway	Α	(0	to	400
Wide	Range	Yarway	В	(0	to	400
Wide	Range	GEMAC I	Recorder	(0	to	400

b. Panel 902(3)-4

()

Wide Range GEMAC

(-70 to +330 in.)

APPROVED ^{LEC} 20'79 D.O.S.R.

in.)

in.)

in.)

DGA 19 Revision 0

Panel 902(3)-5

с.

Narrow Range Yarway A	(-60 to +60 in)	<u> </u>
Narrow Range Yarway B	(-60 to +60 in.)	
Narrow Range GEMAC A	(0 to 60 in.)	
Narrow Range GEMAC B	(0 to 60 in.)	

Reactor Vessel Level/Feedwater Flow Recorder (Black Pen)

(Utilize Vessel Level Select Switch) Level A (0-60 in.)

Level B (0-60 in.)

- 2. IF LPCI System flow has been diverted for Containment Cooling, restore all flow to the core. If Containment Cooling is essential, injection water should be routed through the LPCI Heat Exchanger.
- 3. IF high pressure systems have failed to maintain level, Auto Blowdown has initiated and reactor pressure is greater than 350 psig, VERIFY that all Auto Blowdown Valves OPENED by checking temperature recorder and accoustical monitor on Panel 902(3)-21.
- 4. IF LPCI initiated and reactor pressure is <350 psig, VERIFY the following:
 - a. With Recirculation Loop A Selected for Injection

Panel 902(3)-3	,	
MO-2(3)-1501-21A		OPEN
110-2(3)-1501-22A		OPEN
MO-2(3)-1501-21B	•	CLOSED
MO-2(3)-1501-22B		CLOSED
Panel 902(3)-4		
MO-2(3)-202-5A	. .	CLOSED
M0-2(3)-202-7A		CLOSED
MO-2(3)-202-6A	APPROVED	CLOSED
MO-2(3)-202-9A	DEC 20179	CLOSED
	D.O.S.R.	- -

			ij ,	•	ي م ميني م	Rev	ision ()	، الحمالي ال
	Ъ.	Wi Recircula	ation Lo	pop B	Selected	d for Injec	tion		
. `	•	Panel 902(3)-	3			•			
	· · · ·	MO-2(3)-1501-2	21B			•	OPEN _		÷
-		MO-2(3)-1501-2	22B				OPEN _		_
•	· ·	MO-2(3)-1501-2	214				CLOSED		
		MO-2(3)-1501-2	22A				CLOSED		
		Panel 902(3)-4							
		MO-2(3)-202-5E	3 ,			• •	CLOSED		
		MO-2(3)-202-7B					CLOSED		-
		MO-2(3)-202-6B	, ,				CLOSED		
		MO-2(3)-202-9B					CLOSED		
5.	MONI	COR LPCI inject	ion and	core	flow by	observing	the fo	llowing:	
	Panel	902(3)-5	• : •		,				
	Core	Flow Recorder	(Black	Pen)		0-125 M1b,	/hr		
	Core	Differential P	ressure	(Red	Pen)	0-25 psid_			·
	Panel	902(3)-4							
	JP-1					0-150%	<u>.</u>		
	JP-6		2) 14			0-150%		(100% = 4) Mlb/hr	¥9
	JP-11					0-150%		under no	
	JP-16					0-150%		operatin conditic	
		op A Flow				<u></u>	<u> </u>		
		op B Flow	,			0-150%			
	•	902(3)-3	e.			0–150%			
		•	D			0.00			
	React	or Differentia]	l rressu			0-30 psid_	<u></u> ,		
				ж <u>.</u>					

ł

Ę

APPROVED DEC 20179 D.O.S.R.

2.

¢

1. Core Spray System effectiveness may be checked by:

COLE	spray system effectiveness may be	checked by:
а.	System I	
	Pump A Flow	0-6000 GPM
•	Pump A Discharge Pressure	0-400 psig
	MO-2(3)-1402-3A	OPEN
	MO-2(3)-1402-24A	OPEN
	MO-2(3)-1402-25A	OPEN
	MO-2(3)-1402-9A	OPEN
	VALVE-2(3)-1402-6A	OPEN
	MO-2(3)-1402-38A	CLOSED
	MO-2(3)-1402-4A	CLOSED
b.	System II	
	Pump C Flow	0-6000 GPM
	Pump C Discharge Pressure	0-400 psig
	MO-2(3)-1402-3B	OPEN
	MO-2(3)-1402-24B	OPEN
	MO-2(3)-1402-25B	OP EN
	MO-2(3)-1402-9B	OPEN
	VALVE-2(3)-1402-6B	OPEN
	MO-2(3)-1402-38B	CLOSED
	MO-2(3)-1402-4B	CLOSED
LPCI	System effectiveness may be checke	d by:
a.	System I Panel 902(3)-3	

Pump Flow 0 OPEN MO-2(3)-1501-5A

)-20	,	000	GPM

× 7

Revision 0

APPROVED DEC 20179 D.O.S.R.

_	1 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Revision O
MO-(3)-1501-5B		E N
MO-2(3)-1501-11A		OPEN
MO-2(3)-1501-21A	:	(Condition dependent on
MO-2(3)-1501-22A		LPCI Loop Selection)
MO-2(3)-1501-25A		OPEN
VALVE 2(3)-1501-2	6A	OPEN
MO-2(3)-1501-32A		OPEN
MO-2(3)-1501-32B		OPEN
MO-2(3)-1501-13A		CLOSED
MO-2(3)-1501-18A	, <u>.</u>	CLOSED
MO-2(3)-1501-19A	· • •	CLOSED
MO-2(3)-1501-38A	· · ·	CLOSED
MO-2(3)-1501-20A		CLOSED
MO-2(3)-1501-27A		CLOSED
MO-2(3)-1501-28A		CLOSED
System II Panel 9	02(3)-3	
Pump Flow	•	0-20,000 GPM
LPCI Flow Recorde	r .	0-20,000 GPM
MO-2(3)-1501-5C	•	OPEN
MO-2(3)-1501-5D	•	OPEN
MO-2(3)-1501-11B		OPEN
MO-2(3)-1501-21B		(Condition dependent on
MO-2(3)-1501-22B		LPCI Loop Selection)
MO-2(3)-1501-25B	· .	OPEN
VALVE 2(3)-1501-2	6B	OPEN
MO-2(3)-1501-32A	2 2	OPEN
MO-2(3)-1501-32B	· · ·	OPEN

APPROVED DEC 20'79 D.O.S.R.

Ŷ

Ъ.

5 öf 11

•		• · · · ·	DGA 19	•
•			Revision 0	
• •	-	MO-2(3)-1501-13B	CLOSED	:
		MO-2(3)-1501-18B	CLOSED	
		MO-2(3)-1501-19B	CLOSED	·
· · ·		MO-2(3)-1501-38B	CLOSED	
3		MO-2(3)-1501-20B	CLOSED	
· .		MO-2(3)-1501-27B	CLOSED	
		MO-2(3)-1501-28B	CLOSED	
	3.	HPCI System effectiven	ess may be checked by:	
		Pump Flow	0 to 100% (94% = 5600 GPM)	
		Pump Discharge Pressur	e 0 to 1500 psig	.
		Pump Inlet Pressure	30 in Hg to + 30 psig	
		Turbine RPM	0-6000 RPM	-
		Turbine Inlet Pressure	0-1500 psig	
		Turbine Exhaust Pressu	re 0-150 psig	-
		MO-2(3)-2301-6 OR	OPEN (CLOSE)	(Condition dependent
		MO-2(3)-2301-35 AND	CLOSED (OPEN)	on source of HPCI
		MO-2(3)-2301-36	CLOSED (OPEN)	suction)
		MO-2(3)-2301-9	OPEN	
		MO-2(3)-2301-8	OPEN	
	۰.	A0-2(3)-2301-7	OPEN	· ·
		MO-2(3)-2301-4	OPEN	
		MO-2(3)-2301-5	OPEN	•
• •		MO-2(3)-2301-3	OPEN	
•.		Turbine Stop Valve	, OPEN	
	4.	Feedwater and Condensa by:	te System effectiveness may be checke	d
ROVED		Condensate Pump Amps	0-300 amps	
20'79).S.R.		6	of 11	

.

C PR BEC 2 D.O.

(

ţ.

DGA Ì̈́ Revision O

	· · · · · · · · · · · · · · · · · · ·
Condensate Pump Discharge Header Pressure	0-200 psig
Condensate Booster Pump Suction Pressure	0-200 psig
Condensate Booster Pump Discharge Header Pressure	0-600 psig
RFP Suction Header (common)	0-600 psig
RFP Amps	0-1.5 KVA
RFP Flow	0-6000 lbs/hr
RFP Discharge Header (common)	0-2000 psig
Feedwater Temperature	0-500°F
Hotwell Level	0-50 in
Condensate Storage Tank Level 2/3A	0-32 ft
Condensate Storage Tank Level 2/3B	0-32 ft
Condensate Makeup Recorder Normal (Black)	0-500 GPM
Emergency (Red)	0-1000 GPM
MO-2-3304	OPEN (if desired)
MO-2-3303	OPEN (if desired)
MO-2-3403	OPEN (if any LP Heater String isolated)
RFP Minimum Flow Valve 2-3201A	CLOSED
RFP Minimum Flow Valve 2-3201B	CLOSED
RFP Minimum Flow Valve 2-3201C	CLOSED
MO-2-3201-A	OPEN (if A Pump running)
MO-2-3201-B	OPEN(if B Pump running)
MO-2-3201-C	OPEN (if C Pump APPROVED
NO 2 2206 A	running) UEC 20'79
MO-2-3206-A	^{OPEN} D.O.S.R.

İ

ę

DGA 19 Revision 0

A0-2-642A	OPEN
M0-2-3206-B	OPEN
AO-2-642B	OPEN
Low Flow Feed Regulating Valve	OPEN
M0-2-3202	OPEN (if any HP Heater String isolated)
M0-2-3205A	0 PEN
M0-2-3205B	OPEN

5. The effectiveness of Primary Containment Isolation can be checked by verifying the following:

a.

b.

(

.

	Group I			
	A0-203-1A		CLOSED	
	A0-203-2A		CLOSED	
	A0-203-1B	st.	CLOSED	
	A0-203-2B		CLOSED	
•	A0-203-1C	•	CLOSED	
	A0-203-2C		CLOSED	\$
	AO-203-1D		CLOSĖD	·
	A0-203-2D		CLOSED	
	MO-220-1		CLOSED	
	M0-220-2	`,	CLOSED	
	MO-220-44	, , , , , , , , , , , , , , , , , , , ,	CLOSED	
	M0-220-45		CLOSED	
•	AO-1301-17	, ;	CLÖSED	
	A0-1301-20	, ,	CLOSED	
	Group II			APPROVED
	A0-2001-105		CLOSED	DEC 20179
	A0-2001-106	:	CLOSED	D.O.S.R.

8 of 11

ť

		1	
•	A0-2001-5		CLOSED_
	A0-2001-6		CLOSED
	AO-1599-61	· ·	CLOSED
	AO-1599-62	• •	CLOSED_
c.	Group III		
	M0-1201-1		CLOSED
	MO-1201-2		CLOSED
	110-1201-3		CLOSED
	M0-1201-7	· · · ·	CLOSED_
	MO-1001-1A		CLOSED
	M0-1001-2A	:	CLOSED
	10-1001-4A	· · ·	CLOSED_
	MO-1001-5A		CLOSED_
	M0-1001-1B	e ^t	CLOSED
	MO-1001-2B	1	CLOSED
	MO-1001-4B		CLOSED
	M0-1001-5B		CLOSED
	M0-1001-2C	, .	CLOSED
	M0-1001-4C		CLOSED
d.	Group IV		
	MO-2301-4		CLOSED
	MO-2301-5	, 	CLOSED
	M0-2301-35	•	CLOSED
	M0-2301-36	· •	CLOSED
e.	Group V		
	110-1301-1		CLOSED
	M0-1301-2	ł	CLOSED

CLOSED_____ CLOSED_____ CLOSED_____ CLOSED_____

CLOSED
CLOSED

CLOSED	
CLOSED	
CLOSED	

CLOSED	
CLOSED	APPROVED
	DEC 20'79
	D.O.S.R.

£

DGA 19 Revision 0

MO-1301-3		CLOSED
MO-1301-4		CLOSED
AO-1301-17	1 1	CLOSED
A0-1301-20	•	CLOSED

6. If the inadequacy of cooling is due to insufficient water supplies in the Condensate Storage tanks, Torus and Condensate Hotwell, the following sources of water should be considered available:

CAUTION

Standby Coolant Supply is a last resort and should only be used as directed by the Operating Assistant Superintendent or the GSEP Technical Director.

a. Unprocessed Water in Radwaste tanks.

b. Standby Coolant Supply.

E. DISCUSSION

This procedure is a supplementary guideline to the General Abnormal procedures. The symptoms which dictate the use of this procedure would most probably occur after the immediate actions of the procedures for breaks inside the drywell, breaks outside the drywell, reactor low water level and stuck open relief valve have been followed.

If the operator already has an inference as to the cause of the inadequate cooling, he need not follow the procedure step by step. He should refer to the steps affecting that system first. (Even immediate actions may be skipped.) The blank lines next to parameters are not intended to make this a checklist. These blanks are a convenience item that the operator can use at his discretion.

The immediate actions within this procedure attempt to detect some of the more probable causes of inadequate core cooling.

The indicated water level, where provided by Yarway instrumentation utilizing reference legs in the drywell, is dependent upon drywell temperature. Very large increases in drywell temperature (an increase from 135°F to 340°F) could result in a level inaccuracy (as much as 14 inches depending on drywell temperature and type of instrument) with indicated level being higher than actual level.

> APPROVED DEC 20179 D.C.S.R.

During rapid Teactor depressurization (with ADS operation for example), and particularly below 500 psig, the operator should utilize the GEMAC level indication to give backup information on vessel water level. The operator should not turn off any ECCS unless there is sufficient confirming information from GEMAC reference leg level instrumentation that vessel water level has been restored. The operators should not rely on the Yarways if erratic behavior, indicative of reference leg flashing, has occurred until the Yarway readings are on scale and in reasonable agreement with GEMAC level instruments. The operator should VERIFY that automatic ECCS actuations occur when the levels are at the trip points. The operator should be prepared to manually actuate ECCS during a suspected LOCA if automatic actuation is not achieved.

It should be noted that core flow instrumentation such as core differential pressure, reactor differential pressure and core flow will not provide conclusive evidence as to the adequacy of core cooling. These instruments are intended to be used in conjunction with other indications. Recirculation loop temperatures and vessel temperatures may be consulted but the validity of such indication is questionable as it relates to core cooling.

Subsequent actions address effectiveness of various inventory makeup systems and containment isolations. Some parameters such as LPCI pump amps and discharge pressure and Core Spray header dp are not listed within the procedure. These instruments may be used but must be read locally. Before attempting to confirm core cooling by local indications, consideration must be given to the effect of radiation levels and atmospheric contamination on personnel.

The only valves listed under Group II Isolation are those which could result in a significant water inventory loss from the containment.

The highest priority action is to have any one ECCS pump injecting. Indication that any one ECCS pump is injecting is a reliable confirmation that inadequate core cooling effects are being mitigated. Confirmation of ECCS injection indication is a reliable backup for water level instrumentation.

Indications such as incore instrumentation are not considered sufficiently reliable to include in this procedure.

¢

APPROVED DEC 20179 D.O.S.R.

Revision 0

11 of 11 (FINAL)