Calculation Title Page

,

	E97-0003	Page 1 of	10
Safety Related	Regulatory Relat	ed D Non-Safety Related	
Calculation Title:			
Dr	esden LPCI/Core Spra	ay NPSH Analysis	
Post-	DBA LUCA: Reduced	Torus Temperature	
	Long-Ter		
Station/Unit: <u>Dresde</u>	n Units 2 and 3	System Abbreviation: LPCI/CS	
Equipment No.: <u>2(3)</u> 2(3)	-1502A/B/C/D -1401A/B	Project No.:	
Rev: 0 Status:	QA Serial # or CHRO	N # <u>NA</u> Date:	
Prepared by:	an Piles Hi	ARRY PALAS Date: 1/7/9	77
Revision Summary:			
Electronic Calculation	n Data Files:		
RING.PLL	4L252C45.PLU	2L502C45.PLU	
RING.PLL RING.PLU	4L252C45.PLU 3L502C45.PLU	2L502C45.PLU 2L372C45.PLU 1L502C45 PLU	
RING.PLL RING.PLU 4L502C45.PLU 4L372C45.PLU	4L252C45.PLU 3L502C45.PLU 3L_50_25.PLU 3L_25_50.PLU	2L502C45.PLU 2L372C45.PLU 1L502C45.PLU	
RING.PLL RING.PLU 4L502C45.PLU 4L372C45.PLU Do any assumptions	4L252C45.PLU 3L502C45.PLU 3L_50_25.PLU 3L_25_50.PLU in this calculation require I	2L502C45.PLU 2L372C45.PLU 1L502C45.PLU ater verification? □ Yes I No	D
RING.PLL RING.PLU 4L502C45.PLU 4L372C45.PLU Do any assumptions	4L252C45.PLU 3L502C45.PLU 3L_50_25.PLU 3L_25_50.PLU in this calculation require I	2L502C45.PLU 2L372C45.PLU 1L502C45.PLU ater verification? □ Yes INC 	D ,
RING.PLL RING.PLU 4L502C45.PLU 4L372C45.PLU Do any assumptions Reviewed by:	4L252C45.PLU 3L502C45.PLU 3L_50_25.PLU 3L_25_50.PLU in this calculation require I	2L502C45.PLU 2L372C45.PLU 1L502C45.PLU ater verification? □ Yes ⊠ No Date: <u>//7/97</u> Comments (C, NC or CI): <u>Nc</u>)

(

Calculation Revision Page

Calculat	ion No.: DF	RE97-0003		Page 2 of 10
Rev: 0	Status:	QA Serial # or CHRON #	NA	Date:
Prepare	d by:			Date:
Revisior	n Summary:			
Electron	ic Calculatio	on Data Files Revised:		
Do any a	assumptions	in this calculation require later	verification?	□Yes □No
Reviewe	ed by:			_ Date:
Review	Method:	C	comments (C,	NC or Cl):
Approve	d by:			_ Date:

Table of Contents

Calculation No.: DRE97-0003	Rev. 0	Page 3 of 10
Description	Page No.	Sub-Page No.
Title Page	1	
Revision Summary	2	
Table of Contents	3	
Purpose/Objective	4	
Methodology and Acceptance Criteria	4	
Assumptions	5	
Design Inputs	6	
References	7	
Calculations	8	
Summary and Conclusions	10	
Attachment A: LPCI/Core Spray Suction Friction Losses FLO-SERIES Model (29 pages)	A1	

1.0 PURPOSE

The purpose of this calculation is to determine if sufficient Net Positive Suction Head (NPSH) is available to the Dresden LPCI and Core Spray (CS) pumps following a DBA-LOCA with atmospheric pressure in the torus. This calculation examines NPSH conditions at the bounding, long-term (> 600 seconds) condition following the accident, which occurs at the time of peak suppression pool temperature. The effects of throttled LPCI pumps and reduced peak suppression pool temperature will also be examined. The results of this calculation will be used to support a Dresden Exigent License Amendment.

2.0 METHODOLOGY AND ACCEPTANCE CRITERIA

The minimum suppression pool pressure required to ensure LPCI and CS pump protection will be determined under long-term post-LOCA conditions at the bounding NPSH condition. Since the suppression pool pressure remains constant after 600 seconds (14.7 psia), the bounding NPSH condition occurs at the time of peak suppression pool temperature. If the pressure required is less than 14.7 psia, then the pump NPSH requirements have been met. If the required pressure is greater than 14.7 psia, then the potential exists for the pumps to cavitate. In these situations, LPCI pump flows will be reduced to below-nominal values and new cases will be run to establish the ability of the operator to throttle the pumps to an acceptable condition. This acceptable condition is defined by the following criteria:

- 1) <u>Adequate NPSH to the pumps</u> minimum pressure available is greater than minimum pressure required for the LPCI and CS pumps.
- 2) <u>Adequate containment cooling</u> the minimum containment cooling flow analyzed is 5000 gpm (LPCI) through a single LPCI heat exchanger.

If an acceptable condition cannot be achieved by throttling, then cases involving reduced suppression pool temperatures will be explored.

Various pump combinations will be explored to determine the bounding NPSH case for the LPCI and Core Spray pumps. It will be shown that NPSH for the LPCI/CS pumps with 4 LPCI/2 CS pumps running is the bounding NPSH case. This calculation is bounding for NPSH due to use of the following conservative inputs:

- maximum long-term suppression pool temperature post-LOCA, thus maximizing the vapor pressure and minimizing NPSH margin
- torus pressure at time of peak temperature is atmospheric, thus minimizing NPSH margin
- Technical Specifications minimum suppression pool level including drawdown, minimizing elevation head and minimizing NPSH margin
- increased clean, commercial steel pipe friction losses by 15% to account for aging effects

CAT OTIT ATTONING	DDDD C CCC			 	
CALCULATION NO.	DRE97-0003	REV.	0	PAGE	5
			-	~~~~	•

3.0 ASSUMPTIONS

- 1. It is assumed that at 10 minutes into the accident, operator action will be taken to ensure that the LPCI/CS pumps have been throttled to their rated flows (5000 and 4500 gpm respectively). Therefore, the pumps are at their rated flows at the time of peak suppression pool temperature.
- 2. LPCI/CS pump suction piping friction losses (excluding strainer losses) were developed for a single flow case using a FLO-SERIES model of the Dresden ECCS ring header and pump suction piping (Ref. 3). This piping model was then run at the various LPCI/CS pump combinations and flows as required to support the cases evaluated in this calculation (Attachment A). The model that was developed uses clean, commercial steel pipe. In order to compensate for the increased loss due to the potential effects of aging, the resulting friction losses from the model were increased by 15%. This is consistent with discussions provided in References 13 and 14.
- 3. To account for strainer plugging, one of the four torus strainers is assumed 100% blocked, while the remaining three strainers are assumed clean. While the torus strainers are not included in the FLO-SERIES model discussed in Assumption 2, blocking a strainer translates to blocking a torus-to-ring header entrance leg. This is accomplished in the model by closing one of the torus legs (Torus 1-4). Based on previous sensitivity analyses, Torus-4 was chosen for maximum effect on both LPCI and Core Spray suction losses for all pump combinations.
- 4. The peak suppression pool temperature post-LOCA is not provided in the original Dresden FSAR for any LPCI/CCSW pump combinations. A value of <u>170°F</u> is estimated for the Dresden 1 LPCI / 2 CCSW case based on the following:
 - Quad Cities has similar ECCS flows, heat exchanger capacities and heat loads to Dresden; therefore, Quad Cities post-LOCA results can be employed to provide a reasonable estimate of Dresden's peak pool temperature (Ref. 1). Table 5.2.5 of the Quad Cities FSAR provides a Case (d), which yields a suppression pool maximum temperature of 168°F for a 1 RHR/2 RHRSW pump scenario based on an initial pool temperature of 90°F. For a Dresden initial pool temperature of 95°F, an adder of 2°F is used, resulting in a Dresden peak suppression pool temperature estimate of 170°F. The 2°F adder is supported by subsequent GE calculations which show a sensitivity of 1°F for a 5°F change in initial pool temperature (Ref. 2).
 - Reference 15, page 2-5 states the following: "The maximum torus temperature for a design basis accident would reach about 170°F."
 - The Dresden FSAR, page 6.2-17 includes a discussion regarding LPCI/CCSW heat exchanger sizing. It states "that in the event of the loss of coolant accident the terminal suppression pool temperature would not exceed 170°F."
- 5. Suppression pool pressure is assumed atmospheric (14.7 psia). This is conservative since pressure above atmospheric is expected in the suppression pool as a result of the elevated temperatures and blowdown of the non-condensables post-LOCA.

CALCULATION NO. DR	E97-0003	REV. 0	PAGE 6

4.0 DESIGN INPUTS

- 1. LPCI and CS pump suction piping friction losses (excluding strainer losses) from the torus strainers to the pumps were developed in Reference 3 using a FLO-SERIES model of the ECCS ring header and suction piping. This piping model was then utilized for the various LPCI/CS pump combinations and flows as required to support the cases evaluated in this calculation (Attachment A).
- 2. The minimum torus level elevation with a maximum drawdown of 2.1 ft. is 491'5", or 491.4 ft. (Ref. 4). At the time of peak suppression pool temperature, a recovery of 1.1 ft. occurs, resulting in a net drawdown of 1 ft (Ref. 5). This represents a torus level elevation of 492.5'.
- 3. The torus strainers have a head loss of 5.8 ft. @ 10,000 gpm clean (Ref. 6).
- 4. LPCI and Core Spray pump centerline elevation is 478.1 ft. (Refs. 7, 8).
- 5. NPSH Available (NPSHA) is calculated using the following equation:

NPSHA = 144 x V x $(P_t - P_v) + Z - h_L - h_{strain}$ (based on Ref. 9, p. 2.216)

where: P_t = suppression pool pressure in psia P_v = saturation pressure in psia

- $V = \text{specific volume in } \text{ft}^3/\text{lb}$
- h_L = suction friction losses in feet
- $h_{strain} =$ head loss across strainer in feet
 - Z = static head of water above pump inlet (feet)
- 6. Saturation pressure of water at 170°F is 5.99 psia, and at 160°F is 4.74 psia (Ref. 10)
- 7. Specific volume of water at 170°F is 0.016451 ft³/lb, and at 160°F is 0.016395 (Ref. 10)
- 8. The NPSH Required (NPSHR) for the LPCI pump is 30 ft. at 5000 gpm, 25.5 ft. at 3750 gpm, and 25 ft. at 2500 gpm (Ref. 11).
- 9. The NPSHR for the Core Spray pump is 27 ft. at 4500 gpm (Ref. 12).

CALCULATION NO.	DRE97-0003	$\mathbf{REV.}$ 0	PAGE 7

5.0 REFERENCES

- 1. "An Estimated Suppression Pool Temperature for Dresden NPSH Evaluation", Nuclear Fuel Services Memo from K. Ramsden dated August 22, 1996
- 2. General Electric report GENE-637-042-1193 dated February, 1994
- 3. "ECCS Suction Hydraulic Analysis without the Strainers", Duke Engineering & Services Calculation Number DRE96-0241 dated December 20, 1996
- 4. "Submergence of LPCI Discharge Line Post LOCA Dresden Units 2 & 3", letter from S. Eldridge to C. Schroeder dated September 29, 1992, CHRON# 0115532
- "Dresden LPCI/Containment Cooling System," GE Nuclear Energy letter from S. Mintz to T. L. Chapman dated January 25, 1993
- "Supporting Calculations for the ECCS Suction Strainer Modification", Nutech File No. 64.313.3119 Rev. 1, dated June 22, 1983
- 7. Sargent & Lundy Drawing M-547, LPCI pump suction
- 8. Sargent & Lundy Drawing M-549, Core Spray pump suction
- 9. "Pump Handbook", 2nd Edition, Karassik, Igor et. al., 1986
- 10. ASME Steam Tables, 1967

- 11. Bingham Pump Curve Nos. 25355-7, 27367-8, 27383, 25384-5 for Model 12x14x14.5 CVDS, Dresden Station LPCI pumps
- 12. Bingham Pump Curve Nos. 25213 (2A), 25243 (2B), 25231 (3A) and 25242 (3B) for Model 12x16x14.5 CVDS, Dresden Station Core Spray pumps.
- 13. Hydraulic Institute Engineering Data Book, Second Edition, 1990
- 14. Cameron Hydraulic Data, 17th Edition, Ingersoll-Rand Company, 1988
- 15. Dresden FSAR, Amendment 22, May 7, 1970

CALCULATION NO.	DRE97-0003	REV. 0	PAGE 8
1			

6.0 CALCULATIONS

The NPSHA equation presented in Design Input 5 can be rewritten to solve for the minimum suppression pool pressure required for pump protection by setting the NPSHA equal to the NPSH Required (NPSHR) as follows:

$$P_{t, \min} = \frac{(NPSHR - Z + h_{total})}{144 \times V} + P_{v}$$
(1)

where	$P_{\mathbf{v}}$	=	5.99 psia @170°F	(Design Input 6)
	V	=	0.016451 ft³/lb @170°F .	(Design Input 7)
	h _{total}	=	friction (h_L) + strainer (h_{strain}) loss	(Attachment A)
	h _{strain}	=	5.8 ft. @ 10,000 gpm clean	(Design Input 3)
	Ζ	=	492.5 ft 478.1 ft. = 14.4 ft.	(Design Inputs 2, 4)
NPS	SHR	=	30 ft. @ 5000 gpm for LPCI 27 ft. @ 4500 gpm for CS	(Design Input 8) (Design Input 9)

Solving Equation 1, the minimum suppression pool pressure required to satisfy LPCI and Core Spray pump NPSH requirements under a spectrum of pump combinations is determined to be:

	Total	Total	Minimum	Minimum			
LPCI CS		Required	Required	Minimum			
	Suction	Suction	Torus	Torus	Available		
	Loss	Loss	Pressure for	Pressure for	Torus	LPCI	CS
LPCI/CS	h _{total}	htotal	LPCI	CS	Pressure	Margin	Margin
Pumps	(ft)	(ft)	(psia)	(psia)	(psia)	(ft)	(ft)
4/2	16.1	13.3	19.4	16.9	14.7	-11.1	-5.3
3/2	13.0	10.1	18.1	15.6	14.7	-8.0	-2.1
2/2	10.6	7.5	17.1	14.5	14.7	-5.6	0.5
1/2	7.5	5.8	15.7	13.7	14.7	-2.5	2.3

All the combinations evaluated above involve 2 CS pumps. These cases bound the respective 1 CS pump scenarios due to the higher ring header/strainer losses of the 2-pump cases combined with no pool temperature benefit (cooling) from the added Core Spray pump (second pump actually adds heat to the pool). As shown above, the potential exists for the LPCI and CS pumps to cavitate in most of the pump scenarios. For these cases, throttling of the LPCI pumps may be required to ensure NPSH requirements are met. The following cases are provided to establish the ability of the operator to throttle the pumps to an acceptable condition as defined in Section 2.0.

CALCULATION NO. DRE97-0003

REV. 0

Pump	NPSHR (ft)	Suction Loss h _L (ft)	Strainer Loss h _{strain} (ft)	Static Head (ft)	Vapor Pressure (psia)	Req'd Torus Pressure (psia)	Available Torus Pressure (psia)	Margin (ft)	LPCI/CS Pumps Running	LPCI/CS Total System Flows (gpm)	Status of Pumps
LPCI	25.5	6.5	3.7	14.4	5.99	19.4	14.7	-11.1	4/2	15000/9000	4 LPCI pumps throttled to 5000 gpm per pump 4 LPCI pumps throttled to
LPCI	25.0	3.4	2.3	14.4	5.99	12.9	14.7	4.3	4/2	10000/9000	4 LPCI pumps throttled to 2500 gpm per pump
LPCI	30.0	9.3	3.7	14.4	5.99	18.1	14.7	-8.0	3/2	15000/9000	3 LPCI pumps throttled to 5000 gpm per pump
LPCI l-pp loop	30.0	7.0	2.3	14.4	5.99	16.5	14.7	-4.3	3/2	10000/9000	2 LPCI pumps throttled to 2500 gpm per pump; single LPCI throttled to 5000 gpm
LPCI 2-pp loop	25.0	3.4	2.3	14.4	5.99	12.9	14.7	4.3	3/2	10000/9000	2 LPCI pumps throttled to 2500 gpm per pump; single LPCI throttled to 5000 gpm
LPCI	30.0	8.3	2.3	14.4	5.99	17.1	14.7	-5.6	2/2	10000/9000	2 LPCI pumps throttled to 5000 gpm per pump
LPCI	25.5	5.0	1.8	14.4	5.99	13.5	14.7	2.8	2/2	7500/9000	2 LPCI pumps throttled to 3750 gpm per pump
LPCI	30.0	6.2	1.3	14.4	5.99	15.7	14.7	-2.4	1/2	5000/9000	1 LPCI pump throttled to. 5000 gpm
CS	27.0	7.9	5.4	14.4	5.99	16.9	14.7	-5.3	4/2	20000/9000	4 LPCI pumps throttled to 5000 gpm per pump
CS	27.0	6.5	3.7	14.4	5.99	15.6	14.7	-2.2	4/2	15000/9000	4 LPCI pumps throttled to 3750 gpm per pump
CS	27.0	5.4	2.3	14.4	5.99	14.6	14.7	0.3	4/2	10000/9000	4 LPCI pumps throttled to 2500 gpm per pump
CS	27.0	6.4	3.7	14.4	5.99	15.6	14.7	-2.1	3/2	15000/9000	3 LPCI pumps throttled to 5000 gpm per pump
CS	27.0	5.4	2.3	14.4	5.99	14.6	14.7	0.3	3/2	10000/9000	2 LPCI pumps throttled to 2500 gpm per pump; single LPCI throttled to 5000 gpm
CS	27.0	5.2	2.3	14.4	5.99	14.5	14.7	0.5	2/2	10000/9000	2 LPCI pumps throttled to 5000 gpm per pump
CS	27.0	4.5	1.3	14.4	5.99	13.7	14.7	2.3	1/2	5000/9000	1 LPCI pump throttled to

As shown above, the LPCI and Core Spray pumps can be throttled to ensure NPSH requirements are met and that adequate containment cooling exists for all ECCS pump combinations except the 1/2 case. In this case, the LPCI NPSH deficit is approximately 1 psi. Reducing the pool temperature by 10°F would result in a reduction in vapor pressure of slightly more than 1 psi. Therefore, at a suppression pool temperature of 160°F, the 1/2 case is as follows:

CALCULATION NO. DRE97-0003

REV. 0

Pump	NPSHR (ft)	Suction Loss h _L (ft)	Strainer Loss h _{strain} (ft)	Static Head (ft)	Vapor Pressure (psia)	Req'd Torus Pressure (psia)	Available Torus Pressure (psia)	Margin (ft)	LPCI/CS Pumps Running	LPCI/CS Total System Flows (gpm)	Status of Pumps
LPCI	30.0	6.2	1.3	14.4	4.74	14.5	14.7	0.4	1/2	5000/9000	1 LPCI pump throttled to 5000 gpm

7.0 SUMMARY AND CONCLUSIONS

An NPSH analysis was performed for the LPCI/CS pumps under bounding, long-term postaccident conditions with atmospheric pressure in the torus. Selecting inputs to minimize NPSH margin, it was determined that the potential exists for the LPCI and CS pumps to cavitate in most of the pump scenarios. For these cases, throttling of the LPCI pumps may be required to ensure NPSH requirements are met. Specific cases involving throttled LPCI pumps were evaluated to establish the ability of the operator to throttle the pumps to an acceptable condition. The results of these cases were as follows:

- In the 3/2 case, the single pump LPCI loop may need to be throttled to below 5000 gpm, and containment heat removed with the 2-pump loop. This will ensure the LPCI heat exchanger receives its rated LPCI flow. Alternatively, a LPCI pump can be dropped to gain the required NPSH margin.
- In the 1/2 case, an NPSH deficit still exists after maximum throttling of the LPCI pump to 5000 gpm. It was determined that a reduction in the peak suppression pool temperature to 160°F would result in positive NPSH margin.

Therefore, at a reduced suppression pool peak temperature of 160°F, it is concluded that under all post-LOCA pump combinations, positive NPSH margin for the LPCI and Core Spray pumps can be achieved by throttling the available LPCI pumps.

CALCULATION NO. DRE97-0003

ATTACHMENT A

LPCI/Core Spray Suction Friction Losses FLO-SERIES Model

Dresden LPCI/Core Spray pump suction friction losses were developed using a FLO-SERIES model of the Dresden ECCS ring header and pump suction piping (Ref. 3). The nodal diagram of the piping model is included as Figure A1. This model was run at the various LPCI and Core Spray pump combinations and flows listed below as required to support the cases evaluated in this calculation. The FLO-SERIES runs are included in this Attachment.

					LPCI	Total		CS	Total	
		LPCI/CS	Strainer	LPCI	Loss	LPCI	CS	Loss	CS	
	1	Flow per	Loss [#]	Friction	+15%	Loss*	Friction	+15%	Loss*	FLO-SERIES
LPCI	CS	Pump	h _{strain}	Loss	h _L	htotal	Loss	h _L	b _{total}	Line-up
Pumps	Pumps	(gpm)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	Filename
4	2	5000/4500	5.4	9.3	10.7	16.1	6.9	7.9	13.3	4L502C45.PLU
4	2	3750/4500	3.7	5.°C	6.5	10.2	5.7	6.5	10.2	4L372C45.PLU
4	2	2500/4500	2.3	2.9	3.4	5.7	4.7	5.4	_7.7	4L252C45.PLU
3	2	5000/4500	3.7	8.1	9.3	13.0	5.6	6.4	10.1	3L502C45.PLU
3	2	5000/4500	2.3	6.1	7.0	9.3	4.7	5.4	7.7	3L_50_25.PLU
3	2	2500/4500	2.3	2.9	3.4	5.7	4.7	5.4	7.7	3L_25_50.PLU
2	2	5000/4500	2.3	7.2	8.3	10.6	4.5	5.2	7.6	2L502C45.PLU
2	2	3750/4500	1.8	4.4	5.0	6.8	4.2	4.8	6.6	2L372C45.PLU
1	2	5000/4500	1.3	5.4	6.2	7.4	3.9	4.5	5.7	1L502C45.PLU

^{*} Strainer Loss = (Flow per strainer/10,000 gpm)² x 5.8 ft.

* Total Loss = (Loss +15%) + Strainer Loss

Table A-1

CALCULATION NO. DRE97-0003 REV. 0 PAGE A2

Figure Al: ECCS Suction Nodal Diagram including the Ring Header

Company: ComEd Project: by: Palas

LINEUP REPORT rev: 12/21/96

LINELIST: RING dated: 12/18/96 DEVIATION: 0.0157 % after: 5 iterations

4L502C45

12/21/96

4 LPCI @5000 and 2 CS @4500 Injecting. Nearest torus leg blocked. Volumetric flow rates require constant fluid properties in all pipelines.

Volumetric flow rates require constant fluid properties in all piperines. Fluid properties in the first specification were used.

NODE		DEMAND gpm	NODI	Ξ		DEMAND gpm	
N	>>>	4500	0		>>>	0.0001	
P	>>>	10000	R		>>>	5000	
S	>>>	5000	U		>>>	4500	
			NEW	FLOWS FLOWS	IN: OUT:	0 gpm 29000	gpm
			NET	FLOWS	001.5	29000	gpm

PIPELINE		FLOW gpm		PRESSURE	SE ps	T ig
Torus-1	<<<	9433	<<<	А	0	
Torus-2	<<<	9552	<<<	В	0	
Torus-3	<<<	10015	<<<	С	0	
				FLOWS IN:	29000	gpm

CALCULATION NO. DRE97-0003 REV. 0 PAGE A3

gpm

FLOWS OUT: 0 gpm

NET FLOWS IN: 29000

PIPE-FLO rev 4.11

pg 1

NODE	ELEVATION ft	DEMAND gpm	PRESSURE psi g	H GRADE ft
A	0		0 q	0
В	0	-	0 q	0
С	0		0 q	0
E	0		* -1.403	-3.258
F	0		* -1.439	-3.341
G	0		* -1.582	-3.672
Н	0		* -1.669	-3.874
I	0		* -1.444	-3.351
J	0		* -1.596	-3.705
K	0		* -1.591	-3.693
L	0		* -1.684	-3.909
М	0		* -1.662	-3.858
Ν	0	> 4500	* -1.694	-3.933
0	0	> 0.0001	* -1.591	-3.693
P	0	> 10000	* -1.948	-4.523
Q	0		* -2.208	-5.125
R	0	> 5000	* -2.75	-6.384
S	0	> 5000	* -3.996	-9.276
T	0		* -1.918	-4.451
U ·	0	> 4500	* -2.961	-6.374

CALCULATION NO. DRE97-0003 REV. 0 PAGE A4

4L502C45 12/21/96

PIPELINE	FROM	TO	FLOW gpm	VEL ft/sec	dP psi g	Hl ft
CS-3A	I	Ν	4500	6.274	0.251	0.582
CS3B-16	т	Ŭ	4500	7.911	1.044	2.423
CS3B-18	М	т	4500	б.274	0.255	0.593
HPCI	K	0	0	0	0	0
LPCI3A	Q	R	5000	11.64	0.543	1.259
LPCI3A/B	J	Q	10000	7.563	0.612	1.42
LPCI3B	Q	S	5000	11.64	1.789	4.152
LPCI3C/D	L	P	10000	7.563	0.264	0.614
Ring-1	Е	I	2609	1.973	0.040	0.093
Ring-2	F	I	1891	1.43	0.004	0.010
Ring-3	F	J	7661	5.794	0.157	0.365
Ring-4	K	J	2339	1.769	0.005	0.012
Ring-5	G	K	2339	1.769	0.009	0.021
Ring-6	G	L	7676	5.805	0.102	0.237
Ring-7	Н	L	2324	1.758	0.015	0.035
Ring-8	М	<-> H	2324	1.758	0.007	0.015
Ring-9	E	М	6824	5.161	0.259	0.501
Torus-1	А	E	9433	11.42	1.403	3.258
Torus-2	В	F	9552	11.57	1.439	3.341
Torus-3	С	G	10015	12.12	1.582	. 3.672
Torus-4	D	Н	closed	0	0	0

CALCULATION NO. DRE97-0003

REV. 0 PAGE A5

PIPE-FLO rev 4.11

Company: ComEd Project: by: Palas

4L372C45 12/21/96

LINEUP REPORT rev: 12/21/96

LINELIST: RING dated: 12/18/96

DEVIATION: 0.031 % after: 5 iterations

4 LPCI @3750 and 2 CS @4500 Injecting. Nearest torus leg blocked. Volumetric flow rates require constant fluid properties in all pipelines.

Fluid properties in the first specification were used.

NODE		DEMAND gpm	NOD	E		DEMAND gpm	
Ν	>>>	4500	0		>>>	0.0001	
P	>>>	7500	R		>>>	3750	
S	>>>	3750	U		>>>`	4500	
			NET	FLOWS FLOWS FLOWS	IN: OUT: OUT:	0 gpm 24000 24000	abw

PIPELINE		FLOW gpm		PRESSURE SOURCE	SET psig
Torus-1	<<<	7829	<<<	A	0
Torus-2	<<<	7929	<<<	В	0
Torus-3	<<<	8242	<<<	С	0
				FLOWS IN: FLOWS OUT:	24000 gpm 0 gpm
			NET	FLOWS IN:	24000 gpm

CALCULATION NO. DRE97-0003 REV. 0 PAGE AG

PIPE-FLO rev 4.11

NODE	ELEVATION ft	DEMAND gpm	PRESSURE psi g	H GRADE ft
A	0		p 0	0
В	0	-	- p 0	0
С	0		- p 0	0
Έ	0		* -0.967	-2.244
F	0		* -0.992	-2.302
G	0		* ~1.072	-2.487
Н	0		* -1.141	-2.648
I	0		* -0.998	-2.316
J	0		* -1.08	-2.507
K	0		* -1.077	-2.5
L	0		* -1.144	-2.656
М	0		* -1.14	-2.645
N	0	> 4500	* -1.249	-2.899
0	0	> 0.0001	* -1.077	-2.5
P	0	> 7500	* -1.293	-3.001
Q	0		* -1.425	-3.307
R	0	> 3750	* -1.73	-4.016
S	0	> 3750	* -2.432	-5.645
Т	0		* -1.395	-3.238
U	0	> 4500	* -2.439	-5.661

CALCULATION NO. DRE97-0003 REV. 0 PAGE A7

4L372C45 12/21/96

PIPELINE	FROM	TO	FLOW gpm	VEL ft/sec	dP psi g	Hl ft
CS-3A	I	N	4500	6.274	0.251	0.582
CS3B-16	Т	Ų	4500	7.911	1.044	2.423
CS3B-18	M	Т	4500	6.274	0.255	0.593
HPCI	K	0	0	0	0	0
LPCI3A	Q	R	3750	8.732	0.305	0.709
LPCI3A/B	J	Q	7500	5.672	0.345	0.800
LPCI3B	Q	S	3750	8.732	1.007	2.338
LPCI3C/D	L	Р	7500	5.672	0.149	0.345
Ring-1	E	I	2283	1.725	0.031	0.072
Ring-2	F	I	2217	1.677	0.006	0.014
Ring-3	F	J	5712	4.32	0.088	0.205
Ring-4	K	J	1788	1.352	0.003	0.007
Ring-5	G	K	1788	1.352	0.005	0.013
Ring-6	G	L	6454	4.881	0.073	0.169
Ring-7	Н	L	1046	0.791	0.003	0.008
Ring-8	М	<-> H	1046	0.791	0.001	0.003
Ring-9	E	М	5546	4.194	0.173	0.401
Torus-1	A	E	7829	9.478	0.967	2.244
Torus-2	В	F	7929	9.6	0.992	2.302
Torus-3	С	G	8242	9.979	1.072	2.487
Torus-4	D	н	closed	0	0	0

CALCULATION NO. DRE97-0003

REV. O PAGE A8

Company: ComEd Project: by: Palas

LINEUP REPORT rev: 12/21/96

LINELIST: RING dated: 12/18/96

DEVIATION: 0.0111 % after: 6 iterations

4L252C45

12/21/95

4 LPCI @2500 and 2 CS @4500 Injecting. Nearest torus leg blocked. Volumetric flow rates require constant fluid properties in all pipelines. Fluid properties in the first specification were used.

NODE		DEMAND gpm	NOD	E		DEMAND gpm	
N	>>>	4500	0		>>>	0.0001	
P	>>>	5000	R		>>>	2500	
S	>>>	2500	U		>>>`	4500	
				FLOWS FLOWS	IN: OUT:	0 gpm 19000	gpm
			NET	FLOWS	OUT:	19000	gpm

PIPELINE		FLOW gpm		PRESSURE SOURCE	SET psig
Torus-1	<<<	6218	<<<	A	0
Torus-2	<<<	6302	<<<	В	0
Torus-3	<<<	6480	<<<	С	0
				FLOWS IN: FLOWS OUT:	19000 gpm 0 gpm

NET FLOWS IN: 19000

CALCULATION NO. DRE97-0003 REV. 0 PAGE A9

gpm

NODE	ELEVATION ft	DEMAND gpm	PRESSURE psi g	H GRADE Ít
A	0		0 q	0
В	0	-	p 0	0
С	0		0 g	0
E	0		* -0.610	-1.416
F	0		* -0.626	-1.454
G	0		* -0.662	-1.538
Н	0		* -0.712	-1.652
I	0		* -0.634	-1.472
J	0		* -0.666	-1.547
K	0		* -0.665	-1.544
L	0		* ~0.711	-1.651
М	0		* -0.712	-1.652
Ν	0	> 4500	* -0.885	-2.054
0	0	> 0.0001	* -0.665	-1.544
D	0	> 5000	* -0.778	-1.805
Q	0		* -0.820	-1.903
R	0	> 2500	* -0.956	-2.219
S	0	> 2500	* -1.269	-2.945
Ţ	0		* -0.967	-2.245
U	0	> 4500	* -2.011	-4.558

CALCULATION NO. DRE97-0003

REV. O PAGE Alo

4L252C45 12/21/96

L.	PIPELINE	FROM		ТО	FLOW gpm	VEL ft/sec	dP - psi g	Hl ft
1	CS-3A	I		N	4500	6.274	0.251	0 582
	CS3B-16	т		ŭ	4500	7.911	1.044	2.423
	CS3B-18	М		т	4500	6.274	0.255	0.593
	HPCI	K		0	0	0	0	0
	LPCI3A	Q		R	2500	5.822	0.136	0.315
	LPCI3A/B	J		Q	5000	3.781	0.154	0.357
	LPCI3B	Q		S	2500	5.822	0.449	1.041
	LPCI3C/D	L		P	5000	3.781	0.066	0.154
	Ring-1	E		I	1999	1.512	0.024	0.056
	Ring-2	F		I	2501	1.892	0.008	0.018
	Ring-3	F	,	J	3800	2.874	0.040	0.093
	Ring-4	К	,	J	1200	0.907	0.001	0.003
	Ring-5	G	I	к	1200	0.907	0.002	0.006
	Ring-6	G	I	- 	5280	3.993	0.049	0.113
	Ring-7	L <	-> !	H	280.3	0.212	0	0
	Ring-8	Н	M	1	280.3	0.212	0	0
	Ring-9	Е	Ν	4	4220	3.191	0.102	0.236
	Torus-1	A	E	E	6218	7.529	0.610	1.416
	Torus-2	В	F	7	6302	7.629	0.626	1.454
	Torus-3	С	Ģ	5	6430	7.845	0.662	1.538
	Torus-4	D	H	ł	closed	0	0	0

CALCULATION NO. DRE97-0003

REV. O PAGE All

Company: ComEd Project: by: Palas

3L502C45 12/21/96

LINEUP REPORT rev: 12/21/96

LINELIST: RING dated: 12/18/96

U

DEVIATION: 1.37 % after: 3 iterations

3 LPCI @5000 and 2 CS @4500 Injecting. Nearest torus blocked. Volumetric flow rates require constant fluid properties in all pipelines.

Fluid properties in the first specification were used.

NODE DEMAND NODE DEMAND
gpm gpm
N >>> 4500 P >>> 5000
R >>> 5000

>>> 5000 S >>> 5000 >>> 4500

> FLOWS IN: 0 gpm FLOWS OUT: 24000 gpm NET FLOWS OUT: 24000 gpm

NET FLOWS IN: 24000

PIPELINE	FLC gpr)W 1	PRESSURE SOURCE	SET psig
Torus-1	<<< 782	.5 <<<	А	0
Torus-2	<<< 789	1 <<<	в	0
Torus-3	<<< 828	4 <<<	С	0
			FLOWS IN: FLOWS OUT:	24000 gpm 0 gpm

CALCULATION NO. DRE97-0003 REV. 0 PAGE AIZ

gpm

NODE	ELEVATION ft	DEMAND gpm	PRESSURE psi g	H GRADE Ít
A	0		0 q	0
В	0	-	0 q	0
С	0		0 q	0
E	0		* -0.966	-2,242
F	0		* -0.982	-2.28
G	0		* -1.082	-2.513
Н	0		* -1.109	-2.574
I	0		* -1.012	-2.349
J	0		* -1.086	-2.52
K	0		* -1.106	-2 568
L	0		* ~1.118	-2 595
М	0		* -1.108	-2 573
Ν	0	> 4500	* -1.263	-2 931
P	0	> 5000	* -1 184	-2 748
Q	0		* -1 697	-3 939
R	0	> 5000	* -2 24	-5 199
S	0	> 5000	* -3 486	-8 001
T	0		* -1 364	-0.091
U	0	> 4500	* _2 /09	-3.100
	-		-2.400	-2.207

CALCULATION NO. DRE97-0003 REV. O PAGE A13

PIPE-FLO rev 4.11

3L502C45 12/21/96

)	PIPELINE	FROM		ТО	FLOW gpm	VEL ft/sec	dP psi g	Hl ft
	CS-3A	I		Ν	4500	6.274	0.251	0.582
	CS3B-16	Т		ŭ	4500	7.911	1.044	2.423
	CS3B-18	М		т	4500	6.274	0.255	0.593
	HPCI	K		0	closed	0	0	0
	LPCIJA	Q		R	5000	11.64	0.543	1.259
	LPCI3A/B	J		Q	10000	7.563	0.612	1.42
	LPCI3B	Q		S	5000	11.64	1.789	4.152
	LPCI3C/D	L		P	5000	3.781	0.066	0.154
	Ring-1	E		I	2801	2.119	0.046	0.107
	Ring-2	F		I	1699	1.285	0.004	0.008
	Ring-3	F		J	6192	4.683	0.103	0.240
	Ring-4	K		J	3808	2.88	0.014	0.032
	Ring-5	G		К	3808	2.88	0.024	0.056
	Ring-6	G		L	4476	3.385	0.035	0.082
	Ring-7	Н		L	523.9	0.396	0	0.002
	Ring-8	М	<->	н	523.9	0.396	0	0
	Ring-9	E		М	5024	3.8	0.143	0.331
	Torus-1	A		Ε	7825	9.474	0.966	2.242
	Torus-2	В		F	7891	9.553	0.982	2.28
	Torus-3	С		G	8284	10.03	1.082	2.513
	Torus-4	D		Н	closed	0	0	0

CALCULATION NO. DRE97-0003

REV. O PAGE A14

Company: ComEd Project: by: Palas

LINEUP REPORT rev: 12/21/96

LINELIST: RING dated: 12/18/96 DEVIATION: 0.0106 % after: 6 iterations

3L_50_25

12/21/96

2 LPCI @2500, 1 LPCI @5000 and 2 CS @4500 Injecting. Nearest torus blocked.

Volumetric flow rates require constant fluid properties in all pipelines. Fluid properties in the first specification were used.

NODE		DEMAND gpm	NODI	Ξ		DEMAND gpm	
N	>>>	4500	Ρ		>>>	5000	
S	>>>	5000	U		>>>	4500	
				FLOWS FLOWS	IN: OUT:	0 gpm 19000	gpm
			NET	FLOWS	OUT:	19000	gpm

PIPELINE		FLOW gpm		PRESSUR SOURCE	2	SET psig	J
Torus-1	<<<	6218	<<<	À		0	
Torus-2	<<<	6302	<<<	В		0	
Torus-3	<<<	6480	<<<	С		0	
				FLOWS II FLOWS OUT	1: 1900 C: 0 gp	0 g m	lbw
`			NET	FLOWS IN	1: 1900	0 g	JÞM

CALCULATION NO. DRE97-0003 REV. O PAGE AIS

A construction of the second s

NODE	ELEVATION ft	DEMAND gpm	PRESSURE psi g	H GRADE ft
A	0		0 q	0
В	0	-	p 0	0
С	0		0 q	0
E	0		* -0.610	-1.416
F	0		* -0.626	-1.454
G	0		* ~0.662	-1.538
н	0		* -0.712	-1.652
I	0		* -0.634	-1.472
J	0		* -0.666	-1.547
K	0		* -0.665	-1.544
L	0		* -0.711	-1.651
М	0		* -0.712	-1.652
Ν	0	> 4500	* -0.885	-2.054
P	0	> 5000	* -0.778	-1.805
Q	0		* -0.820	-1.903
R	0		* -0.820	-1.903
S	0	> 5000	* -2.609	-6.055
Ţ	0		* -0.957	-2.245
U	0	> 4500	* -2.011	-4.658

CALCULATION NO. DRE97-0003 REV. O PAGE AIL

3L_50_25 12/21/96

	PIPELINE	FROM	ТО	FLOW gpm	VEL ft/sec	dP psi g	Hl ft
,	CS-3A	I	N	4500	б.274	0.251	0.582
	CS3B-16	T	Ľ	4500	7.911	1.044	2.423
	CS3B-18	М	т	4500	6.274	0.255	0.593
	HPCI	K	0	closed	0	0	0
	LPCI3A	Q	R	0	0	0	0
	LPCI3A/B	J	Q	5000	3.781	0.154	0.357
	LPCI3B	Q	S	5000	11.64	1.789	4.152
	LPCI3C/D	L	P	5000	3.781	0.066	0.154
	Ring-1	E	I	1999	1.512	0.024	0.056
	Ring-2	F	I	2501	1.892	0.008	0.018
	Ring-3	F	J	3800	2.874	0.040	0.093
	Ring-4	K	J	1200	0.907	0.001	0.003
	Ring-5	G	K	1200	0.907	0.002	0.006
	Ring-6	G	L	5280	3.993	0.049	0.113
	Ring-7	L	<-> H	280.3	0.212	0	0
	Ring-8	Н	М	280.3	0.212	0	0
	Ring-9	E	М	4220	3.191	0.102	0.236
	Torus-1	A	E	6218	7.529	0.510	1.416
	Torus-2	В	F	6302	7.629	0.626	1.454
/	Torus-3	С	G	6480	7.845	0.662	1.538
	Torus-4	D	н	closed	0	0	0

CALCULATION NO. DRE97-0003 REV. 0 PAGE A 17

PIPE-FLO rev 4.11

Company: comed Project: by: palas

3L_25_50 01/03/97

LINEUP REPORT rev: 01/03/97

LINELIST: RING dated: 12/18/96 DEVIATION: 0.0106 % after: 6 iterations

2 LPCI @2500, 1 LPCI @5000 and 2 CS @4500 Injecting. Nearest torus blocked.

Volumetric flow rates require constant fluid properties in all pipelines. Fluid properties in the first specification were used.

NODE		DEMAND gpm	NOD	E		DEMAND gpm	
N	>>>	4500	Ρ		>>>	5000	
R	>>>	2500	S		>>>	2500	
U	>>>	4500					
				FLOWS FLOWS	IN: OUT:	0 gpm 19000	gpm

NET FLOWS OUT: 19000 gpm

PIPELINE		FLOW gpm		PRESSURE SOURCE	SET psig
Torus-1	<<<	6218	<<<	A	0
Torus-2	<<<	6302	<<<	В	0
Torus-3	<<<	6480	<<<	С	0
				FLOWS IN: FLOWS OUT:	19000 gpm 0 gpm
			NET	FLOWS IN:	19000 gpm

CALCULATION NO. DRE97-0003

REV. O PAGE A18

j PIP

				01/05/5/
NODE	ELEVATION ft	DEMAND gpm	PRESSURE psi g	H GRADE ft
A	0	_	p 0	0
В	0		p 0	0
С	0		0 q	0
E	0		* -0.610	-1.416
F	0		* -0.626	-1.454
G	0		* -0.662	-1.538
Н	0		* -0.712	-1.652
I	0		* -0.634	-1.472
J	0		* -0.666	-1.547
K	0		* -0.665	-1.544
L	0		* -0.711	-1.651
М	0		* -0.712	-1.652
N	0	> 4500	* -0.885	-2.054
P	0	> 5000	* -0.778	-1.805
Q	0		* -0.820	-1.903
R	0	> 2500	* -0.956	-2.219
S	0	> 2500	* -1.269	-2.945
Т	0		* -0.967	-2.245
U	0	> 4500	* -2.011	-4.668

CALCULATION NO. DRE97-0003

REV. O PAGE A19

22.29 22.29 24.29

3L_25_50 01/03/97

PIPELINE	FROM	TO	FLOW gpm	VEL ft/sec	dP psi g	Hl ft
CS-3A	I	N	4500	6.274	0.251	0.582
CS3B-16	т	-TI	4500	7.911	1.044	2.423
CS3B-18	М	т	4500	6.274	0.255	0.593
HPCI	К	0	closed	0	0	0
LPCI3A	Q	R .	2500	5.822	0.136	0.315
LPCI3A/B	J	Q	5000	3.781	0.154	0.357
LPCI3B	Q	S	2500	5.822	0.449	1.041
LPCI3C/D	L	P ·	5000	3.781	0.066	0.154
Ring-1	E	I	1999	1.512	0.024	0.056
Ring-2	F	I	2501	1.892	0.008	0.018
Ring-3	F	J	3800	2.874	0.040	0.093
Ring-4	К	J	1200	0.907	0.001	0.003
Ring-5	G	K	1200	0.907	0.002	0.006
Ring-6	G	L	5280	3.993	0.049	0.113
Ring-7	L <	:-> H	280.3	0.212	0	0
Ring-8	Н	м	280.3	0.212	0	0
Ring-9	Е	М	4220	3.191	0.102	0.236
Torus-1	A	E	6218	7.529	0.610	1.416
Torus-2	В	F .	6302	7.629	0.626	1.454
Torus-3	С	G	6480	7.845	0.662	1.538
Torus-4	D	н	closed	0	0	0

CALCULATION NO. DRE97-0003 REV. 0 PAGE A 20

PIPE-FLO rev 4.11

Company: ComEd Project: by: Palas

LINEUP REPORT rev: 12/21/96

LINELIST: ring dated: 12/18/96

DEVIATION: 1.47 % after: 4 iterations

21502c45

12/21/95

2 LPCI @5000 and 2 CS @4500 Injecting. Nearest torus leg blocked. Volumetric flow rates require constant fluid properties in all pipelines. Fluid properties in the first pipe specification were used.

NODE		DEMAND gpm	NODE		DEMAND gpm
Ν	>>>	4500	R	>>>	5000
S	>>>	5000	U	>>>	4500

NET FLOWS OUT: 19000 gpm

PRESSURE Node	CONNE	CTIONS Pipeline	FLOW gpm		PRESSURE psi g
A	>>>	Torus-1	6169	>>>	0
В	>>>	Torus-2	6419	>>>	0
С	>>>	Torus-3	6412	>>>	0

NET FLOWS IN: 19000 gpm

CALCULATION NO. DRE97-0003 REV. O PAGE AZ)

PIPE-FLO rev 4.03

NODE	ELEVATION ft	DEMAND gpm	PRESSURE psi g	H GRADE ft
А	0		0 q	0
В	0	~	- 0 q	0
С	0		- 0 q	0
E	0		- * -0.600	-1.394
F	0		* -0.650	-1.509
G	0		* -0.649	-1.506
Н	0		* -0.657	-1.525
I	0		* -0.653	-1.515
J	0		* -0.716	-1.662
K	0		* -0.691	-1.604
L	0		* -0.652	-1.513
М	0		* -0.659	-1.53
Ν	0	> 4500	* -0.904	-2.097
Q	0		* -1.327	-3.081
R	0	> 5000	* -1.87	-4.34
S	0	> 5000	* -3.116	-7.233
Т	0		* -0.915	-2.123
U	0	> 4500	* -1.958	-4.546
			•	

CALCULATION NO. DRE97-0003

REV. 0 PAGE AZZ

21502c45 12/21/96

PIPELINE	FROM	ТО	FLOW gpm	VEL ft/sec	dP psi g	Hl ft
-3A	I	N	4500	6.274	0.251	0.582
CS3B-16	т	U	4500	7.911	1.044	2.423
CS3B-18	М	T	4500	6.274	0.255	0.593
HPCI			closed	0	0	0
LPCI3A	Q	R	5000	11.64	0.543	1.259
LPCI3A/B	J	Q	10000	7.563	0.512	1.42
LPCI3B	Q	S	5000	11.64	1.789	4.152
LPCI3C/D	D	L	closed	0	0	0
Ring-1	E	I	2991	2.262	0.052	0.121
Ring-2	F	I	1509	1.141	0.003	0.007
Ring-3	F	J	4910	3.714	0.066	0.153
Ring-4	K	J	5090	3.849	0.025	0.057
Ring-5	G	К	5090	3.849	.0.042	0.098
Ring-6	G	L	1322	1.000	0.003	0.008
Ring-7	L	<-> H	1322	1.000	0.005	0.012
Ring-8	н	М	1322	1.000	0.002	0.005
Ring-9	E	М	3178	2.403	0.059	0.136
Torus-1	A	E	6169	7.469	0.600	1.394
Torus-2	В	F	6419	7.772	0.650	1.509
Torus-3	С	G	6412	7.763	0.649	1.506
us-4	D	н	closed	0	0	0

CALCULATION NO. DRE97-0003 REV. 0 PAGE A23

A THE REFERENCE OF

Company: ComEd Project: by: Palas

2L372C45 12/21/96

LINEUP REPORT rev: 12/21/96

LINELIST: RING dated: 12/18/96

DEVIATION: 0.29 % after: 4 iterations

2 LPCI @3750 and 2 CS @4500 Injecting. Nearest torus leg blocked. Volumetric flow rates require constant fluid properties in all pipelines. Fluid properties in the first specification were used.

NODE		DEMAND gpm	NODE	Ξ		DEMAND gpm	
N	>>>	4500	R		>>>	3750	
S	>>>	3750	U		>>>	4500	
				FLOWS FLOWS	IN: OUT:	0 gpm 16500	gpm
			NET	FLOWS	OUT:	16500	gpm

PIPELINE		FLOW gpm		PRESSURE SOURCE	SET psig
Torus-1	<<<	5376	<<<	A ·	0
Torus-2	<<<	5571	<<<	В	0
Torus-3	<<<	5553	<<<	С	0
				FLOWS IN: FLOWS OUT:	16500 gpm 0 gpm

NET FLOWS IN: 16500

CALCULATION NO. DRE97-0003 REV. O PAGE A24

gpm

NODE	ELEVATION ft	DEMAND gpm	PRESSURE psi g	H GRADE ft
A	0		p 0	0
В	0	-	0 q	0
С	0		0 q	0
Ε	0		* -0.456	-1.059
F	0		* -0.490	-1.137
G	0		* -0.487	-1.129
н	0		* -0.500	-1.16
I	0		* -0.494	-1.148
J	0		* -0.526	-1.221
K	0		* -0.511	-1.187
L	0		* -0.492	-1.141
М	0		* -0.503	-1.168
Ν	0	> 4500	* -0.745	-1.73
Q	0		* -0.370	-2.021
R	0	> 3750	* -1.176	-2.729
S	0	> 3750	* -1.878	-4.359
Т	0		* -0.759	-1.761
U	0	> 4500	* -1.802	-4.184

CALCULATION NO. DRE97-0003

REV. 0 PAGE A25

,

2L372C45 12/21/96

PIPELINE	FROM	ТО	FLOW gpm	VEL ft/sec	dP psi g	Hl ft
CS-3A	I	N	4500	6.274	0.251	0.582
CS3B-16	Т	U	4500	7.911	1.044	2.423
CS3B-18	М	Т	4500	6.274	0.255	0.593
HPCI	K	0	closed	0	0	0
LPCIJA	Q	R	3750	8.732	0.305	0.709
LPCI3A/B	J	Q	7500	5.672	0.345	0.800
LPCI3B	Q	S	3750	8.732	1.007	2.338
LPCI3C/D	L	P	closed	0	0	0
Ring-1	E	I	2545	1.924	0.038	0.089
Ring-2	ㅋ	I	1955	1.479	0.005	0.011
Ring-3	F	J	3615	2.734	0.036	0.084
Ring-4	K	J	3885	2.938	0.014	0.033
Ring-5	G	K	3885	2.938	0.025	0.058
Ring-6	G	L	1668	1.262	0.005	0.012
Ring-7	L	<-> H	1668	1.262	0.008	0.019
Ring-8	н	М	1668	1.262	0.003	0.008
Ring-9	FI	М	2832	2.142	0.047	0.109
Torus-1	A	Ξ	5376	6.509	0.456	1.059
Torus-2	B	F	5571	6.744	0.490	1.137
Torus-3	С	G	5553	6.723	0.437	1.129
Torus-4	D	Н	closed	0	0	0

CALCULATION NO. DRE97-0003

REV. 0 PAGE A26

CD PIPE-FLO rev 4.11
Company: ComEd 1L502C45 Project: 12/21/96 by: Palas LINEUP REPORT rev: 12/21/96 LINELIST: RING DEVIATION: 0.0179 % dated: 12/18/96 after: 5 iterations 1 LPCI @5000 and 2 CS @4500 Injecting. Nearest torus leg blocked. Volumetric flow rates require constant fluid properties in all pipelines. Fluid properties in the first specification were used. NODE DEMAND NODE DEMAND gpm gpm Ν >>> 4500 S 5000 >>> U 4500 >>> FLOWS IN: 0 gpm FLOWS OUT: 14000 gpm NET FLOWS OUT: 14000 gpm PTPFLINE

PIPELINE		FLOW gpm		PRESSURE SOURCE	SET psig
Torus-1	<<<	4592	<<<	Α.	0
Torus-2	<<<	4719	<<<	В	0
Torus-3	<<<	4590	<<<	С	0
				FLOWS IN: FLOWS OUT:	14001 gpm 0 gpm

NET FLOWS IN: 14001

CALCULATION NO. DRE97-0003 REV. 0 PAGE A27

gpm

LINEUP NODES

1L502C45 12/21/96

NODE	ELEVATION Ít	DEMAND gpm	PRESSURE psi g	H GRADE Ít
A	0		0 q	0
В	0	-	0 q	0
С	0		p 0	0
E	0		* -0.333	-0.772
F	0		* -0.351	-0.816
G	0	•	* -0.347	-0.806
Н	0		* -0.365	-0.848
I	0		* -0.359	-0.833
J	0		* -0.366	-0.850
K	0		* -0.359	-0.834
L	0		* ~0.354	-0.822
М	0		* -0.370	-0.360
Ν	0	> 4500	* -0.610	-1,415
Q	0		* -0.520	-1 207
S	0	> 5000	* -2.309	-5 359
Т	0		* -0.626	-1 452
U	0	> 4500	* -1.569	-3.875

CALCULATION NO. DRE97-0003

REV. 0 PAGE A28

LINEUP PIPELINES

1L502C45 12/21/95

PIPELINE	FROM	ТО	FLOW gpm	VEL Ít/sec	dP psi g	Hl ft
CS-3A	I	N	4500	6.274	0.251	0.582
CS3B-16	Т	U	4500	7.911	1.044	2.423
CS3B-18	М	т	4500	б.274	0.255	0.593
HPCI	K	0	closed	0	0	0
LPCI3A	Q	R	closed	0	0	0
LPCI3A/B	J	Q	5000	3.781	0.154	0.357
LPCI3B	Q	S	5000	11.64	1.789	4.152
LPCI3C/D	L	P	closed	0	0	0
Ring-1	Е	I	2074	1.569	0.026	0.060
Ring-2	Ŧ	I	2426	1.835	0.007	0.017
Ring-3	F	J	2293	1.734	0.015	0.035
Ring-4	K	J	2707	2.047	0.007	0.016
Ring-5	G	К	2707	2.047	0.012	0.028
Ring-6	G	L	1983	1.499	0.007	0.017
Ring-7	L	<-> H	1983	1.499	0.011	0.025
Ring-8	Н	М	1983	1.499	0.005	0.011
Ring-9	Έ	М	2517	1.904	0.038	0.087
Torus-1	A	E	4592	5.559	0.333	0.772
Torus-2	В	F	4719	5.713	0.351	0.816
Torus-3	С	G	4690	5.678	0.347	0.805
Torus-4	D	н	closed	0	0	0

CALCULATION NO. DRE97-0003

REV. O PAGE A 29

COMPARISON OF PROPOSED VS. 1976 NPSH CALCULATIONS

The primary inputs and assumptions utilized in the 1976 NPSH calculations and the proposed NPSH calculations are summarized in the table below:

Inputs/Assumptions	1976 Calculation	1997 Calculation
Initial torus temperature	95F	75F
Peak torus temperature	130F	132F
LPCI 4-pump runout flow	21,860 gpm	20,600 gpm
Core Spray pump runout flow	5400 gpm	5800 gpm
LPCI pump suction loss	7.5 ft. (clean pipe)	12.0 ft. (Includes
		aging)
Strainer loss	1 ft.	6.7 ft. (at runout flow
		rate)
Strainer plugging	nearest strainer plugged	nearest strainer plugged
Static Head above pumps	15.0 ft.	13.3 ft. (Includes
	(no drawdown)	drawdown)
Reactor pressure	56 psid	0 psid
Containment Over pressure	0 psig	2 psig
Worst LPCI NPSH margin	-3 ft.	-3.3 ft.

In comparing the inputs and assumptions listed above, it can be seen that the proposed calculations are more conservative than the 1976 calculations. The NPSH margin is retained through the administrative control of the initial torus temperature and the use of 2 psig containment pressure.

The 1976 calculations manually developed ECCS ring header losses for a given flow case. Since the ring header flow distribution and losses with all ECCS pumps running is complex, a hydraulic piping model of the ring header was developed (DRE96-0241). A benchmark case was run to compare the model to the 1976 calculation, and the results provided below:

Flow Case: 4 LPCI pumps @5350 gpm per pump 2 Core Spray pumps @5400 gpm per pump

1976 Ring Header Loss:2.5 ft.1997 Ring Header Loss:4.5 ft.

The piping model used in the new NPSH calculations is therefore shown to provide conservative ECCS ring header losses with respect to the 1976 NPSH calculations.

<u>Attachment 4</u>

The Use of Containment Over Pressure in NPSH Calculations for Dresden / Quad Cities Stations

and

An Evaluation of Dresden 2/3 Containment Performance Under Reduced Initial Suppression Pool and Service Water Temperature Assumptions.

The Use of Containment Overpressure in NPSH Calculations for Dresden/Quad Cities Stations

Introduction

Recent engineering efforts involved in the support of containment strainer replacement modifications, as well as inquiries received during the Dresden ISI have resulted in new information as well as new concerns regarding NPSH calculations for ECCS pumps during LOCA events. Specifically, the following items have become concerns:

1) Review of Mark I strainer modification documents for QC and Dresden have revealed that the differential pressure that would be expected at design flow rates is approximately 5.8 feet, vs the 1 foot value shown on the original containment drawings and used in support of ECCS pump NPSH predictions.

2) ISI questions raised concern regarding the NPSH performance of ECCS pumps during the initial phase of a LOCA, since the pumps would be expected to be operating at or near runout conditions following vessel depressurization, and would not be throttled by operator actions until 10 minutes into the event.

There are a number of issues specifically regarding Dresden LPCI/CCSW pump and heat exchanger performance that require reconstitution of the containment analysis to resolve. This effort has been in progress for several months, with a significant analytical basis nearing completion. Licensing amendments are in preparation to document the new analysis and benchmarks to allow replacement of the existing analysis.

The purpose of this submittal is to document the justification for the use of containment overpressure in current NPSH evaluations. 10CFR50.59 evaluations of the above concerns have determined that an unresolved safety question (USQ) exists specifically regarding the use of overpressure in these evaluations at Dresden. For Dresden, the question is whether any overpressure can be applied. Quad Cities is still performing a 10CFR50.59 evaluation and has not concluded whether or not an USQ exists at this time.

Description of Post-LOCA Plant Response

Both Dresden 2/3 and Quad Cities 1/2 are BWR 3/4 designs with Mark I containment systems. The limiting design basis accident with respect to containment thermal response is the DBA LOCA, which is a double ended break of a recirculation system suction pipe. This event yields a rapid vessel depressurization, fuel uncovery and places maximum demands on the ECCS systems. Following the blowdown, the vessel is reflooded to approximately two thirds core height due to injection by the Low pressure coolant injection (LPCI/RHR) and Core Spray (CS) pumps. At the 10 minute time frame, the operators are trained to initiate suppression pool cooling. For the limiting case of LOOP plus failure of a D/G, this would lead to one CS pump maintaining vessel level, one LPCI/RHR pump in the pool cooling mode, and 2 containment cooling service water pumps (CCSW) supplying the LPCI HX. For Quad Cities, only one service water pump would be started in this condition due to the higher horsepower requirements of their RHRSW pumps and limitations imposed by diesel loading capacity. The ECCS system performance, containment parameters, core power, and containment heat exchanger performance are essentially identical between the plants. Key parameters are shown in Table 1.

Containment Pressure Response

This event yields a rapid containment pressure rise initially due to the transport of non-condensibles from the drywell to the wetwell, and achieves a peak drywell pressure early in the event due to the differential pressure developed across the vent header system. The initial suppression pool heatup is approximately 50 F due to the effects of the blowdown and pool temperatures of approximately 150F are expected at 10 minutes into the event. The suppression pool temperature would continue to rise until the heat load of the containment cooling heat exchanger matched the heat input to the containment due to decay heat, latent heat from the vessel, feedwater addition, and pump heat. This occurs between 3 to 6 hours, depending on the availability of pumps for containment cooling. Maximum temperatures reached range from 163 F for a "complete" pool cooling complement (2 LPCI/2 CCSW) to 179 F for a "minimum" case of 1 LPCI/1 CCSW. Dresden's current design basis peak suppression pool temperature is 170 F for a 1 LPCI/2 CCSW pump configuration.

The pressure response of the drywell and wetwell are coupled over the long term, and are dependent on a number of factors. The key factors determining this response are:

1. Mixing fraction of fluid spilling from the break with drywell atmosphere. This affects the short term pressure response since the break fluid rapidly becomes subcooled following reflood, and would act to reduce pressure drywell pressure by condensing steam.

2. Manual Initiation of Containment Spray. This has a dominant effect on the pressure response of the coupled system. Initiation of containment spray in the 10 minute time frame would lead to rapid quench of steam in the drywell and return of non-condensibles to the drywell via the vacuum breakers. This reduces the system pressure and effectively sets the temperature of both the drywell and the wetwell airspace. In the long term, the spray temperature in the wetwell airspace effectively determines the containment pressure response.

3. Heat transfer to containment liner. This affects the short term pressure by condensing more steam in the drywell. It tends to have minor effect on the long term response, being overwhelmed by the action of containment spray. (Containment heat sinks have historically been ignored in BWR containment calculations).

4. Initial conditions in containment. The initial conditions of temperature and particularly relative humidity set the total non-condensible inventory. High initial temperatures and humidity lead to the lowest non-condensible inventory, and have a dramatic effect on the long term pressure response of the system.

5. Containment Cooling flow rates. The flow rates of LPCI/RHR and CCSW determine the effectiveness of the heat exchanger, which determines the peak pool temeperature achieved. In addition, the flow rates determine the spray temperature, which has a direct impact on the containment pressure.

Description of New Calculations

As indicated above, a series of new containment calculations has been performed for Dresden to address a number of design basis issues. These calculations were performed by General Electric, using the SHEX computer code. A number of cases were performed to identify the limiting scenario, relative to ECCS NPSH calculations, selected based on reaching the maximum pool temperature with lowest containment pressure. The new calculations are based on ANS 5.1-1979 decay heat standards and include all appropriate heat sources including FW mass energy and ECCS pump heat. In addition, the new analyses employed assumptions consistent with NRC Information Notice 96-55, specifically addressing the addition of heat sinks. The new containment calculations employ a methodology that is intended to provide the lowest pressure in the long term. These include:

1. Minimizing the non-condensibles present at initiation of event.

2. Initiating containment spray at 10 minutes and continuing for duration of event.

3. Including the effects of heat conduction to containment surfaces, based on Branch Technical position CSB 6-1.

4. Use of bounding values for drywell mixing ratio, to predict the lowest pressures both in the short term as well as the long term.

5. Calculation of variety of ECCS flow rates and pump combinations to ensure that the potential range of ECCS flows has been bounded.

Results of New Calculations

When combined with previous analyses performed for both Dresden and Quad Cities, a clear picture of the most limiting NPSH scenarios results. Some of the key results identified are:

1. The scenarios that employ a single LPCI in conjunction with two CCSW pumps yield the highest suppression pool temperatures with the lowest containment pressures. Previous studies were based on 2/2 or 1/1 combinations, and achieved higher pressures, even with lower suppression pool temperatures.

2. The coupled analyses demonstrate that at suppression pool temperatures of 171 F or greater, at least 2.9 psig overpressure is available.

3. The containment pressure during the short term, (eg. first 10 minutes) has been demonstrated to be at least 5.5 psig, even with worst case assumptions applied.

4. While different decay heat standards and heat exchanger performance predictions are applied in the new calculations, the peak containment temperatures being predicted are consistent with and fall near the original design basis temperature predictions. The pressure response is not a function of decay heat models, but is primarily only effected by the pool temperature and heat exchanger performance.

A comparison calculation of containment long term pressure based on ideal gas law models was also generated to confirm that the trend and overall results predicted by the new containment analyses is appropriate. This calculation supports the conclusions that the 1/2 cases will provide bounding pressure response as well as demonstrating that the GE calculations are yielding conservatively low values of containment pressure, relative to the suppression pool temperature predicted. This calculation is attached as an appendix to this document. These analyses were required to be performed in order to minimize pressure in the suppression pool. The data required to support the existing design basis of Dresden and Quad Cities is not available and therefore, the new data must be utilized. The existing containment responses for Dresden and Quad Cities will remain until they are further amended. Dresden is preparing a submittal that will change its Design Basis Containment Response. This submittal should be prepared by January 24, 1996.

Conclusions

Based on the results of new calculations, it is clear that significant containment overpressure conditions would exist, both in the short term (<10 minutes) as well as the long term post-LOCA period. The new calculations have been performed to minimize the extent of overpressure that would exist in both periods,

and support the conclusion that overpressure would be available and can be employed to demonstrate adequate ECCS NPSH performance.

While the new containment calculations have not been reviewed and approved by NRC to date, they are more appropriate with respect to the prediction of minimum containment pressure both in the long and short term post-LOCA periods, than are the original design basis calculations. They result in peak pool temperatures near to but slightly above the original calculated values, and predict containment overpressures of several psi, even with the incorporation of currently recommended analysis assumptions to minimize overpressure. Therefore, the conceptual use of containment overpressures in the ranges indicated in the new analyses appears warranted in the performance of ECCS NPSH calculations.

Table 1. Comparison of Key Containment Parameters for Dresden and Quad Cities

-

Equipment/Parameter	Dresden 2/3	Quad Cities 1/2
Core Licensed Power	2527 MWT	2511 MWT
LPCI/RHR pump flow rate	4500 gpm rated	4500 gpm rated
CS pump flow rate	4500 gpm rated	4500 gpm rated
CCSW/RHRSW pump flow	3500 gpm/pump	3500 gpm/pump
LPCI/RHR HX original design	105 MBTU at 10700 gpm LPCI/	105 MBTU at 10700 gpm RHR/
condition	7000 gpm CCSW 165F pool	7000 gpm RHRSW 165F pool
	95 F service water side	95 F service water side
Drywell Free Volume	158236 cuft	158236 cuft
Wetwell Free Volume	120097 cuft	119963 cuft
Wetwell Water Volume	112000 cuft	111500 cuft

Memorandum

ComEd

Date:

January 9, 1997 NFS:BSA:97-002

To: Mr. R. Freeman

Subject: An Evaluation of Dresden 2/3 Containment Performance Under Reduced Initial Suppression Pool and Service Water Temperature Assumptions

Enclosed please find a calculation summary entitled "An Evaluation of Dresden 2/3 Containment Performance Under Reduced CCSW Flow, HX Performance and Lowered Initial Suppression Pool Temperature". This calculation was performed at the request of your staff to provide technical support for proposed technical specification changes needed to accommodate ECCS pump NPSH calculations. This calculation incorporates the current penalties assigned to the LPCI HX performance due to reduced CCSW flow rates and new HX performance calculations, and extends these evaluations to consider the impacts of reductions in initial pool temperature and additional reductions in service water temperatures necessary to establish a maximum post-LOCA suppression pool temperature of 160F.

This work has been performed and reviewed in accordance with NFS procedures for controlled work. Please note that the limits established in this evaluation by comparison to Quad Cities UFSAR containment calculations are intended to be a temporary measure, until the Dresden plant specific containment analysis and supporting amendments are approved. The low values of suppression pool initial temperature and service water temperature being adopted will not support continued plant operation once seasonal heatup of the cooling water is experienced. It is our understanding that the new analyses are completed and once approved, will support the removal of these restrictions on initial pool temperature and service water temperature.

If you have any questions regarding this matter, please contact K. B. Ramsden at extension 3017 in Downers Grove.

Robertw. The.

Robert W. Tsai BWR Safety Analysis Supervisor Nuclear Fuel Services

RWT/KBR/pc

January 9, 1997 NFS:BSA:97-002 Mr. R. Freeman Page 2 of 2

Enclosure

cc: BSA-CF NFS-CF NFS-CF Document ID: P. Kong E. Connell L. Weir R. Skoglund H. Palas J. Drowley

An Evaluation of Dresden 2/3 Containment Performance Under Reduced CCSW Flow, HX Performance and Lowered Initial Suppression Pool Temperature

Introduction

The purpose of this evaluation is to provide an appropriate reduction in the service water temperature to compensate for a postulated reduction in available ECCS pump NPSH margin. The design basis heat transfer rate of the LPCI HX is 105 MBTU/hr at a suppression pool temperature (shell side) of 165F and service water temperature (tube side) of 95F, with LPCI flow at 10700 gpm and service water flow at 7000 gpm, per the heat exchanger data sheet. In a prior evaluation (Reference 1), HX performance reductions resulting from recalculation of HX performance as well as a reduction in CCSW flow to 6750 were performed. A subsequent evaluation (Reference 2) extended the first evaluation to include an allowance to cover CCSW flow rates as low as 5600 gpm. This reduction in CCSW flow accounts for anticipated operator actions to reduce CCSW flow as necessary to maintain a 20 psi differential pressure between the LPCI system operating at a nominal 5000 gpm LPCI flow rate and the CCSW system. The pressure differential is necessary to ensure that any potential leakage in a LCPI HX tube would be from the CCSW side (tube) to the LPCI side (shell). This evaluation extends the first two evaluations to include initial maximum suppression pool temperature reductions and additional service water maximum allowable temperature reductions required to ensure that the short term post-LOCA suppression pool temperature as well as the long term peak post-LOCA suppression pool temperature would remain low enough to allow demonstration of adequate NPSH with limited (2 psi short term, 0 psi long term) containment overpressure assumptions.

Short Term Post-LOCA Suppression Pool Temperature

The short term post-LOCA period is defined as the first six hundred seconds following the initiation of the event. This period includes the initial blowdown and peak overpressure period prior to the manual initiation of containment cooling and/or spray. This period is important with respect to the ECCS pump performance since performance above "rated" conditions is assumed in the Appendix K LOCA analysis. These high flow rates, combined with postulated failures of LPCI injection to the faulted loop can lead to significant ECCS pump suction losses as well as requiring the maximum NPSH margins.

While no Dresden specific suppression pool temperature vs time curves are available, and the original calculations have proven unrecoverable, the temperature profiles for Quad Cities are available and are considered representative for use at Dresden, based on plant similarities with respect to containment size, core power, and reactor operating parameters. The Quad Cities temperature profiles begin with an initial pool temperature of 90 F and rapidly increase to approximately 147 F at the 600 second end point of the short term period. A 15 degree reduction has been determined by M&S engineers (Reference 3) to result in acceptable NPSH performance throughout this interval with only an overpressure credit of 2 psi. This 15 degree reduction results in a new maximum allowable suppression pool temperature of 75 F during operation. Note that the current allowable suppression pool temperature is 95 F, and that this value will be restored following acceptance of new containment analysis and associated licensing amendments. This reduction in initial temperature will result in a corresponding linear reduction in the pool temperature throughout this interval, since pool cooling is not active. The end of interval temperature would be anticipated to be 132 F under these assumptions.

Long Term Containment Suppression Pool Temperature Analysis Requirements

In the long term containment response, the M&S engineers have determined that a reduction from the design maximum 170 F pool temperature to 160 F for the limiting 1 LPCI / 2 CCSW pumps operating is required in order to assure adequate ECCS NPSH margins exist under all postulated flow conditions. (Reference 4) The prior evaluations utilized linear reductions of service water temperature to ensure that the 170 F limiting value was not compromised, and resulted in a 84F maximum allowable service water temperature. The linear temperature reductions were then verified using a mathematical model of the post-LOCA suppression pool temperature response to ensure that the linear assumptions utilized were valid. In this evaluation, since the initial condition of the pool is being reduced substantially, in conjunction with further reductions in maximum allowable service water temperature, the simplified linear approach is not appropriate. Therefore the mathematical model must be employed to adequately account for boundary condition changes.

The mathematical model has been prepared and adjusted to ensure that a conservative representation of post-LOCA pool temperature response will be rendered. A model of the suppression pool, based on first principles and coupled to vendor analyses for the initial pool temperature subsequent to the blowdown and reflood period (approximately 600 seconds) was previously developed and documented in RSA-94-03. A section of that report covering the development of the numerical models is provided in the following section.

Analytical Basis

The post-LOCA behavior of the suppression pool can be characterized as consisting of two distinct periods, the initial vessel blowdown and core reflood phase, and a long term heatup of the suppression pool during extended recirculation of the suppression pool water through the vessel. The first period adds a large amount of energy and

Evaluation of Reduced Initial Temperature 3

mass to the suppression pool due to the inventory of the vessel as well as the feedwater addition. The recirculation phase has three major contributors to the energy addition to the pool, namely the-decay heat, the sensible heat stored in the vessel thick metal volumes, and the ECCS pump heat. The LPCI/CCSW containment cooling subsystem acts as a sink, with heat removal dependent on the flows assumed and the temperature difference between service water (CCSW) and the suppression pool. This situation can be readily characterized by the following equation:

$$mc_{\rho} \frac{dT}{dt} = Q_{\text{decay}}(t) + Q_{\text{pump}} + Q_{\text{sensheat}} - K_{\text{hx}} * [T(t) - T_{\text{sw}}]$$

where:

m = the pool mass (initial plus mass added during blowdown phase)

 c_{D} = the specific heat of water (1.0 used)

Q_{decay}= decay energy (based on May-Witt or ANS 5.1 1979 curve used by GE)

Q_{pump}= pump motor horsepower converted to thermal energy (700 HP for LPCI, 800 HP for Core spray)

Q_{sensheat}= vessel metal mass sensible heat addition rate (approximately 70 MBTU added as an exponentially decreasing rate)

K_{HX}= LPCI heat exchanger performance based on flow rates of LPCI and CCSW (BTU/sec-F).

 T_{SW} = CCSW temperature (typically constant at 95 F)

T(t) = Suppression pool temperature as a function of time

This equation readily lends itself to solution with fourth order Runge-Kutta numerical methods. A solution of this type was developed utilizing the MATHCAD software package.

Suppression Pool Temperature Model Input and Testing

The mathematical model described above was exercised to provide a conservative estimate of the effects of reduced initial suppression pool temperature as well as service water temperature reduction. This model, while in no way intended to replace the license basis containment model, does provide a reasonable method to verify that the temperature reductions will be conservative relative to the original design basis calculations. The model was previously developed and benchmarked against new GE containment analyses performed to support a LPCI/CCSW licensing amendment. The following changes were made to make the model reflect original licensing basis analysis:

1. The decay heat model was changed from ANS 5.1-1979 to the May-Witt decay heat curve. Based on review of the QC UFSAR, the nominal reactor power was applied as a multiplier to the May-Witt normalized curve.

2. The heat addition term due to pump heat was set to zero.

3. A temperature input of 147F was used for the pool temperature at 600 seconds, based on Quad Cities UFSAR analyses. (This compares with 152F for the new analyses, which include the effects of FW heat addition, 95F initial pool temperature, pump heat, and 1979 standard decay heat.) This temperature was reduced by 15 degrees to compensate for the lower initial suppression pool temperature.

The model was then tested to verify that it conservatively and accurately represents the long term post-LOCA suppression pool behavior. Two cases from the Quad Cities UFSAR were selected to validate the model. The first case was a 2 RHR/2 RHRSW pump combination. The second case was a 1 RHR/ 2 RHRSW pump combination. For comparison, the process flow diagram and the heat exchanger data sheet, both list a peak temperature of 165F for the 2/2 case. The Mathcad model was exercised using a 95 F and also a 90 F service water temperature, since this parameter was not explicitly identified in the QC UFSAR. The heat exchanger K value for case B/C is directly derivable from the HX data sheet (105 MBTU/hr @ 165F suppression pool/95F service water temperatures. The case D K-value is estimated based on 5350 RHR/7000 RHRSW flows using an effectiveness based HX performance model pattern on the QC HX geometry. The applicable pages of the QC UFSAR are attached in the Appendix. The results of the validation cases are presented in the following table.

Case	LPCI flow	CCS W flow	Service Water Temp F	K-value (Btu/sec- F)	Time of Peak Pool Temp (sec)	Peak Pool Temp F
QC Case B/C	10700	7000	95 (?)	416.67	~11500	162
QC Case D	5350	7000	95 (?)	346.24	~16000	168
Mcad Model Case B/C	10700	7000	95	416.67	12628	164.87
Mcad Model Case B/C	10700	7000	90	416.67	11076	162.6
Mcad Model Case D	5350	7000	95	346.24	16896	171.25
Mcad Model Case D	5350	7000	90	346.24	15344	168.7

Comparison of Mathcad Model to QC UFSAR Results

As can be readily seen, the Mathcad model provides a fairly good, but slightly conservative replication of the Quad Cities original cases. The close agreement both in magnitude of the peak temperature as well as the timing of the peak strongly suggests that the original Quad Cities cases were based on both 90F initial pool temperature as well as service water temperature.

Calculation of Dresden 1/2 Limiting Case

Since the Mathcad model was demonstrated to provide conservative representation of the Quad Cities cases, the next step was to modify the model to represent the Dresden 1/2 design case and then perform the iterations necessary to incorporate the currently applied reductions in heat exchanger performance, service water temperature, and initial suppression pool temperature. The only change necessary to the model is the rated power, for which 2578 MWT is used in place of 2561 MWT. A heat exchanger Kvalue of 341.57 BTU/sec-F was used for the design case based on effectiveness models representing the Dresden LPCI HX. Two cases were run in this configuration, representing a 95F service water as well as a 90 F service water condition. For the current limited CCSW flow (5600gpm) and reduced HX performance values, a K value of 296.96 BTU/sec-F was employed, based on the same Dresden HX models. Three cases were run, case D-1 which demonstrates the effect of the reduction in HX performance and service water temperature prior to this evaluation; Case D-2, which shows the effect of reduction in initial pool temperature to 75 F; and Case D-3 which calculates the combined effect of reduction in service water temperature to 75F as well as limiting the initial pool temperature to 75 F. The results are provided in the following table.

Case	LPCI flow	CCSW flow	Service Water/ Initial pool Temp F	K-value (Btu/sec- F)	Time of Peak Pool Temp (sec)	Peak Pool Temp F
Base Case D	5000	7000	95 /90	341.57	17284	172
Base Case D sensitivity	5000	7000	90/90	341.57	15732	169.54
Mcad Model Case D-1	5000	5600	84/90	296.96	17588	172
Mcad Model Case D-2	5000	5600	84/75	296.96	22520	164.8
Mcad Model Case D-3	5000	5600	75/75	296.96	19232	160

Dresden 1/2 Design Case Mathcad Model Results

The base case results indicate peak temperatures that compare very favorably with the 170 F value currently believed to be representative of the Dresden 1/2 design basis case. The base case run at a 90F assumed service water temperature demonstrates the sensitivity of the peak temperature to service water temperature. The results of Case D-1 illustrate the limiting conditions extant prior to this evaluation, and demonstrate that the reductions in service water temperature effected preserve the peak temperature relative to the base case. The results of Case D-2 illustrate the effect of reducing the suppression pool initial water temperature to 75 F. Case D-3 demonstrates that reducing the service water temperature limit to 75 F in conjunction with a reduced initial torus temperature limit of 75 F limits the peak pool temperature for the 1/2 case to 160 F which is the temperature necessary to ensure adequate NPSH with increased strainer losses and no overpressure credit as identified previously. As noted, this case incorporates all prior penalties and assessments related to reduced CCSW flow and LPCI HX performance issues. All Mathcad calc sheets are included in the Appendix to this evaluation.

Conclusions

A mathematical model of post-LOCA suppression pool thermal behavior has been developed and validated against the Quad Cities UFSAR. Based on this validation and on the nearly identical physical construction of the Dresden and Quad Cities containments, this model was then employed to evaluate the effects of reduced suppression pool initial temperature and reduced service water maximum temperature for Dresden Units 2 and 3. The design basis case was demonstrated to result in

conservative temperature prediction. This case was then extended to reflect the currently applicable limitations on LPCI HX performance, CCSW flow rate, and service water temperature. Finally, the effect of proposed limits on initial pool temperature and service water temperature were assessed to demonstrate that they would effectively limit the maximum suppression pool temperature to 160 F.

It should be noted that while every effort has been made to ensure that a technically sound approach has been applied, this approach relies on extrapolation of Quad Cities analyses to Dresden. This is clearly intended as a short term strategy to support appropriate limits on Unit 3 to allow plant startup. The most technically defensible long term approach is to perform plant specific reanalysis of the Dresden containments. The new analysis will also be required to support continued plant operation subsequent to seasonal heatup of the cooling water supply.

References

1. NFS:BSA:96-111, "Evaluation of Reduced LPCI HX Performance", R. Tsai to R. Kundalkar, dated October 7, 1996.

2. NFS:BSA:96-140, "Evaluation of Reduced LPCI HX Performance due to Low CCSW Flow", R. Tsai to R. Kundalkar, dated November 4, 1996.

3. DRE97-0002, "Dresden LPCI/Core Spray NPSH Analysis Post-DBA LOCA:GE SIL 151 Case Short Term", H. Palas, dated 1/8/97.

4. DRE97-0003, "Dresden LPCI/Core Spray NPSH Analysis Post-DBA LOCA: Reduced Torus Temperature Long Term", H. Palas, dated 1/7/97.

QUAD CITIES – UFSAR

Table 6.2-3

CONTAINMENT RESPONSE SUMMARY FOR A RECIRC LINE BREAK ACCIDENT

<u>Case</u>	RHR <u>Loops</u>	RHR <u>Pumps</u>	RHR Service Water <u>Pumps</u>	Containment Spray <u>(gal/min)</u>	Core Spray <u>(gal/min)</u>	Peak Pool Temperature (F°)	Secondary Peak Pressure (psig)
(a)	2	4	4	none	4500	140	no peak
(b)	Í	2	2	none	4500	147	no peak
(c)	1	2	2		4500	162	
(d)	1	1	2 ·	10,000	4500	102	0.0
(e)	1	1	1	none	4500	100	no peak
			•	none		1//	11.2

È.

I

*****	***************************************	********
* User name:	NFSKR (74) Queue: NFS1/4SI4E1	*
*_File name:	Server: NFS_HP4SI2	* *
rectory:		*
scription:	: PrntFile text	*
*	January 8, 1997 5:22pm	*
*****	***************************************	********
*		× +
*	N N FFFFF SSS K K RRRR	+
*	NNF SSKKR.R.	*
* (NN N F S K K R R	*
*	N N N FFFF SSS KK RKRR	*
*	N NN F SKK RR	• *
*	N N F S S K K R R	*
*	N N F - SSS K K R R	*
*		*
*		*
*		*****
*****	***************************************	*
*		*
*		*
*		*
*		*
*		*
*		*
*		*
*	· LLLLL SSS I ::	*
*		*
*		*
	······································	*******
********	***************************************	

.

. .

Quad Cities SUPPRESSION POOL HEATUP CALCULATIONS 2/2 Case with original K and 95F Service Water Temperature

This calculation is based on the use of a Runge-Kutta solution method to numerically evaluate the first order differential equat describing the behavior of the suppression pool following the completion of the blowdown from the vessel. It uses boundary conditions taken from GENE-770-26-1092, GENE-637-042-1193, and the Quad Cities FSAR. These are the decay heat, poo temperature at 600 seconds, the K value for the heat exchanger, and a term to account for sensible heat of the vessel metal. purpose of this model is to provide a representation of the most likely initial licensing basis calculations, to allow the effects of reduced HX performance and lower service water temperatures to be assessed.

The following vectors represent the decay heat input to the problem. These are based on the GE supplied data and represen May-Witt curve values.

í	Ξ	1		ç
		•	••	

	t≓		₽Ĩ
	600	1	.02549
	1000]	.02229
	2000		.01841
	4000	1	.01512
	6000	1	.01353
	10000		.01201
	20000		.01008
	40000		.008125
	60000		.007394
1			

Q(x) defines a linear interpolation of the above vectors for use in the calculation

Q(x) ≡linterp(t, p, x)

PHT is the pump heat input, with CCSW and LPCI considered to be 700 HP and the Core Spray at 800 HP, converted to B note that pump heat is set to zero for this original basis calculation

PHT = (2.700 + 1.800).70696.0.0

HXK is the heat removal rate of the LPCI HX in BTU/Sec-F

НХК≡416.67

SENSHT is the sensible heat stored in the thick metal structures, added to the pool in exponential fashion as BTU/sec, note term is adjusted to provide a reasonable match to vendor base calculations, with the total sensible heat being approximatel MBTU, assuming a fraction remaining at 1000 seconds.

SENSHT = $\frac{10^8 \cdot .70}{7200}$

Enter the derivative of y as f(x,y): (Note that x=time(seconds and y=Temperature) Pool Volume is based on final-volumes pr GE in base calculations (vapor space of 108000 cubic feet, yielding a pool volume of 124194 ft3) Note that a 1.02 factor ha added to provide a 100% rated power consistent with original calculations

T sw = 95.0 service water temperature

 $f(x,y) = \frac{Q(x) \cdot \frac{2561}{1.02} \cdot \frac{1000}{3600} \cdot 3413 \cdot 1.0 + PHT + SENSHT \cdot e^{-\frac{x}{7200}} - (y - T_{sw}) \cdot HXK}{1000}$

(124194) 62.054

Equations

The five equations below implement the fourth-order Runge-Kutta method for solving y'=f(x,y).

$k1(f, x, y, h) \equiv f(x, y)$

 $k2(f, x, y, h) \equiv f(x + .5 \cdot h, y + .5 \cdot h \cdot k1(f, x, y, h))$

 $k3(f,x,y,h) \equiv f(x+.5\cdot h,y+.5\cdot h\cdot k2(f,x,y,h))$

 $k4(f,x,y,h) \equiv f(x+h,y+h\cdot k3(f,x,y,h))$

j≖1..n x₀≅startx h≡<u>endx – startx</u> x_j≡startx + j·h n j

^y0^{≡inity}

^yj^{≡y}j – 1 ^{+ rk f,x}j – 1'^yj – 1'^h

L≡floor(min(y) – .5) U≡ceil(max(y) + .5)

· · ·

.

.

.

k ≡0.. n

. .

.

. .

· · ·

.

Enter starting and ending values of x, the number of intervals for the integration, and the initial value of y.

max(y) = 164.878

•

.

. .

· ·

Pressure Calculation

HXK· y_k – 95 – Qpmp Twatm_k ≡y_k LPCI

This File estimates Psat based on temperature input. It is a curve fit interpolation between 120 and 200 degrees of data from t ASME tables.

	120	1.6927
	130	2.223
	140	2.8892
	150	3.7184
e ·-	160	4.7414
3	170	5.9926
	180	7.511
	190	9.34
	200	11.526
	210	14.123

Psat_k = interp_vs,Ts,Ps,Tatm_k

Psatw_k = interp_vs, Ts, Ps, Twatm_k

.

- . .

· · ·

DATA

Variable	×k
	600
	988
	1376
	1764
	2152
	2540
	2928
	3316
	3704
	4092
	4480
	4868
	5256
	5644
	6032
	6420
	6808
	7196
	7584
•	7972
	8360
	8748
	9136
	9524
	9912
	10300
	10688
	11076
	11464
	11852
	12240
	12628
	13016
	13404
	13/92
	14180
	14500
	14950
	15344
	10/32
	16509
	16806
	17284
	17670
	18060
	19449
	10440

Time	WW Pr	ess WM	/ air T	DW Temp
sec	psia	de	eg F	deg F
	D	Twoter	Tatm	v
^x k	Pwwk	K K		' <u>k</u>
600	22.214	115.103	185.414	147
988	21.71	115.951	180.657	149,193
1376	21.517	116.664	178.618	151.039
1764	21.322	117.286	176.529	152.646
2152	21.181	117.82	174.948	154.027
2540	21.131	118.299	174.285	155.267
2928	21.075	118.732	173.558	156.388
3316	21.011	119.12	172.766	157.392
3704	20.941	119.465	171.911	158.282
4092	20.879	119.767	171.144	159.065
4480	20.858	120.039	170.812	159.768
4868	20.832	120.286	170.448	160.406
5256	20.803	120.508	170.052	160.981
5644	20.77	120.707	169.626	161.495
6032	20.737	120.883	169.194	161.95
6420	20.727	121.04	169.021	162.359
6808	20.714	121.184	168.831	162.731
7196	20.7	121.314	168.626	163.067
7584	20.684	121.431	168.406	163.37
7972	20.667	121.535	168.172	163.639
8360	20.648	121.627	167.923	163.877
8748	20.627	121.708	167.661	164.084
9136	20.605	121.776	167.384	164.262
9524	20.581	121.834	167.095	164.411
9912	20.556	121.881	166.793	164.533
10300	20.54	121.919	166.586	164.631
10688	20.525	121.95	166.405	164.711
11076	20.509	121.974	166.216	164.775
11464	20.493	121.993	166.022	164.823
11852	20.476	122.006	165.822	164.856
12240	20.458	122.013	165,617	164.874
12628	20.44	122.014	165.405	164.878
13016	- 20.421	122.011	165.189	164.869
13404	20.402	122.002	164.967	164.846
13792	20.382	121.989	164.74	164.812
14180	20.362	121.971	164.509	164.765
14568	20.341	121.948	164.272	164.707
14956	20.32	121.921	164.031	164.637
15344	20.298	121.89	163.786	164.557
15732	20.276	121.855	163.536	164.467
16120	20.254	121.817	163.281	164.366
16508	20.231	121.774	163.023	. 164.256
16896	20.207	121.728	162.761	164.137
17284	20.184	121.678	162.494	164.009
17672	20.16	121.626	162.224	163.872
18060	20.135	121.57	161.95	163.727
18448	20.111	121.51	161.673	163.574
18836	20.086	121.448	161.392	163.414
19224	20.061	121.383	161.107	163.246
19612	20.035	121.316	160.819	163.07
1		J		است ا

WW Pool T deg F

****	*****	******	*******
* User name: NES	SKR (74)	Queue: NFS1/4SI4E1	*
* File name:		Server: NFS HP4SI2	. *
rectory:	· · ·	. –	*
scription: Pr	ntFile text		*
Jar	nuary 8, 1997	5:23pm	. *
*****	****	*****	**********
*			*
*	N N FFFFF SSS	K K RRRR	*
*	N N F S S	KKRR	*
*	NN NF S	KK R R	*
*	N'N N FFFF SSS	KK RRRR	· ·
*	N NN F S	KK RR	۲ ×
*	N N F S S	KKRR	*
*	N N F SSS	K KR R.	*
* `			*
*			*
*	<u></u>	*****	***
******	****		*
*	TT 222 I	ттт	*
т Х		 F	. *
т ×			*
т х		і Г .,	*
*		г Г	*
τ.		Г	*
^ . ¥		· ··	*
+			*
*			*
			*
**********	*****	******	****

-

-

Quad Cities SUPPRESSION POOL HEATUP CALCULATIONS 2/2 Case with original K and 90F Service Water Temperature

This calculation is based on the use of a Runge-Kutta solution method to numerically evaluate the first order differential equat describing the behavior of the suppression pool following the completion of the blowdown from the vessel. It uses boundary conditions taken from GENE-770-26-1092, GENE-637-042-1193, and the Quad Cities FSAR. These are the decay heat, poo temperature at 600 seconds, the K value for the heat exchanger, and a term to account for sensible heat of the vessel metal. purpose of this model is to provide a representation of the most likely initial licensing basis calculations, to allow the effects of reduced HX performance and lower service water temperatures to be assessed.

The following vectors represent the decay heat input to the problem. These are based on the GE supplied data and represen May-Witt curve values.

1-10		
t≓		Pi
600]	.02549
1000		.02229
2000		.01841
4000	1	.01512
6000		.01353
10000]	.01201
20000		.01008
40000		.008125
60000		.007394

:-1 0

Q(x) defines a linear interpolation of the above vectors for use in the calculation

 $Q(x) \equiv linterp(t, p, x)$

PHT is the pump heat input, with CCSW and LPCI considered to be 700 HP and the Core Spray at 800 HP, converted to B note that pump heat is set to zero for this original basis calculation

PHT = (2.700 + 1.800).70696.0.0

HXK is the heat removal rate of the LPCI HX in BTU/Sec-F

нхк ⊭ 416.67

SENSHT is the sensible heat stored in the thick metal structures, added to the pool in exponential fashion as BTU/sec, note term is adjusted to provide a reasonable match to vendor base calculations, with the total sensible heat being approximatel MBTU, assuming a fraction remaining at 1000 seconds.

10[~].70 SENSHT

Enter the derivative of y as f(x,y): (Note that x=time(seconds and y=Temperature) Pool Volume is based on final volumes pr GE in base calculations (vapor space of 108000 cubic feet, yielding a pool volume of 124194 ft3) Note that a 1.02 factor ha added to provide a 100% rated power consistent with original calculations

T sw^{390.0} service water temperature

 $f(x,y) = \frac{Q(x) \cdot \frac{2561}{1.02} \cdot \frac{1000}{3600} \cdot 3413 \cdot 1.0 + PHT + SENSHT \cdot e^{\frac{x}{7200}} - (y - T_{sw}) \cdot HXK}{1000}$

(124194)-62.054

Enter starting and ending values of x, the number of intervals for the integration, and the initial value of y.

max(y) = 162.613

· · ·

.

.

. .

.

--

.

Pressure Calculation

 $Twatm_{k} \equiv y_{k} - \frac{HXK \cdot y_{k} - 95 - Qpmp}{LPCI}$

This File estimates Psat based on temperature input. It is a curve fit interpolation between 120 and 200 degrees of data from t ASME tables.

-	120	1.6927
	130	2.223
14 15 S = 16 17 18	140	2.8892
	150	3.7184
	160	4.7414
	170	5.9926
	180	7.511
	190	9.34
:	200	11.526
	210	14.123

Psatk .= interp vs, Ts, Ps, Tatm

Psatw_k = interp vs, Ts, Ps, Twatm_k

· · · ·

DATA

	Time	WW Press	WW air T	DW	Temp	WW Pool T
	sec	psia	deg F	d	eg F	deg F
Variable	x.	Pww.	Twatm,	Tatm	y _k	
Vanabio	^r k	K	445 102	195 414	147	
	600	22.214	115.103	180.587	149 089	
	988	21.701	110.91	178 479	150 834	
	1376	21.499	110.303	176 323	152 341	
	1764	21.297	117.100	174 675	153 625	
	2152	21.149	118 107	173 948	154.77	
	2540	21.092	118 504	173 157	155,796	
	2928	21.020	118 856	172,303	156,709	
	3310	20,882	119,166	171.388	157.51	
	4092	20.802	119,435	170.561	158.205	
	4092	20.786	119.673	170,171	158.822	
	4868	20,754	119.887	169.75	159,376	
	5256	20.719	120.078	169.299	159.869	
	5644	20.681	120.245	168.817	160.302	
	6032	20.642	120.391	168.332	160.678	
	6420	20.626	120.519	168.107	161.009	
	6808	20.609	120.633	167.866	161.305	
	7196	20.589	120.735	167.611	161.567	
	7584	20.569	120.823	167.342	161.797	
	7972	20.546	120.9	167.059	161.995	
	8360	20.522	120.965	166.763	162.164	
	8748	20.497	121.019	166.454	162.303	
	9136	20.471	121.062	166.133	162.414	
	9524	20.443	121.094	165.799	162.497	
	9912	20.414	121.116	165.454	162.555	
	10300	20.393	121.13	165.205	162.59	-
	10688	20.374	121.137	164.981	162.609	
	11076	20.354	121.139	164.752	162.010	
	11464	20.334	121 134	164.318	162.502	
	11852	20.314	121.125	164.035	162 539	
	12240	20.293	121.09	163 787	162.487	
	12020	20.271	121.05	163 533	162,424	
	13016	20.245	121.000	163,276	162.349	
	13702	20 204	121.003	163.014	162.262	
	14180	20.18	120,965	162.748	162.164	
	14568	20.157	120.924	162.478	162.056	
	14956	20.133	120.878	162.204	161.938	
	15344	20.108	120.828	161.926	161.81	
	15732	20.084	120.775	161.644	161.673	
	16120	20.059	120.719	161.359	161.527	
	16508	20.034	120.659	161.07	161.372	
	16896	20.008	120.596	160.778	161.209	
	17284	19.982	120.53	160.482	161.038	
	17672	19.956	120.461	160.184	160.859	
	18060	19.93	120.389	159.882	160.673	
	18448	19.903	120.314	159.577	160.479	
	18836	19.877	120.237	159.269	100.279	
	19224	19.85	120.157	158.958	150 850	
-	19612	19.823	120.074	136.045	139.639	

******	·*************************************	****
* User name:	NFSKR (73) Queue: NFS1/4SI4E1	*
File name:	Server: NFS_HP4SI2	*
rectory:		*
escription:	PrntFile text	*
*	January 9, 1997 9:33am	*
******	***************************************	****
*		*
*	N N FFFFF SSS K K RRRR	*
*	N NF S SK K R	*
*	NN N FSKKRR	*
*	N N N FFFF SSS KK RRRR	*
*	N NN F SKK RR	*
*	N NF S SK K R	*
*	NNF SSSKKRR.	*
*		*
*		*
*		*
*********	***************************************	****
*		*
*	L SSS TTTTT	*
*	LSST	*
*	LST::	*
*	L SSS T ::	*
*	L S T	*
*	L S S T ::	*
*	LLLLL SSS T ::	*
*		*
*		*
		*
*******	***************************************	****

Heat Exchanger Performance Calculations, RHR HEAT EXCHANGERS 2 RHR, 2 RHRSW performance at Original Data Sheet conditions

Two pass service water side

N = 2278
N = 2.278
$$\cdot 10^3$$

 $\frac{2415 - 2278}{2415} = 0.057$
 $1 = \frac{288 - 2.5.75}{12}$
 $1 = 23.042$
 $t = \frac{.049}{12}$
 $1 = 24$
OD = $\frac{.75}{12}$
ID = $\frac{.652}{12}$
Tube outside area
A0 = $\pi \cdot 0D \cdot N \cdot 1$
A0 = $1.073 \cdot 10^4$
Tube inside area
A1 = $\pi \cdot 1D \cdot N \cdot 1$
A0 = $9.332 \cdot 10^3$
Flow Area
FA = $\frac{N}{2} \cdot \pi \cdot \frac{D^2}{4}$
FA = 2.641
Tube side velocity
SWFLOW := 7000
 $v = SWFLOW \cdot \frac{1}{7.4805} \cdot \frac{1}{60} \cdot \frac{1}{FA}$
 $v = 5.906$

Apply Dittus Boelter Correlation to determine internal HTC Assume service water temperature of 120F for properties determination

Re = 5.28•10⁴

NTU .=.7 initial guess for NTU

$$\Gamma := \mathsf{NTU} \cdot 1 + \mathsf{Cstar}^2$$

Given

ε = 0.43135

 $\epsilon = \frac{2}{(1 + Cstar) + 1 + Cstar^2} \cdot 5 \cdot \frac{1 + e^{-NTU \cdot 1 + Cstar^2}}{1 - e^{-NTU \cdot 1 + Cstar^2}}$

z := find(NTU)

z = 0.7135

NTU '= z

NTU = 0.714

DeltaT ≂70

UA = 2.481•10⁶ UA = NTU-Cc Thermal conductivity from Marks hdbk for kw = 8.08 Rs = .0005 304 ss. kw = 8.7

Rt = .002

$$Aw = \frac{AO - AI}{2}$$

As a check, calculate U based on data sheet effective surface area, compare to data sheet value of 237 based on an effective HT area of 11000 ft2

$$U := \frac{UA}{AO}$$
 $U = 231.133$

$$UA = \frac{1}{\frac{1}{hs \cdot AO} + \frac{Rs}{AO} - \frac{t}{Aw \cdot kw} + \frac{Rt}{AI} + \frac{1}{hi \cdot AI}}$$

- UA+Aw-kw-Al-(UA-R\$+Aw-kw-Al-hi – UA-t+AO-Al-hi + UA-Rt+AO-Aw-kw-hi – UA+AO-Aw-kw – AO+Aw-kw-Al-hi)

hi hi hs = · UA·Aw·kw·Al· (UA·Rs·Aw·kw·Al·hi + UA·t·AO·Al·hi + UA·Rt·AO·Aw·kw·hi – UA·AO·Aw·kw - AO·Aw·kw·Al·hi)

hi = 1.579•10³ hs = $3.389 \cdot 10^3$

 $\frac{1}{hi \cdot Al} = 6.788 \cdot 10^{-8}$

 $\frac{t}{Aw \cdot kw} = 4.678 \cdot 10^{-8}$

 $\frac{Rt}{Al} = 2.143 \cdot 10^{-7}$ $\frac{Rs}{AO} = 4.658 \cdot 10^{-8}$

Now we can calculate new data points at different flow rates

Chnew := Ch
$$\frac{5350}{10700}$$
 Chnew = 2.618 $\cdot 10^{6}$
Conew := Ch $\frac{7000}{7000}$ Conew = 3.477 $\cdot 10^{6}$
Catam := $\frac{\text{Conew}}{\text{Chnew}}$ Catam = 1.328
Catam := If Conew < Chnew, $\frac{\text{Conew}}{\text{Chnew}}$ Conew Chnew, $\text{Catam} = 1.328$
Catam := If Conew < Chnew, $\frac{\text{Conew}}{\text{Chnew}}$ Catam = 0.753
Cmin := If Conew < Chnew, Conew, Chnew) Cmin = 2.618 $\cdot 10^{6}$
hin := hi $\frac{\text{Cnew}}{\text{Ce}}$ $\frac{0.8}{\text{hin}} = 1.579 \cdot 10^{3}$
UA = $\frac{1}{\frac{1}{\text{hin} \cdot AO} + \frac{\text{Rs}}{\text{AO}} + \frac{1}{\text{Aw hw}} + \frac{\text{Rs}}{\text{AI}} + \frac{1}{\text{hin} \cdot \text{AI}}$
UA = 2.362 $\cdot 10^{6}$
NTU := $\frac{\text{UA}}{\text{Crim}}$
NTU = $\frac{1}{\text{Crim}}$
NTU = $\frac{1}{\text{Crim}}$
NTU = $\frac{1}{\text{Crim}}$
Catam = $\frac{2}{(1 + \text{Cetam}) + (1 + \text{Cetam})^{2} \cdot 5 \frac{1}{(\frac{1 + e^{-NTU} \cdot 1 + \text{Cetam})^{2} \cdot 5 \frac{1}{(1 - e^{-NTU} \cdot 1 + \text{Cetam})^$

KVAL := Qnew DeltaT-3600 KVAL = 346.243

Ľ

llser name.	NESKR (73)	Queue: NFS1/4	ISI4E1 *
Lilo name:		Server: NFS HF	P4SI2 *
rectory:		_	*
scription:	PrntFile text		*
*	January 9, 1997	9:39an	n *
*****	****	*****	**********************
*			*
*	N N FFFFF	SSS K KRRRR	*
*	N NF S	SKKR R	*
*	NN NF S	KK R R	*
*	N N N FFFF	SSS KK RRRR	*
*	N NN F	SKK RR	*
*	N NF S	SKĶRR	*
*	N N F	SSS K KR R	*
*			*
*			*
*			*
****	************************	*****	************************
*			*
*	L SSS		*
*	L S	S T	*
*	L S	Т ::	*
*	L SSS	T ::	*
*	Ĺ	S T	*
*	L S	ST::	*
*		T ::	*
*			*
*			*
			*

Quad Cities SUPPRESSION POOL HEATUP CALCULATIONS 1/2 Case with nominal K and 90F Service Water Temperature, initial pool temperature at 90F

This calculation is based on the use of a Runge-Kutta solution method to numerically evaluate the first order differential equat describing the behavior of the suppression pool following the completion of the blowdown from the vessel. It uses boundary conditions taken from GENE-770-26-1092, GENE-637-042-1193, and the Quad Cities FSAR. These are the decay heat, poo temperature at 600 seconds, the K value for the heat exchanger, and a term to account for sensible heat of the vessel metal. purpose of this model is to provide a representation of the most likely initial licensing basis calculations. to allow the effects of reduced HX performance and lower service water temperatures to be assessed.

The following vectors represent the decay heat input to the problem. These are based on the GE supplied data and represen May-Witt curve values.

i≡1..9

t≡ ĭ	₽ī
600	.02549
1000	.02229
2000	.01841
4000	.01512
6000	.01353
10000	.01201
20000	.01008
40000	.008125
60000	.007394

Q(x) defines a linear interpolation of the above vectors for use in the calculation

Q(x) ≋linterp(t,p,x)

PHT is the pump heat input, with CCSW and LPCI considered to be 700 HP and the Core Spray at 800 HP, converted to B note that pump heat is set to zero for this original basis calculation

PHT = (2.700 + 1.800).70696.0.0

HXK is the heat removal rate of the LPCI HX in BTU/Sec-F

нхк = 346.24

SENSHT is the sensible heat stored in the thick metal structures, added to the pool in exponential fashion as BTU/sec, note term is adjusted to provide a reasonable match to vendor base calculations, with the total sensible heat being approximatel MBTU, assuming a fraction remaining at 1000 seconds.

10°..70 SENSHT

Enter the derivative of y as f(x,y): (Note that x=time(seconds and y=Temperature) Pool Volume is based on final volumes pr GE in base calculations (vapor space of 108000 cubic feet, yielding a pool volume of 124194 ft3) Note that a 1.02 factor ha added to provide a 100% rated power consistent with original calculations

τ sw=90.0 service water temperature

Enter starting and ending values of x, the number of intervals for the integration, and the initial value of y.

1

- -

max(y) = 168.746

Pressure Calculation

 $\mathsf{Twatm}_{k} \equiv \mathsf{y}_{k} - \frac{\mathsf{HXK} \cdot \mathsf{y}_{k} - 95 - \mathsf{Qpmp}}{\mathsf{LPCI}}$

This File estimates Psat based on temperature input. It is a curve fit interpolation between 120 and 200 degrees of data from t ASME tables.

	120	1.6927
	130	2.223
	140	2.8892
	150	3.7184
c	160	4.7414
5 -	170	5.9926
	180	7.511
	190	9.34
	200	11.526 -
	210	14.123

250

ė

Psatw_k = interp_vs, Ts, Ps, Twatm_k

- -

150

200

⊤s_i

,

DATA

Variable

	_	

Time	WW Press	ww	air T	I	OW Temp	
sec	psia	deg	g F		deg F	
× _k	Pwwk	Twatm _k		Tatm _k	У _К	
600	22.737	120.494		188.252	14	7
988	22.241	121.619	Ì	183.688	149.	293
1376	22.067	122.576		181.827	151.	245
1764	21.888	123.418		179.906	152.	962
2152	21.764	124.15		178.483	154.	457
2540	21.735	124.815		177.973	155.	813
2928	21.697	125.422		177.393	157.	051
3316	21.65	125.973		176.743	158.	174
3704	21.595	126.469	[176.026	159.	186
4092	21.548	126.913		175.391	160.	091
4480	21.543	127.317	-	175.187	160.	916
4868	21.533	127.69		174.947	161.	677
5256	21.518	128.032		174.672	162.	375
5644	21.499	128.344		174.363	163.	011
6032	21.479	128.627		174.046	163.	588
6420	21.483	128.887		173.983	164.	118
6808	21.484	129.128		173.903	164	.61
7196	21.483	129.352		173.804	165.	066
7584	21.479	129.559		173.687	165.	488
7972	21.474	129.749		173.554	165.	875
8360	21.466	129.922		173.403	166	.23
8748	21.455	130.081		173.236	166.	552
9136	21.443	130.224		173.054	166.	844
9524	21.429	130.352		172.855	167.	106
9912	21.412	130.466		172.641	167.	339
10300	21.405	130.568		172.52	167.	546
10688	21.399	130.66		172.421	167.	735
11076	21.392	130.744		172.315	167.	905
11464	21.384	130.819	1	172.2	168.	058
11852	21.374	130.885	ļ	172.077	168.	194
12240	21.364	130.944		171.947	168.	314
12628	21.353	130.995		171.809	168.	418
13016	21.341	131.039		171.664	168.	506
13404	21.328	131.075		171.511	168.	581
13792	21.313	131.104		171.352	168	.64
14180	21.299	131.127		171.185	168.	686
14568	21.283	131.143		171.012	168.	719
14956	21.266	131.153		170.833	168.	739
15344	21.249	131.156		170.647	168.	746
15732	21.231	131.154		170,454	168.	/41
16120	21.212	131.146		170.256	168.	/24
16508	21.192	131.132	ļ	170.051	168.	696
16896	21.172	131.113		169.841	168.	657
17284	21,151	131.088		169.625	168.	608
17672	21.129	131.059		169.403	168.	34/
18060	21.107	131.024		169.176	168.	4//
18448	21.084	130.985		168.943	168.	397
18836	21.06	130.941		168.706	168.	307
19224	21.036	130.892	ļ	168.463	168.	208
19612	21.012	130.84		168.214	168	3.1

WW Pool T deg F

* User name · NESK	{ (73) Queue: NFS1/4SI4E1	*
↓ wile name: more:	Server: NFS HP4SI2	*
rectory:	-	*
escription: Prnt	File text	*
* Janu	ary 9. 1997 9:40am	*
*****	***************************************	*****
*		*
*	N N FFFFF SSS K K RRRR	*
*	NNF SSKKRR	*
*	NN NFSKKRR	*
*	N N N FFFF SSS KK RRRR	*
*	NNF SKKRR	*
*	NNF SSKKRR	*
*	N NF SSSK-KRR-	. *
*		*
*		*
*		*
*****	***************************************	*****
*		×
*	L SSS TITTT	*
*	LSST	*
*	LST::	*
*	L SSS T ::	*
*	L S T	*
*	L S S T ::	*
*	ILLLL SSS T ::	*
*		*
		*
*		

~

Quad Cities SUPPRESSION POOL HEATUP CALCULATIONS 1/2 Case with nominal K and 95F Service Water Temperature, initial pool temperature at 90F

This calculation is based on the use of a Runge-Kutta solution method to numerically evaluate the first order differential equat describing the behavior of the suppression pool following the completion of the blowdown from the vessel. It uses boundary conditions taken from GENE-770-26-1092, GENE-637-042-1193, and the Quad Cities FSAR. These are the decay heat, poo temperature at 600 seconds. the K value for the heat exchanger, and a term to account for sensible heat of the vessel metal. purpose of this model is to provide a representation of the most likely initial licensing basis calculations, to allow the effects of reduced HX performance and lower service water temperatures to be assessed.

The following vectors represent the decay heat input to the problem. These are based on the GE supplied data and represen May-Witt curve values.

1-1

tĘ	-	₽į
600		.02549
1000		.02229
2000		.01841
4000		.01512
6000		.01353
10000		.01201
20000		.01008
40000		.008125
60000		.007394

Q(x) defines a linear interpolation of the above vectors for use in the calculation

Q(x)≡linterp(t,p,x)

PHT is the pump heat input, with CCSW and LPCI considered to be 700 HP and the Core Spray at 800 HP, converted to B note that pump heat is set to zero for this original basis calculation

PHT = (2.700 + 1.800).70696.0.0

HXK is the heat removal rate of the LPCI HX in BTU/Sec-F

HXK ≡ 346.24

SENSHT is the sensible heat stored in the thick metal structures, added to the pool in exponential fashion as BTU/sec, note term is adjusted to provide a reasonable match to vendor base calculations, with the total sensible heat being approximatel MBTU, assuming a fraction remaining at 1000 seconds.

SENSHT = 10⁸..70 7200

Enter the derivative of y as f(x.y): (Note that x=time(seconds and y=Temperature) Pool Volume is based on final volumes pr GE in base calculations (vapor space of 108000 cubic feet, yielding a pool volume of 124194 ft3) Note that a 1.02 factor ha added to provide a 100% rated power consistent with original calculations

T_{sw}=95.0 service water temperature

Enter starting and ending values of x, the number of intervals for the integration, and the initial value of y.

max(y) = 171.253

Pressure Calculation

HXK· y_k – 95 – Qpmp Twatm_k ≡y_k – LPCI

This File estimates Psat based on temperature input. It is a curve fit interpolation between 120 and 200 degrees of data from t ASME tables.

vs := pspline(Ts, Ps)

Psat_k = interp_vs, Ts, Ps, Tam_k

Psatw_k = interp vs, Ts, Ps, Twatm_k

,

max(Pww) = 22.737

.

DATA

Variable

Time	WW Press	WW air T	DW	Temp
sec	psia	deg F	de	eg F
~	Dunk	Twatm	Tatm.	V
<u>^k</u>	rww.k	k k	K K	² K
600	22.737	120.494	188.252	14/
988	22.25	121.661	183.751	149.379
1376	22.084	122.66	181.952	151.416
1764	21.913	123.542	180.092	153.217
2152	21.796	124.315	178.729	154.793
2540	21.774	125.02	178.279	150.23
2928	21.744	125.666	177.400	157.547
3316	21.704	126.255	177.163	150.749
3704	21.656	126.788	176.502	160 817
4092	21.615	127.269	175.922	160.617
4480	21.617	127.71	175.772	101.710
4868	21.613	128.118	1/5.585	162.349
5256	21.605	128.495	175.363	103.310
5644	21.593	128.841	175.105	164.025
6032	21.578	129.158	174.838	165.000
6420	21.588	129.451	174.825	165,200
6808	21.596	129.725	174.793	165.627
7196	21.6	129.981	1/4./42	166,349
7584	21.603	130.219	174.673	166.634
7972	21.603	130.44	1/4.585	167,205
8360	21.6	130.644	1/4.48	167.701
8748	21.596	130.832	174.358	168.065
9136	21,589	131.004	1/4.219	108.437
9524	21.579	131.162	174.063	168.758
9912	21.568	131.304	173.892	169.048
10300	21.565	131.434	173.812	169.313
10688	21.564	131.554	173.755	169.557
11076	21.562	131.664	173.688	169.782
11464	21.559	131.766	173.613	169.989
11852	21.554	131.858	173.529	170,178
12240	21.548	131.942	173.437	170.35
12628	21.542	132.019	173.336	170.505
13016	21.534	132.087	173.228	170.644
13404	21.525	132.147	173.111	170.768
13792	21.515	132.2	172.988	170.876
14180	21.504	132.246	172.856	170.97
14568	21.492	132.285	172./1/	171.049
14956	21.479	132.318	1/2.5/2	171.115
15344	21.465	132.344	172.419	171.168
15732	21.45	132.363	172.259	171.208
16120	21.435	132.376	172.093	171.235
16508	21.419	132.384	1/1.92	1/1.25
16896	21.401	132.385	1/1./4	171.255
17284	21.383	132.381	1/1.555	171,245
17672	21.365	132.372	171.363	171.220
18060	21.345	132.357	1/1.165	171.195
18448	21.325	132.337	170.961	171.154
18836	21.304	132.312	170.752	171.103
19224	21.283	132.282	170.536	171.043
19612	21.261	132.248	170.316	170.972
<u> </u>				

,

WW Pool T deg F

****	***************************************	****
* User name:	NFSKR (74) Queue: NFS1/4SI4E1	*
tile name:	Server: NFS_HP4SI2	*
ectory:		*
scription	PrntFile text	*
*	January 8, 1997 5:33pm	*
*******	***************************************	******
*		*
*	N N FFFFF SSS K K RRRR	*
*	NNF SSKKRR	*
*	NN NFSKKRR	*
*	N N N FFFF SSS KK RRRR	*
*	NNNF [:] SKK RR	*
*	NNF SSKKRR [.]	*
*	NNF SSSKKR-R	*
*		*
*		*
*		*
******	***************************************	****
*		*
*	L SSS TITT	*
*	L S S T	*
*	LST::	*
*	l SSS T ::	*
*	L S T	*
*	LSST::	*
*	LLLLL SSS T ::	*
*		*
*		*
	•	*

•

.

Dresden SUPPRESSION POOL HEATUP CALCULATIONS 1/2 Case with original K and 90F Service Water Temperature

This calculation is based on the use of a Runge-Kutta solution method to numerically evaluate the first order differential equat describing the behavior of the suppression pool following the completion of the blowdown from the vessel. It uses boundary conditions taken from GENE-770-26-1092, GENE-637-042-1193, and the Quad Cities FSAR. These are the decay heat, poo temperature at 600 seconds, the K value for the heat exchanger, and a term to account for sensible heat of the vessel metal. purpose of this model is to provide a representation of the most likely initial licensing basis calculations, to allow the effects of reduced HX performance and lower service water temperatures to be assessed.

The following vectors represent the decay heat input to the problem. These are based on the GE supplied data and represen May-Witt curve values.

i≡19		
t= I	p⁼	
600	.02549	
1000	.02229	
2000	.01841	
4000	.01512	
6000	.01353	
10000	.01201	
20000	.01008	
40000	.008125	
60000	.007394	

Q(x) defines a linear interpolation of the above vectors for use in the calculation

Q(x) ≡linterp(t,p,x)

. .

PHT is the pump heat input, with CCSW and LPCI considered to be 700 HP and the Core Spray at 800 HP, converted to B note that pump heat is set to zero for this original basis calculation

PHT = (2.700 + 1.800).70696.0.0

HXK is the heat removal rate of the LPCI HX in BTU/Sec-F

нхк≡341.57

SENSHT is the sensible heat stored in the thick metal structures, added to the pool in exponential fashion as BTU/sec, note term is adjusted to provide a reasonable match to vendor base calculations, with the total sensible heat being approximatel MBTU, assuming a fraction remaining at 1000 seconds.

$$\mathsf{SENSHT} = \frac{10^8 \cdot .70}{7200}$$

Enter the derivative of y as f(x,y): (Note that x=time(seconds and y=Temperature) Pool Volume is based on final volumes pr GE in base calculations (vapor space of 108000 cubic feet, yielding a pool volume of 124194 ft3) Note that a 1.02 factor ha added to provide a 100% rated power consistent with original calculations

T sw = 90.0 service water temperature

 $q(x) = \frac{2578}{1.02} \cdot \frac{1000}{3600} \cdot 3413 \cdot 1.0 + PHT + SENSHT \cdot e^{-\frac{x}{7200}} - (y - T_{sw}) \cdot HXK$

(124194)-62.054

Enter starting and ending values of x, the number of intervals for the integration; and the initial value of y.

max(y) = 169.541

 $\max(\mathbf{y}) = 100.$

Pressure Calculation

 $\mathsf{Twatm}_{k} \equiv \mathsf{y}_{k} - \frac{\mathsf{HXK} \cdot \mathsf{y}_{k} - 95 - \mathsf{Qpmp}}{\mathsf{LPCI}}$

This File estimates Psat based on temperature input. It is a curve fit interpolation between 120 and 200 degrees of data from t ASME tables.

		120	1.6927	
		130	2.223	
		140	2.8892	
		150	3.7184	
~	-	160	4.7414	
5	-	170	5.9926	
		180	7.511	
		190	9.34	
		200	11.526	
		210	14.123	

Ts .= S^{<0>} Ps .= S^{<1>}

i '=0..9

vs := pspline(Ts, Ps)

Pww_k ≔ Maww_k R Twatm_k + 460 Vww 144 + Psatw_k

Psat_k := interp_vs, Ts, Ps, Tatm_k

Psatw_k := interp_vs, Ts, Ps, Twatm_k

.

.

DATA

Variable

Time	WW Press	w	/ air T	ι	OW Ten	np	WW Pool T
sec	psia	ue	gг		uegi		uog.
X _L	Pww	Twatm _k		^{Tatm} k		^у к	
È C	22 773	120.852	}	188.44		147	
988	22.710	122,008	1	183.908		149.325	
1376	22.11	122.994	1	182.077		151.308	
1764	21 934	123,862	1	180.184		153.054	
2152	21 813	124.619	1	178.786		154.577	
2540	21.787	125,306	1	178.302		155.96	
2928	21,752	125,935	1	177.745		157.225	
3316	21,709	126.507	1	177.119		158.374	
3704	21.657	127.022	1	176.423		159.411	
4092	21.612	127.484	1	175.809		160.34	
4480	21.609	127.906	1	175.626		161.19	
4868	21.602	128.296	1	175.406		161.974	
5256	21.59	128.654	1	175.151		162.694	
5644	21.574	128.982	1	174.861		163.353	
6032	21.555	129.28	1	174.562		163.952	
6420	21.561	129.554	1	174.517		164.504	
6808	21.565	129.809]	174.454		165,017	
7196	21.566	130.047	1	174.372		165.495	
7584	21.565	130.266] .	174.272		165.936	
7972	21.561	130,469		174.155	•	166.344	
8360	21.555	130.655		174.02		166.718	
8748	21.547	130.825]	173.869		167.06	
9136	21.536	130.979]	173.701		167.371	
9524	21.524	131.119		173.517		167.652	
9912	21.509	131.244		173.317		167.903	
10300	21.503	131.356		173.21		168.128	
10688	21.499	131.458		173.125		168,334	•
11076	21.493	131.552		173.032		168.522	
11464	21.487	131.636		172.93		168.691	
11852	21.479	131.712		172.82		168.844	
12240	21.47	131.779		172.702		168.98	
12628	21.46	131.839		172.576		169.1	
13016	21.449	131.891		172.443		169.205	
13404	21.438	131.936		172.302		169.294	
13792	21.425	131.973	•	172.154		169.369	
14180	21.411	132.003		171.999		169.43	
14568	21.396	132.026		171.836		109.477	
14956	21.381	132.043	{	1/1.66/		109.511	
15344	21.364	132.054		1/1.491		169.552	
15732	21.347	132.058		171.309	•	169.541	
16120	21.329	132.056		1/1.12		169.537	
16508	21.31	132.049		170.925		160 406	
16896	21.291	132.036		170.724		169.458	
17284	21.271	132.017	{	170.017		169.40	
17672	21.25	131.993		170.004		169 352	
18060	21.228	131.904		160 961		169 283	
18448	21.206	131.93		160 631	•	169 205	
18836	21.183	131 049		169 306		169,117	
19224	21.159	131.040		169 155		169.02	
19612	21.135		j l		.		

*****	******	*****	*
* User name:	NFSKR (74) Queue:	NFS1/4SI4E1 '	*
* le name:	Server:	NFS_HP4SI2	k .
ectory:			*
scription:	PrntFile text	د .	* `
* '	January 8, 1997	5:34pm '	k
*****	***************************************	******	*
*		د	k
*	N N FFFFF SSS K K RR	RR 7	*
*	N NF SSKKR	R	k .
*	NN NF SKKR	R	k
*	N N N FFFF SSS KK RR	RR *	*
*	NNNF SKKR	R	*
*	N NF SSKKR	۲. R.	*
*	NNF SSSKKR	R	k
*		,	4
*		,	*
*		,	4
*****	**************************************	*****	*
*		۲	۲.
*	L SSS TTTT	د	
*	LSST	k	٢
*	L S · T ::	k	*
*	L SSS T ::	ł	k
*	L S T	ł	ĸ
*	L S S T ::	ł.	¢ (
*	LILLL SSS T ::	ł	< c
*	· · · ·	ł	4
*		k	r -
		k	e e e e e e e e e e e e e e e e e e e

.

.

•

.

,

.

:

ς.

-

Dresden SUPPRESSION POOL HEATUP CALCULATIONS 1/2 Case with original K and 95F Service Water Temperature

This calculation is based on the use of a Runge-Kutta solution method to numerically evaluate the first order differential equat describing the behavior of the suppression pool following the completion of the blowdown from the vessel. It uses boundary conditions taken from GENE-770-26-1092, GENE-637-042-1193, and the Quad Cities FSAR. These are the decay heat, poo temperature at 600 seconds, the K value for the heat exchanger, and a term to account for sensible heat of the vessel metal. purpose of this model is to provide a representation of the most likely initial licensing basis calculations, to allow the effects of reduced HX performance and lower service water temperatures to be assessed.

The following vectors represent the decay heat input to the problem. These are based on the GE supplied data and represen May-Witt curve values.

i≋1"9	
t≓ i	P _i
600	.02549
1000	.02229
2000	.01841
4000	.01512
6000	.01353
10000	.01201
20000	.01008
40000	.008125
60000	.007394
1. 1	

Q(x) defines a linear interpolation of the above vectors for use in the calculation

 $Q(x) \equiv linterp(t, p, x)$

PHT is the pump heat input, with CCSW and LPCI considered to be 700 HP and the Core Spray at 800 HP, converted to B note that pump heat is set to zero for this original basis calculation

PHT = (2.700 + 1.800).70696.0.0

HXK is the heat removal rate of the LPCI HX in BTU/Sec-F

нхк ≡ 341.57

SENSHT is the sensible heat stored in the thick metal structures, added to the pool in exponential fashion as BTU/sec, note term is adjusted to provide a reasonable match to vendor base calculations, with the total sensible heat being approximatel MBTU, assuming a fraction remaining at 1000 seconds.

SENSHT =
$$\frac{10^8 \cdot .70}{7200}$$

Enter the derivative of y as f(x.y): (Note that x=time(seconds and y=Temperature) Pool Volume is based on final volumes pr GE in base calculations (vapor space of 108000 cubic feet, yielding a pool volume of 124194 ft3) Note that a 1.02 factor ha added to provide a 100% rated power consistent with original calculations

T sw=95.0 service water temperature

Enter starting and ending values of x, the number of intervals for the integration, and the initial value of y.

max(y) = 172.072

Pressure Calculation

HXK· y_k - 95 - Qpmp LPCI 'Twatm_k ≡y_k

This File estimates Psat based on temperature input. It is a curve fit interpolation between 120 and 200 degrees of data from t ASME tables.

120	1.6927
130	2.223
140	2.8892
150	3.7184
 160	4.7414
 170	5.9926
180	7.511
190	9.34
200	11.526
210	14.123

Psat_k '= interp_vs, Ts, Ps, Tatm_k

Psatw_k ≔ interp_vs, Ts, Ps, Twatm_k

· · ·

.

max(Pww) = 22.773

DATA

	Time 1	WW Press	VVVV
	sec	psia	deg
Variable	X.,	Pww	Twatm _k
	K I	N	120 852
	600	22.775	122.05
	988	22.209	122.00
	1376	22.127	123.070
	1764	21.959	123.907
	2152	21.845	124.784
	2540	21.827	125.511
	2928	21.799	126.179
	3316	21.763	126.789
	3704	21.717	127.342
	4092	21.679	127.841
	4480	21.683	128.299
	4868	21.683	128.725
	5256	21.677	129.118
	5644	21.667	129.48
	6032	21.655	129.812
	6420	21.667	130,119
	6808	21.677	130.407
	7196	21.684	130.677
	7584	21.689	130.928
	7972	21.691	131.162
	8360	21.691	131.378
	8748	21.688	131.578
	9136	21,683	131.762
	9524	21.675	131.931
	9912	21 666	132.084
	10300	21.665	132,224
	10688	21 665	132.354
	11076	21.665	132,475
	11464	21,663	132,586
	11952	21.66	132,688
	12240	21.656	132,781
	12240	21,651	132 866
	12020	21.644	132 943
,	13010	21.044	133 012
	13404	21.037	133 073
	13/92	21.028	133 127
	14180	21.010	133 174
	14568	21.007	133 213
	14956	21.596	133.246
	15344	21,583	133.240
	15/32	21.569	133.275
	16120	21.555	133.293
	16508	21.54	133.307
	16896	21.523	133.314
	17284	21.506	133,316
	17672	21.488	133.313
	18060	21.47	133.304
	18448	21.45	133.289
	18836	21.43	133.269
	19224	21.409	133.244
	19612	21.388	133.215

WW air T DW Temp deg F F Tatm_k 188.44 183.971 182.201 180.368 179.031 178.605 178.106 177.536 176.896 176.337 176.207 176.04 175.837 175.598 175.349 175.353 175.338 175.304 175.251 175.18 175.09 174.983 174.859 174.718 174.56 174.495 174.451 174.397 174.335 174.264 174.184 174.096 173.999 173.894 173.782 173.661 173.533 173.398

173.255

173.106

172.949 172.785

172.615 172.439

172.256 172.066

171.871 171.669

171.462

171.249

WW Pool T deg F

У_k

147

149.411

151.477 153.306

154.909

156.372 157.715

158.941 160.054 161.057

161.98 162.836 163.627

164.355 165.022

165.64

166.22

166.762

167.267

167.737

168.173

168.576

168.946

169,285

169.593

169.875

170.137

170.379

170.602

170.808 170.995

171.166 171.321

171.459 171.582

171.691

171.785 171.864

171.931 171.984

172.024

172.052 172.068

172.072 172.064

172.046 172.017

171.977

171.927 171.867

*****	*****	******
* User name:	NFSKR (74) Queue: NF	S1/4SI4E1 *
*_Eile name	Server: NF	S HP4SI2 *
ectory:		- *
scription:	PrntFile text	*
*	January 8, 1997 5:	:40pm *
****	***	******
*		*
*	N N FFFFF SSS K K RRRF	* _ *
*	N NF SSKKR	R *
*	NN NF SKKR	R *
*	N N N FFFF SSS KK RRRF	X
*	NNNF. SKKRR	*
* '	'N NF SSKKRF	ξ *
*	NNF SSSKKR	R *
*		*
*		*
*		*
*********	***************************************	***************************************
*		*
*	L SSS TTTTT	*
* .	L S S T	* .
* .	LST::	*
*	L SSS T ::	* .
*	L ST ·	*
*	L S S T ::	*
*	LLLLL SSS T ::	*
*		*
*		*
		*
*******	***************************************	*******************************

· · · ·

.

.

Dresden SUPPRESSION POOL HEATUP CALCULATIONS 1/2 Case with limiting K and 84F Service Water Temperature, initial pool temperature at 75F

This calculation is based on the use of a Runge-Kutta solution method to numerically evaluate the first order differential equat describing the behavior of the suppression pool following the completion of the blowdown from the vessel. It uses boundary conditions taken from GENE-770-26-1092, GENE-637-042-1193, and the Quad Cities FSAR. These are the decay heat, poo temperature at 600 seconds; the K value for the heat exchanger and a term to account for sensible heat of the vessel metal. purpose of this model is to provide a representation of the most likely initial licensing basis calculations, to allow the effects of reduced HX performance and lower service water temperatures to be assessed.

The following vectors represent the decay heat input to the problem. These are based on the GE supplied data and represen May-Witt curve values.

i	7	1	 9
			 _

t≓ ĭ	₽
600	.02549
1000	.02229
2000	.01841
4000	.01512
6000	.01353
10000	.01201
20000	.01008
40000	.008125
60000	.007394

Q(x) defines a linear interpolation of the above vectors for use in the calculation

Q(x) ≞linterp(t,p,x)

PHT is the pump heat input, with CCSW and LPCI considered to be 700 HP and the Core Spray at 800 HP, converted to B note that pump heat is set to zero for this original basis calculation

PHT = (2.700 + 1.800).70696.0.0

HXK is the heat removal rate of the LPCI HX in BTU/Sec-F

нхк = 296.96

SENSHT is the sensible heat stored in the thick metal structures, added to the pool in exponential fashion as BTU/sec, note term is adjusted to provide a reasonable match to vendor base calculations, with the total sensible heat being approximatel MBTU, assuming a fraction remaining at 1000 seconds.

SENSHT

Enter the derivative of y as f(x,y): (Note that x=time(seconds and y=Temperature) Pool Volume is based on final volumes pr GE in base calculations (vapor space of 108000 cubic feet, yielding a pool volume of 124194 ft3) Note that a 1.02 factor ha added to provide a 100% rated power consistent with original calculations

T sw=84.0 service water temperature

2578 1000 - T sw)·HXK 3413-1.0 + PHT + SENSHT .e 1.02 3600 f(x,y) ≡

(124194)-62.054
Enter starting and ending values of x, the number of intervals for the integration, and the initial value of y.

max(y) = 164.808

Pressure Calculation

HXK· y_k – 95 – Qpmp Twatm_k ≡y_k -LPCI

. . ,

This File estimates Psat based on temperature input. It is a curve fit interpolation between 120 and 200 degrees of data from t ASME tables.

	120	1.6927
	130	2.223
	140	2.8892
	150	3.7184
c -	160	4.7414
5-	170	5.9926
:	180	7.511
	190	9.34
	200	11.526
	210	14.123

i:=0..9

ts = s^{<0≻} Ps = s^{<1≻}

 $\begin{array}{c}
15 \\
10 \\
- \\
- \\
5 \\
0_{100} \\
150 \\
- \\
Ts_{i}
\end{array}$

vs .= pspline(Ts, Ps)

•

Psat_k = interp vs, Ts, Ps, Tatm_k Psatw_k = interp vs, Ts, Ps, Twatm_k

.

max(Pww) = 21.496

. . .

• • •

.

DATA

.

Variable		×k
		600
		1148
		1696
		2244
		2792
		3340
		3888
		4436
		4984
		5532
		6080
		6628
		7176
		7724
		8272
		8820
		9368
		9916
		10464
		11012
•		11560
		12108
		12656
		13204
		13752
,	-	14300
		14848
		15396
		15944
		16492
		17040
		17588
		18136
		18684
		19232
		19780
•		20328
		20876
		21424
		21972
		22520
		23068
		23616
		24164
		24712
		25260
	•	25808
		26356
		26904
		27452

Time sec

WW Pre psia	ess WW de	' air T g F	DW Temp deg F	WW Pool T deg F
Pww	Twatm _k	Tatm _k	У _к	
04.400	115 825	178 689	132	
21.495	117.821	173,764	135.547	
21.005	119.49	171.55	138.513	
20.900	120 908	170.06	141.033	
20.811	122,175	169,682	143.283	-
20.818	123.31	169.152	145.299	
20.792	124.317	168.475	147.089	
20.815	125.215	168.377	148.684	-
20.845	126.035	168.376	150.142	
20,865	126.783	168.297	151.47	
20,882	127.46	168.206	152.674	
20.925	128.083	168.426	153.78	
20.963	128.661	168.603	154.808	
20.996	129.197	168.738	155.76	
21.023	129.692	168.831	156.639	
21.046	130.147	168.885	157.448	
21.063	130.565	168.899	158,189	
21.076	130.946	168.876	158.866	
21.1	131.295	168.984	159,487	
21.123	131.62	169.1	160.065	
21.143	131.922	169.193	160.601	
21.161	132.202	169.264	161.098	
21.176	132.46	169.314	161.557	
21.188	132.698	169.344	161.979	
21.198	132.916	169.354	162.307	
21.205	133.115	169.345	162.721	
21.21	133.296	109.310	163 333	
21.212	133.459	169.209	163 593	
21.212	133.600	169.204	163.824	
21.209	100.700	169 022	164 028	
21.205	133.05	168 906	164,204	
21.198	124 035	168 774	164 355	
21.109	134 105	168.625	164.48	
21.175	134 162	168,461	164.581	
21.100	134,205	168.282	164.658	•
21.101	134,237	168.149	164.714	
21 132	134.261	168.047	164.756	
21 123	134.277	167.938	164.786	
21.113	134.287	167.822	164.803	
21,102	134.29	167.698	164.808	
21.09	134.286	167.568	164.802	
21.077	134.277	167,431	164.785	
21.063	134.261	167.287	164.757	
21.049	134.24	167.137	164.719	
21.034	134.212	166.981	164.671	
21.018	134.18	166.818	164.613	
21.002	134.142	166.65	164.546	
20.985	134.1	166.476	164.47	
20.967	134.052	166.296	164.386	

******	******
* User name: NFSKR (74)	Queue: NFS1/4SI4E1 *
File name:	Server: NFS_HP4SI2 *
rectory:	*
escription: PrntFile text	*
* January 8, 1997	5:44pm *
******	***************************************
*	*
* · N N FFFFF SSS	K K RRRR
* NNFSS	SKKRR *
* NN NF S	KKRR . *
* NNN FFFF SSS	KK RRRR
* NNF S	SKK RR
* NNFSS	SK K R R
* NNF SSS	K K R R
*	· · · · · · · · · · · · · · · · · · ·
*	^ +
*	~ *****
***************************************	***************************************
*	· ^ ·
* L SSS T	
* <u> </u>	Ť *
* LS	_T ::
* L SSS	T :: ^
* L S	Ť ^
* · LSS	T ::
* LLLLL ⁻ SSS	T ::
*	* *
*	· *
	*

. 1

.

· · ·

. .

Dresden SUPPRESSION POOL HEATUP CALCULATIONS 1/2 Case with limiting K and 75F Service Water Temperature, initial pool temperature at 75F

This calculation is based on the use of a Runge-Kutta solution method to numerically evaluate the first order differential equat describing the behavior of the suppression pool following the completion of the blowdown from the vessel. It uses boundary conditions taken from GENE-770-26-1092, GENE-637-042-1193, and the Quad Cities FSAR. These are the decay heat, poo temperature at 600 seconds, the K value for the heat exchanger, and a term to account for sensible heat of the vessel metal. purpose of this model is to provide a representation of the most likely initial licensing basis calculations, to allow the effects of reduced HX performance and lower service water temperatures to be assessed.

The following vectors represent the decay heat input to the problem. These are based on the GE supplied data and represen May-Witt curve values.

i≡1..9

ŧ		PĘ
600]	.02549
1000	1	.02229
2000	1	.01841
4000		.01512
6000		.01353
10000		.01201
20000		.01008
40000		.008125
60000		.007394

Q(x) defines a linear interpolation of the above vectors for use in the calculation

Q(x) ≡linterp(t,p,x)

PHT is the pump heat input, with CCSW and LPCI considered to be 700 HP and the Core Spray at 800 HP, converted to B note that pump heat is set to zero for this original basis calculation

PHT = (2.700 + 1.800).70696.0.0

HXK is the heat removal rate of the LPCI HX in BTU/Sec-F

нхк≡296.96

SENSHT is the sensible heat stored in the thick metal structures, added to the pool in exponential fashion as BTU/sec, note term is adjusted to provide a reasonable match to vendor base calculations, with the total sensible heat being approximatel MBTU, assuming a fraction remaining at 1000 seconds.

10` SENSHT

Enter the derivative of y as f(x.y): (Note that x=time(seconds and y=Temperature) Pool Volume is based on final volumes pr GE in base calculations (vapor space of 108000 cubic feet, yielding a pool volume of 124194 ft3) Note that a 1.02 factor ha added to provide a 100% rated power consistent with original calculations

T sw = 75.0 service water temperature

2578 1000 7200 3413-1.0 + PHT + SENSHT · e $(y - T_{sw}) \cdot HXK$ 1.02 3600 f(x,y) ≡

(124194).62.054

Enter starting and ending values of x, the number of intervals for the integration, and the initial value of y.

max(y) = 159.97

Pressure Calculation

.

.

.

.

This File estimates Psat based on temperature input. It is a curve fit interpolation between 120 and 200 degrees of data from t ASME tables.

	120	1.6927	
	130	2.223	
	140	2.8892	
	150	3.7184	
• • •	160	4.7414	; }
3	170	5.9926	
	180	7.511	
	190	9.34	
	200	11.526	
	210	14,123	l

Ts = S^{<0>} Ps = S^{<1>} i = 0..9

vs = pspline(Ts, Ps)

 $Maww_{k} := \frac{144 \cdot Psat_{k} - Psatw_{k} + Pvb + Ma \cdot R \cdot \frac{Tatm_{k} + 460}{Vdw}}{R \cdot \frac{Tatm_{k} + 460}{Vdw} + R \cdot \frac{Twatm_{k} + 460}{Vww}}$

Psat_k '= interp_vs,Ts,Ps,Tatm_k

Psatw_k := interp_vs, Ts, Ps, Twatm_k

DATA

	Time	v	WW Pre	ess
	sec		psia	
Variable	X.		Pww	
			21 496	
	600		21,490	
	1148		21.047	
	1696		20.074	
	2244		20.766	
	2792		20.761	
	3340		20.737	
	3888		20.696	
	4436		20.703	
	4984		20.72	
	5532		20.720	
	6080		20.729	
•	6628		20.758	
•	7176		20.781	
	7724		20.8	
	8272		20.814	
	8820		20.824	
	9368		20.828	
	9916		20.829	
	10464		20.84	
	11012		20.851	
	11560		20,86	
	12108		20.866	
	12656		20.869	
	13204		20.87	
	13752		20.869	
	14300		20.866	
	14848	-	20.86	
	15396		20.853	
	15944		20.843	
	16492		20.832	
	17040		20.818	
	17588		20.803	
	18136		20.786	
	18684		20.768	
	19232		20.747	_
	19780		20.726	
	20328		20.707	
	20876		20.692	
	21424		20.676	
	21972		20.659	
	22520		20.641	
	23068		20.623	
	23616	•	20.604	
	24164		20.585	
	24712		20,565	
	25260		20.544	
	25808		20.523	
	26356		20,502	
	20000		20.48	
	20304		20 457	
	21452	•	20,457	

ww	air T	DW Temp		qn
de	a F		deg F	· ·
	0		-	
Twatm k		Tatm _k		y _k
115.825		178.689		132
117.715		173.619		135.359
119.281		171.264		138.141
120,597		169,635		140.48
121,765		169,12		142.554
122,802		168.458		144.397
123,714		167.651	•	146.018
124,519		167,425		147.447
125,248	•	167,299		148.743
125 906		167.098		149.912
126 496		166.887		150.961
127 033		166.99		151.915
127 528		167 052		152,793
127.020		167.074		153 599
127.301		167.058		154 335
120.333		167.004		155 004
128.772		166 013		155 609
129.112		100.313		156 152
129.418		100.700		156 641
129.693		100.795		157.00
129.946		100.01		157.03
130.177		166.806		157.501
130.387		166.782		157.874
130.578		166.74		158,212
130.749		166.679		158.517
130.902		166.599		158.789
131.037		166,503		159.029
131.156		166.389		159.24
131.258		166.258		159.422
131.345	i	166.111		159.576
131.416		165.949		159.703
131.474		165.771		159,804
131.517		165.578		159.881
131.546		165.37		159.934
131.563	,	165.148		159.963
131.567		164.912	-	159.97
131.559		164.662		159.956
131.54		164.46		159.922
131.514		164,29		159.877
131,482		164.115		159.82
131,445		163,934		159.753
131 401		163,747		159.675
131 352		163 554		159.588
131 298		163 356		159,492
131 230		163 153		159,387
131 174		162 944		159,273
131.174		162 721		159 151
131.106		162.131		159 02
131.032		102.012		159 000
130.955		102.289		150.002
130.873		162.062		150.737
130.787		161.829		108,584

WW Pool T deg F

Dresden SUPPRESSION POOL HEATUP CALCULATIONS 1/2 Case with limiting K and 84F Service Water Temperature, initial pool temperature at 95F

This calculation is based on the use of a Runge-Kutta solution method to numerically evaluate the first order differential equation describing the behavior of the suppression pool following the completion of the blowdown from the vessel. It uses boundary conditions taken from GENE-770-26-1092, GENE-637-042-1193, and the Quad Cities FSAR. These are the decay heat, pool temperature at 600 seconds, the K value for the heat exchanger, and a term to account for sensible heat of the vessel metal. The purpose of this model is to provide a representation of the most likely initial licensing basis colculations, to allow the effects of reduced HX performance and lower service water temperatures to be assessed. The following vectors represent the decay heat input to the problem. These are based on the GE supplied data and represent May-Witt curve values.

Ť	$P_1^{\overline{m}}$
600	.02549
1000	.02229
2000	.01841
4000	.01512
6000	.01353
10000	.01201
20000	.01008
40000	.00812
60000	.007394

Q(x) defines a linear interpolation of the above vectors for use in the calculation

 $Q(x) \equiv linterp(t, p, x)$

PHT is the pump heat input, with CCSW and LPCI considered to be 700 HP and the Core Spray at 800 HP, converted to BTU/SEC

note that pump heat is set to zero for this original basis calculation

PHT≡(2.700 + 1.800) .70696 0.0

HXK is the heat removal rate of the LPCI HX in BTU/Sec-F

нхк≡296.96

SENSHT is the sensible heat stored in the thick metal structures, added to the pool in exponential fashion as BTU/sec, note that this term is adjusted to provide a reasonable match to vendor base calculations, with the total sensible neat being approximately 100 MBTU, assuming a fraction remaining at 1000 seconds.

$$\text{SENSHT} = \frac{10^8 \cdot 70}{7200}$$

Enter the derivative of y as f(x,y): (Note that x=time(seconds and y=Temperature) Pool Volume is based on final volumes provided by GE in base calculations (vapor space of 108000 cubic feet, yielding a pool volume of 124194 ft3). Note that a 1.02 factor has been added to provide a 100% rated power consistent with original calculations. T $_{sw}$ =84.0 service water temperature

 $f(x,y) = \frac{\left(Q(x) \cdot \frac{2578}{1.02} \cdot \frac{1000}{3600} \cdot 3413 \cdot 1.0 + PHT + SENSHT \cdot e^{-\frac{x}{7200}}\right) - (y - T_{sw}) \cdot HXK}{(124194) \cdot 62.054}$

Enter starting and ending values of x, the number of intervals for the integration, and the initial value of y

.

max(y) = 171.999

.

Pressure Calculation

R≡53.34	LPCI=	CS=4500
R-Sec.	7.4805 .0164 60	7.48050164-60
Vdw≡158236	Ma≡19284	
\`ww≡108000	Qpmp≡2.700.70696.0.0	Qpmpc≡80070696.0.0
Pvb=0.5	note pump heat set t	o zero for initial basis type calc
$Tatm_{k} \equiv \left[\frac{y_{k} - \frac{HXK \cdot (y_{k} - 95) - Qpmp}{LPCI} \right] \cdot LPCI + \frac{1}{LPCI} = \frac{1}{LPCI} + \frac{1}{LPCI}$	$\frac{\int Q(x_k) \cdot 2578 \cdot 1000 \cdot \frac{3413}{3600 \cdot CS} + y_k + y_k}{LPCI + CS}$	$\frac{-\frac{Opmpc}{CS} + \frac{SENSHT \cdot e}{CS} - \frac{\frac{N_k}{7200}}{CS} - \frac{SENSHT \cdot e}{CS} - \frac{SENSHT \cdot e}{S} - SENSH$

 $Twatm_{k} \equiv y_{k} - \frac{HXK \cdot (y_{k} - 95) - Qpmp}{LPCI}$

•

This File estimates Psat based on temperature input. It is a curve fit interpolation between 120 and 200 degrees of data from the 1967 ASME tables.

	120	1.6927
	130	2.223
	140	2.8892
	150	3.7184
e '-	160	4.7414
5	170	5.9926
i	180	7.511
	190	9.34
	200	11.526
	210	14.123

 $_{Ts} := s^{<0>}$

 $P_{s} := S^{<1>}$

vs :=pspline(Ts, Ps)

$$\begin{split} & \operatorname{Psat}_{k} :=_{\operatorname{interp}} \left(\operatorname{vs.} \operatorname{Ts}, \operatorname{Ps.} \operatorname{Tatm}_{k} \right) \\ & \operatorname{Psatw}_{k} :=_{\operatorname{interp}} \left(\operatorname{vs.} \operatorname{Ts}, \operatorname{Ps}, \operatorname{Twatm}_{k} \right) \end{split}$$

DATA

Variable

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	VW Pool T deg F
k 1000 23.123 124.267 190.237 147 1148 22.367 126.087 185.071 150.234 1696 22.344 127.583 182.621 155.893 2244 22.201 128.833 180.9 155.112 2792 22.179 129.934 180.295 157.068 3340 22.136 130.906 179.544 158.796 3888 22.074 131.755 178.65 160.304 4436 22.072 133.166 177.847 163.874 5532 22.072 133.766 177.556 164.818 6080 22.063 134.296 177.556 164.818	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
3888 22.074 131.755 178.05 160.304 4436 22.072 132.497 178.339 161.623 4984 22.077 133.166 178.13 162.811 5532 22.072 133.764 177.847 163.874 6080 22.063 134.296 177.556 164.818 6678 22.086 134.766 177.581 165.671	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
4984 22.077 133.766 177.53 102.071 5532 22.072 133.764 177.847 163.874 6080 22.063 134.296 177.556 164.818 6668 22.086 134.776 177.581 165.671	
2533 22.072 133.764 177.854 165.674 6080 22.063 134.296 177.556 164.818 6638 22.063 134.766 177.556 164.818	
6628 22.086 134.356 177.581 165.671	
(66/X [170,001 [170,001 [170,001 [170,001]	
177 567	
<u>1176</u> <u>122.105</u> <u>135.214</u> <u>177.507</u> <u>106.45</u>	
1724 22.114 150.015 177.574 167.8	
<u>13272</u> <u>13274</u> <u>177728</u> <u>168375</u>	
136.556 177.250 100.551 102.00 120.116 136.587 177.137 168.889	
0016 122.110 126.207 177.127	
10404 22.11 137.000 176.001 170.001	
11560 22 114 137 456 176 763 170 434	
12108 127.112 137.62 176.676 170.725	
12656 137.765 176.572 170.983	
137.892 176.45 171.208	
13752 22.091 138.002 176.311 171.403	
14300 22.079 138.095 176.156 171.568	
14848 22.065 138.172 175.986 171.705	
15396 22.048 138.233 175.799 171.814	
15944 22.03 138.28 175.598 171.897	
16492 22.009 138.312 175.382 171.955	
17040 21.986 138.331 175.152 171.989	
17588 21.962 138.337 174.907 171.999	
18136 21.935 138.33 174.649 171.986	
18684 21.907 138.311 174.378 171.952	
19232 21.877 138.28 174.094 171.897	
19780 21.846 138.237 173.798 171.822	
20328 21.819 138.185 173.549 174.728	
20876 21.795 138.126 173.332 171.524	
138.062 175.115 171.305	
<u>21972</u> <u>21.746</u> <u>137.992</u> <u>172.69</u> <u>171.360</u>	
23010 21.007 137.754 172.100 170.01	
101012 101012 101012 101000 1010000 1010000 1010000 10100000 10100000 10100000 10100000 10100000 101000000	
<u>13200</u> <u>137,376</u> <u>171,191</u> <u>170,292</u>	
176356 21 525 137 272 170,931 170,100	
26904 21 496 137.164 170.667 169.914	
137.052 170.4 169.716	

<u>Attachment 5</u>

Safety Evaluation Justifying the Proposed Change

-

Safety Evaluation

Review of documents in support of containment strainer replacement modifications revealed that the differential pressure that would be expected at design flow rates is approximately 5.8 feet versus the 1 foot value presently in the FSAR and NPSH calculations.

Evaluations utilizing the increased strainer head loss showed that there was insufficient head for the ECCS pumps with no credit for containment over pressure and existing Technical Specification limits on suppression pool and ultimate heat sink temperature. Discussions were held with NRR staff concerning limitation of suppression pool temperatures and/or ultimate heat sink temperatures to allow operation with no more than the 2 psig presently discussed in the Dresden UFSAR. NPSH calculations prepared utilizing the increased strainer head loss showed that a maximum limit of 75 F on initial suppression pool and ultimate heat sink temperatures would provide adequate NPSH with 2 psig of containment over pressure during the first 10 minutes of the accident and require no credit over pressure beyond 10 minutes. This evaluation showed that the Core Spray pumps would cavitate during the first 10 minutes of the accident and the NPSH deficiency would be 3.3 feet.

As documented in the UFSAR, previous NPSH calculations showed that there was a 3 foot deficit in LPCI pump NPSH during the first 10 minutes after accident initiation during certain accident conditions. Cavitation testing performed prior to Dresden licensing demonstrated the ability of the pumps to withstand cavitation for at least 1 hour without damage. This was accepted by the NRC in an SER dated January 4, 1977. The UFSAR describes a containment over pressure (2 psig) which would assure adequate pump NSPH. Therefore the ability of the ECCS pumps to meet the post-LOCA NPSH requirements was shown by either the presence of containment over pressure or by demonstrating the acceptability of pump cavitation.

The as-found ECCS strainer differential pressure requires the use of containment over pressure **and** cavitation to meet the LOCA NPSH analyses. The basis for Technical Specification 3.7 states that containment pressure is not required to maintain adequate NPSH for the ECCS pumps. Therefore the margin of safety is reduced and an Unreviewed Safety Issue exists.

The table below shows the impact on NPSH as a result of the increase in strainer head loss and placement of limits on suppression pool and ultimate heat sink temperatures:

Original NPSH analyses	<u>NPSH</u> - 3.0 feet
Revisions to analyses to incorporate issues raised during 1996 ISI	- 2.8 feet
NPSH loss due to strainer head loss discovery *	- 6.7 feet
Subtotal for NPSH margin decrease	-11.5 feet
Added NPSH margin due to lower suppression pool/UHS temperatures	+ 3.6 feet
Credit for 2 psig containment over pressure (1 st 10 minutes)	+ 4.6 feet
Total margin following License Amendment	- 3.3 feet

* Strainer head loss at runout flow

As shown above, original margin is essentially restored with credit for 2 psig containment over pressure and the 75 F limit on suppression pool and ultimate heat sink temperatures. However, as shown above, there is an overall reduction of 0.3 feet in NPSH margin which leads to an Unreviewed Safety Question.

The cavitation test report demonstrates the ability of the pumps to withstand cavitation without damage for at least 1 hour. Operator action is credited at 10 minutes to throttle the pumps to eliminate cavitation. Calculations show that the pumps can deliver adequate flow during the first 10 minutes even under cavitating conditions. The operators are trained to throttle the pump if cavitation conditions occur during long term containment cooling. Calculations demonstrate that sufficient flow is available long-term under throttled conditions to achieve containment cooling.

The restriction of 75 F on suppression pool and ultimate heat sink temperature provides for equipment operation within the bounds of existing analyses.

ECCS pump performance does not contribute to or affect initiation of a LOCA, therefore, the probability of an accident is not increased.

A minimum of 2 psig over pressure is available until after containment cooling is initiated. The LPCI and Core Spray pumps are capable of performing their design functions with respect to coolant injection post LOCA with 2 psig over pressure. This ensures that core cooling is provided and peak clad temperatures remain within limits. No containment over pressure is necessary for adequate NPSH for long term containment cooling. Therefore, onsite and offsite doses as described in the UFSAR are not impacted.

This change does not result in any physical change to the plant or modes of operation. No new failure modes are introduced. The cavitation tests demonstrated the ability of the ECCS pumps to cavitate for at least 1 hour without damage. The operators have been trained to recognize cavitation conditions (oscillating flow and discharge pressure) and to protect their equipment by throttling flow if evidence of cavitation exists. The control room has indication of both discharge pressure and flow on each division of Core Spray and LPCI. The restrictions in suppression pool and ultimate heat sink temperature do not cause the equipment to operate outside of the present design basis. Therefore the probability or consequences of a malfunction of equipment important to safety is not increased.

An analysis has been performed which evaluates the effects of this change on peak clad temperature. The previous LOCA analysis resulted in a peak clad temperature of 2030 degrees F. The calculation performed consistent with the conditions described in the amendment show that the peak clad temperatures rises to 2163 F, but remain within acceptable limits.

In conclusion, it is determined that no significant impact to safety will result from this proposed change. However, an Unreviewed Safety Question does exist due to the dependance on cavitation, as well as containment over pressure during the first ten minutes after an accident and the minor (0.3 foot) increase in ECCS pump NPSH margin.

<u>Attachment 6</u>

Cavitation Test Report, Bingham Pump Company, 1969

Correspondence between ComEd and Sulzer-Bingham Pump Co. regarding cavitation test report.

Discussion of test pump vibrations and comparison to Dresden pumps.

ł

ENGINEERS AND MANUFACTURERS OF CENTRIFUGAL PUMPS . MYDRAULIC TURBINES . VALVES . NUCLEAR COMPONENT

4

Bingham-Willamette Company

A DIVISION OF GUY F. ATKINSON COMPANY CABLE: TELES-SHIELS - THE-SHIELS - S

Main Officer and Galory - 2800 N.W. FRONT AVENUE . PORTLAND, OREGON 97210

Kovember 2, 1976

ትር ፍላሪያ የርምሆነ ቸው. • (ሥርዓት የጠቅ መዝጋ አጠኝ ነገድ መመለዋልን • ላይ መድካታ ማሳትብ ይሄዋሮደግ, ይህንድ ንሳሳ • ነበ ማሳት ሃሳት ነው የሆነ የሆነ የሆነው ያሳትን • ማስው ድር በግን የቆት 3010

Sargent and Lundy 55 East Hourse St. Chicago, Illinois 60603

Attn: Mr. R. Goebbert Mail Gode 31-0-55

Reference: Commonwealth Edison Co. Residual Heat Removal Fump Serial Number 270425 Cavitation Test Report

s/H-270425

Gentlesens

Confirming our telephone conversation of this date, we are pleased to advise that the subject pump will operate at approximately 5800 gpm with 32.3' RPSH available for up to a period of 10 minutes without impairing future operation of the pump. After this period it will be possible to revert to normal operation for a period of approximately two (2) weeks.

For your review, we are attaching a complete copy of our Cavitation Test Report on this unit and you will note on Fage 4 of 4 the various data taken under cavitation conditions. Also, you will note that on Page 3 these cavitation conditions were maintained for a period of one (1) hour.

Should you require any additional information in this regard, please lat us know.

Very truly yours,

BINGHAN - WILLAMETTE COMPANY

VLG/bw Attachment V. L. GEORGE DISTRICT SALES KANAGER

BINGHAM PUMP COMPANY

· Engineers and Alanufacturers of

HORIZONTAL & VERTICAL CENTRIFUGAL + TURBINE + AXIAL FLOW + WET RING VACUUM PUMPS

_-Ilain Offices and Jaclory ++ 2800 N. W. FRONT AVENUE ++ PORTLAND. OREGON 97210

REF: S.O. 280685 (Pumps Nos. 270419/26)

CAVITATION TEST REPORT

12x14x14-1/2 CVDS Pump

GENERAL ELECTRIC APED QUAD CITIES I & II RESIDUAL HEAT REMOVAL PUMPS P.O. 205 H0386 OUR S.O. 270419/26

> ATTACHED IS THE REPORT OF THE CAVITATION TEST RUN ON PUMP NO. 270425 ON MAY 15 & 16, 1969.

> > 5.2

Ref: 5.0. 280685 (Pumps No. 270419/26) Page 2

SUBJECT: CAVITATION TEST 12x14x14-1/2_CVDS_Pumps

For this test, Pump No. 270425 was set up in a closed loop on the large suppression tank. All set ups, instrumentation and testing procedures were in strict accordance with the standards of Hydraulic Institute and ASME Ptc 8.2. Upon completion of witness and NPSH testing, pump was disassembled for inspection. This inspection revealed the following:

> Shaft Sleeve: Excellent condition - only minor scratches from small particles which passed through separator.

Bearing: Excellent condition - only minor scratches as on sleeve.

<u>Impeller</u>: Excellent condition, except wear surfaces showed some evidence of wear from larger particles in water and lower wear surface showed one groove.

Seal: Excellent condition.

Wear Rings - Case: Excellent - slight wear only.

Shaft: Total runout less than 0.0005".

No damage was evident from this test.

Pictures were taken by G.E. personnel and pump was reassembled for cavitation test. This test consisted of setting the desired capacity and then reducing the suction pressure to various NPSH values until the impeller was cavitating. This was run at capacities of 4000, 5350, and 6000 GPM. Data taken at each point was suction and discharge pressure, capacity, power input, vibration, and water temperature. See curve No. 26992 and pages 1 & 2 of test data for results.

At completion of testing, impeller was removed and inspected by G.E. and Bingham personnel. There was no evidence of any damage to the impeller from cavitating. There was an indication of slight rubbing on bottom impeller wear surfaces. Nothing was evident on case ring.

Pictures of impeller were taken by G.E. and pump was reassembled for run-out cavitation test at 6000 GPM. For this test capacity was set at 6000 GPM. Suction pressure was then reduced until an NPSH value was reached that was below the cavitating point attained on the previous test. However, the discharge valve was opened to maintain 6000 GPM capacity, rather than let the capacity fall back 5t, as this was a more severe test of the pump. This condition was maintained for one hour. See attached data sheet, page 3, for test results.

At conclus

and and a second a second many second s

Ref: S.O. 280685 (Pumps No. 270419/26) Page 3

At conclusion of test, impeller was removed and inspected by G.E. and Bingham personnel. Again there was no sign of any cavitating damage to impeller. The only indication of wear appeared on bottom wear ring, which seemed to be slightly "duller" in color, which indicated possibly more rubbing. Bingham Inspection miked the diameter of this area of impeller and it was within drawing tolerance - 8.6070 G.E. personnel photographed impeller.

Pump was reassembled for second run-out cavitation test at 6000 GPM and suction pressure reduced to an NPSH value slightly below the guaranteed value (about 40.2 ft.). The suction pressure was then further lowered until the pump capacity fell off to 5700 GPM. This cavitating condition was maintained for one hour. At this time, the suction pressure was lowered again until the pump capacity dropped to 5400 GPM. The pump was run in this manner for 30 minutes. See attached data sheet, page 4, for test results.

Pump was disassembled for inspection. Condition of impeller was not changed - bottom impeller wear surface still miked 8.6070". Shaft sleeve and bearing in excellent condition, except for a few minor scratches.

Cavitation test was considered complete and pump was released for shipment.

All cavitation testing and inspection witnessed by A. Spivak. Other G.E. personnel present included Tom Day, Norm Peterson and Eldon Bingham.

Leo Garrow Chief Test Engineer Bingham Pump Company May 22, 1969

Attached: Curve No.26992 Test Data Sheets 1 thru 4

											-	-				,	in .		•	•	1
							1	Ī	.]	•										. 1	•
							 		{								11			{	-
								╍╍╍┊┥													-
1															~~~		• :				3
	•		-																ł		11
				·																	0
9.05	375	17/16	01	617	12	١ss			555	8465		95 L	111	3.1		Dest	11	Þ5-	[:]		6
EIE	2.92	51 78	11 51	65	355	909	~~~~~	••	019	8455		<u>2</u> 9.7	53.4-72	9.1		2892	211	67-			8
1.94	292	11	8002	`` \$``	603	E19			819	8785		53 L	J 315	21		8.605	721	3.51		2	[i]_
•				į															-	1 ⁻¹	9
512	212		01	1.05	. 191	285			885	0009		256	726	92		2:16	2,62	5.0			ę
1.85	512		550	912	191	V 85		·	1.75	0009		<i>ς</i>	5001	02		4701	فنزرز	3.0		-	•
9'62	5.12	01	01	962	ILI	185			55.5	0009		251	3.511	26		1211	67	5.5			5
900	SIE		50	892	200	195			0(0009		25:	2 41	02		1.5.1	65	22			2
079	કાર	80		10	752	165			SE	0009		25.6	1751	05		14	7L	671		•	1
·	- 58	12 101 11 12 10 10 12 13 10 12	2212						EVIN ILLYA			DH TRI	NITAN 40 1331		-	10 1374 N7128		181231 12124 12124	XX		
्र हे साथ			\$714 #7179284					5	28 =1	v	GUTN	IP AE	NI NEVO	1002	CTAR'S	B	TWO	70	אפיכ	10. 478 G1248	
Scity	ł	MOUS							<u></u>	9	1961 • }	-11118	SINTHAG THIRA	99	13282			<u> .</u>			
		\sim		-	1 24 2 0	1 \$444~	2/2 ~ 4++	AHIN) 			1	1980	rhasia	<u> </u>	2002	L	
	1001	CHASTS -	HOLLY BOW				0.04	1.14 :	42774			-917	.1			10		-	53425	101	~ [
105	114411 (C)	260	10. 2E	JAN	m	1.65	- 3 79	274473	.330,063 1.7.67 1.7.77 1.7.77 1.7.77 1.7.77 1.7.77 1.7.77 1.7.77 1.7.77 1.7.77 1.7.77 1.7.77 1.7.77 1.7.77 1.7.77 1.7.77 1.7.77 1.7.77 1.7.777 1.7.777 1.7.777 1.7.777 1.7.777 1.7.777 1.7.777 1.7.777 1.7.7777 1.7.7777 1.7.7777 1.7.7777 1.7.7777 1.7.7777 1.7.7777 1.7.7777 1.7.7777 1.7.7777 1.7.7777 1.7.7777 1.7.7777 1.7.77777 1.7.77777 1.7.77777 1.7.77777 1.7.77777 1.7.777777 1.7.77777777			<u></u>	WHE ISTE	6111		1 V 1 + V 1		3HVA	tta 2.etu en e	ब बजा	
<u>ري</u>)- <u>5</u>	רורסט	8	19/11 (C	}	म म 195 क	1	·40 (SCA S	0 t	.41	11	21								111
 1			"' 		NED	<u>nor</u>	cn,	dH 0	503	1	21	PL	1347H31H	-[c	1111
	C 72	017.		00 (1	11 37K	141 100	נכ עצוע	I V	10 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	170001550		1.11	.(13	143	01.9. Head	Hill In A	1 31511"	7433
- ۲ 	111	41144 1111		3r '	01 11			5311	15 0	1/102	¥+2+4¥₩. <u>></u>	\overline{n}	E VUC	50 172	11511 1		~~~~	いう		4 3 20 2	
	ເລສ						nod	940 '91	NVILEO		รพบร	i nah	enig								F6Q4

	910 54V- 1 - L A 2 - L A 2	214-0.W 21L 27B 27B 27B 27B 27B 27B 27B 27B	1 C 1 C 1. 0. BEAD 1. 0. BEAD	VDS GPH Lap Ma		17.1 1 59.1		EUTOLO ITOLA E. API ASSERBLY BHISCHARSE 12 TESE BIA.	ED. CO ent of T. C. Not 10.		C.D. F C.D. F C.D. F N.V/EAL TTL ANGA .1. FO IN DIF FIFE 10 10 10 10 10 10 10 10 10 10 10 10 10	THEI THEI THEI COC THEI THEI THEI THEI THEI THEI THEI THEI	ID. OKE TIES DISCN M DISCN M DISCN M DISCN M DISCN DIS	CON CU 127.07	EUST & 205 5 TCA 9 321 9 1 1 2 4 1	(280285) 80.4044 PERF 144 5 T-270425 105 105 105 105 105 105 105 10			-2						
14 MG.	EPE10 # P N.	SUCTION -		SUGTION HG COL		SUCTION HG COL		DISCIL DWT	ISCILARGE		H, 5-6-	107.М. ВТИАНІС ВСАВ 10		EAPACITI f · 194 NTUR	8	12054 11 2054 11		<u>64.y</u>		1 44 1 4		VACATE AND	e stand		HDSI C t HAF
1		XX	Pict OF WAIL: 17.6	A = 20	FACT OF WATER		с. <u>9</u>	PELT OF MATER	4.22		• P.M. (10000	14113 READ			611	497	81.3	100 L	12	14.0 · 35.1 34.5	42.7				
- 3 - 3			12.3	151 175	4525		2.7 2.7	41.9	422		4000	<u>6:20</u> 596	·		604 590	470	פרר פרר 1.5	1.3 0.8	150 22	34.8 347	22.5 21.7				
ا - - -	5		17. 2,	<u>off</u>					h.c5 .		3720									247	214				
•)																								
•	 					-																			
				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1														 		 					

·····

. 5

									•									اهر. اهر				•
					T	•					1. T		7	Ī		Ţ		lr i		[ing Cris
		-0	5 240	2	লম্	1550	2	Eoi	m	tto	7.1	237									·	
				123	क		ত	<u>স্প</u>			UNID	S'Y								{	†	
_	নের	16	VYY IC	220	9R	100	AJT.	191	9 T	5	27		1121	~								.
	r 22	692	21	107	7	5:92	981	515			osé	nohe		L'L	765	51		332	207	5.9-		
,	5:22	012	117	60		5.92	721	SIS		<u> </u>	025	0045			966	21		5.56	100	57-		
- -	5.25	VLE	01	101	꾓	1.92	721	250			525			11	L.6.6	31		5:26	7.00	-70-		
	44 0	150	SL DL O	140	99	1 11	hedi		1 90									1 14				-5
						2.4				394.	11140	112173	1-14					1 34 1 1 1 1	7.74			4
	D.BE	5.6	SI	1	95	285	1.21	195	[ļ	3.1-	0012		- 25	1.511	· · · ·		<u> қ сл</u>	3 79	62-		
1	y de	ψ'L2	60	2	28	162 	É 91	17:	[<u> </u>	1.57%	505		95	£.511	3 I		550	1.7	-3°C		
<	i yi	512	30/6	201	0.3	26:	וכט	195	-		305	COLS		った	3.211	วิเ		D Ter	1.20	2:2-	·	
(obe	7:12	LO	101	~?	42	271	275			した	ର:୨୮.ଟ		ູງບ	p. E11	51		かしい	الرقي	- ³ .í		
4	8.55	LLS	704	, n	5.3	1:32	5-91	មាន		1	ંદક	હલાવ		ی.د	1211	15		107Ú	103	62-		
1	EOY	ସହ	90.		~	312	13	1355	1		265	0000		136	7 :21	02		252	17.5	52+		:
		• *	10 20					1				110		23	81118			NATA	110	#71C3	X	·
4	sive a		LAE.	12.2	ivi	43	2	3:	 	0	N8 =+		10000	1 84 - 141	NT	0000	-4373		1 port			-
ι.	• • •					\$ Ŧ	* s	47					BART 4 MM			ин 1 9-9	10 1079		Twd		9 9 M	
		ľ	4700 GB	Ī	F		<u> </u>			NIMO.	1		TI DASA	1	TOLOL	A H		393	VHDSIQ	HOH	1302	
1	widt (1:06 1011	ans	Taiav		٠ <u>۴</u> ،		6/ 74 -	~~\ <u>_</u> ***	2.14 2.14	r vaast Keer a	•										
1	V 59	101			'one	1 104	<u></u>) h2 z	27:02	*****	· \$4	·			1 -1 • ###1 ###*			±∇ • ↓∇	TYP 'dal	2NV4	2003 S	
	(9·	6.5	ורטכי	B		141	•	روسیا 14 (140	0095	01	.171	•	21		Ī	<u>-</u>			Γ	Γ
•		6416	45 6			Ş	ষর	MOT	sno	HD H	<u>600</u>	N) 05 7	27		4 1711/H2E18	-[]	
•	17.		7017		0	20	CH-	500		NCC	(1010A 133)	T VIEV	11 11 11 11 11 11	10 JU	A1000355		<u>, u</u>	m .	1113 C (1 #	GADE	1 8/4 1-1 1-1	
•	· 7			134146		5 E	ON YN	100 LSN		Sal		0 Y 107	>		S VUE	5	100		1110	1J Ť	¥ 1	
	•••	126	1203	4	ir:	•		•	NO	ding .	1477111	स् र	aran:	a niał	io:11a							
					7																	

To:	Don Spencer Sulzer-Bingham Pumps
Subject:	S/B Pumps 12x14x14.5 (LPCI) and 12x16x14.5 (CS) CVDS Flow Delivery Under Full Cavitation Conditions
Reference:	"Cavitation Test Report - 12x14x14.5 CVDS Pump", Bingham Pump Co. Report dated May 22, 1969

ComEd is currently preparing an evaluation of the Dresden Station Low Pressure Core Injection (LPCI) and Core Spray (CS) systems under post-accident conditions. A portion of this work requires estimating the LPCI/CS pump flows under reduced Net Positive Suction Head (NPSH) conditions.

As part of our research, Reference 1 was located and has been reviewed. Based on this review, ComEd is requesting a discussion from Sulzer-Bingham addressing the following:

1. Published NPSH Required (NPSHR) curves for these pumps are provided on the vendor pump curves. These NPSHR curves are normally based on a 3% reduction in pump developed head. The data in Reference 1 indicates that the pump remains stable for several feet beyond the NPSHR value, which is expected, before the pump head completely collapses. Please include a brief discussion of this.

2. The NPSH conditions that can exist post-accident may result in full cavitation of the pump, i.e., complete degradation of pump developed head. It is this point that we are trying to identify in our evaluation. Given a known NPSH Available (NPSHA) that is less than the published NPSHR, we would like to estimate the flow at which the pump will operate in the system. Would it be correct to use the point of initial collapse of the pump developed head (the "bend of the knee") from the data presented in Reference 1?

3. Three separate cavitation tests are presented in Reference 1, at pump flows of 4000, 5350 and 6000 gpm. Utilizing the NPSH values at initial collapse for these flows, we have developed a reduced NPSHR curve for these pumps that represents the point at which full cavitation has been achieved. Please review this curve and offer any comments.

The ultimate goal is to ensure that the methodology we are using to estimate LPCI/Core Spray pump flow post-accident is sound. Any additional comments you may have on this subject would be appreciated.

Harry Édas Pump Specialist Commonwealth Edison

LPCI/Core Spray NPSH Required Composite Curve

QULZER BINGHAM FUMPS INC. 2800 NW Front Avenue P.O. Box 10247 Portland, Oragon USA 97210 Phone: 601-603-228-5200 HQ Engineering Fax: 601-503-228-5568

TELEFAX

DATE:01 Nov. 1996c;TO:Harry PalesFax:815-942-2920 x3103Phone:Phone:Phone:503-226-5568FROM:Don SpencerReturn Fax:503-226-5568Phone:5418State

SUBJECT: Comments To Quad Cities LPCS/CS Pump NPSH Position

I have reviewed your note and our test report on the above subject and am able to comment as follows. My comments mirror the order of statements in your Nov. 1, 1996 fax to me.

1. Industry standard practice utilizes data from a NPSH test that establishes performance based on a 3% head drop. The testing performed by SBPI for the subject pump produced data showing performance for fully degraded suction conditions. This test also investigated pump internal condition after hydraulic limits had been established. It is entirely appropriate to predict pump performance from the fully cavitating test, rather than limit predictions based solely on a less stringent test. The one area where caution should be employed, though, is related to how the pump performs as the suction pressure is reduced. This impeller design incorporates a large eye which can produce flow stability variations at low suction pressures. However, under the scenario that you are reviewing, this should not present short term (less than 6 months) operability concerns.

2. Yes, it is appropriate to use the point of initiation of total head degradation to predict reduced NPSH behavior. In fact, this method would be considered as providing a more accurate prediction of the suction pressure at which fully cavitating operation would occur.

3. The curve you faxed to me depicting both 3% and "total head degradation" performance appears to be reasonable based on the data collected during the test conducted for the 12x14x14.5 CVDS pump on May 15 and 16, 1969.

PUMP VIBRATIONS: CAVITATION TEST PUMP VS. DRESDEN PUMPS

The pump vibrations experienced during the cavitation testing did not produce any measurable pump degradation. The particular pump tested by the OEM in 1969 was serial number 270425, which is currently installed as the Quad Cities 2A RHR pump. A comparison of the recent vibration history of this pump with the Dresden LPCI and Core Spray pumps indicates that there is little difference between the pumps, with all pumps operating at 0.1-0.2 in/sec, unfiltered, peak-to-peak. Therefore, it is expected that the Dresden LPCI and Core Spray pumps will perform similar to the tested pump, i.e. no vibration-related pump degradation due to cavitation for a period of at least one hour.