Exhibit C NEP-12-02 Revision O page 1 of 2

.

COMMONWEALTH EDISON COMPANY CALCULATION TITLE PAGE

ч.

_ (**)**)

•

, **†** . .

SAFETY RELATED	REGULATORY	RELATED NON-SAFETY RELATE
CALCULATION TITLE:	Verification of Cay raidwood and Byron 1(2)S Susceptible to Press	pability for 18802A & B Valves ure Locking
· · ·		
STATION/UNIT: Braidwood	d & Byron/1&2	SYSTEM ABBREVIATION: SI
EQUIPMENT NO.: ((F APPL.) 1 SI8802A 1 SI8802B 2 SI8802A 2 SI8802B		PROJECT NO.: ((F APPL.) N/A
REV: 0 STATUS:	QA SERIAL NO. OR CHR	ON NO. DATE:
REVISION SUMMARY:	Berlin IR. C. I Initial issue.	Sedford DATE: 21/
REVIEWED BY: JAS	lan 2-12-96 1. D. :	Tolar
REVIEW METHOD: Detailed	review	COMMENTS (C OR NC):_
		ruce J. Acas

Exhibit C NEP-12-02 Revision 0 page 2 of 2

COMMONWEALTH EDISON COMPANY

17

CALCULATION REVISION PAGE

CALCULATION NO. B	RW 96-015	PAGE NO.: 2
REV: STATUS:	QA SERIAL NO. OR CHRON NO.	DATE:
PREPARED BY:		DATE:
REVISION SUMMARY:		
REVIEWED BY:		DATE:
REVIEW METHOD:		COMMENTS (C OR NC):
REV: STATUS:	QA SERIAL NO. OR CHRON NO.	DATE:
PREPARED BY:		DATE:
REVISION SUMMARY:	• •	
· · · · · · · · · · · · · · · · · · ·		
REVIEWED BY:		DATE:

:_*****

Exhibit D NEP-12-02 Revision 0

COMMONWEALTH EDISON COMPANY

1

CALCULATION TABLE OF CONTENTS

	PROJECT NO. N/	Ą
CALCULATION NO. BRW 96-015	REV. NO. 0	PAGE NO. 3
DESCRIPTION	PAGE NO.	SUB-PAGE NO.
TITLE PAGE	1	
REVISION SUMMARY	2	
TABLE OF CONTENTS	3	
I. PURPOSE/OBJECTIVE	4	
II. METHODOLOGY AND ACCEPTANCE CRITERIA	4 - 6	
III. ASSUMPTIONS	6 - 8	
IV. DESIGN INPUT	. 8	
V. REFERENCES	8,9	
VI. CALCULATIONS	9 - 14	
VII. SUMMARY AND CONCLUSIONS	15	
VIII. LIMITATIONS	15	
IX. ATTACHMENTS	15	
A) Disc Dimensions	A1-A4	
B) Modulus of Elasticity - 1995 ASME Section II, Table TM-1	BI	•
· · · ·		

CALCULATION NO. BRW 96-015

N/A

I. PURPOSE/OBJECTIVE

The purpose of this calculation is to verify the capability of certain MOVs which have been determined to be susceptible to the pressure locking phenomena. The MOVs are installed in the Safety Injection system at Braidwood and Byron Stations.

II. METHODOLOGY AND ACCEPTANCE CRITERIA

The methodology for calculating the thrust required to open the MOVs under the pressure locking scenario is based on the Reference 1 (Roark's) engineering handbook. This methodology has been verified in accordance with a test performed on a similar valve at Braidwood Station and is documented in Reference 7. The methodology determines the total force required to open the valve under a pressure locking scenario by solving for the four components to this required force. The four components of the force are the Pressure Locking Component, the Static Unseating Component, the Piston Effect Component, and the "Reverse Piston Effect" component. These components are determined using the following steps.

Pressure Locking Component of Force Required to Open the Valve

The valve disc is modeled as two plates attached at the center by a hub which is concentric with the valve disc. A plane of symmetry is assumed between the valve discs. This plane of symmetry is considered fixed in the analysis.

The pressure force is assumed to act uniformly upon the inner surface of the disc between the hub diameter and the outer disc diameter. The outer edge of the disc is assumed to be unimpeded and allowed to deflect away from the pressure force. In addition, the disc hub is allowed to stretch. The total displacement at the outer edge of the valve disc due to shear and bending and due to hub stretch are calculated using the reference 1 equations.

An evenly distributed force is assumed to act between the valve seat and the outer edge of the valve disc. This force acts to deflect the outer diameter of the valve disc inward and to compress the disc hub. The pressure force is reacted to by an increase in this contact force between the valve disc and seats. The valve body seats are conservatively assumed to be fixed. Therefore, the deflection due to the known pressure load must be balanced by the deflection due to the unknown seat load. The deflection due to the pressure force is first calculated. Then, the reference 1 equations are used to determine the contact force between the seat and disc which results in a deflection which is equal and opposite to the deflection due to the pressure force.

REVISION NO.

CALCULATION NO. BRW 96-015 PROJECT N	Ю. <i>N/A</i>	PAGE NO. 5
--------------------------------------	---------------	------------

II. METHODOLOGY AND ACCEPTANCE CRITERIA

Pressure Locking Component of Force Required to Open the Valve (Cont.)

The coefficient of friction between the seat and disc is determined based on best available data. When DP test data is available, the friction coefficient is based on the measured close valve factor. Otherwise, the seat friction coefficient is based on the nominal valve factor from DP testing of similar valves. The stem force required to overcome the contact load between the seat and disc which opposes the pressure force is equal to:

(seat load) x [(seat mu) cos(seat angle) - sin(seat angle)] x 2 (for two disc faces).

Static Unseating Force

The static unseating force represents the open packing load and pullout force due to wedging of the valve disc during closure. These loads are superimposed on the loads due to the pressure forces which occur during pressure locking. The value for this load is based on static test data for the MOVs.

Piston Effect

The piston effect due to valve internal pressure exceeding outside pressure is calculated using the standard industry equation. This force assists movement of the valve stem in the open direction.

"Reverse Piston Effect"

The reverse piston effect is the term used in this calculation to refer to the pressure force acting downward against the valve disc. This force is equal to the differential pressure across the valve disc times the area of the valve disc times the sine of the seat angle times 2 (for two disc faces).

Total Force Required to Overcome Pressure Locking

As mentioned previously, the total stem force (tension) required to overcome pressure locking is the sum of the four components discussed above. All of the terms are positive with the exception of the piston effect component.

Next the Open Motor Gearing Capability (MGC_{Open}) is calculated using the Standard Limitorque Equation and modified by MOV White Paper 125, Installed Motor Capability Evaluation. In calculating MGC_{Open} , Motor Torque, Motor Temperature Factor, Degraded Voltage, Pullout Efficiency, and an Application Factor of 1.0 are utilized. For additional conservatism, a degraded Stem Factor at a Coefficient of Friction (COF) of 0.20 is used.

REVISION NO.

0

	CALCULATION NO. BRW 96-015	PROJECT NO. N/A PAGE NO.6
- 1	l l l l l l l l l l l l l l l l l l l	

II. METHODOLOGY AND ACCEPTANCE CRITERIA

MGC_{Open} is compared to the Total Force Required to Overcome Pressure Locking, and a percent, margin is calculated to show positive margin/capability. There is no acceptance criteria for this calculation.

III. ASSUMPTIONS

- 1. The valve disc is assumed to act as two ideal discs connected by a hub. The equations in reference 1 are assumed to conservatively model the actual load due to pressure forces.
- 2. Assumed pressure locking scenario for the 1(2)SI8802A&B Safety Injection Pump Discharge Hot Leg Isolation Valves. These valves are normally closed and must open during transfer from the cold leg to the hot leg recirculation phase of Emergency Core Cooling. During this transfer the applicable Safety Injection pump is shut down one at a time, the crosstie isolation valve (SI8821) is closed and then the applicable SI8802 valve is opened. In this scenario the pump pressure would potentially be trapped in the bonnet causing a pressure locking phenomenon to occur when the pump was shutdown. Two cases are assumed for this scenario: (1) Both Safety Injection pumps are initially running and (2) Only one Safety Injection pump is operating.
- 3. Based on Pre-Operational Test data for Braidwood and Byron units 1 & 2 (Reference 9 & 15) if both safety injection pumps are operating in the Emergency Core Cooling mode the discharge pressure is approximately 1400 psig (highest value from reference 9 & 15 testing corresponding to Byron unit 2). When the transfer from cold leg recirculation to hot leg recirculation takes place, one pump is shut down and the valve is subjected to the discharge pressure of one pump of approximately 890 psig (lowest value from Byron unit 2 testing). When the crosstie valve (SI8821) is closed this pressure is trapped in the system due to the pump discharge check valve. This yields a pressure locking average differential pressure of 955 psid as summarized in this calculation (pg 11). If only one pump is operating then the valve would be subject to a discharge pressure of approximately 920 psig (highest value from reference 9 & 15 testing corresponding to Byron unit 2). This yields a pressure locking average differential pressure of 920 psig. Therefore, this calculation will address the most limiting case of two pump operation. Downstream pressure in this scenario is assumed to be zero. It is assumed that the pumps were operating at their most efficient point (new pumps, no degradation) during this testing.
- 4. The 1(2)SI8802A&B Safety Injection Pump Discharge Hot Leg Isolation Valves are normally closed and subject to bonnet pressurization via Reactor Coolant System (RCS) pressure isolation valve leakage. Under a Loss of Coolant Accident (LOCA) these valves would be required to be opened in approximately 8.5 hours for the hot leg recirculation phase of Emergency Core Cooling. It is assumed that over this 8.5 hours prior to these valves having to open, that the RCS pressure which was potentially trapped in the valve bonnet would leak down to the pressure specified in assumption #3. This assumption was

0 **REVISION NO.**

III. ASSUMPTION (con't)

verified during the special test listed in reference (7). This test indicated that at a torque switch setting providing a similar maximum closing force as the SI8802 valves (less than 1400 lbs) the leakage rate averaged greater than 300 psig per minute between 2000 and 700 psig. This indicates that in less than 10 minutes the pressure would leak down to the point specified in assumption #3.

- 5. The coefficient of friction between the valve seat and disc is assumed to be the same under pressure locking conditions as it is under differential pressure conditions. The SI8802 valves were not differential pressure tested at Braidwood, however, they were at Byron Station. Similar valves at Braidwood Station were differential pressure tested in the SI system and open valve factors for these and the Byron valves have been tabulated in section VI (with the exception of Byron valve 1SI8802A for which the data was determined to be suspect). An open valve factor of 0.485 will be used for the calculations as a conservative measure based on design open valve factors for these valves. Byron's Rising Stem MOV Data Sheets listed in reference 3 indicate an open valve factor of 0.485. Braidwood's Rising Stem MOV Data Sheets listed in reference 3 indicate an open valve factor of 0.598, however, this open valve factor was increased from the design value of 0.485 based on MOV White Paper WP-166, Low Differential Pressure Load Testing and Setup. Due to the low design closing differential pressure (33 psid), the closed valve factor was increased. This also over conservatively increased the open valve factor. Pressure locking is a high loading condition and, as such, the open design value of 0.598 is overly conservative. Based on tested value factors tabulated in section VI indicating an average valve factor of 0.23 this open valve factor is very conservative.
- 6. The valve unseating force is conservatively assumed to be the maximum unseating force for all of the valves listed in reference 2. This maximum opening value does not include equipment tolerances or extrapolation, rather this value is assumed to encompass these factors based on the grouping. The degraded voltage is conservatively assumed to be the lowest voltage from each of the valves listed in reference 2. Both of these assumptions ensure the calculation is conservative and bounds all operating conditions.
- 7. The calculation of motor gearing capability is performed at a degraded stem factor / corresponding to a coefficient of friction of 0.20. This coefficient of friction bounds the degraded value for each of the subject valves listed in reference 3. This value is conservative.
- 8. The disk hub radius is assumed to be equal to the effective radius of the hub due to the section not being circular in cross section. This effective radius is calculated in Attachment A.
- 9. For valve factor calculations, the open valve line pressure for all valves is assumed to be equal to the open valve line pressure obtained in SPP 93-034 (800 psig). These valves were

0 **REVISION NO.**

	ULATION NO.	BRW 96-015	PRO	JECT NO. N/A	PAGE NO.8
III. AS	SSUMPTION (co	on't)			
	•	essure tested with sim which this open line	• •		the only test at
10	Braidwood Ris older revision a	n of motor gearing ca sing Stem Data Sheet and the application fa a 34.1 OAR which p	s listed in referenc actor was reduced	e 3. The Byron Dat by the temperature f	ta Sheets are the factor. Byron v
IV. DE	ESIGN INPUTS				
1.	Valve Disk Ge (Attachment A)	ometry information i	s based on Westing	ghouse Drawing #93	34D225 Rev 10.
2.	Modulus of Ela	asticity - 1995 ASME	Section II, Table	TM-1 (Attachment	B) .
V. RE	FERENCES				
· 1.	Sixth Edition o	of Roark's Formulas f	or Stress and Strai	n	· .
· 2.	Margin Review	v Calculation Sheets f	01		•
	Braidwood Stat	tion	Byron St	tation	
	· (10100004	dated 09/14/94	
	1SI8802A, date 1SI8802B, date			dated 09/14/94	
		ed 01/06/96 ed 06/27/94	1SI8802B, 2SI8802A,		

1SI8802A, dated 08/10/95 1SI8802B, dated 08/10/95 2SI8802A, dated 08/10/95 2SI8802B, dated 08/10/95 1SI8802A, dated 08/05/94 1SI8802B, dated 08/08/94 2SI8802A, dated 08/08/94 2SI8802B, dated 08/08/94

4. MOV White Paper WP-134 Rev. 0, EPRIs MOV Testing Program Measured Valve Factors.

REVISION NO. 0

۰.

CAL	CULATION NO. BRW 96-015	PROJECT NO. N/A	PAGE NO.9
V. I	REFERENCES (cont)		
5	Mechanical Engineering Design Forth Edition,	Shigley and Mitchell	
6	5. MOV White Paper 000, MOV Program Technic	cal Guidance, Revision 2	· ·
7	7. Special test of Westinghouse 4 inch valve, test in DOC ID #DG96-000078.	procedure dated 09/12/95,	results summarize
8	. Marks' Standard Handbook for Mechanical Eng	ineers Eighth Edition	·
9	P. Preoperational Tests BwPT-SI-12 Rev. 0 and B	wPT-SI-52 Rev. 0, Section	n 9.8.
1	0. Byron Station NDIT No. BYR-96-002		
1	1. MOV White Paper 125 Revision 2, Installed M	otor Capability Evaluation	
1	2. Special Process Procedures (SPPs) 91-061, 92-0	021, 92-074, 93-034	
1	3. Differential Pressure Test Reviews and Upgrade	25:	•
	PI-15, Dated 11/24/93 (1SI8821B) PI-15, Dated 12/28/93 (2SI8821A) PI-15, Dated 02/14/94 (2SI8821B)		
1.	4. NES letter DOC ID # DG96-000079 regarding Test Data	calculation of open valve f	factor from DP
1	5. Byron Station NDIT No. BYR-96-022		
VI. C	ALCULATIONS		
	alculation of valve factors for similar differential p yron Stations.	ressure tested valves at Br	aidwood and
Μ	IathCad 5.0+ calculations of the following for the S	SI8802 valve with the give	n assumptions:
1)	The pressure locking unseating force,	•	·
2)	The opening motor gearing capability,		

REVISION NO.

0

5

1

10

12

Braidwood 1SI8821A

Braidwood 1SI8821B

Braidwood 2SI8821A

Braidwood 2SI8821B

4323

3892

1752

4532

0

3/29/94

9/21/92

10/14/91

3/22/93

1537

1457

1479

1477

1563

1480

1517

1520

800

800

800

800

868

-217

-158

651

0.23

0.27

0.15

0.26

Ref 12, Assum 9

Ref 12, 13, Assum 9

Ref 12, 13, Assum 9

Ref 12, 13, Assum 9

CALCU	LATION	NO. <i>BR</i>	RW 96-02	15	•	P	ROJEC	ΓNO.	N/A	PAGE NO.1
VI. CAI	LCULATI	ONS			_					
calc	ulating thi sed as inpu	s value.	Differer	ntial pres	ssure and	d VOTE	ES test d	ata sun	nmarized	nethodology for in the below tal the open valve
										•
Valv	ve Factor ((open) =	pressur		line pre				(stem dia) ean seat d) ² * close line lia) ² *
Valv	ve Factor ((open) =	pressur	e - open	line pre					
Valv	ve Factor ((open) =	pressur differer	e - open ntial pres	line pre ssure	essure))		* (me		
Valv	ve Factor ((open) =	pressur differer	e - open ntial pres	line pre ssure	essure))	/ 0.7854	* (me		
Valv		open) =	pressur differer Va	e - open ntial pres alve Fac 010	line pre ssure tor Data	Summ LINE	/ 0.7854 ary Tabl	* (me e OPEN	an seat d	
			pressur differer Va	e - open ntial pres alve Fac	line pre ssure tor Data	Summ LINE	/ 0.7854 ary Tabl	* (me e OPEN RUN	open VALVE	ia) ² *
		VOTES	pressur differer Va	e - open ntial pres alve Fac 010	line pre ssure tor Data	Summ LINE	/ 0.7854 ary Tabl	* (me e OPEN RUN	an seat d	ia) ² *
		VOTES	pressur differer Va	e - open ntial pres alve Fac 010	line pre ssure tor Data	Summ LINE	/ 0.7854 ary Tabl	* (me e OPEN RUN	open VALVE	ia) ² *

REVISION NO.

CALCULATION NO. BRW 9	6-015	PROJECT NO. N/A	PAGE NO.11
VI. CALCULATIONS			
INPUTS:			
Bonnet Pressure Upstream Pressure Downstream Pressure	P _{bonnet} := 1400 psi P _{up} := 890 psi P _{down} := 0 psi	Assumption 3 Assumption 3 Assumption 3	
Disk Thickness Seat Radius Effective Hub Radius Hub Length Seat Angle Poisson's Ratio (disk) Mod. of Elast. (disk)	t := 1.02·in a := 2.001·in b := 1.056·in L := 0.60·in theta := 7·deg v := .3 E := 27.6·10 ⁶ ·psi	Attachment A Attachment A Attachment A Attachment A Reference 3 Typical of Stainless Steel Attachment B, 200 F	
Static Pullout Force	F po := 6180·lbf	Reference 2, Assumption 6	
Open Valve Factor Stem Diameter	VF := 485 D _{stem} = 1.25 in	Reference 3, Assumption 5 Reference 3	
		· · ·	

PRESSURE FORCE CALCULATIONS

Coefficient of friction between disk and seat: (Reference 14)

$$mu := VF \cdot \frac{\cos(\text{theta})}{1 - VF \cdot \sin(\text{theta})}$$

Average DP across disks:

 $D := \frac{E \cdot (t)^3}{12 \cdot (1 - v^2)}$

 $G:=\frac{E}{2\cdot(1+\nu)}$

 $DPavg := P_{bonnet} - \frac{P_{up} + P_{down}}{2}$

Disk Stiffness Constants (Reference 1, Table 24, Reference 5)

 $D = 2.682 \cdot 10^6$ ·lbf in

DPavg = 955 • psi

mu = 0.512

REVISION NO.

0

٠, ſ

CALCULATION NO. BR	W 96-015	PROJECT NO. N	7/A	PAGE NO.12
VI. CALCULATIONS				
Geometry Factors:	(Reference 1, Table 24)			
$C_2 = \frac{1}{4} \left[1 - \left(\frac{b}{a} \right)^2 \right]$	$\left(1+2\cdot\ln\left(\frac{a}{b}\right)\right)$	C ₂ =	0.09137	(
$C_{3} = \frac{b}{4 \cdot a} \left[\left(\frac{b}{a} \right)^{2} + \frac{b}{4 \cdot a} \right] \left[\left(\frac{b}{a} \right)^{2} + \frac{b}{4 \cdot a} \right] \left[\left(\frac{b}{a} \right)^{2} + \frac{b}{4 \cdot a} \right] \left[\left(\frac{b}{a} \right)^{2} + \frac{b}{4 \cdot a} \right] \left[\left(\frac{b}{a} \right)^{2} + \frac{b}{4 \cdot a} \right] \left[\left(\frac{b}{a} \right)^{2} + \frac{b}{4 \cdot a} \right] \left[\left(\frac{b}{a} \right)^{2} + \frac{b}{4 \cdot a} \right] \left[\left(\frac{b}{a} \right)^{2} + \frac{b}{4 \cdot a} \right] \left[\left(\frac{b}{a} \right)^{2} + \frac{b}{4 \cdot a} \right] \left[\left(\frac{b}{a} \right)^{2} + \frac{b}{4 \cdot a} \right] \left[\left(\frac{b}{a} \right)^{2} + \frac{b}{4 \cdot a} \right] \left[\left(\frac{b}{a} \right)^{2} + \frac{b}{4 \cdot a} \right] \left[\left(\frac{b}{a} \right)^{2} + \frac{b}{4 \cdot a} \right] \left[\left(\frac{b}{a} \right)^{2} + \frac{b}{4 \cdot a} \right] \left[\left(\frac{b}{a} \right)^{2} + \frac{b}{4 \cdot a} \right] \left[\left(\frac{b}{a} \right)^{2} + \frac{b}{4 \cdot a} \right] \left[\left(\frac{b}{a} \right)^{2} + \frac{b}{4 \cdot a} \right] \left[\left(\frac{b}{a} \right)^{2} + \frac{b}{4 \cdot a} \right] \left[\left(\frac{b}{a} \right)^{2} + \frac{b}{4 \cdot a} \right] \left[\left(\frac{b}{a} \right)^{2} + \frac{b}{4 \cdot a} \right] \left[\left(\frac{b}{a} \right)^{2} + \frac{b}{4 \cdot a} \right] \left[\left(\frac{b}{a} \right)^{2} + \frac{b}{4 \cdot a} \right] \left[\left(\frac{b}{a} \right)^{2} + \frac{b}{4 \cdot a} \right] \left[\left(\frac{b}{a} \right)^{2} + \frac{b}{4 \cdot a} \right] \left[\left(\frac{b}{a} \right)^{2} + \frac{b}{4 \cdot a} \right] \left[\left(\frac{b}{a} \right)^{2} + \frac{b}{4 \cdot a} \right] \left[\left(\frac{b}{a} \right)^{2} + \frac{b}{4 \cdot a} \right] \left[\left(\frac{b}{a} \right)^{2} + \frac{b}{4 \cdot a} \right] \left[\left(\frac{b}{a} \right)^{2} + \frac{b}{4 \cdot a} \right] \left[\left(\frac{b}{a} \right)^{2} + \frac{b}{4 \cdot a} \right] \left[\left(\frac{b}{a} \right)^{2} + \frac{b}{4 \cdot a} \right] \left[\left(\frac{b}{a} \right)^{2} + \frac{b}{4 \cdot a} \right] \left[\left(\frac{b}{a} \right)^{2} + \frac{b}{4 \cdot a} \right] \left[\left(\frac{b}{a} \right)^{2} + \frac{b}{4 \cdot a} \right] \left[\left(\frac{b}{a} \right)^{2} + \frac{b}{4 \cdot a} \right] \left[\left(\frac{b}{a} \right)^{2} + \frac{b}{4 \cdot a} \right] \left[\left(\frac{b}{a} \right)^{2} + \frac{b}{4 \cdot a} \right] \left[\left(\frac{b}{a} \right)^{2} + \frac{b}{4 \cdot a} \right] \left[\left(\frac{b}{a} \right)^{2} + \frac{b}{4 \cdot a} \right] \left[\left(\frac{b}{a} \right)^{2} + \frac{b}{4 \cdot a} \right] \left[\left(\frac{b}{a} \right)^{2} + \frac{b}{4 \cdot a} \right] \left[\left(\frac{b}{a} \right)^{2} + \frac{b}{4 \cdot a} \right] \left[\left(\frac{b}{a} \right)^{2} + \frac{b}{4 \cdot a} \right] \left[\left(\frac{b}{a} \right)^{2} + \frac{b}{4 \cdot a} \right] \left[\left(\frac{b}{a} \right)^{2} + \frac{b}{4 \cdot a} \right] \left[\left(\frac{b}{a} \right)^{2} + \frac{b}{4 \cdot a} \right] \left[\left(\frac{b}{a} \right)^{2} + \frac{b}{4 \cdot a} \right] \left[\left(\frac{b}{a} \right)^{2} + \frac{b}{4 \cdot a} \right] \left[\left(\frac{b}{a} \right)^{2} + \frac{b}{4 \cdot a} \right] \left[\left(\frac{b}{a} \right)^{2} + \frac{b}{4 \cdot a} \right] \left[\left(\frac{b}{a} \right)^{2} + \frac{b}{4 \cdot a} \right] \left[\left(\frac{b}{a} \right)^{2} + \frac{b}{4 \cdot a} \right] \left[\left(\frac{b}{a} \right)^{2} + \frac{b}{4 \cdot a} \right] \left[\left(\frac{b}$	$\left[-1 \right] \cdot \ln\left(\frac{a}{b}\right) + \left(\frac{b}{a}\right)^2 - 1 \right]$	C ₃ =	0.01262	
C ₈ = $\frac{1}{2} \left[1 + v + (1) \right]$	$(-v)\cdot\left(\frac{b}{a}\right)^2$	C ₈ =	0.74748	
$C_9 = \frac{b}{a} \left[\frac{1+v}{2} \ln \left(\frac{a}{b} \right) \right]$	$\left[\frac{a}{b}\right] + \frac{1-v}{4} \left[1-\left(\frac{b}{a}\right)^2\right]$	· · · C ₉ = (0.28588	
$L_3 := \frac{a}{4a} \left[\left[\left(\frac{a}{a}\right)^2 + \right] \right]$	$\left[l \right] \cdot \ln\left(\frac{a}{a}\right) + \left(\frac{a}{a}\right)^2 - \left[l \right]$	$L_{3} = 0$)	· · ·
$L_9 := \frac{a}{a} \left(\frac{1+v}{2} \ln \left(\frac{a}{a} \right) \right)$	$\left(1 + \frac{1-v}{4} \cdot \left[1 - \left(\frac{a}{a}\right)^2\right]\right]$	L ₉ = 0		
$L_{11} := \frac{1}{64} \cdot \left[1 + 4 \cdot \left(\frac{b}{a} \right) \right]$	$\left(\frac{b}{a}\right)^2 - 5 \cdot \left(\frac{b}{a}\right)^4 - 4 \cdot \left(\frac{b}{a}\right)^2 \cdot \left[2 + \left(\frac{b}{a}\right)^2\right]$	$\ln\left(\frac{a}{b}\right)$ $L_{11} =$	0.00162	
$L_{17} = \frac{1}{4} \left[1 - \frac{1 - v}{4} \right]$	$\left[1-\left(\frac{b}{a}\right)^{4}\right]-\left(\frac{b}{a}\right)^{2}\left[1+(1+v)\right]$	$n\left(\frac{a}{b}\right) \bigg] \qquad \qquad L_{17} = 0$	0.08216	
Moment (Reference	e 1, Table 24, Case 2L)			
$M_{rb} := \frac{-DPavg \cdot a^2}{C_8}$	$\frac{C_{9}}{2 \cdot a \cdot b} (a^{2} - b^{2}) - L_{17}$	M _{rb} =	-579.387	·lbf
$Q_b := \frac{DPavg}{2 \cdot b} \cdot (a^2 - b)$	b ²)	Q _b = 1	306.281 • <mark>1</mark>	b <u>f</u>
	ure and bending: (Reference	1, Table 24, Case 2L)		
$y_{bq} := M_{rb} \cdot \frac{a^2}{D} \cdot C_2 +$	$-Q_{b} \cdot \frac{a^{3}}{D} \cdot C_{3} - \frac{DPavg \cdot a^{4}}{D} \cdot L_{11}$	y _{bq} = -	3.9033-10	⁻⁵ in
				-
REVISION NO.	0			

٩,

21

ROJECT NO. <i>N/A</i>	PAGE NO.14
2	
$F_{piston} = 1718.1 \cdot lbf$	
$F_{vert} = 2928 \cdot lbf$	
$F_{\text{preslock}} = 3947.4 \text{-lbf}$	алан алар Алар
$F_{po} = 6180 \cdot lbf$	
$F_{total} = 11337 \cdot lbf$	
	$F_{piston} = 1718.1 \cdot lbf$ $F_{vert} = 2928 \cdot lbf$ $F_{preslock} = 3947.4 \cdot lbf$ $F_{po} = 6180 \cdot lbf$

Motor Torque:	MT := 16.97 ft lbf	Reference 3, 11
Temperature Factor:	Tf := 0.98	Reference 3, Assumption 10
Degraded Voltage:	DV := 409 volt	Reference 2, 3, Assumption 6
Under Voltage Factor:	n = 2.2769	Reference 11
Overall Gear Ratio	OAR := 28.2	Reference 3, Assumption 10
Pullout Efficiency	EFF := 0.45	Reference 3
Application Factor	AF = 1.0	Reference 11 sets AF to 1.0
Stem Factor @ μ=0.20	$SF := 0.0140 \cdot ft \cdot \frac{lbf}{lbf}$	Reference 3, Assumption 7

CALCULATIONS:

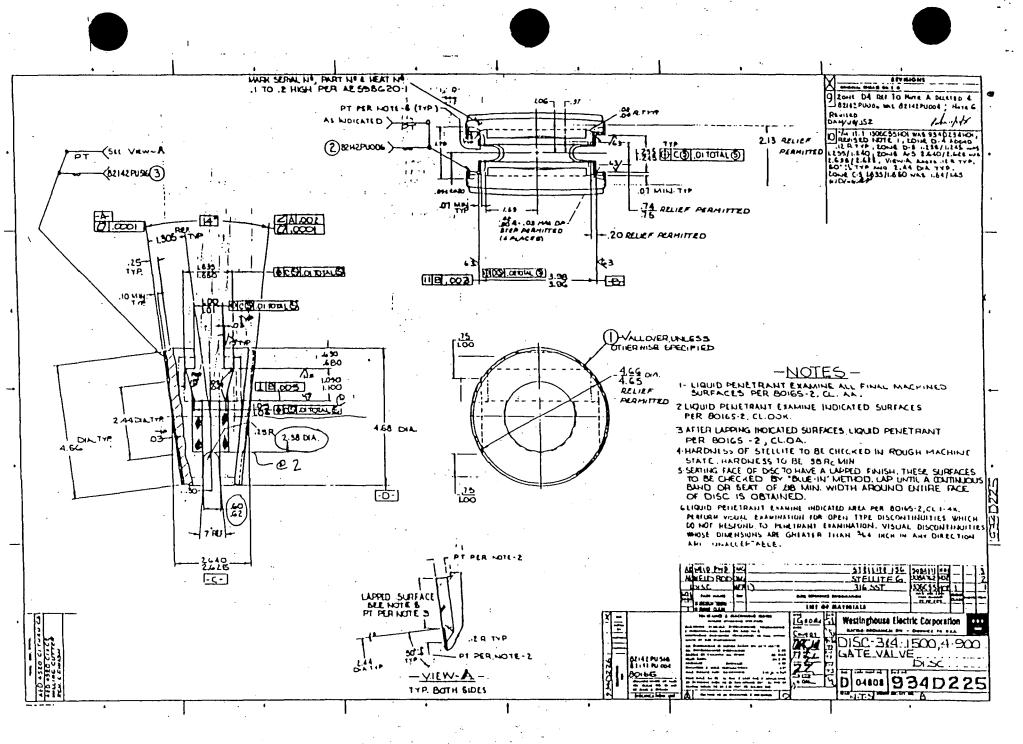
MGC Open := $\frac{\left(\frac{DV}{460 \text{ volt}}\right)^n \text{ MT OAR TF I}}{\text{SF}}$	EFF AF (Reference 6, 11
MGC Open = 11536 ·lbf	$F_{total} = 11337 \cdot lbf$
$MGC_{Margin} := \frac{MGC_{Open} - F_{total}}{F_{total}}$	MGC _{Margin} = 1.7 %

0

. .

REVISION NO.

· .

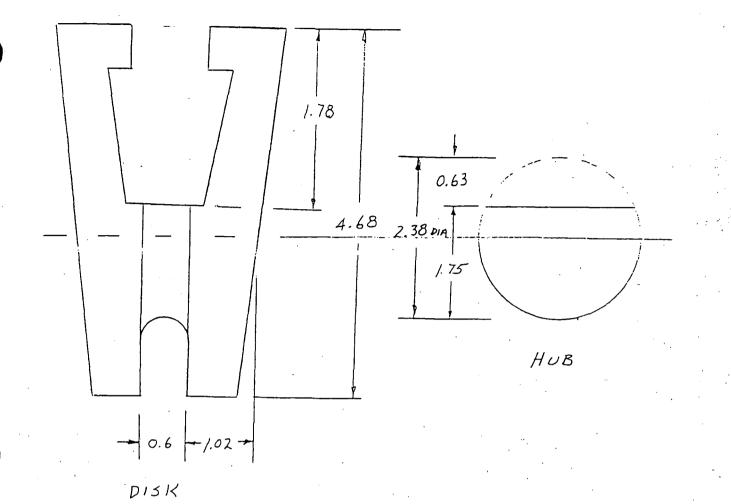

ş

				<u>I</u>			1	
VI.	SUMMARY AN	D CONCLU	JSIONS					
	The results of the inputs, the 1(2)S positive margin not considered a the operability a	SI8802A&B under the as concern for	Safety Injection sumed pressure the subject M	n Pump Dis locking sco OVs. This	charge Hot enario. Th calculation	Leg Isolation nerefore, pre is being used	n Valves l ssure lock d as an inj	nave ing is out into
								- -
VI.	LIMITATIONS							7 (8
	None.				•.			
								•
τv	ATTACHMENT	2						
IA.	ATTACHIVIENT	3			-	·	,	
·		Conversation	dated 01/03/96 dated 02/12/96 1995 ASME Se		ble TM-1			÷° ,
	·							
			-	<i>.</i>				
							•	
							•	
							•	
		- -						•
					•			•
					•	.•	•	· .
					• • •	· · · · ·		• • • •
								• •
					•	· · · · · · · · · · · · · · · · · · ·	· · ·	· .

REVISION NO.

0

.



CALC BRW ,*0-3*6

...

HTACHMENT A -ã CALC BRW 96-015 REV. O

Disk Dimensions

Effective Radius of Hub Section

Total Area = $\pi (2.38)^2/4 = 4.449 \text{ in}^2$

Area of Hub Section Missing (Reference 8 Segments of Circles h/D) h/D = 0.63in/2.38in = .264 interpolation from table Pg/-7 (REF 8). Area/Circle = 0.21108 Area of Missing Section = 0.21108 * 4.449in² = 0.939in² Area of Hub = 4.449 - 0.939 = 3.509in² Effective Area Diameter Area = $\pi \cdot d^2/4$ d = $\int (3.509 \cdot 4/\pi) = 2.114in$ Effective Hub Radius (b) = 2.114/2 = 1.056 in L = 0.60in

t = 1.02

MITACHMENT M CALC BRW 96-015 REV.

Record of Conversation

Per conversation with T. Matty of Westinghouse on 01/03/96 at 1345 (Phone 412-374-6401) the following seat ring dimensions were obtained for the listed valves:

1/2RY8000A&B 3 inch valves

Seat ring inside diameter 2.6875 in Seat ring outside diameter 3.75 in Mean seat ring diameter 3.21875 in

1/2SI8801A&B, 1/2SI8802A&B, 1/2SI8821A&B 4 inch valves

Seat ring inside diameter 3.5075 in Seat ring outside diameter 4.5 in Mean seat ring diameter 4.0038 in

Beďť R. С. brd

MOV Programs Braidwood Station

MITACHMENT M 114 CALC BRW 96-015 REV.C

Record of Conversation

Per conversation with T. Matty of Westinghouse on 02/12/96 at 0810 (Phone 412-374-6401) it was confirmed that valves 1(2)RY8000A&B, 1(2)SI8801A&B, 1(2)SI8802A&B and 1(2)SI8821A&B all contain discs manufactured from Westinghouse sub assembly drawing 934D225.

R. C. Bed⁷ord MOV Programs Braidwood Station Table TM-1

1995 SECTION II

TABLE TM-1 MODULI OF ELASTICITY E OF FERROUS MATERIALS FOR GIVEN TEMPERATURES

		٨	lodulus of	Elastic	tity $\mathcal{E} =$	Value G	iven × 1	LO* psi, t	for Temp	o., °F, of		
Materials	-325	-200	-100	70	200	300	400	500	600	700	800	900
Carbon steels with $C \leq 0.30\%$	31.4	30.8	30.2	29.5	28.8	28.3	27.7	27.3	26.7	25.5	24.2	22.4
Carbon steels with $C > 0.30\%$	31.2	30.6	30.0	29.3	28.6	28.1	27.5	27.1	26.5	25.3	24.0	22.3
Material Group A ¹	31.1	30.5	29.9	29.2	28.5	28.0	27.4	27.0	26.4	25.3	23.9	22.2
Material Group 8'	29.6	29.1	28.5	27.8	27.1	26.7	26.1	25.7	*25.2	24.6	23.0	
Material Group C'	31.6	31.0	30.4	29.7	29.0	28.5	27.9	27.5	26.9	26.3	25.5	24.8
Material Group D*	32.6	32.0	31.4	30.6	29.8	29.4	28.8	28.3	27.7	27.1	26.3	25.6
Aaterial Group E'	32.9	32.3	31.7	30.9	30.1	29.7	29.0	28.6	28.0	27.3	26.1	24.7
Naterial Group F*	31.2	30.7	30.1	29.2	28.5	27.9	27.3	26.7	26.1	25.6	24.7	23.2
faterial Group G'	30.3	29.7	29.1	28.3	27.6	27.0	26.5	25.8	25.3	24.8	24.1	23.5
<pre>'/.Cr-'/.Ni-Cu-Al '/.Cr-'/.Ni-Cu '/.Ni-'/.Cu-Mo) Material Group C consists of '/.Cr-'/.Mo 1Cr-'/.Mo 1'.Cr-'/.Mo) Material Group D consists of 2'.Cr-1Mo 3Cr-1Mo) Material Group E consists of 5Cr-'/.Mo</pre>	$1 \text{Ni} - \frac{1}{2} \text{Cr}$ $\frac{3}{2} \text{Ni} - 1 \text{Mo}$ $\frac{1}{2} \text{Ni} - \frac{1}{2} \text{C}$ $2 \text{Ni} - \frac{1}{2} \text{C}$ $2 \text{Ni} - \frac{1}{2} \text{C}$ $2 \frac{1}{2} \text{Ni}$ $3 \frac{1}{2} \text{Ni}$ the following	- ¹ / ₂ Mo b- ¹ / ₂ Cr r- ¹ / ₄ Mo- ¹ ng ¹ / ₂ -2Cr	V steels: Cr steels:			•	•			•		
SCr- ¹ / ₂ Mo-Si 5Cr- ¹ / ₂ Mo-Ti 7Cr- ¹ / ₂ Mo 9Cr-Mo Material Group F consists of t 12Cr-Al 13Cr 15Cr 17Cr Material Group G consists of t		-										

(Final)

Record of Conversation

Per conversation with T. Matty of Westinghouse on 01/03/96 at 1345 (Phone 412-374-6401) the following seat ring dimensions were obtained for the listed values:

1/2RYB000A&B 3 inch valves

Seat ring inside diameter 2.6875 in * Seat ring outside diameter 3.75 in Mean seat ring diameter 3.21875 in

1/2SI8801A4B; 1/2SI8802A4B, 1/2SI8821A4B 4 inch valves

Seat ring inside diameter 3.5075 in T Seat ring outside diameter 4.5 in ... Mean seat ring diameter 4.0038 in

₽ bdford

MOV Programs Braidwood Station

Concur

Matty AU

Westinghonse

* Made up of Seat BonE plus . 0625 for chamfers

Record of Conversation

Per conversation with T. Matty of Westinghouse on 02/12/96 at 0810 (Phone 412-374-6401) it was confirmed that valves 1(2)RY8000A&B, 1(2)SI8801A&B, 1(2)SI8802A&B and 1(2)SI8821A&B all contain discs manufactured from Westinghouse sub assembly drawing 934D225.

Bedford

MOV Programs Braidwood Station

Concur

2/29/92 sta T. Matty

Westinghouse

** TOTAL PAGE.04 **

Appendix C

Byron Station Capability Calculations in support of GL 95-07 Evaluation

2

ر

ComEd GL 95-07 RAI Response

Appendix D

P

ţ

Braidwood Station Capability Calculations in support of GL 95-07 Evaluation

÷

ComEd GL 95-07 RAI Response

Exhibit C NEP-12-02 Revision 0 page 1 of 2

:

COMMONWEALTH EDISON COMPANY CALCULATION TITLE PAGE

CALCULATION NO. BRW 96-015	PAGE NO.: 1.
SAFETY RELATED REGULATORY RELATED	□ NON-SAFETY RELATED
<u>CALCULATION TITLE:</u> Verification of Capability for Braidwood and Byron 1(2)SI8802A & Susceptible to Pressure Lockin	B Valves g
STATION/UNIT: Braidwood & Byron/1&2 SY	STEM ABBREVIATION: SI
EQUIPMENT NO.: (IF APPL.) PF	ROJECT NO.: ((F APPL.)
1 SI8802A 1 SI8802B 2 SI8802A 2 SI8802B	N/A
REV: Ø STATUS: QA SERIAL NO. OR CHRON NO.	DATE: <u>/ /96</u>
PREPARED BY: R. C. Bedford REVISION SUMMARY: Initial issue.	DATE: <u>2//2/96</u>
REVIEWED BY: JASalan 2-12-96 1. D. Tolar	
REVIEW METHOD: Detailed review	COMMENTS (C OR NC): <u>NC</u>
APPROVED BY: Bruch Ola 2/13/86 1 Bruce J.	Acos

Exhibit C NEP-12-02 Revision 0 page 2 of 2

COMMONWEALTH EDISON COMPANY

<u>,</u>

CALCULATION REVISION PAGE

CALCULATION NO. BR	W 96-015	PAGE NO.
REV: STATUS:	QA SERIAL NO. OR CHRON NO.	DATE:
PREPARED BY:		DATE:
REVISION SUMMARY:		:
	· · · ·	
		· · · · ·
	· · ·	
	· · ·	
	· · · · · · · · · · · · · · · · · · ·	DATE:
REVIEW METHOD:		COMMENTS (C OR NC):
	· · · · · · · · · · · · · · · · · · ·	
REV: STATUS:	QA SERIAL NO. OR CHRON NO.	DATE:
	· · · · · · · · · · · · · · · · · · ·	DATE:
REVISION SUMMARY:	· · · · · · · · · · · · · · · · · · ·	DATE:
DEVIEWED DY.	· · · · · · · · · · · · · · · · · · ·	DATE:
REVIEWED BY: REVIEW METHOD:		COMMENTS (C OR NC):
		COMMENTS (C OK NC)

ч

Exhibit D NEP-12-02 Revision 0

COMMONWEALTH EDISON COMPANY

.

).

• ,

CALCULATION TABLE OF CONTENTS

	PROJECT NO. N/	A
CALCULATION NO. BRW 96-015	REV. NO. 0	PAGE NO. 3
DESCRIPTION	PAGE NO.	SUB-PAGE NO
TITLE PAGE	l .	
REVISION SUMMARY	2	
TABLE OF CONTENTS	3	
I. PURPOSE/OBJECTIVE	4	
II. METHODOLOGY AND ACCEPTANCE CRITERIA	4 - 6	
III. ASSUMPTIONS	6 - 8	
IV. DESIGN INPUT	8	
V. REFERENCES	8, 9	
VI. CALCULATIONS	9 - 14	
VII. SUMMARY AND CONCLUSIONS	15	
VIII. LIMITATIONS	15	
X. ATTACHMENTS	15	
A) Disc Dimensions	A1-A4	
3) Modulus of Elasticity - 1995 ASME Section II, Table TM-1	BI	
•		
~		
· · ·		

CALCULATION NO. BRW 96-015	PROJECT NO. N/A	PAGE NO. 4

I. PURPOSE/OBJECTIVE

The purpose of this calculation is to verify the capability of certain MOVs which have been determined to be susceptible to the pressure locking phenomena. The MOVs are installed in the Safety Injection system at Braidwood and Byron Stations.

II. METHODOLOGY AND ACCEPTANCE CRITERIA

The methodology for calculating the thrust required to open the MOVs under the pressure locking scenario is based on the Reference 1 (Roark's) engineering handbook. This methodology has been verified in accordance with a test performed on a similar valve at Braidwood Station and is documented in Reference 7. The methodology determines the total force required to open the valve under a pressure locking scenario by solving for the four components to this required force. The four components of the force are the Pressure Locking Component, the Static Unseating Component, the Piston Effect Component, and the "Reverse Piston Effect" component. These components are determined using the following steps.

Pressure Locking Component of Force Required to Open the Valve

The valve disc is modeled as two plates attached at the center by a hub which is concentric with the valve disc. A plane of symmetry is assumed between the valve discs. This plane of symmetry is considered fixed in the analysis.

The pressure force is assumed to act uniformly upon the inner surface of the disc between the hub diameter and the outer disc diameter. The outer edge of the disc is assumed to be unimpeded and allowed to deflect away from the pressure force. In addition, the disc hub is allowed to stretch. The total displacement at the outer edge of the valve disc due to shear and bending and due to hub stretch are calculated using the reference 1 equations.

An evenly distributed force is assumed to act between the valve seat and the outer edge of the valve disc. This force acts to deflect the outer diameter of the valve disc inward and to compress the disc hub. The pressure force is reacted to by an increase in this contact force between the valve disc and seats. The valve body seats are conservatively assumed to be fixed. Therefore, the deflection due to the known pressure load must be balanced by the deflection due to the unknown seat load. The deflection due to the pressure force is first calculated. Then, the reference 1 equations are used to determine the contact force between the seat and disc which results in a deflection which is equal and opposite to the deflection due to the pressure force. it Birth I

CALCULATION NO. BRW 96-015		PROJECT NO.	N/A	PAGE NO. 5
II. METHODOLOGY AND ACCEPTANC	E CRITERIA			
Pressure Locking Component	of Force Required	to Open the V	<u>alve (Cont</u>)
The coefficient of friction be data. When DP test data is a valve factor. Otherwise, the from DP testing of similar va between the seat and disc wh	vailable, the friction seat friction coeffic llves. The stem for	n coefficient is ient is based or ce required to o	based on t the nomin overcome t	he measured clos nal valve factor
(seat load) x [(seat m	u) cos(seat angle) -	sin(seat angle)] x 2 (for t	two disc faces).
Static Unseating Force				
The static unseating force rep of the valve disc during closu pressure forces which occur of static test data for the MOVs.	re. These loads are luring pressure lock	e superimposed	on the loa	ds due to the
Piston Effect				
The piston effect due to valve using the standard industry eq open direction.	-	-	-	
"Reverse Piston Effect"				
The reverse piston effect is the acting downward against the vacross the valve disc times the (for two disc faces).	valve disc. This for	rce is equal to t	he differen	tial pressure
Total Force Required to Over	come Pressure Lock	ting		
As mentioned previously, the locking is the sum of the four with the exception of the pisto	components discus	sed above. All		
Next the Open Motor Gearing Cap Equation and modified by MOV W calculating MGC _{Open} , Motor Torqu Efficiency, and an Application Fac degraded Stem Factor at a Coeffici	/hite Paper 125, Ins ie, Motor Temperati tor of 1.0 are utilize	stalled Motor C ure Factor , De ed. For additio	apability E graded Vol nal conserv	valuation. In tage, Pullout
EVISION NO.	0		T	

r

CALCULATION NO. BRW 96-015	PROJECT NO. N/A	PAGE NO.6

II. METHODOLOGY AND ACCEPTANCE CRITERIA

 MGC_{Open} is compared to the Total Force Required to Overcome Pressure Locking, and a percent margin is calculated to show positive margin/capability. There is no acceptance criteria for this calculation.

III. ASSUMPTIONS

- 1. The valve disc is assumed to act as two ideal discs connected by a hub. The equations in reference 1 are assumed to conservatively model the actual load due to pressure forces.
- 2. Assumed pressure locking scenario for the 1(2)SI8802A&B Safety Injection Pump Discharge Hot Leg Isolation Valves. These valves are normally closed and must open during transfer from the cold leg to the hot leg recirculation phase of Emergency Core Cooling. During this transfer the applicable Safety Injection pump is shut down one at a time, the crosstie isolation valve (SI8821) is closed and then the applicable SI8802 valve is opened. In this scenario the pump pressure would potentially be trapped in the bonnet causing a pressure locking phenomenon to occur when the pump was shutdown. Two cases are assumed for this scenario: (1) Both Safety Injection pumps are initially running and (2) Only one Safety Injection pump is operating.

Based on Pre-Operational Test data for Braidwood and Byron units 1 & 2 (Reference 9 & 3 15) if both safety injection pumps are operating in the Emergency Core Cooling mode the discharge pressure is approximately 1400 psig (highest value from reference 9 & 15 testing corresponding to Byron unit 2). When the transfer from cold leg recirculation to hot leg recirculation takes place, one pump is shut down and the valve is subjected to the discharge pressure of one pump of approximately 890 psig (lowest value from Byron unit 2 testing). When the crosstie valve (SI8821) is closed this pressure is trapped in the system due to the pump discharge check valve. This yields a pressure locking average differential pressure of 955 psid as summarized in this calculation (pg 11). If only one pump is operating then the valve would be subject to a discharge pressure of approximately 920 psig (highest value from reference 9 & 15 testing corresponding to Byron unit 2). This yields a pressure locking average differential pressure of 920 psig. Therefore, this calculation will address the most limiting case of two pump operation. Downstream pressure in this scenario is assumed to be zero. It is assumed that the pumps were operating at their most efficient point (new pumps, no degradation) during this testing.

4. The 1(2)SI8802A&B Safety Injection Pump Discharge Hot Leg Isolation Valves are normally closed and subject to bonnet pressurization via Reactor Coolant System (RCS) pressure isolation valve leakage. Under a Loss of Coolant Accident (LOCA) these valves would be required to be opened in approximately 8.5 hours for the hot leg recirculation phase of Emergency Core Cooling. It is assumed that over this 8.5 hours prior to these valves having to open, that the RCS pressure which was potentially trapped in the valve bonnet would leak down to the pressure specified in assumption #3. This assumption was

REVISION NO.

CALCULATION N	O. BRW 96-015	PROJECT NO. N/A	PAGE NO.7

III. ASSUMPTION (con't)

verified during the special test listed in reference (7). This test indicated that at a torque switch setting providing a similar maximum closing force as the SI8802 valves (less than 1400 lbs) the leakage rate averaged greater than 300 psig per minute between 2000 and 700 psig. This indicates that in less than 10 minutes the pressure would leak down to the point specified in assumption #3.

- The coefficient of friction between the valve seat and disc is assumed to be the same under 5. pressure locking conditions as it is under differential pressure conditions. The SI8802 valves were not differential pressure tested at Braidwood, however, they were at Byron Station. Similar valves at Braidwood Station were differential pressure tested in the SI system and open valve factors for these and the Byron valves have been tabulated in section VI (with the exception of Byron valve 1SI8802A for which the data was determined to be suspect). An open valve factor of 0.485 will be used for the calculations as a conservative measure based on design open valve factors for these valves. Byron's Rising Stem MOV Data Sheets listed in reference 3 indicate an open valve factor of 0.485. Braidwood's Rising Stem MOV Data Sheets listed in reference 3 indicate an open valve factor of 0.598, however, this open valve factor was increased from the design value of 0.485 based on MOV White Paper WP-166, Low Differential Pressure Load Testing and Setup. Due to the low design closing differential pressure (33 psid), the closed valve factor was increased. This also over conservatively increased the open valve factor. Pressure locking is a high loading condition and, as such, the open design value of 0.598 is overly conservative. Based on tested value factors tabulated in section VI indicating an average valve factor of 0.23 this open valve. factor is very conservative.
- 6. The valve unseating force is conservatively assumed to be the maximum unseating force for all of the valves listed in reference 2. This maximum opening value does not include equipment tolerances or extrapolation, rather this value is assumed to encompass these factors based on the grouping. The degraded voltage is conservatively assumed to be the lowest voltage from each of the valves listed in reference 2. Both of these assumptions ensure the calculation is conservative and bounds all operating conditions.
- 7. The calculation of motor gearing capability is performed at a degraded stem factor corresponding to a coefficient of friction of 0.20. This coefficient of friction bounds the degraded value for each of the subject valves listed in reference 3. This value is conservative.
- 8. The disk hub radius is assumed to be equal to the effective radius of the hub due to the section not being circular in cross section. This effective radius is calculated in Attachment A.
- 9. For valve factor calculations, the open valve line pressure for all valves is assumed to be equal to the open valve line pressure obtained in SPP 93-034 (800 psig). These valves were

REVISION NO.	0		

CALC	ULATION NO.	BRW 96-015		PROJECT NO	. N/A	PAGE NO 8
III. AS	SUMPTION (con't)				
	differential press	und to stard writh simi	lar austam	antique	This was th	
	-	are tested with simi ich this open line p	•	÷	This was in	e only test at
10	For calculation of Braidwood Rising	f motor gearing cap g Stem Data Sheets	-	-		
		the application fa				
	1SI8802A has a 3	34.1 OAR which pr				
	conservative.					
IV. DE	SIGN INPUTS				۰	· ·
r	Value Diele Coore	: <u>C</u> : :	haardian	Westinghouse D		
1.	(Attachment A)	etry information is	based on	westinghouse Di	awing #934	D225 Rev 10.
	(*************************************					
2.	Modulus of Elasti	city - 1995 ASME	Section II	, Table TM-1 (A	ttachment B)
						,
V. RE	FERENCES		·		•	
· . 1	Circle Edition of D	loark's Formulas fo	- Stropp or	d Chain	•	
1.	SIXIII LUIIIOII OI N	COARES FORMULAS TO				
2.	Margin Review C	alculation Sheets for	or :			
	Braidwood Station		τ. Γ	turon Station	·.	•
	Dialowood Station	L ·	Ľ	Syron Station	`	-
	1SI8802A, dated (06/27/94	1SI	8802A, dated 09/	14/94	
	1SI8802B, dated C			8802B, dated 09/		
	2SI8802A, dated 0			8802A, dated 03/		
	2SI8802B, dated 0	10/2//94	251	8802B, dated 03/	10/95	
3.	Rising Stem MOV	Data Sheets for :			, ,	
•		•				• '
	Braidwood Station		В	yron Station		
	1SI8802A, dated 0	8/10/95	181	8802A, dated 08/0)5/94	
	1SI8802B, dated 0			3802B, dated 08/0		
	2SI8802A, dated 0			8802A, dated 08/0		
	2SI8802B, dated 0	8/10/95	2SI8	3802B, dated 08/0	08/94	۰.
					·	
4.	MOV White Paper	WP-134 Rev. 0. E	PRIs MO	V Testing Progra	m Measured	Valve Factors
		· · · · · · · · · · · · · · · · · · ·				

.

i...

CALC	CULATION NO. BH	<i>RW 96-015</i>	PROJECT	NO. <i>N/A</i>	PAGE NO.9				
V. R	EFERENCES (cont)			ı					
5.	Mechanical Engin	ineering Design Forth Edition, Shigley and Mitchell							
6.	6. MOV White Paper 000, MOV Program Technical Guidance, Revision 2								
7.	Special test of We in DOC ID #DG9	Vestinghouse 4 inch valve, test procedure dated 09/12/95, results summarized 96-000078.							
8.	Marks' Standard H	Iandbook for Mechanical En	gineers Eightl	n Edition					
9.	Preoperational Te	sts BwPT-SI-12 Rev. 0 and I	3wPT-SI-52 H	Rev. 0, Section	9.8.				
10	. Byron Station ND	IT No. BYR-96-002							
11	. MOV White Pape	r 125 Revision 2, Installed N	fotor Capabil:	ity Evaluation.					
12	. Special Process Pr	ocedures (SPPs) 91-061, 92-	021, 92-074,	93-034					
13	. Differential Pressu	ire Test Reviews and Upgrad	es:						
	PI-15, Dated 11/24 PI-15, Dated 12/23 PI-15, Dated 02/14	3/93 (2SI8821A)			·				
14	. NES letter DOC I Test Data	D # DG96-000079 regarding	calculation o	f open valve f	actor from DP				
15	Byron Station ND	IT No. BYR-96-022							
VI. CA	ALCULATIONS								
	lculation of valve far ron Stations.	ctors for similar differential p	pressure tested	d valves at Bra	aidwood and				
Ma	athCad 5.0+ calculati	ons of the following for the	SI8802 valve	with the give	n assumptions:				
1)	The pressure locking	ng unseating force,	· .						
2)	The opening motor	gearing capability,							
		······································		·					
REVIS	ION NO.	0							

....

CALCO	LATION	NU. BR	RW 96-0.	15		P	ROJEC	T NO.	N/A	PAGE NO.10
VI. CAI	LCULATI	ONS	:							
calc	ulating thi sed as inpu	s value.	Differer	ntial pres	ssure an	d VOTE	ES test d	lata sur	nmarized	nethodology for in the below tab the open valve
	·									
vaiv	e racior (open) =					a + (0.7 / 0.7854			l) ² * close line lia) ² *
			-	ntial pres	-	,,		,		
			-	-	-	,,		·		, ,
			differer	ntial pres	ssure		ary Tabl			
			differer	ntial pres	ssure		ary Tabl		· .	
STATION	VALVE	VOTES	differer	ntial pres	ssure		ary Tabl			REFERENCE
STATION	VALVE	VOTES TEST #	differer Va	alve Fac	tor Data	Summa	OPEN LINE	e OPEN RUN	OPEN VALVE	REFERENCE
STATION	VALVE		differer Va	alve Fac	tor Data	Summa	OPEN LINE	e OPEN RUN	OPEN	REFERENCE
		TEST #	differer V: TEST DATE	alve Fac	tor Data	LINE	OPEN LINE PRESS	e OPEN RUN LOAD	OPEN VALVE FACTOR	REFERENCE
Byron	1SI8802B	TEST #	differer V: DATE 10/4/91	otial pres alve Fac THRUST	tor Data	LINE PRESS	OPEN LINE PRESS 800	e OPEN RUN LOAD 1089	OPEN VALVE FACTOR 0.22	REFERENCE Ref 10, Assum 9
Byron Byron	1SI8802B 2SI8802A	TEST #	differer Va TEST DATE 10/4/91 3/7/95	O10 THRUS7 4493 2315	tor Data	LINE PRESS 1560 1510	OPEN LINE PRESS 800 800	e OPEN RUN LOAD 1089 192	OPEN VALVE FACTOR 0.22 0.16	REFERENCE Ref 10, Assum 9 Ref 10, Assum 9
Byron Byron Byron	1SI8802B 2SI8802A 2SI8802B	TEST # 7 4 2	differer V: TEST DATE 10/4/91 3/7/95 3/7/95	010 THRUS7 4493 2315 5444	tor Data DIFF PRESS 1545 1510 1520	LINE PRESS 1560 1510 1520	OPEN LINE PRESS 800 800 800	e OPEN RUN LOAD 1089 192 1014	OPEN VALVE FACTOR 0.22 0.16 0.28	REFERENCE Ref 10, Assum 9 Ref 10, Assum 9 Ref 10, Assum 9
Byron Byron Byron Braidwood	1SI8802B 2SI8802A 2SI8802B 1SI8821A	TEST #	differer V: TEST DATE 10/4/91 3/7/95 3/7/95 3/29/94	010 THRUS7 2315 5444 4323	tor Data DIFF PRESS 1545 1510 1520 1537	LINE PRESS 1560 1510 1520 1563	OPEN LINE PRESS 800 800 800 800	e OPEN RUN LOAD 1089 192 1014 868	OPEN VALVE FACTOR 0.22 0.16 0.28 0.23	REFERENCE Ref 10, Assum 9 Ref 10, Assum 9 Ref 10, Assum 9 Ref 12, Assum 9
Byron Byron Byron Braidwood Braidwood	1SI8802B 2SI8802A 2SI8802B	TEST # 7 4 2 5	differer V: TEST DATE 10/4/91 3/7/95 3/7/95	010 THRUS7 4493 2315 5444	tor Data DIFF PRESS 1545 1510 1520	LINE PRESS 1560 1510 1520	OPEN LINE PRESS 800 800 800	e OPEN RUN LOAD 1089 192 1014	OPEN VALVE FACTOR 0.22 0.16 0.28	REFERENCE Ref 10, Assum 9 Ref 10, Assum 9 Ref 10, Assum 9

0

÷

REVISION NO.

CALCULATION NO. BRW 90		PROJECT NO. N/A	PAGE NO.1
VI. CALCULATIONS			
INPUTS:			
Bonnet Pressure Upstream Pressure Downstream Pressure	P _{bonnet} := 1400 psi P _{up} := 890 psi P _{down} := 0 psi	Assumption 3 Assumption 3 Assumption 3	
Disk Thickness Seat Radius	t := 1.02 in a := 2.001 in	Attachment A Attachment A	
Effective Hub Radius Hub Length Seat Angle Poisson's Ratio (disk)	b := 1.056 in L := 0.60 in theta := 7 deg v := .3	Attachment A Attachment A Reference 3 Typical of Stainless Steel	
Mod. of Elast. (disk)	E := 27.6·10 ⁶ ·psi	Attachment B, 200 F	
Static Pullout Force	F po = 6180 lbf	Reference 2, Assumption 6	
Open Valve Factor Stem Diameter	VF := .485 D _{stem} := 1.25 in	Reference 3, Assumption 5 Reference 3	
PRESSURE FORCE CALCU	ILATIONS		
Coefficient of friction betw	veen disk and seat: (I	Reference 14)	
$mu := VF \cdot \frac{\cos(\frac{1}{1 - VF} \cdot \sin(1))}{1 - VF \cdot \sin(1)}$	heta)	mu = 0.512	
Average DP across disks	:		

 $DPavg := P_{bonnet} - \frac{P_{up} + P_{down}}{2}$

Disk Stiffness Constants (Reference 1, Table 24, Reference 5)

0

 $D := \frac{E \cdot (t)^{3}}{12 \cdot (1 - v^{2})}$ $G := \frac{E}{2 \cdot (1 + v)}$

DPavg = 955 • psi

 $D = 2.682 \cdot 10^6 \cdot lbf \cdot in$

REVISION NO.

CALCULATION NO. BRW 96-015	PROJECT NO. N/A	PAGE NO.1
VI. CALCULATIONS		
Geometry Factors: (Reference 1, Table 24)		
$C_{2} := \frac{1}{4} \cdot \left[1 - \left(\frac{b}{a} \right)^{2} \cdot \left(1 + 2 \cdot \ln \left(\frac{a}{b} \right) \right) \right]$	C ₂ = 0.09137	· .
$C_{3} := \frac{b}{4 \cdot a} \left[\left[\left(\frac{b}{a} \right)^{2} + 1 \right] \ln \left(\frac{a}{b} \right) + \left(\frac{b}{a} \right)^{2} - 1 \right]$	C ₃ = 0.01262	
$C_{8} := \frac{1}{2} \left[1 + v + (1 - v) \cdot \left(\frac{b}{a}\right)^{2} \right]$	C ₈ = 0.74748	•
$C_{9} := \frac{b}{a} \left[\frac{1+v}{2} \ln\left(\frac{a}{b}\right) + \frac{1-v}{4} \left[1 - \left(\frac{b}{a}\right)^{2} \right] \right]$	C ₉ = 0.28588	•
$L_{3} := \frac{a}{4 \cdot a} \left[\left[\left(\frac{a}{a}\right)^{2} + 1 \right] \cdot \ln\left(\frac{a}{a}\right) + \left(\frac{a}{a}\right)^{2} - 1 \right]$	$L_{3} = 0$	
$L_{9} := \frac{a}{a} \cdot \left[\frac{1+v}{2} \ln \left(\frac{a}{a} \right) + \frac{1-v}{4} \cdot \left[1 - \left(\frac{a}{a} \right)^{2} \right] \right]$	L ₉ = 0	
$L_{11} := \frac{1}{64} \left[1 + 4 \left(\frac{b}{a} \right)^2 - 5 \left(\frac{b}{a} \right)^4 - 4 \left(\frac{b}{a} \right)^2 \left[2 + \left(\frac{b}{a} \right)^2 \right]$	$\ln\left(\frac{a}{b}\right) = 0.00162$	
$L_{17} := \frac{1}{4} \left[1 - \frac{1 - v}{4} \left[1 - \left(\frac{b}{a} \right)^4 \right] - \left(\frac{b}{a} \right)^2 \left[1 + (1 + v) \right] \ln \frac{1}{2} \left[$	$L_{17} = 0.08216$	
Moment (Reference 1, Table 24, Case 2L)	. · · ·	
$M_{rb} := \frac{-DPavg \cdot a^2}{C_8} \left[\frac{C_9}{2 \cdot a \cdot b} \cdot (a^2 - b^2) - L_{17} \right]$	M _{rb} = -579.38	7 ·lbf
$Q_{b} = \frac{DPavg}{2b} (a^{2} - b^{2})$	Q _b = 1306.281	. <u>lbf</u> in
Deflection due to pressure and bending: (Reference	1, Table 24, Case 2L)	14 •
$y_{bq} := M_{rb} \cdot \frac{a^2}{D} \cdot C_2 + Q_b \cdot \frac{a^3}{D} \cdot C_3 - \frac{DPavg \cdot a^4}{D} \cdot L_{11}$	y _{bq} = -3.9033	10 ⁻⁵ ·in

0

REVISION	NO.
100 1 101 0 1 1	

.

CALCULATION NO.BRW 96-015PROJECT NO.N/APAGE NO.13VI CALCULATIONSDeflection due to pressure and shear stress:(Reference 1, Table 25, Case 2L)
$$K_{SS} := .0.3 \left[2 \ln \left(\frac{a}{b} \right) - 1 + \left(\frac{b}{a} \right)^2 \right]$$
 $K_{SS} = -0.16705$ $y_{SS} := \frac{K_{SS} DPays a^2}{1.6}$ $y_{SS} = -5.5993 \cdot 10^{-3}$ inDeflection due to hub stretch (from center of hub to disk):(Reference 5) $P_{force} := 3.1416 \cdot (a^2 - b^2) \cdot DPayg$ $P_{force} = 8667.254 \cdot 1b($ $y_{stretch} := \frac{P_{force}}{3.1416 \cdot b^2} \cdot \frac{L}{2.E}$ $y_{stretch} := 2.6891 \cdot 10^{-3} \cdot in$ Deflection due to pressure forces: $y_q := -0.0001 \cdot in$ Deflection due to pressure forces: $y_q := -0.0001 \cdot in$ Deflection due to seat contact force and shear stress (per 1b/in.):(Reference 1, Table 25, Case 1L) $y_{sw} := \left(\frac{1.2 \cdot \binom{a}{2} \ln \binom{b}{2} a}{1 \cdot \frac{1}{2}} \right)$ $y_{sw} = -1.4174 \cdot 10^{-7} \cdot \frac{in}{\binom{|b|}{m}}$ (per 1b/in)Deflection due to seat contact force and bending (per 1b/in.):(Reference 1, Table 24. $y_{bw} := \binom{a}{2} \left(\frac{a}{2} \right) \left[\left(\frac{a}{k} \cdot C_{a} \right) - L_{a} \right] - \left[\binom{b}{k} \cdot C_{a} \right] + L_{a} \right]$ $y_{bw} = -1.2615 \cdot 10^{-7} \cdot \frac{in}{(\frac{|b|}{m})}$ (per 1b/in)Deflection due to bub compression (per 1b/in.): (rom center of hub to disk); (Reference 5) $y_{compr} := \frac{2 \cdot a}{3.1416 \cdot b^2} \left(\frac{L}{2 \cdot E} \right)$ $y_{compr} := \frac{2 \cdot a}{3.1416 \cdot b^2} \left(\frac{L}{2 \cdot E} \right)$ $y_{compr} := 3.9009 \cdot 10^{-6} \cdot \frac{in}{(\frac{|b|}{m})}$ (per 1b/in)Total deflection due to seat contact force (per 1b/in.): $y_{w} = -3.071 \cdot 10^{-7} \cdot \frac{in}{(\frac{|b|}{m})}$ $y = 3.091 \cdot 10^{-7} \cdot 3.0009 \cdot 10^{-6} \cdot 3.0009 \cdot 10^{-6} \cdot$

•.

CALCULATION NO. BRW 96-01	5	PROJECT NO. N/A	PAGE NO.14
VI. CALCULATIONS			
UNSEATING FORCES			
F _{packing} is included in me	asured static pullout F	orce	•
$F_{piston} := \frac{\pi}{4} \cdot D_{stem}^2 \cdot P_{bonnet}$		$F_{piston} = 1718.1 \cdot lbf$	
F vert := $\left[\pi \left(a^2\right)\right] \cdot \sin(\text{theta}) \cdot \left(2 \cdot a^2\right)$	^P bonnet ^{- P} up ^{- P} dow	(r) F _{vert} = 2928 · lbf	
$F_{\text{preslock}} = 2 \cdot F_{\text{s}} \cdot (\text{mu cos})$ (the	ta) – sin(theta))	$F_{\text{preslock}} = 3947.4 \cdot \text{lbf}$	
		$F_{po} = 6180 \cdot lbf$	
F total :=-F piston + F vert + F p	preslock ^{+ F} po	$F_{total} = 11337 \cdot lbf$	
MOTOR / GEARING CAP	ABILITY INPUTS:		
Motor Torque:	MT := 16.97 ft _: lbf	Reference 3, 11	· .
Temperature Factor:	Tf := 0.98	Reference 3, Assumptior	10
Degraded Voltage:	DV := 409 volt	Reference 2, 3, Assumpt	ion 6
Under Voltage Factor:	n := 2.2769	Reference 11	
Overall Gear Ratio	OAR := 28.2	Reference 3, Assumption	10
Pullout Efficiency	EFF := 0.45	Reference 3	
Application Factor	AF := 1.0	Reference 11 sets AF to	1.0

Stem Factor @ µ=0.20

Reference 3, Assumption 7

CALCULATIONS:

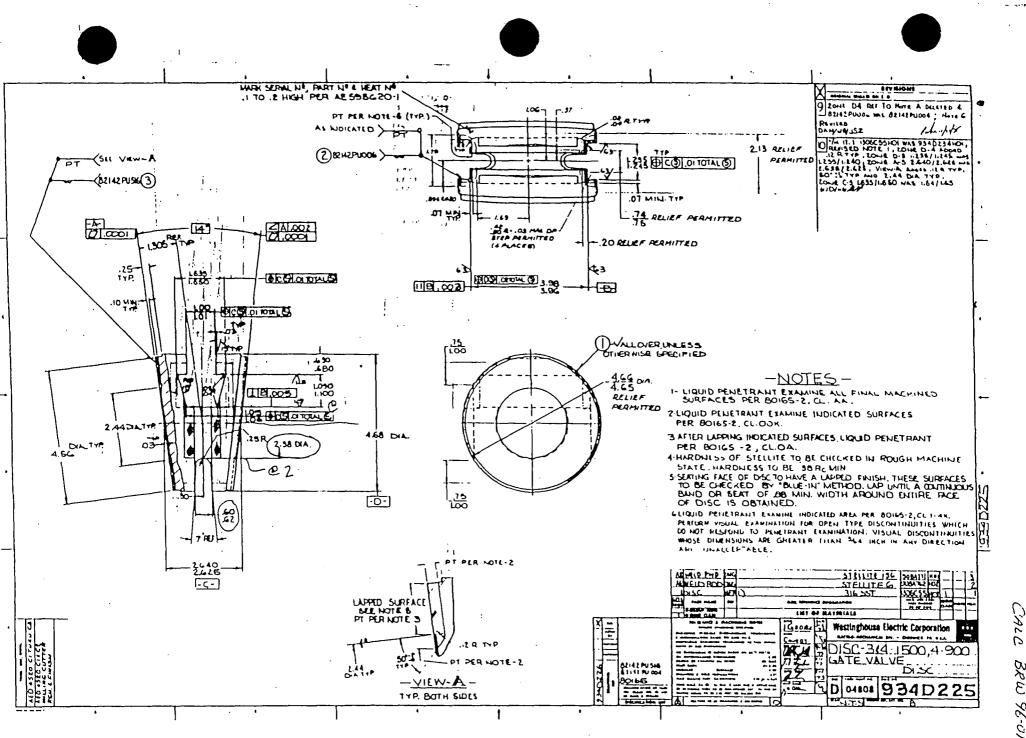
 $\frac{\left(\frac{DV}{460 \text{ volt}}\right)^n \text{MT-OAR-Tf-EFF-AF}}{\text{SF}}$ MGC _{Open} :=

(Reference 6, 11)

 $MGC_{Open} = 11536 \cdot lbf$

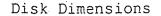
 $MGC_{Margin} := \frac{MGC_{Open} - F_{total}}{F_{total}}$

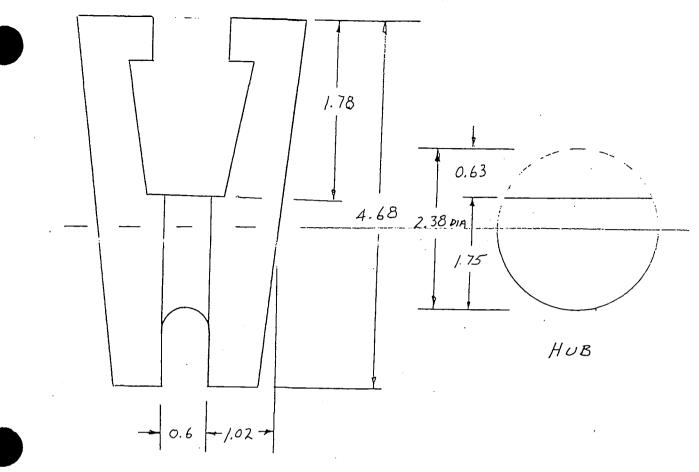
 $F_{total} = 11337 \cdot lbf$


MGC _{Margin} = 1.7 ·%

REVISION NO. 0

 $SF := 0.0140 \cdot ft \cdot \frac{lbf}{lbf}$


CALCULATION NO. BRW 96-015	PROJECT NO. N/A	PAGE NO.1.
VI. SUMMARY AND CONCLUSIONS		
The results of the calculation indicate that y inputs, the 1(2)SI8802A&B Safety Injection positive margin under the assumed pressure not considered a concern for the subject Me the operability assessment (Attachment C) f	n Pump Discharge Hot Leg Isolat e locking scenario. Therefore, p OVs. This calculation is being us	ion Valves have ressure locking is sed as an input int
VI. LIMITATIONS		
None.		
IX. ATTACHMENTS		
 (A) Westinghouse Drawing # 934D225 (Di Hand Sketch of Disc Dimensions provi Record of Conversation dated 01/03/96 Record of Conversation dated 02/12/96 	ded for clarity	
(B) Modulus of Elasticity - 1995 ASME Se	ection II, Table TM-1	• .
	· · · · · · · · · · · · · · · · · · ·	,


0

11HCHINK~1 BRW 96-015 1 J.C.

ATTACHMENT A ATX CALC BRW96-015 REV. O

DIJK

Effective Radius of Hub Section

CALC BRW 96-015 REV.

Record of Conversation

Per conversation with T. Matty of Westinghouse on 01/03/96 at 1345 (Phone 412-374-6401) the following seat ring dimensions were obtained for the listed valves:

1/2RY8000A&B 3 inch valves

Seat ring inside diameter 2.6875 in Seat ring outside diameter 3.75 in Mean seat ring diameter 3.21875 in

1/2SI8801A&B, 1/2SI8802A&B, 1/2SI8821A&B 4 inch valves

Seat ring inside diameter 3.5075 in Seat ring outside diameter 4.5 in Mean seat ring diameter 4.0038 in

R. C. Bedford MOV Programs Braidwood Station

CALC BRW 96-015 REV.C

Record of Conversation

Per conversation with T. Matty of Westinghouse on 02/12/96 at 0810 (Phone 412-374-6401) it was confirmed that valves 1(2)RY8000A&B, 1(2)SI8801A&B, 1(2)SI8802A&B and 1(2)SI8821A&B all contain discs manufactured from Westinghouse sub assembly drawing 934D225.

|12|96

R. C. Bedford MOV Programs Braidwood Station

1995 SECTION II

800

24.2

24.0

23.9

23.0

25.5

26.3

26.1

24.7

24.1

900

22.4

22.3

22.2

. . .

24.8

25.6

24.7

23.2

23.5

Table TM-1			199	5 SEC	пон п					TTA
MODULI OF	FLASTIC	יודע המ		ABLE			R/GIV	EN TEN		THRES
							<u> </u>			
Matorials	-325	-200	Aodulus or —100	70	200	value G	400	10° psi, 1 500	for Lemp 600	5., °⊱, of 700
Materials	- 525	-200			200	/500	400			700
Carbon steels with C \leq 0.30%	31.4	30.8	30.2	29.5	/ 28.8	28.3	27.7	27.3	26.7	25.5
Carbon steels with C $> 0.30\%$	31.2	30.6	30.0	29.3	28.6	28.1	27.5	27.1	26.5	25.3
Material Group A ¹	31.1	30.5	29.9	29.2	28.5	28.0	27.4	27.0	26.4	25.3
Material Group B ²	29.6	29.1	28.5	27.8	27.1	26.7	26.1	25.7	25,2	24.6
Material Group C'	31.6	31.0	30.4	29.7	29.0	28.5	27.9	27.5	26.9	26.3
Material Group D ^{4.}	32.6	32.0	31.4	30.6	29.8	29.4	28.8	28.3	27.7	27.1
Material Group E*	'32.9	32.3	31.7	30.9	30.1	29.7	29.0	28.6	28.0	27.3
Naterial Group F*	31.2	30.7	30.1	29.2	28.5	27.9	27.3	26.7	26.1	25.6
1aterial Group G'	30.3	29.7	29.1	28.3	27.6	27.0	26.5	25.8	25.3	24.8
Mn-1/2Mo 2) Material Group B consists of 3/2Ni-1/2Mo-Cr-V 1/2Ni-1/2Mo-V 3/2Cr-1/2Ni-Cu-Al 3/2Cr-1/2Ni-Cu 3) Material Group C consists of 1/2Cr-1/2Mo 1Cr-1/2Mo 1'2Cr-1/2Mo 2Cr-1/2Mo	1Ni- ¹ / ₂ Cr ³ / ₄ Ni-1M ¹ / ₂ Ni- ¹ / ₂ C 2Ni-1Cu 2 ¹ / ₂ Ni 3 ¹ / ₂ Ni	'/,Mo o-'/,Cr Cr-'/,Mo-	v							
 Material Group D consists of 2¹/₄Cr-1Mo 3Cr-1Mo Material Group E consists of 5Cr-¹/₄Mo-Si 5Cr-¹/₂Mo-Si 5Cr-¹/₂Mo-Ti 7Cr-¹/₂Mo 9Cr-Mo Material Group F consists of t 12Cr-Al 	the followi	ng 5-9Cr	steels:			•		·		
	he followir 18Cr–10N 18Cr–18N	i-Cb	lic steels:			-				

18Cr-18Ni-2Si 18Cr-8Ni-N 20Cr-6Ni-9Mn 16Cr-12Ni 22Cr-13Ni-5Mn 18Cr-13Ni-3Mo 23Cr-12Ni 16Cr-12Ni-2Mo-N 18Cr-3Ni-13Mn 25Cr-20Ni 18Cr-10Ni-Ti

(Final)

02-27-1996 10:57 FEB 27 '96 07:11 FR COMED SEC BRIJD

Record of Conversation

Per conversation with T. Matty of Westinghouse on 01/03/96 at 1345 (Phone 412-374-6401) the following seat ring dimensions were obtained for the listed valves:

1/2RYB000A&B 3 inch valves

Seat ring inside diameter 2.6875 in Seat ring outside diameter 3.75 in Mean seat ring diameter 3.21875 in

1/2518801A&B, 1/2518802A&B, 1/2518821A&B 4 inch valves

Seat ring inside diameter 3.5075 in 🔭 Seat ring outside diameter 4.5 in 🥔 Mean seat ring diameter 4.0038 in

Bbdford

MOV Programs Braidwood Station

Concur

1 Marty 2/27/91 se ina Mattu

Westinghouse

* Made up of Seat BonE plus . 0625 for chamfers

Record of Conversation

Per conversation with T. Matty of Westinghouse on 02/12/96 at 0810 (Phone 412-374-6401) it was confirmed that valves 1(2)RY8000A&B, 1(2)SI8801A&B, 1(2)SI8802A&B and 1(2)SI8821A&B all contain discs manufactured from Westinghouse sub assembly drawing 934D225.

Bedford С.

MOV Prøgrams Braidwood Station

Concur

2/29/92 Matty Westinghouse

** TOTAL PAGE. 04 **