PRESSURE LOCKING SPECIAL TEST PROCEDURE BORG WARNER VALVE PROCEDURE PL/TB-2

Revision 0 November 28, 1995

Commonwealth Edison Company

Prepared by:

Robert C.Bedford

Program Support

Approved by:

Dan Christiana

Programs Supv.

Test Results

Prepared by:

Approved by:

TABLE OF CONTENTS

Section	<u>Title</u>	Page
Α .	Purpose	3
В	References	3
C .	Test Equipment and Instrumentation	3
D	Precautions	3
E	Requirements and Procedures	4
F	Results/Acceptance Criteria	6
G	Data Sheets	. 6
• •		
APPENDIX		
A1 ·	VOTES Force Sensor Calibration	9
A2	LLRT Test Results	10
A3	Differential Pressure Test Results	11
A4	Bonnet Pressure Response Test Results	12
A5	Pressure Lock Test Results	13
A6	Pressure Response to Temperature Results	14
A7 .	Thermal Binding Test Results	15
A8	MOV Datasheet	. 16

A. PURPOSE

The purpose of this special test is to validate the proposed model and input assumptions for quantifying capability margin for valves susceptible to pressure locking. Specifically, testing will be performed on a Borg Warner valve to verify:

- the model for estimating MOV presssure lock pullout forces
- bonnet ability to retain pressure when upstream presssure source is removed
- bonnet pressure response to temperature changes

The MOV for this special test is a Borg Warner valve. This procedure provides the test requirements, procedures, and equipment to be used.

B. REFERENCES

- 1. Generic Letter 95-07, Pressure Locking and Thermal Binding
- 2. ComEd Quality Assurance Program

C. TEST EQUIPMENT AND INSTRUMENTATION

- All instrumentation, measuring, and test equipment used in the performance of this test program should be calibrated in accordance with ComEd's Quality Assurance Program
- Measurement Equipment is listed in Table 1
- 3. Thrust, torque, motor power, and motor current shall be monitored
- 4. Upstream, downstream, and bonnet pressure and temperature should be recorded as specified herein
- 5. Teledyne Quick Stem Sensor
- 6. Hydro-pump capable of generating 2000 psi
- 7. Miscellaneous valves and fittings

D. PRECAUTIONS

1. Standard safe work practices shall be followed when working around high pressure and electrical test equipment.

E. REQUIREMENTS AND PROCEDURES

Table 2 specifies the testing to be performed and the test sequence. This test sequence and requriements may be modified during the special test. Sections may be added or omitted based on testing results at the discretion of the test engineer. New or revised test sequences should be added to Table 2.

1. Pre-Test Preparation

- a. Record valve and actuator nameplate data into the test datasheets (Appendix A-8)
- b. The required measurements and associated instruments to be installed are listed in Table 1
- c. The data acquisition method will consist of the VOTES system, motor power monitor (if required), associated support equipment and cables.
- d. Pressures and temperatures will be recorded manually or electronically.
- e. Prior to any testing or stroking of the valve, actuator switches shall be set as follows:
 - 1) The open limit switch shall be set to prevent back-seating of the valve
 - 2) The open torque switch should be bypassed a minimum of 25% of the open travel distance.
- f. Calibration of the VOTES Force Sensor and/or Teledyne Quick Stem Sensor shall be documented on Appendix A1.

2. Static Break-in Test

Verify that the valve has been stroked a minimum of 15 strokes open and 15 strokes closed. If not, cycle valve until the specified strokes are achieved.

3. LLRT Test

An LLRT Leakage Rate Test shall be performed at specified torque switch settings in both directions to verify seat leakage requirements in accordance with approved station procedures. This testing will be documented in Appendix A2.

4. Differential Pressure Test to Determine Valve Factor

- a. With the valve open fill the specimen with water.
- b. With the valve unpressurized, stroke test specimen open and then closed at the lower torque switch setting and record test data.
- c. Pressurize upstream disk side per Table 2.
- d. Vent downstream disk side to atmosphere.
- e. Open the valve, record diagnostic test data, and record upstream pressure.
- f. With the valve unpressurized, stroke test specimen closed and record test data in Appendix A3.
- g. Perform valve factor calculation as described in Appendix A3 and record results.

5. Bonnet Pressure Response

- a. With the valve open fill the specimen with water.
- b. With the valve unpressurized and setup per Table 2, stroke test specimen open and then closed and record test data.
- c. With downstream disk side vented to atmosphere pressurize upstream disk side to the pressure indicated in Table 2 for this test.
- d. Vent upstream disk side to atmosphere and record bonnet pressure as a function of time in Appendix A4.

6. Pressure Lock Test

- a. With the valve open fill the specimen with water such that all air pockets are vented and bonnet is filled solid with water.
- b. With the valve unpressurized and setup per Table 2, stroke test specimen open and then closed and record test data.
- c. Pressurize bonnet to the pressure indicated in Table 2 for this test
- d. Vent downstream and upstream disk side to atmosphere.
- e. Record bonnet pressure and open/close the valve while recording diagnostic test data in Appendix A5.

7. Bonnet Pressure Response to Temperature Changes

- a. With the valve open fill the specimen with water such that all air pockets are vented and bonnet is filled solid with water.
- b. With the valve unpressurized and setup per Table 2, stroke test specimen open and then closed and record test data.
- c. Pressurize bonnet to the pressure indicated in Table 2 for this test.
- d. Heat bonnet to maximum achievable temperature.
- e. Monitor and record fluid temperature and bonnet pressure until stable. Record results in Appendix A6.

8. Thermal Binding Response to Temperature Changes

- a. With the valve open fill the specimen with water.
- b. With the valve unpressurized, stroke test specimen open, closed and open at the lower torque switch setting and record test data.
- c. With the upstream and downstream disk sides vented to atmosphere heat valve body and bonnet to temperature indicated in Table 2 for this test.
- d. Close valve and record test and temperature data. Temperatures will be recorded at various locations on the valve body to establish overall temperature.
- e. When valve has cooled to room temperature open valve and record diagnostic test and temperature data in Appendix A7.

F. RESULTS/ACCEPTANCE CRITERIA

The results of this test will be used as technical input for evaluations and calculations to resolve/assess the pressure locking issue. This test has no acceptance criteria.

G. DATA SHEETS

Appendix A provides Data Sheets for recording the results of the testing.

TABLE 1 MEASUREMENT EQUIPMENT AND TOLERANCES

Measurement Parameter	Device Name	QA/Serial #	Calibration Date/Due Date
Pressure Gage Upstream Disk Side	ASHCROFT MIT III	MITIL	12/3/95/1201
Pressure Gage Downstream Side	ASHCRUFT HTT/11	INT III	12/3/95/pust TIST
Pressure Gage Bonnet	111779008	MITROUS	13/3/95 / POSTST
Temperature Gage Bonnet	OMEGA		12/3/45/ pest 115T
Stem Torque	Teledyne Quick Stem Sensor	NONE	PURING TEST
Stem Torque	Liberty, VTC	275960BR	8/45 /2/46
Stem Thrust	Teledyne Quick Stem Sensor	NONE	DURING TEST
Stem Thrust (Verification)	Liberty, C-Clamp	278981612	
Motor Power	Liberty, MPM	ICO 4076	1/96
Motor Current	Liberty, MPM	I 00 4076	1/96
Motor Voltage	Liberty, MPM	I 00 4.76	1/9.6

TABLE 2 TESTING SEQUENCE AND NUMBERING

	LESTING SEQUENCE AND NUMBERING
Procedure Section	Test Title
1. 18	STATIC HIGHEN TSI (2.0)
F.419/20/21	Differential pressure test to quantify disk friction factor at 200 psi / Bowney
F.4 22	Differential pressure test to quantify disk friction factor at 500 psi
F.4 23	Differential pressure test to quantify disk friction factor at 800 psi
F.5	Bonnet Pressure Response at 500 psi and lower torque switch setting
F.5	Bonnet Pressure Response at 1000 psi and lower torque switch setting
F.5 26	Bonnet Pressure Response at 500 psi and higher torque switch setting
F.5	Bonnet Pressure Response at 1000 psi and higher torque switch setting
,	
F.6 43/48	
F.6 50	Pressure Lock Un-wedging at 400 psi and lower torque switch setting
F.6 <i>5</i> 2	Pressure Lock Un-wedging at 700 psi and lower torque switch setting
F.6 54	Pressure Lock Un-wedging at 1000 psi and lower torque switch setting
F.7	Bonnet pressure start at 0 psig. Temperature start at ambient. Torque switch at higher setting
F.7	Bonnet pressure start at 50 psig. Temperature start at ambient. Torque switch at higher setting
F.7	Bonnet pressure start at 100 psig. Temperature start at ambient. Torque switch at higher setting
· · · · · · · · · · · · · · · ·	
F.8	Valve body temperature maximum approximately 212 °F
F.8	Valve body temperature maximum approximately 350 °F

72)

11/28/95 Page 9 of 16 Appendix A1

VFS CALIBRATION FEILD DATA SHEET

VALVE TAG NUMBER: BORGWI		VOTES SYSTEM	SERIAL NO.: 27895/BK							
VOTES SYSTEM QA NO .: 27895/BA	?	CAL DUE DATE:	#196							
CALIBRATOR LOCATION: THREADED	CALIBRATOR LOCATION: THREADED UN-THREADED SLOTTED TRANSITION									
DESCRIPTION: VOTES SYSTEM W GA # 27898/BR. BFSL USED	ITH QSS. QSS CO FOR OALIBEATIONS	ONLY	WITH C-CLAMP # 10005							
NEW EFFECTIVE STEM DIA. 1.184	CB3-100 LENGTH: 3/ 11		AMP PROBE SETTING: 2V 20A							
ANTI-ROTATION DEVICE: yes (15)										
			·							

CALIBRATION TABLE

RUN #	Test Number	VOTES SENS NO.	CAL DEV. NO.	CLAMP PRE- TENSION READING	TSS	MAX THRUST	RSQ	CFA -	BFSL SENS	BFSL % CHG	STEM TEMP (F)	GAIN
		NIA	NIA		2.0	32940	1.0	NIA	4.10 E.2		_	2
2	_	N/A	N/A			32919	1.0	NIA	4.09 E-2	0.24	· ·	2
						·						
				=						,'		r
		*1.	,		-							

11/28/95 Page 10 of 16

(cw FLOW METER 449947BR CAL 2/95 DUE 2/96 Appendix A2
HE FLOW MIETER 109 952BR CAL 2/95 DUE 2/96
PRESSURE GALE 033201BR CAL 8/95 DUE 8/96

LLRT RESULTS DATA SHEET

VOTES Test #	TSS	C14, lbf	C!6, lbf	Pullout, lbf	Leakage, scf p(h	Comments, Note upstream or downstream test.
18	2.0	20902	2324/	7863	11.5 scfH	Upstream, 45.6 psid
24	1.0	7662	12638	3781	10,55cfH	Upstream, 45.6 psid
24	1.0	7662	12638	3781	< 0.4 scfH	Downstroam, 45.6 psid
25	2.0	22438	24826	7612	<0.4 scfH	Downstream, 45,6 psid
25	2.0	22438	24876	7612	3.5 SCFH	Upstreum, 456

Test	C16 Thrust , lbf	Pullout Thrust, Ibf	Upstream Disk Side Pressure,	Downstream Disk Side Pressure,	O10 Thrust, Ibf	Open Run Thrust,	Open Valve Factor ¹	Comments
#		·	psi	psi		lbf		
18	23241	7863	_	_	j	669	 -	STATIC AT TSS 20
19	2 <i>54</i> 3è	<i>8858</i>	200 200	0	1543	617		DP TEST AT TST Z.O @ ZOOPSI
20	25825	7663	200	0	1841			REPEAT TEST 19
21	26172	11096	200	0	2587	540	0.143	
22	25417	13535	450	0	5424	535	0.151	
23	23436	16420	730	0	9902		0.174	
28	26959	/3330	760	0	14475	597	0.24	FOR CONDITIONING TEST AFTER NUMBEROUS DP TESTS
29	28945	18799	530	0	14025	406	0.327	

$$\frac{2^{2}(8) + 1/(5)}{1 \text{ Valve Factor}} = \frac{O10 - \text{Run Load} + \left[\text{Upstream Pressure} \times \frac{\pi}{4} \left(\frac{5}{125} \right)^{2} \right]}{\text{Upstream Pressure} \times \frac{\pi}{4} \left(\frac{3.445}{25} \right)^{2} \text{ g.c.}}$$

Test #	C16 Thrust , lbf	Pullout Thrust, Ibf	Upstream Disk Side Pressure, psi	Downstream Disk Side Pressure, psi	O10 Thrust, Ibf	Open Run Thrust, Ibf	Open Valve Factor ¹	Comments
30	28550	14722	540	0	15767	435	359	
31	29395	15966	245	0	73/1	482	.360	
32	29446	14126	285	0	8257	500	.345	
33	29843	11291	455	6	13529	426	,364	
34	29245	11539	475	0	14573.	448	,375	
35	29794	13927	450	0	13828	528	.373	
36	29344	10494	550	550	6863	499	,159	
37	29344	9102	0	505	9599	439	, 239	CONDITANING STROKES PEXFORINGD PRICE TO THIS FEST (DP)

O10 - Run Load + Upstream Pressure
$$\times \frac{\pi}{4} (\frac{5}{125})^2$$

¹ Valve Factor =

Upstream Pressure $\times \frac{\pi}{4} \left(3.445 \right)^2$ yet

Test	C16 Thrust , lbf	Pullout Thrust, Ibf	Upstream Disk Side Pressure,	Downstream Disk Side Pressure,	O10 Thrust, Ibf	Open Run Thrust,	Open Valve Factor ¹	Comments
#			psi	psi		lbf		
38	28966	95-49	0	550	14821	479	-332	
39	29096	12683	0	520	15269	447	,361	
59	9845	16757	-510	510	17553	350	. 423	
66	3/722	22474	2081	208	6165	525	.34¥	·
67	31772	22126	0	198	6066	653	1347	
68	31922	24513	0	370.	11834	614	-382	
69	31873	24414	0	4/3	13922	623	.405	
70	32069	25306	0	575	18346	557	.390	

216 12/4/95

O10 - Run Load + Upstream Pressure
$$\times \frac{\pi}{4} (\frac{5}{125})^2$$

¹ Valve Factor =

Upstream Pressure
$$\times \frac{\pi}{4} (3.445)^2$$
 x 16 1.44/65

Test #	C16 Thrust , lbf	Pullout Thrust, Ibf	Upstream Disk Side Pressure, psi	Downstream Disk Side Pressure, psi	O10 Thrust, Ibf	Open Run Thrust, Ibf	Open Valve Factor ¹	Comments
71	31721	27545	0	610	20683	638	.413	
99	19169-	21022	0	610	20177 217113			1.65T NO GOOD
100	16101	19729	0	578	20325	748	.425	
			·					
			-					

 $\frac{2^{1} \text{Valve Factor}}{\text{Valve Factor}} = \frac{O10 - \text{Run Load} + \left[\text{Upstream Pressure} \times \frac{\pi}{4} \left(\frac{5}{125} \right)^{2} \right]}{\pi}$

Upstream Pressure $\times \frac{\pi}{4} \left(3.445 \right)^2$ gets

Time	Bonnet Pressure, Psig
0	504
i:00	503
2:00	502
B:00	501
4:00	500
5,00	500
6:00	499
7:00	498
27/2///	111111111
0	938
1:00	928
2:00	718
3100	910
4:00	900
5:00	892
6:00	883
7:00	875
8:00	867
9:00	858
10:00	850

Note : Packing region and all external souls corremained dry during test

11/28/95 Page 12 of 16 Appendix A4

		· · · · · · · · · · · · · · · · · · ·
	Time	Bonnet Pressure, Psig
	11:00	842
	12:00	835
	131,00	827
	14:00	820
	15:00	812
	~~~	7777
1		
	·	
		· · · · · ·
	,°.	
r		
-		
-		
1	1	

PRESSURE LOCKING	S SPECIAL TEST PROCEDURE
Revision 0	
<b>BONNET PRESSURE</b>	RESPONSE RESULTS DATA SHEET
VOTES Test #	C16 Thrust

11/28/95 Page 12 of 16 Appendix A4

Time	Bonnet Pressure, Psig
·	
,	
· .	
	*

PRESSURE LOCKING S	SPECIAL TEST PROCEDURE	•	11/28/95
Revision 0		F	Page 12 of 16
BONNET PRESSURE R	ESPONSE RESULTS DATA SHEET	F	Appendix A4
VOTES Test #	C16 Thrust		• •

Time	Bonnet Pressure, Psig
-	
:	
	·
	·
	·





Test Description	VOTES Test #	MPM Title	C16 Thrust, Ibf	09 Thrust, Ibf	Bonnet Pressure, psi	Pullout Motor Power, kW	Pullout Torque, Ibf	Comments
STATIC TEST	42		31,783	16,513	0 2 10 10 10 10 10 10 10 10 10 10 10 10 10	ъб <u> </u>	162.4	
PRESSURE LOCK TEST	43	12-6-95 11:26 AM	32,032		205	4.197	251.9	75'S ~ Z
STATIC TEST	44	11:41 AM	31,731	17,357	0	2.61	166,5 <del>294.2</del>	
STATIC TEST	45	11:SI AM	16,162	7,261	0	1:48	70,8	LOWER TS TO 1
Startic Tost	46	12:10 PM	110,659	7509	0	1163	73.5	755=/
Static Test	47	12:14 PM	16,859	7907	0	1.569	77.0	755 =/
PRESSURE LOCK TEST	48	PRESS KCK COW TSS ICOPSI	16809	15268	209	2.56	148.5	735=/
STATIC TEST	49	STATIL LOW TSS	16659	7857	0	1.61	76.3	T55=1
PRESSURE LOCK TEST	.50	LUZO TSS PL AT ACCIPSC	16708	20786	402	3.08	202.6	755=
STATIC TEST	51	STATIC! TRST 1:12 ZCOULK TSS	16807	170 7	0	1.55	75.6	7 <del>5</del> 5 = /
PRESSURE CUCK TEST	52	PX8+5 LCC K Circi TS5 UNW TEC/SC	16958	26705	630	4.35	262.9	Tss =/
Steelic Test	53	Static test 1120 pm Lower TSS	16460:	8105	0	1.53	79.1	755=/
PRESSURE LOCK TEST	5-A.	ACCOPSE	16361	28395	694	4.77	279.6	

# PRESSUR CKING SPECIAL TEST PROCEDURE Revision 0 11/28/95PRESSURE LOCK TEST RESULTS DATA SHEET



	_ <del></del>			<del></del>			
VOTES	MPM Title	C16	09	Bonnet	Pullout	Pullout	
Test#		Thrust,	Thrust,	Pressure,	Motor	Torque,	Comments
		lbf	lbf	psi	Power, kW	lbf	
	STHITC FEST		[			<u> </u>	
55	LIWER 155	16956	7658	0	1,58	74.9	ļ
						<u>'                                    </u>	
<b>-</b> /			11073	(1)(2)		1	]
36	1000 000	16/09	41812	9/7	9.77	421.5	
	STATIC						
58	Į.	15165	5023	850	1.24	49.2	l l
	STATIC	13000			<del>                                     </del>	11113	
ファ	H1611 155	21571	1170-		مدما	1550 0	
/~	·	3/321	76703		7.51	168.0	
77		7// 70	]	_			
/3		3/6.70	17202	0	2.55	164.4	
	PRESS LUCK						
74		31670	27643	208	4.19	271.2	
		<del> </del>	<u> </u>		<del> </del>	<del></del>	
75		31920	28241	213	lu ai.	12275	
	200 9316	3772	13-7-1	<del></del>	7,00	2/1/3	
70		\ <u>-</u> _	1775	<i>a</i> n .	1	1,-, -	
16	11:53000	131822	ditte	Tulstan C	2.70	111.3	
	PRESS COCIC		1	1-1-7			
		32017	33906	391	10 310	343.3	
· · · ′		122./_	133708		- 4,70		
	11164 755	22118	34101	400		244 0	
18	400 Ms/6	32/60	37607	/ 02	1e.37	344.0	
ļ					1	}	·
79	7764 7 35	3/67/	17949	0	12,78	169.9	<b>)</b>
<del> </del>	PRESS CECK	\ <b>-</b>	<del>                                     </del>	<del> </del>		1	
80	111611 155	31860	10121	117	1 01	410.6	Open a sure of the
1 80		21000	40/2/	46/	1 1 9 1	+	PRISS WHOLE VALUE AND CLOSE
-1	HIGA TSS	1 - 4 - 4	.20	219	1 100	7700	1/
8/	200,050	3/97/	12540	×/ /.	17.84	1010.8	
		Test #   57 11111 [125]  55   Lewer 155]  Lewer 155  Le	Test # Thrust, 1bf  55 STMFICFEST 16956  56 LIWER 155 1696  56 LIWER 155 16709  574 LIWER 155 1665  72 HILLI 155 31521  73 PRESS LUCK 16475 31670  74 PRESS LUCK 16475 31670  75 PRESS LUCK 16475 31670  76 1153am 31822  77 PRESS LUCK 16475 32017  PRESS LUCK 16475 32168  79 PRESS LUCK 16475 32168  79 PRESS LUCK 16475 32168  79 PRESS LUCK 16475 321671  80 PRESS LUCK 164755 31868	Test # Thrust, Ibf Ibf  55 STMMC [15] /6956 7658  56 STMMC [15] /6956 7658  56 STMMC [15] /6956 7658  58 STMMC [15] /6709 41872  58 STMMC [15] /5665 5023  72 HIGH 155 31521 /6705  73 STMMC [16] 1565 5023  74 STMMC [16] 15670 27693  75 STMMC [16] 15670 27693  76 STMMC [16] 155 31670 27693  77 MILH 155 200 17751  78 STMMC [16] 15751  77 MILH 155 400 3206  78 STMMC [16] 1568 32017 33906  78 STMMC [16] 158 32168 34604  79 STMMC [16] 158 31868 40121  80 PRESS COCK [16] 17949  80 PRESS COCK [16] 17949  80 PRESS COCK [16] 17949	Test # Thrust, Ibf Pressure, psi  55   STMITCTESI   16956   7658   O  FRES CACK   LAWAR 1855   16709   41872   919  58   CALVERSS   16709   41872   919  58   CALVERSS   1665   5023   950  72   HILLIAN 1755   31521   16705   O  73   STATIC   16705   O  74   CALVERS   31670   17202   O  74   CALVERS   31670   27643   208  75   ARLS CACK   1104   755   31920   28241   213  76   11153am   31822   ARLS CACK   1104   755   420   821   32168   34604   402  77   RESS CACK   1104   755   31671   17949   O  80   PRESS CACK   1104   755   31868   40121   467    80   PRESS CACK   1104   755   31868   40121   467    80   PRESS CACK   1104   755   31868   40121   467    80   PRESS CACK   1104   755   31868   40121   24540   219	Test # Thrust, Ibf Pressure, psi Power, kW  55   STMTCTST   16956   7658   0   1.58  1865   1668   1670   41872   919   9.77  58   1600   1565   5023   950   1.24  72   11611 1755   31521   16705   0   2.55  73   1600 175   31670   17202   0   2.55  74   1600 175   31670   27643   208   4.19  75   1153 ann   31822   1775   213   4.86  76   1153 ann   31822   1775   213   4.86  77   1600 175   32017   33906   391   6.36  78   1600 175   32168   34604   402   16.31  79   1600 1755   31671   17949   0   2.18  80   1600 175   31868   40121   467   1.91  PRESS COCK   1600 1755   31868   40121   467   1.91  PRESS COCK   1600 1755   31868   40121   467   1.91	Test # Thrust, Ibf   Pressure, psi   Power, kW   Ibf    55   STATIC [75]   16956   7658   0   1.58   74.9    56   IRES (CEC   1695   16956   7658   0   1.58   74.9    58   IRES (CEC   155   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1

#### CKING SPECIAL TEST PROCEDURE PRESSURE Revision 0 11/28/95PRESSURE LOCK TEST RESULTS DATA SHEET

11/28/22 Page 13 of 16 Appendix A5

Took Description	VOTES	MPM Title	C16		Dannat	D. II.	D. U. a.	· · · · · · · · · · · · · · · · · · ·	
Test Description	Test #	MPW Title	Thrust,	09 Thrust,	Bonnet Pressure,	Pullout Motor	Pullout	Comments	
	162(#		Initiast,	Iniust,			Torque,	Comments	
			INI	101	psi	Power, kW	lbf		
		STATIC							
STATIC TEST	るこ	HIGH T55	32417	17.700	0	2.69	170.6		
	<del></del>	PRESS LUX	· · · · · · · · · · · · · · · · · · ·						
Pa	83	1/1611 735	32318	25457	110	4.26	246.9		
PRESSURK LOCK		PRESS LUCK	02070			1.00			
	91	HICH 735		70671	ر ہے	٠ ر، ١ ا			
PRESSURE COCK	84	50,1516	31820	22871.	54	3.45	222.0		÷
		STATTE							
STATIC TEST	85	H16/1755	3/722	17352	O	2.54	167.8	·	
		STAITL				<del>  • • · · · · · · · · · · · · · · · · · </del>	<del> </del>	PRESSURICED DUEWSTRIAM	
	86	HI6H 755	32464	20980	/	3.09	205.3		
STATIC TEST		STATIC	02707			3.01	<del> </del>	TO SUD AND DEPRISSURIER	$\triangleright$
		4161 T55		16101			177.6	//	
STAME TEST	87		32413	18494	.0	2.85	157-14	, 200 PSID	].
		Static			:			1/3/6-	1
Static test	88	Hich TSS	32267	18197	3	12.61	175,5		ŧ
)(6 )-2		STATE				-			1
S	92	1	31951	17541	0	2.78	167.8	THERMAC	
STATIC TEST	70	HICH TSS	3//3/	1/37/			<del>                                     </del>	POST PRESS BINDING	
		STATIC						755 =/	
STATIC TEST	93	LOW TSS	17392	8000	0	1.67	77.0	PRE-DIEDURY-STATIC	<b>.</b>
i Mamony		Momor			1:			TSS=1 E	-air in
STATE TEST Effect	94	Effect Os	17244	8547	0	1,84	83,2	CHECK OF MEMORY	bornet
1 1 1 Leville (25 1)		12000 133	<u> </u>				<del></del>		Thomast
Stortic (Mericiales effect)	95	11	17443	11132	0	1.92	106,1	11	Wester- seli
Te Startic Mem Effect Togst	, , ,	ļ <u> </u>	11/19/	1115/	ļ	1.16			
		PECSS LOCK	]						
PRESSURE /CCK	46	500 2320	17394	27035	557	4.44	269.0		
//		1							
PRESSURE LOCK	97	"	17691	26/89	504	3.95	259.3		
TRUSSURI LOCK	T . (	٠	1//01/	1 0/0/	1	<del></del>	15.5 7.0	<u> </u>	ن
			-						

PRESSUR CKING SPECIAL TEST PROCEDURE
Revision 0
11/28/95PRESSURE LOCK TEST RESULTS DATA SHEET

11/28/c. Page 13 of 16 Appendix A5

Test Description	VOTES Test #	MPM Title	C16 Thrust, Ibf	09 Thrust, Ibf	Bonnet Pressure, psi	Pullout Motor Power, kW	Pullout Torque, Ibf	Comments
STATIC TEST	98	55441C COD L22	17393	8547	0	1.71	82.5	
D								
					·			·
				,				
	-			:				
					,			

11/28/95 Page 14 of 16 Appendix A6

PRESSURE RESPONSE TO TEMPERATURE DATA SHEET

VOTES Test #: 60 C16 Thrust: 31, 327

. 09 Thrust: 16, 609

Time	Bonnet Pressure, Psig	Bonne Outside	t Temperat	ure, °F
(2	93	61.2	57.4	
10,00	90	62.2	59.7	
15:00	93	63.4	65.8	·
17:30	97	65.4	71,1	
20100	104	68.0	77,2	
22130	113	70.4	83.7	
25:00	125	73.6	89,4	
27:30	139	77.4	94.9	
30:00	150	80,2	98.5	
32:30	166	84.0	103.3	
35:00	185	87.6	127,5	
37: 30	207	90.4	///./	
40:00	233	93.8	115.5	
42:30	265	97.4	118.9	
45:00	302	99.8	122.4	
47:30	347	103.2	125.7	<u> </u>

11/28/95 Page 14 of 16 Appendix A6

### PRESSURE RESPONSE TO TEMPERATURE DATA SHEET

VOTES Test #:	C16 Thrust: <u>3/327</u>

Time	Bonnet Pressure, Psig	Bonner Top	Temperatur	e, °F
50:00	409	105.4	128.4	
52:30	484	108.0	132.2	
55:00	5 78	/10.0	135.4	
57:30	687	112.0	138.2	,
60:00	803	115.4	141.4	
62:30	946	119.2	144.9	
65:00	1084	122.0	147.1	
67'30				
70:00	·			
72.30				
75:00				
77:30		·		
80:00				
82:30				
85 00				
87:30				

11/28/95 Page 14 of 16 Appendix A6

### PRESSURE RESPONSE TO TEMPERATURE DATA SHEET

VOTES Test #: <u>88</u> C16 Thrust: <u>32267</u>

09 Thrust: /8/97

Time	Bonnet Pressure, Psig	Bonnet OUTSIDE TOP	emperature, °F
90:00			
00.00	86	65.0	64.0
10:00	86	76.0 [*]	64
20:00	४४	73	67.7
25:00	92	75.4	72.7
30:00	96	78.2	77.
33130	100	80.0	79.5
35100	102	80.8	81.4
37:30	105	82.4	83,5
40:00	109	83.8	85.5
42130	//3	85.8	87.6
45:00	116	38	90.2
47:30	118	88.8	90.9
50'00	122	90,2	92.6
52130	126	92	94.2
55100	/30	93.2	95.9

[&]amp; PICKED UP HEAT FRUM HEATERS / DISCARD POINT

11/28/95 Page 14 of 16 Appendix A6

### PRESSURE RESPONSE TO TEMPERATURE DATA SHEET

VOTES Test #: _	8B	C16 Thrust:	32267
-----------------	----	-------------	-------

09 Thrust: /8/97

Time	Bonnet Pressure, Psig	Bonnet Tem	perature, °F
57:30	/33	94.4	97.3
60:00	137	95.6	98.8
1:02:30	140	96.8	100.1
1105:00	145	97.6	101.2
1:07130	148	97.8	102.4
1:10:00	151	98.2	103.5
1:12:30	154	98.8	104.7
1115100	/56	99.4	105.8
1:17:30	160	100, 2	107.1
1;20:00	165	101.0	108.4
1:22:30	170	102.0	110.0
1:25:00	175	103.0	110,9
1:27:50	181	104.2	112.6
1,30,00	187	105.2	113,7
1:32:50	194	106.4	0.211
1:35:00	201	107.4	116.0
1:37:30	209	108.6	117.1
1:40:00	219	0,011	118.4
1:42:30	225	111.0	114:7

11/28/95 Page 14 of 16 Appendix A6

### PRESSURE RESPONSE TO TEMPERATURE DATA SHEET

VOTES Test #: <u>88</u> C16 Thrust: <u>32267</u>

09 Thrust: /8197

Time	Bonnet Pressure, Psig	Bonnet Ter	mperature, °F
1:45:00	233	112,0	120,9
1:48:30 a Really	245	113.4	155-3
1:50:00	249	114.0	122,6
1:52:30	256	115.0	123.6
1; 55:00	262	116.0	124.5
1:57:30	274	(17.0	125,8
7:00:00	291	118,2	127,7
2:02:30	324	119.7	130,3
2:05:00	357	121.2	132.2
2:07:30	405	123	135
2:10:00	470	125	137.7
2:14 (2112:30 missed)	5.95	128.6	142.1
2:15	633	129,6	143,3
2:17:30	708	131.4	145,3
2:20	798	133.8	147.8
2:22:30	885	136,0	149.9

11/28/95 Page 14 of 16 Appendix A6

### PRESSURE RESPONSE TO TEMPERATURE DATA SHEET

VOTES Test #: <u>99</u> C16 Thrust: <u>32267</u>

09 Thrust: /8/97

Time	Bonnet Pressure, Psig	Bonnet Ten	nperature, °F  FLUID TEIMP
2144100	7/	177,0	173.4
2:46:30	75	171.8	176.4
2:49:00	MISSED		-
2:51:30	M1554D	_	
2:54:00	96	179,2	1849
2:56:30	105	182.8	187.6
2:59:00	115	184.6	190.3
3:01:30	127	184.6	192.9
3:03:00	138	146.4	1948
3:05/30	151	187.6	196.8
3:08:00	170	189.8	199.2
3:/0:30	194	193.0	201.0
3:13:00	224	196.6	203.0
3:15:30	262	196.4	206.0
3:18:00	309	197,6	208.0
3:20:30	362	207,2	211.0

DECRIASED PRESSURL TH BONNET GA

11/28/95 Page 14 of 16 Appendix A6

#### PRESSURE RESPONSE TO TEMPERATURE DATA SHEET

VOTES Test #: 88 C16 Thrust: 32267

Time	Bonnet Pressure, Psig	Bonnet Temp	perature, °F
3:23:00	431	2026	213
3: 25:30	.51.4	201.8	215
3:28:00	615	203.8	217
3:30:30	729	206.7	220
3:34100	225	212.4	222
3.36130	M15507		_
31 39:00	320	216.8	228
3:41:30	391	216.4	230
3.43.00	MISSCI		
3:45:30	540	218.8	233
3,48,00	659	221.4	236
3:50:30	169	221.4	238
3:53:00	193	228.2	240
3: 55:30	228	230,4	242
3:58:00	276	233	245

BOWNET PRLUZ-THRUGGH 67700

Decelhoed Connel Pecs

11/28/95 Page 14 of 16 Appendix A6

PRESSURE RESPONSE TO TEMPERATURE DATA SHEET

09 Thrust: <u>18197</u>

Time	Bonnet Pressure, Psig	Bonnet Te	mperature, °F
,	707		
1:00:30	332	235	247
4:03:00	109	237.2	219
4:05:30	5-23	239.2	252
4:08:00	626	241.4	253
4:10:30	181	247	257
1:13:00	194	218.6	258
4:15:30	232	25/	260
4:18:00	282	252.4	262
4:20:30	348	253.2	264
4:23:60	430	254.4	266
4:25:30	526	256.4	268
4:28:00	184	262.6	270
1:30:30	2/2	266.2	272
1:33:00	246	270.6	274
4:35:30	285	273.4	276.
1:38:00	339	275	277

DEPRESS

11/28/95 Page 14 of 16 Appendix A6

PRESSURE RESPONSE TO TEMPERATURE DATA SHEET

VOTES Test #: <u>48</u> C16 Thrust: <u>32267</u>

09 Thrust: /8/97

	Bonnet Pressure,		emperature, °F
Time	Psig	Bainet	FLUID TEMP
		T	
4:40:30	384	277	278
f: 43:00	442	269.4	280
1:45:30	490	268.8	28/
	• • • • • • • • • • • • • • • • • • •	221	
4:18:00	172	271	28/
4:50:30	184	272	283
4:53:00	200	272	284
4:55:30	218	272.6	2.85
44.004.000	727	222	286
4:58:00	237	213.2	2 26
5.00:30	258	273.6	286
5:03:00	279	274.4	287
		<del> </del>	
5:05:30	305	275.6	288
5:08:00	347	276.6	290
			<del>,</del>
5:10:30	412	277.4	291
5:13:00	504	278.8	293
5:15:30	595	279.6	294
· .			
	,	7	

DEPRESS

11/28/95 Page 14 of 16 Appendix A6

### PRESSURE RESPONSE TO TEMPERATURE DATA SHEET

VOTES Test #: Low 155 C16 Thrust: ____ N/n

INITIAL WIR TEMP 103°F 09 Thrust: _

Time	Bonnet Pressure, Psig	Bonnet Ter	nperature, °F  USSIECHM  TCM?		
00:00	37	65,3	103°F	].	
14:00	40	67.2	102		
20:00	40	67.8	101.2		1.
25:00	41	68.3	111.8		
30:00	42	69. 2	124.2	68.0	68.6
 35:00	44	70.6	140	71.2	71.4
40:00	46	71.5	149	72	71.6
45:00	49	72.8	159.2	74.4	71.6
50:co	53	74.8	170	74.6	72.6
55:00	58	76.9	179.8	76.0	74.8
60:00	69	79.8	189.4	77.8	76.4
1:05:00	82 late	82.7	195.8	80.4	78.0
1:10:00	90	83.9	198.4	81.6	78.6
1:15:00	p7	86,4	201.8	82.4	80.2
1:20:00	131	88.7	205.6	84.6	81.4
1:25:00	172 late	91.9	209.0	87.8	82.2

PRESSURE RESPONSE TO TEMPERATURE DATA SHEET

VOTES Test #: <u>ωω Τ55</u> C16 Thrust: <u>ν//</u>

09 Thrust: _____*λ |*Λ

	Bonnet Pressure,	Bonnet Tem	perature, °F	VIV Bedy	
Time	Psig	FWID TEMP	UPSTR TYMP	disk	Res
1130100	198	93.5	210.8	38.0	8
1:35:00	242	95.8	213.2	89.4	86
1:40:00	361	98.4	215.6	92.6	87
1:15:00	345	100.3	217.4	93,4	89
1:50:00	394	102.2	219.4	96.0	89
1:55:00	443	104.3	221.2	96.6	92.
7:00:00	488	106.2	223.0	97.8	95
2:05:00	531	108.0	224.0	98.6	96.9
2:10:00	562	110.0	226.2	100.6	98
2:15:00	588	112.0	228.0	101.2	99.
2:20:00	609	113,8	229,8	102,2	tes icc
2:25:00	626	115.5	229,2	102.0	96
2:30:08	643	117.2	229.6	100.0	97
2:37:00	673	119.0	231.8	100:0	98
2:40:00	684	120,5	232.4	102,2	
2: 45:00	720	122,3	233.8	102.2	
2:50:00	772	123.9	235,4	104.4	99.
2:55:100	826	125.4		104.6	
} { 00 } 00.				. •	
				1	

11/28/95 Page 15 of 16 Appendix A7

### THERMAL BINDING TEST RESULTS DATA SHEET

	HIGH TEMP	CCOL
Bonnet Temperature Valve Body Temperature	152°F 160°F	77°F 72°F
Pre heating test data	Ро	st Cooling test data
Votes Test # 63 09 16008 C16 32264	Vo	otes Test # <u>90~64</u> 09 <u>/6995</u> C16 <u>2597 3/9</u> 7.
	· ·	
Bonnet Temperature Valve Body Temperature	303 °F 287 °F	75°F 72°F
Pre heating test data	Pos	st Cooling test data
Votes Test # <u>89, 90 91</u> O9 <u>24052</u> C16 <u>25942</u>		tes Test # <u>91</u> 09 <u>24244</u> C16 <u>3/348</u>
PATA SUSPECT DU HEATING OF SKN SEE TEST #92		
Bonnet Temperature Valve Body Temperature		
Pre heating test data	Pos	t Cooling test data
Votes Test #	Vot	es Test # 09 C16

11/28/95 Page 16 of 16 Appendix A8

## VALVE DATA SHEET

Valve		
Туре	GATE (FLEX WEDGE)	
Vendor	BORG WARNER	
Size	10 INCH	
Model No.	77780 =	
Mean Seat Diameter	10.199 INNER SEAT DIA 10.473 OUTER	
Stem Diameter	1.5 INCH	
	·	
	Actuator	
Туре	SMB	
Vendor	LIMITORQUE	
Size	0 0/N 3A6606A	
Model No.	0/N 3A6606A	
Serial No	201003	
OAR	31.1/	
Spring Pack No.	017	
<del></del>		
· · · · · · · · · · · · · · · · · · ·		
	Motor	
Туре	MY INSULATION CLASS B, FRAME PSG	
Vendor	RELIANCE	
Motor Rating	RELIANCE 25 FT LB START 5 RUD	
Model No.		
RPM	1700	
Voltage	460	
Motor Power (AC/DC)	AC	
·		

#### Borg Warner Valve Pressure Locking Thermal Binding Test Notes

### 12/04/95 Test Setup

The Borg Warner valve was received from the stand fabricator and is shown in figure 1. The stand was designed such that the valve could be rotated about the center of gravity to remove air from the valve bonnet. The instrument main@enance department calibrated and installed the test equipment as shown in figure 2. Two holes were drilled and tapped into the bonnet to accept a thermowell/temperature meter and a pressure transducer/indicator. This pressure transducer was input into the VOTES system spare channel to obtain bonnet pressure traces.

A high pressure air/water accumulator was used to pump high pressure water into either the upstream or downstream side of the valve. The accumulator would supply a constant water pressure during unseating of the valve.

#### Data Acquisition

The VOTES and MPM systems were used as data acquisition devices for the test. The VOTES system was used to monitor stem thrust, switch actuation, spare channel bonnet pressure and motor current. The MPM system was used to monitor motor voltage parameters. The Borg Warner valve stem (threads) were machined to the minor diameter for approximately 3 inches in stem length. In this area a Teledyne QSS was mounted and connected to the VOTES system. This QSS was then calibrated using a Liberty C-Clamp on the machined section of stem. Because the QSS is a linear device a best fit straight line was used to fit the calibration data.

A calibration was performed at a high valve torque switch setting of 2.0. Two calibrations were performed which were within 0.24 percent of each other.

#### Conditioning strokes

After performance of the calibration the valve was stroked approximately 15 times in accordance with the procedure. These strokes were performed without data acquisition.

A Local Leak Rate Test (LLRT) was performed in accordance with procedural step E.3 after initial differential pressure testing. This LLRT testing was performed in accordance with plant procedures with a test pressure of 45.6 psig. Initial results on the upstream side of the valve indicated leakage rates of 11.5 scfh at a TSS of 2.0 and 10.5 scfh at a TSS of 1.0. On the downstream side of the valve the indicated leakage rates were zero or the test equipment accuracy of 0.4 scfh. Based on these results the upstream side of the valve was retested at a TSS of 2.0 and leakage rates were 3.5 scfh. It is believed that leakage path existed outside the valve during the original upstream leakrate tests.

### Bonnet Pressure Response

In accordance with test section E.5 a bonnet depressurization test was performed. The valve was set at a TSS of 2.0 to run this test. The bonnet was pressurized through the upstream seat to a pressure of approximately 500 psig and the upstream and downstream sides of the valve were depressurized. The bonnet depressurization rate at approximately 500 psig was approximately 1 psi per minute and at approximately 940 psi the depressurization rate was approximately 10 psi per minute decreasing to 7 psi per minute at approximately 820 psig. It should be noted that the packing area remained dry during this test. It should also be noted that the packing leak off line was capped during all of the testing.

12/05/95 12/06/95

Differential pressure testing

Differential pressure tests were started on the upstream side of the valve at a TSS of 2.0. through 23 were performed at differential pressures of 100, 200, 450, and 730 with valve factors ranging from 0.143 to 0.174. It was decided to run some conditioning differential pressure tests and approximately eight unmonitored tests were performed at a differential pressure of approximately 600 psig. Differential pressure test 28 and 29 were performed with valve factors of 0.24 and 0.32. Differential pressure tests 30 through 35 were performed at various pressures between 200 and 500 psid and valve factors ranged between 0.34 and 0.37. Based on this it was believed that the valve factor had stabilized. Differential pressure test 36 was performed by pressurizing on the downstream side of the valve and at a dp of 550 a valve factor of 0.16 was achieved.

on this low valve factor numerous unmonitored conditioning dp tests were performed. This raised the valve factor to 0.361 on test 39. It was believed that the valve factor had stabilized on both seats of the valve.

## Pressure locking testing

Pressure locking data acquisition started with static test 42 and pressure lock test 43 at a TSS of 2.0. After this test the TSS was lowered to 1.0 and static tests 45 through 47 were run. Tests 48 through 56 were performed alternating between static and pressure lock with bonnet pressures ranging between 200 and 900 psig.

### Pressure response to temperature

During this test the valve was set up with high temperature heating coils placed around the center of the valve body around where the disk seats are such that the center of the valve could be heated. During this test the temperature was monitored and recorded both on the outside of the bonnet and the inside water The bonnet internal pressure was also temperature. recorded. The valve was tipped to remove all the air from the bonnet as water was run into the valve. VOTES test 60 was run at a TSS of 2.0 prior to this test. The bonnet pressure started at 93 psig prior to the heating coils being energized. During this test each of the heating coils were fully energized and remained energized throughout the heatup process (labeled high heat input test). After cooling of the valve a similar test was run with the same setup and VOTES test 88. The only difference with this test is that the heatup was slower. The heating coils were cycled on and off while constantly increasing the heat setpoint. results of these two tests matched very closely relative to pressure increase versus temperature. During this second test, the pressure was bleed off as it approached approximately 900 psig. After bleed off the heatup continued. As can be seen by later testing it is believed that not all the air was removed from the bonnet during both of these tests.

### Test Summary and Conclusions

## Differential Pressure Testing

The first set of DP tests were run at 100 to 700 psid on the upstream side of the valve and indicated a valve factor in the range of 0.13 to 0.17. In an effort to increase the valve factor an unmonitored set of ten dp tests were performed at approximately 600 psid. The valve factor slowly increased to approximately 0.37. Differential pressure tests were then run on the downstream side of the valve and initial testing indicated a valve factor of 0.16. In an effort to increase the valve factor an unmonitored set of ten dp tests were performed at approximately 600 psid. The valve factor slowly increased to approximately 0.40. This testing indicates that static testing does not increase the initially very low valve factor but rather high load differential pressure testing was needed to increase the valve factor. The valve factor appeared to become stable in the range of 0.37 to 0.41.

### Pressure Locking Test

Initial pressure locking tests at a TSS of 1 and bonnet pressures between 200 and 700 psid indicated that the model for prediction of pullout thrust was under predicting by approximately 3100 lbs. Pressure locking tests at a TSS of 2 indicated that the model for prediction of pullout thrust was under predicting by approximately 3500 lbs. In an effort to resolve this discrepancy a test was performed in which the downstream side of the valve was pressurized to approximately 500 psid and then vented and a pressure lock test was performed with 0 pressure in the bonnet. This test indicated that there was an increase in the pullout thrust of 3628 lbs at a TSS of 2 and 3132 lbs at a TSS of 1. Therefore, it appeared that when the bonnet was pressurized through the upstream or downstream side of the valve a set in the disk was created which added to the pullout thrust. This set was measured in two subsequent tests to be 3628 lbs at a TSS of 2 and 3132 lbs at a TSS of 1. During the last two pressure lock tests at a TSS of 1 and bonnet pressures of 557 and 504 the pullout thrust was under predicted by 2667 and 3377 lbs which are both very close to the set at a TSS of 1. The comparison of testing results (pressure locking forces) to model predictions is summarized in DOC ID#DG96-000078.

### Bonnet Pressure Response Test

The valve was closed with a static seating thrust of approximately 30000 lbs. The bonnet was pressurized through the upstream seat to approximately 500 psig and the upstream and downstream sides of the valve were vented. The bonnet

depressurization rate at this pressure was approximately 1 psig per minute. The valve was then opened and pressurized to approximately 1000 psig and the valve was closed with a similar seating thrust. Bonnet pressure after seating was 940 psig where this test was started. The depressurization rate started at 10 psig per minute decreasing to 7-8 psig per minute at 820 psig.

## Bonnet Pressure Response to Temperature

During the first two temperature tests, pressure vs temperature results were identical with the only difference between the two tests being the rate of heat input. The setup for this test consisted of utilizing three large heating coils which were wrapped around the lower center section of the valve body. coils could be set to achieve a saturated metal temperature or could be constantly energized. The valve was then wrapped in thermal blankets and these were tie wrapped to the valve body. The first test was run with all the heating coils energized (high heat input) and the pressurization rate is shown in the attached charts. This test was run for approximately 65 minutes with a pressure increase from 90 to 1000 psig and a pressurization rate of 0.5 to 40 psig/degree F. The second test was run with the heating coils cycling on and off (low heat rate input) and the pressurization rate is shown in the attached charts. This test was run for approximately 140 minutes with a pressure increase from 90 to 800 psig with a similar pressurization rate.

The last pressure response to temperature test was performed by heating up only one side of the valve. The only other difference during this test is the valve was shook while trying to remove air from the bonnet. Based on the pressurization rate shown in the attached charts, it is believed that all the air was not removed from the previous two tests. This test was run for approximately 175 minutes with a pressure increase from approximately 40 to 800 psig and pressurization rate of 1 to 23 psig/degree F.

### Thermal Binding Test

The setup for this test consisted of utilizing three large heating coils which were wrapped around the lower center section of the valve body. These coils could be set to achieve a saturated metal temperature or could be constantly energized. The valve was then wrapped in thermal blankets and these were tiem wrapped to the valve body. Temperatures were measured on the valve body in the bonnet area using a temperature probe and the internal water temperature was measured using the bonnet temperature thermowell. After heating of the valve body to an average temperature of 156 F a static VOTES test was performed which indicated a final seating thrust of 32264 lbs and a pullout thrust of 16008 lbs. After overnight cooling of the valve to an average valve body temperature of 74.5 F another VOTES test was

performed. This test indicated a static pullout thrust of 18995 lbs with static seating thrust remaining constant within 0.9 percent. Therefore, there was approximately a 19 percent in pullout thrust with a delta temperature of approximately 80 F.

The second test was performed similar to the first, however, the valve body was heated to an average temperature of 295 F. A VOTES test was performed at this point but the results were discarded due to heat up of the thrust sensor. The valve was cooled to an average body temperature of 73.5 F. A VOTES test was performed and the pullout thrust was 24244 lbs. A subsequent static VOTES test was performed as a baseline and the pullout thrust was 17541 with a static seating thrust of 31951 lbs. Between these two tests static seating remained within 1.9 percent. Therefore, there was approximately a 38 percent increase in pullout thrust with a delta temperature of approximately 220 F.

#### Flex of Valve Disk

This test was performed (although not part of the procedure) to determine at what pressure the disk would deflect and allow pressure to enter the bonnet. The valve was closed with a TSS of 2.0. With the bonnet pressure at zero psig, the upstream side of the disk was pumped up slowly until an increase in bonnet pressure was observed. An increase in bonnet pressure was observed slightly above 550 psid and pressure did not increase rapidly until above approximately 600 psig.

During the test the downstream side of the valve was pumped up to pressurize the bonnet. It was found that the bonnet could not be pressuized to greater than approximately 620 psig. If the bonnet was pressurized to 1000 psig through the downstream side disk, when the downstream side was depressurized the bonnet followed until approximately 620 at which point the downstream side disk sealed and held pressure. This information indicates that there is a maximum pressure which could be trapped in the bonnet under a sudden depressurization event. A calculation was performed utilizing a flat plate model to determine the point at which the disk would flex or rather at what point the seating force would become zero. This calculation indicated a force of 574 psig indicating a good correlation between the calculational model and the test. This calculation is attached.

## Thermal binding test

The first thermal binding test was performed at the end of this day such that the valve could cool overnight. The valve was wrapped in thermal blankets such that the temperature of the whole valve was fairly constant. Static test 63 was performed after the valve was heated to an internal bonnet temperature of 152 F and an external valve body temperature of 160 F. After cooling the valve to an internal bonnet temperature of 77 F and valve body temperature of 72 F another static test 64 was run. During this test the static pullout thrust increased from 16008 lbs to 18995 lbs with static seating remaining constant within 0.9 percent. Results of this test indicate that static pullout increased approximately 19 percent with a delta temperature of approximately 80 F.

12/07/95 Additional differential pressure tests were performed during VOTES tests 66 through 71 where the valve was pressurized from the downstream side. The differential pressures ranged from approximately 200 to 600 psid and valve factors range from 0.34 to 0.41.

Additional pressure locking and associated static tests were performed during VOTES tests 72 through 85 where the bonnet pressure ranged between 50 and 500 psid at a TSS of 2.0.

The pressure locking test results to this point have been indicating that the measured pressure locking force is approximately 2000 lbs above the predicted value at a TSS of 1.0 and approximately 4000 lbs above the predicted value at a TSS of 2.0. Because of this VOTES tests 86 through 94 were run to check what was believed to be a memory effect. So a static test was performed with the valve completely depressurized. Next with a bonnet pressure of zero the downstream side of the valve was pressurized to 500 psid and then depressurized. Another static test was performed and this test indicated an increase in static pullout forces approximately equal to the increase in actual pullout forces versus the predicted values.

### Disk deflection test

This test was performed to determine at what pressure the disk would deflect and allow pressure to enter the bonnet. The valve was closed with a TSS of 2.0. With the bonnet pressure at zero psig the upstream side of the disk was pumped up slowly until an increase in bonnet pressure was observed. An increase in bonnet pressure was observed slightly above 550 psid and pressure did not increase rapidly until above approximately 600 psig.

During the test the downstream side of the valve was pressurized to pressurize the bonnet. It was found that the bonnet could not be pressurized to greater than approximately 620 psig. If the bonnet was pressurized to 1000 psig when the downstream side was depressurized the bonnet followed until approximately 620 at which point the downstream side disk sealed and held pressure. This test was performed again, however, the downstream side of the valve was depressurized very rapidly. The results were the same regardless of depressurization rate.

## Thermal binding test

The second thermal binding test was performed similar to the first with the exception of a higher temperature. Static test 89 and 90 were performed after the valve was heated to an internal bonnet temperature of 303 F and an external valve body temperature of 287 F. After cooling the valve to an internal bonnet temperature of 75 F and valve body temperature of 72 F another static test 91 was run. Review of tests 89 and 90 indicated that the thrust values were affected by the high temperature of the valve which heated the stem and affected the sensor Therefore, after test 91 was performed thrust output. static test 92 was performed to compare data. Between tests 91 and 92 the static pullout thrust increased from 17541 lbs to 24244 lbs with static seating remaining constant within 1.9 percent. Results of this test indicate that static pullout increased approximately 38 percent with a delta temperature of approximately 220 F.

# 12/08/95 Pressure response to temperature test

A final test was performed in which the heating coils were moved to the downstream side of the valve (independent of which side) and placed around the pipe flanges. Only the downstream flanges were insulated to prevent heat loss. During this test the valve was closed at a TSS of 1.0 and a water solid condition in

the bonnet at a starting pressure of 37 psig. difference between this test and the previous two pressure response to temperature tests is that the valve was shook while tipped on its side and during this process of shaking, air could be seen exiting the discharge hose. This shaking was continued until no air could be seen exiting the discharge hose. Water at a temperature of approximately 100 F was injected into the downstream side of the valve and the heating coils were turned on. Temperature and pressure were monitored and recorded in the bonnet and temperatures were recorded on the downstream flange, center bottom and upstream side of the valve body. During this test two heating coils were operating and after approximately 20 minutes into the test one of the remaining two coils stopped functioning.





7/1001/

# Borg Warner valve, Point at which disk flexes

This Mathcad Program is designed to calculate the estimated flexing point for a valve disk. This calculational methodology accounts for wedge stiffness. This calculation methodology was prepared similar to Braidwood Calculation 95-158. References numbers are changed.

### **INPUTS:**

Load Value	q := 1000000·psi	
Load Value Disk Thickness Seat Radius Hub Radius Hub Length Seat Angle Poisson's Ratio (disk) Mod. of Elast. (disk) Force of Packing Static Seating Force	w := 1000000 · lbf t := 1.5 · in a := 5.168 · in b := 3.158 · in L := 0.156 · in theta := 5 · deg v := .3 E := 27.6 · 10 ⁶ · psi Fp := 600 · lbf Fs := 32000 · lbf	Valve Data Sheet Typical of Stainless Steel Attachment Avg of Seating High TSS
Open Valve Factor Stem Diameter	VF = .37 D _{stem} = 1.5 in	Valve Testing Avg. Valve Data Sheet

### PRESSURE FORCE CALCULATIONS

Coefficient of friction between disk and seat: (Reference 2)

$$mu = VF \cdot \frac{\cos(\text{theta})}{1 - VF \cdot \sin(\text{theta})}$$
 mu = 0.381

Disk Stiffness Constants (Reference 1 Table 24, Reference 3)

$$D := \frac{E \cdot (t)^3}{12 \cdot (1 - v^2)}$$

$$C := \frac{E}{2 \cdot (1 + v)}$$

$$D = 8.53 \cdot 10^6 \cdot \text{lbf in}$$

$$G = 1.062 \cdot 10^7 \cdot \text{psi}$$

Geometry Factors: (Reference 1, Table 24)

$$C_2 := \frac{1}{4} \cdot \left[ 1 - \left( \frac{b}{a} \right)^2 \cdot \left( 1 + 2 \cdot \ln \left( \frac{a}{b} \right) \right) \right]$$

$$C_2 = 0.06469$$

$$C_3 := \frac{b}{4 \cdot a} \left[ \left[ \left( \frac{b}{a} \right)^2 + 1 \right] \ln \left( \frac{a}{b} \right) + \left( \frac{b}{a} \right)^2 - 1 \right]$$

$$C_3 = 0.00762$$

$$C_8 := \frac{1}{2} \left[ 1 + v + (1 - v) \cdot \left( \frac{b}{a} \right)^2 \right]$$

$$C_8 = 0.78069$$

$$C_{9} := \frac{b}{a} \left[ \frac{1+v}{2} \cdot \ln \left( \frac{a}{b} \right) + \frac{1-v}{4} \cdot \left[ 1 - \left( \frac{b}{a} \right)^{2} \right] \right]$$

$$C_9 = 0.26264$$

$$L_3 = \frac{a}{4a} \left[ \left[ \left( \frac{a}{a} \right)^2 + 1 \right] \ln \left( \frac{a}{a} \right) + \left( \frac{a}{a} \right)^2 - 1 \right]$$

$$L_3 = 0$$

$$L_9 := \frac{a}{a} \left[ \frac{1+v}{2} \cdot \ln \left( \frac{a}{a} \right) + \frac{1-v}{4} \cdot \left[ 1 - \left( \frac{a}{a} \right)^2 \right] \right]$$

$$L_9 = 0$$

$$L_{11} := \frac{1}{64} \left[ 1 \div 4 \cdot \left( \frac{b}{a} \right)^2 - 5 \cdot \left( \frac{b}{a} \right)^4 - 4 \cdot \left( \frac{b}{a} \right)^2 \left[ 2 + \left( \frac{b}{a} \right)^2 \right] \ln \left( \frac{a}{b} \right) \right]$$

$$L_{11} = 0.00079$$

$$L_{17} = \frac{1}{4} \left[ 1 - \frac{1 - v}{4} \left[ 1 - \left( \frac{b}{a} \right)^4 \right] - \left( \frac{b}{a} \right)^2 \left[ 1 + (1 + v) \ln \left( \frac{a}{b} \right) \right] \right]$$

$$L_{17} = 0.05923$$

Moment (Reference 1, Table 24, Case 2L)

$$M_{rb} = \frac{q \cdot a^2}{C_{8}} \left[ \frac{C_{9}}{2 \cdot a \cdot b} (a^2 - b^2) - L_{17} \right]$$

$$M_{rb} = -2.581 \cdot 10^6 \cdot lbf$$

$$Q_{b} := \frac{q}{2 \cdot b} (a^{2} - b^{2})$$

$$Q_b = 2.65 \cdot 10^6 \cdot \frac{lbf}{in}$$

Deflection due to pressure and bending: (Reference 1, Table 24, Case 2L)

$$y_{bq} = M_{rb} \frac{a^2}{D} C_2 + Q_b \frac{a^3}{D} C_3 - \left(q \frac{a^4}{D}\right) L_{11}$$

$$y_{bq} = -0.2619 \cdot in$$

Deflection due to pressure and shear stress: (Reference 1, Table 25, Case 2L)

$$K_{sa} := -0.3 \cdot \left[ 2 \cdot \ln \left( \frac{a}{b} \right) - 1 + \left( \frac{b}{a} \right)^2 \right]$$

$$K_{sa} = -0.10755$$

$$y_{sq} := \frac{K_{sa} \cdot q \cdot a^2}{t \cdot G}$$

$$y_{sq} = -0.1804 \cdot in$$

Total Deflection due to pressure forces:

$$y_q := y_{bq} + y_{sq}$$

$$y_{q} = -0.4423 \cdot in$$

Deflection due to seat contact force and shear stress (per lbf/in.): (Reference 1, Table 25, Case 1L)

$$y_{sw} := -\left[\frac{1.2 \cdot \left(\frac{a}{a}\right) \cdot \ln\left(\frac{a}{b}\right) \cdot w \cdot a}{t \cdot G}\right]$$

$$y_{exv} = -0.1918 \cdot ir$$

Deflection due to seat contact force and bending (per lbf/in.): (Reference 1, Table 24,

$$y_{bw} = -\left[\frac{\left(w \cdot a^{3}\right)}{D}\right] \cdot \left[\left(\frac{C_{2}}{C_{8}}\right) \cdot \left[\left(\frac{a \cdot C_{9}}{b}\right) - L_{9}\right] - \left[\left(\frac{a}{b}\right) \cdot C_{3}\right] + L_{3}\right]$$

$$y_{bw} = -0.375 \cdot in$$

Total deflection due to seat contact force :

$$y_{w} := y_{bw} + y_{sw}$$

1415 MITHELOCY AND CALE FOLLOWS CALOULATION

3. MECHANICAL ENGINERRING DESIGN FOURTH EDITION

2 MOV WHITE PARTR WP-134 BEV O

L SIXTH EDITION OF ROARKS FORMULAS FOR STREES ESTRA.

EFERENCES:

**Borg-Warner 10" 300# Class Gate Valve Measured vs Predicted Pressure Forces** 



# Borg-Warner 10" 300# Class Gate Valve Deviation in Unseating Load vs Bonnet Pressure



# Borg-Warner 10" 300# Class Gate Valve Bonnet Pressure vs. Temperature (High Heat Input Rate)



# Borg-Warner 10" 300# Class Gate Valve Pressurization Rate vs. Time (High Heat Input Rate)



Borg-Warner 10" 300# Class Gate Valve Pressurization Rate vs. Time (Low Heat Input Rate)



# Borg-Warner 10" 300# Class Gate Valve Bonnet Pressure vs. Temperature (Valve Bonnet Periodically Vented)



Borg-Warner 10" 300# Class Gate Valve Body Temperature vs Time (Heat Input from Side)









Page 1

# Memorandum

In Reference Refer to DOC ID # DG96-000078



Date:

January 16, 1996

To:

R. C. Bedford (Braidwood) W. R. Cote (Braidwood)

B. K. Smith (Byron)

B. S. Westphal (LaSalle)

B. Gebhardt (Quad Cities)

S. Raborn (Zion)

H. L. Mulderink (Dresden)

L. D. Pool (LaSalle) R. Mika (Zion)

S. A. Korn

N. B. Stremmel (Byron)

J. G. O'Neill (Dresden)

J. R. Arnold (Quad Cities)

G. C. Lauber (Zion)

I. Garza

Pressure Locking / Thermal Binding Test Data Subject:

The purpose of this memorandum is to provide a summary of the initial results from pressure locking and thermal binding testing that has been performed at ComEd Stations. A formal report documenting the final test results and analyzing test valve performance against pressure locking and thermal binding model predictions will be issued early in 1996.

This testing was performed on a 10" Crane 900# Class gate valve, a 4" Westinghouse 2500# Class gate valve, and a 10" Borg-Warner 300# Class gate valve. The Crane valve was tested at the Ouad Cities Station training building; the Westinghouse and Borg-Warner valves were tested at the Braidwood Station training building and warehouse facilities.

Attachment 1 provides the bonnet depressurization test results for the subject valves. Attachment 2 compares the measured pressure locking loads to the ComEd MathCad model for predicting pressure locking unseating load. The MathCad pressure locking calculation models and Excel spreadsheets with test results for these valves are available on the NODWORLD/SYS network drive in the PRESLOCK directory. Attachment 3 provides the thermally-induced, bonnet pressurization rates for the test valves. Excel spreadsheets containing this data are also contained in the PRESLOCK directory. Attachment 4 provides the results of thermal binding tests.

If you have any questions concerning this memorandum or its attachments, please call me at Downers Grove extension 3824.

MOV Program Lead

Commonwealth Edison Company

Attachments

# **ATTACHMENT 1**

# BONNET DEPRESSURIZATION RATE DATA

Valve	Torque Switch Setting	Initial Pressure	Maximum Closing Thrust	Initial Depressurization Rate (psi/min)
Crane 10"	1	1040 psig	63805 lbf	45 psi/min
Westinghouse 4"	1	2000 psig	13816 lbf	400 psi/min
Westinghouse 4"	1	900 psig	13804 lbf	200 psi/min
Westinghouse 4"	2	1980 psig	19869 lbf	40 psi/min
Borg-Warner 10"	2	504 psig	24826 lbf	1 psi/min
Borg-Warner 10"	2	938 psig	24826 lbf	10 psi/min

# **ATTACHMENT 2**

# MathCad Model Predictions versus Pressure Locking Unseating Loads

Tressure Locking Distanting Locks											
Valve	Test	TSS	Static	Bonnet	Predicted	Measured	Percent				
	#		Unseating Thrust	Pressure	Increase	Increase	Conservatism (Non-Cons.)	Notes			
Crane 10"	6	1	25000	650	5103	4539	-2%	6			
Crane 10"	7	1	25000	850	7213	8191	4%	6			
Crane 10"	9	1	26000	1040	9421	11500	8%	6			
Crane 10"	10	1	26000	1040	9922	12140	9%	6			
Crane 10"	13	1	28000	1195	19462	22140	10%				
Crane 10"	14	1	28000	1375	22974	25480	9%				
Crane 10"	15	1	28000	1375	23126	25480	8%				
Crane 10"	34	2.5	38000	655	6243	5796	-1%	6			
Crane 10"	35	2.5	38000	655	5142	5796	2%	6			
Crane 10"	38	2.5	37500	1055	13164	13870	2%	6			
Crane 10"	39	2.5	37500	1055	13065	13870	2%	6			
Crane 10"	42	2.5	40000	1365	30028	29190	-2%	····································			
Crane 10"	43	2.5	40000	1165	30428	24913	-14%	5			
Crane 10"	46	2.5	40000	1575	32231	33680	4%				
Crane 10"	47	2.5	40000	1575	31931	33680	4%	· · · · · · · · · · · · · · · · · · ·			
Crane 10"	50	2.5	40000	1775	37749	37950	1%	3,4			
West. 4"	30	2	1450	496	1537.6	1555	-1%				
West. 4"	31	2	1450	514	1593.4	1538	2%	• •			
West. 4"	33	2	900	1000	3100	3007	2%				
West. 4"	35	2	900	1000	3100	2990	3%				
West. 4"	37	2	50	1500	4650	4775	-3%	•			
West. 4"	39	2	50	1500	4650	4672	0%				
West. 4"	42	2	-400	2000	6200	5989	4%				
West. 4"	44	2	-400	2000	6200	6126	1%	t			
Borg-W. 10"	43	2	16935	205	5691	8532	4%	1			
Borg-W. 10"	48	1	7882	209	5802	7386	19%	1			
Borg-W. 10"	50	1	7782	402	11160	13004	16%	1			
Borg-W. 10"	52	1	7906	630	17489	18799	23%	1			
Borg-W. 10"	54	1.	7882	694	19265	20514	23%	1			
Borg-W. 10"	56	1	5023	919	25511	36849	-164%	1,2			
Borg-W. 10"	74	2	17477	.208	6225	10167	-2%	1			
Borg-W. 10"	75	2	17477	213	6375	10765	-5%	1			
Borg-W. 10"	77	2	17751	391	11703	16155	-5%	1			
Borg-W. 10"	78	2	17751	402	12032	16853	-7%	1			
Borg-W. 10"	80	2	17949	467	13977	22172	-26%	1,2			
Borg-W. 10"	81	2	17949	219	6555	10591	-2%	. 1			
Borg-W. 10"	83	2	17700	110	3292	7757	-5%	1			
Borg-W. 10"	84	2	17700	55	1646	5171	0%	1			
Borg-W. 10"	86	2	17352	0	0	3628	0%	3_			
Borg-W. 10"	95	1	8000	0	0	3132	0%	3			
Borg-W. 10"	96	1	8000	557	16671	19035	9%	1			
Borg-W. 10"	97	1	8000	504	15085	18189	0%	1			

### ATTACHMENT 2 (continued)

#### NOTES:

- 1. The percent conservatism values are calculated after a "memory effect" of 3100 lbf (at TSS=1) or 3500 lbf (at TSS=2) is added to the calculated pressure locking increase. Testing indicated that the process of applying and then relieving pressure against one side of the closed valve was sufficient to cause the unseating force to increase by these amounts, even when no pressure was captured in the valve bonnet. This effect was only noted for the Borg-Warner test valve.
- 2. When bonnet pressure significantly exceeds the pressure class rating of the test valve, the pressure locking calculation methodology appears to become non-conservative.
- 3. Tests 86 and 95 were performed to quantify the "memory effect" for the Borg-Warner valve. These tests were performed like a pressure locking test in that high pressure (~600 psig) was put against one side of the valve disk and then bled off. However, any pressure that entered the valve bonnet was relieved prior to the opening stroke.
- 4. The AC motor for the test valve stalled during this test and the valve did not fully unseat. Test data suggests that open valve motion was initiated prior to the stall. Consequently, the measured increase due to pressure locking is believed to be correct.
- 5. The pressure data for this test is questionable and is being evaluated at this time.
- 6. The upstream and downstream pressure during these tests was approximately 350 psig. This was done to approximate the LPCI and LPCS injection valve pressure conditions which could exist in the event of a LOCA.

## **ATTACHMENT 3**

# BONNET PRESSURIZATION RATE DUE TO BONNET TEMPERATURE RISE

Valve	Torque Switch Setting	Initial Pres. & Temp.	Maximum Closing Thrust	Initial Pressurization Rate (psi / °F)	Final Pressurization Rate (psi / °F)	Final Pres. & Temp.
Westinghouse 4"	2	102 psig 78.5 °F	20041 lbf	0.5 psi / °F	2.0 psi / °F	201.7 psig 263 °F
Borg-Warner 10"	2	93 psig 61 °F	31327 lbf	0.5 psi / °F	50 psi / °F	1084 psig 147 °F
Borg-Warner 10"	2	86 psig 64 °F	32267 lbf	0.75 psi / °F	40 psi / °F	885 psig 150 °F
Borg-Warner 10"	2	37 psig 65 °F	32267 lbf	1.0 psi / °F	37 psi / °F	826 psig 125 °F

# **ATTACHMENT 4**

# THERMAL BINDING TEST RESULTS

	Valve	Torque Switch Setting	Static Unseating Load	Temperature Decrease (°F)	Measured Increase in Unseating Load Due to Thermal Binding
Г	Westinghouse 4"	2	1909 lbf	100 °F	330 lbf
Г	Borg-Warner 10"	2	16008 lbf	88 °F	2987 lbf
Г	Borg-Warner 10"	. 2	17541 lbf	215 °F	6703 lbf

# MULTIPLE USE

# CALIBRATION TEST REPORT FORM

Instr. No/Type	Location	··.
Instrument Hame Gauge	Tolerance = 2% of span ac	±20 PSIG
Instr.Model Mfr.	Peferences 8419.2400-020	, Re, 2,1
Instr.Serial No. MTI 8008	Procecure No. Bwif 2400-026	
Head Correction N/A	Setpoint N/A	·
Technician Speed		
Date Calibrated 12-3-95	Pange <u>0-1000 PSIG</u>	

INPUT TEST	001101 1201				SWITCH OPERATION ACTUATION
SOIML		POINT		·	AS FOUND AS LEFT INC/DEC
	PUT	SEONISED	DEUOT ZA	AS LEFT	SETPOINT
	PSIG	PSIG	PSIG	PSIG	
0:	0	0	0	0	RESET
25	250	250	252	251	SETPOINT
50	500	500	502	501	PESIT PIMARKS:
75	750	750	752	751	Pre cal for
100	1000	1000	1005	1003	Special Tect on VALUE Pressure Localist
75	750	750	755-	752	Locaine
50	500	500	50%	502	
25	250	250	01112345 250253	251	- (t
0	0	0	0	0	
				1	
	TES	T 701	JIPKE!	V Т	DOCUMENT REVIEW

		EST E	QUIPHE	нт		DOCUMENT SEVIEW
ID#	AT/AL	MODEL#	ZANGE	RATE	CERT DUE	SUPERVISOR: Ray
03/	AFIAL	Mensticle + Green	0-1000 PSIG	NIP	3-96	DATE REVIEWED: 12-3-55
·					1	DATE ENTRY:
						SYS ID:
						NHZ#: 950003824-03

(Final)

APPROVEL.

.92(082092) THBHIP

# MULTIPLE USE

# MEOT TEORES TEST REPORT FORM

Instr. No/Type	Location	·.
Instrument Hame Gauge	Tolerance ±2% of	pan or =20 PSIG
Instr. Model Mir. Ashcroft	References Buil 2	400-026 82,2.2
Instr.Serial Mo. MTT ///	Procecure No. BwiP 2	
Head Correction N/p	Setpoint N/M	,
Technician Speed		
Date Calibrated 12-3-95	Pange 0-1000	PSIG

SHITCH OPERATION   ACTUATION   ACTUATION	<del></del>	<del></del>	<del></del>		· · · · · · · · · · · · · · · · · · ·		<del></del>		
TEST EQUIPMENT   SETFOINT   SET	INPUT TEST					SWITCH			
PSIG	FOTMI		POINT	<u> </u>	·		AS FOUND	AS LEFT	130/020
O O O O O O O O O O O O O O O O O O O			ZEQUIZ:	D AS FOUR	D AS LETT	SETPOINT		<u> </u>	
Deliver   Deliver   Deciment   Deliver   Del	<u></u>	PSIG	PSIG	PSIG	PSIG	9555		1///	
250   250   250   250   250		0	0	0	0			A	
T E S T E Q U I P M E N T   DOCUMENT ZEVIEW   SUPERVISOR:   Fire Cal   Supervisor:	25	250	250	250	250	.		1	<u> </u>
100   1000   1000   998   998   1   1   1   1   1   1   1   1   1	50	500	500	500	500	REMARKS:		1	<u> </u>
75   750   750   752   752   LOCKENG	75	750	750	750	750	Pre car			)
SO   SOO   SOO   SOO   SOO	100	1000	1000	998	998			Tes T 0	ressure.
SO   SOO   SOO   SOO   SOO	75	750	750	752	75.2	_		loci	CIU6
TEST EQUIPMENT DOCUMENT REVIEW  ID# AF/AL MODEL# RANGE RATE CERT DUE SUPERVISOR:	50	500	500	502	502	_			
TEST EQUIPMENT DOCUMENT REVIEW  ID# AF/AL MODEL# RANGE RATE CERT DUE SUPERVISOR:	2.5	250	250	250	250	_		-	
TEST EQUIPMENT DOCUMENT REVIEW  ID# AF/AL MODEL# RANGE RATE CERT DUE SUPERVISOR:	. 0	0	0	0	0	_   .	•		
TEST EQUIPMENT DOCUMENT REVIEW  ID# AF/AL MODEL# RANGE RATE CERT DUE SUPERVISOR:								•	
ID# AF/AL MODEL# PANGE PATE CEPT DUE SUPERVISOR:									
ID# AF/AL MODEL# ZANGE ZATE CERT DUE SUPERVISOR:		Ţ	EST E	QUIPHI	E N T			OCUMENT ?	EVIEH
031 A = 1 P : Manificial + 0-1000 1850 N/2 3-96 DATE ZEVIEWED: 12-3-95	ID#	AT/AL		[	<u> </u>	CERT DUE	SUPERVI	(SO2: /	· R
	031	P =/p!		0-1001: 1851-	11/2	3-96	DATE 2	eviewed:/2	2-3-55

DATE ENTRY:

SYS ID:

950003824-03 APPROVEL

_92(082092) THENT?

(Final)

AUG 2 7 1992

BRAIDWOOD

# MULTIPLE USE

## CALIBRATION TEST REPORT FORM

Instr. No/Type		Location		
Instrument Name	FLUKE	Tolerance	2% = 2.8°F	
Instr.Model Mfr.		References		
Instr.Serial No.	·	Procecure No	o	
Head Correction		Setpoint	<u> </u>	
Technician	J. Hanry			
Date Calibrated	12-3-95	Range		
INPUT TEST	OUTPUT TEST	SWIT	CH OPERATION ACTU	ATION

<del></del>		<del></del>			<del></del>		<del>,</del>	l
INPUT TEST		OUTPO	JT TEST		SWITCH	OPERATION		ACTUATION
POINT	<del></del>	POIN	<u>r</u>	<u> </u>	-	AS FOUND	AS LEFT	INC/DEC
I	TUTE	REQUIR		DI AS LEFT	SETPOIN	T		
	0/0	OF	OF	OF	_	1	4	
	0	70	69.8	69.8	RESET	· · · · · · · · · · · · · · · · · · ·		
	50	141	139.6	139,6	SETPOIN	T	A	<u> </u>
	100	2/2	210,					<u> </u>
			101		-	•		
					$-  $ $A_{s}$	Found		1
					-11	FOUND		•
						9500036	21 00	•
		-				9500000	324-07	
	<del></del>		<u> </u>		-		-	
					_   `			
						•		•
					-		,	S
\	<del></del> -							
	<u> </u>							
	T	EST E	QUIPKI	, т. <u>т.</u>		_	OCUMENT	EVERN
ID#	AF/AL	MODEL#	RANGE	ZATE	CERT DUE	SUPERV	30P:	M
取751	AF/AL	bordon	E		10-96	DATE R	EVIEWED:	12-3-95
}						DATE E	HTZY:	<u> </u>
						SYS ID	:	
						NWR#:	750003B	24-03

_92(082092) ZWBWIP (Final)

APPROVEL

AUG 2 7 1992

BRAIDWOOD

. Revision 2

# CALIBRATION TEST REPORT FORM

Instr. No/Type		Location			
Instrument Name	OMEGA	Tolerance	3%	= 20 p	51
Instr.Model Mir	•	References			·
Instr.Serial No	•	Procecure No.	,		· · · · · · · · · · · · · · · · · · ·
Head Correction		Setpoint			
Technician	Santa FORENAS				
	12-3-95	Pange			
			<del> </del>	<del> </del>	<del></del>
INPUT TEST	OUTPUT TEST	SWITCH	OPERATION		ACTUATION
POINT	POINT		AS FOUND	AS LEFT	INC/DEC

INPUT TEST		OUTPUT	TEST		11_	SWITCH C	PERATION		ACTUA
POINT	· · · · · · · · · · · · · · · · · · ·	POINT	·	· ———————			AS FOUND	AS LET	INC
A12-3-15 IN	PUT	REQUIRED	AS FOUND			SETPOINT			
-PS+ %	P51	P51 '	PSI	PSI					-
	0	0	0	0	-	RESET		<del> </del>	+
25	250	250	246	246	-	SETPOINT		ļ	_
50	500	500	496	496	11-	RESET REMARKS:		<u> </u>	
75	750	750	744	744			_	,	
100	1000	1000	993	993			OUND TEST		
75	750	750	744	744			150003B		
50	500	500	1495	495			15000		
25	250	250	246	246		•			
0	0		0					- 9	
								· -	
1 _ 1								. ^	
					_		1		

TEST EQUIPMENT

DOCUMENT SEVIEW

SUPERVISOR:

DATE ENTEY:

STS ID:

NHR#: 950003624-03

(Final)

APPROVEL.

.92(082092) TWBHIP

BwIP 2000-TO Revision 2

# MULTIPLE USE

# CALIBRATION TEST REPORT FORM

Instr. No/Type	M TT 8008	Location	
Instrument Name	test Earla	Tolerance	2 % = 20 PSI
Instr.Model Mfr.	Ashcroft 1082	- References	
Instr.Serial No.		_ Procecure No.	Bull 2400-00
Head Correction	NIA	Setpoint	-
Technician	m Bord	<u>.</u>	
Date Calibrated _	1-12-96	Range	0-1000 per

INPUT TEST	<del></del>	OUTPUT	TEST		SWITCH	OPERATION .		ACTUATION
POINT		POINT	·			AS FOUND	AS LEFT	IMC/DEC
IN	PUT	PEQUIRED	AS FOUND	AS LEFT	SETPOINT			
	pri	Ran	Pan	PM		•	2/	1
	O	0	O	، ۵	RESET	· ,	A	
	250	250	252	250	SETPOINT			
	500	500	505	500	PESET PEMARKS:	<u> </u>	<u></u>	<u> </u>
	750	750	760	746		_	,	-
	1000	دهی ا	1015	996		1057	Cac 53824 0	
	750	150	760	.750		9500	53824.0	9
·	500	500	510	500	1.		•	
	256	250	255	250			.*	
	0	0	U	0		. *		
					,			
		·						
*	777	т гоп	трмги	т		DO.	COMERTA RE	Armil

CERT DUE SUPERVISOR: RANGE RATE ID# AF/AL MODEL# Ashcrutt 1082 AF/AL 1-26-96 DATE REVIEWED: BR 266 0.100020 DATE ENTRY: SYS ID: NWR 1: 95003824-03

(Final)

APPROVEL

__92(082092) ZWBWIP

Source Document: Bevision: Date:

# BwIP 2000-TO Revision 2

# MULTIPLE USE

## CALIBRATION TEST REPORT FORM

Instr. No/Type	MTT 111	Location	:
Instrument Name _	test gauge	Tolerance	2/6=20 PSI
Instr.Model Mfr.	Ash c. oft 1279	References	
Instr.Serial No	al .	_ Procecure No.	
Head Correction	74	Setpoint	
Technician	pr BonD		
Date Calibrated	1-12-9-6	Range	0-1020 psi
	·-	<del></del>	

INPUT TES	T		- OUTPI	UT TEST		SWITCH	OPERATION		ACTUATION
POINT			POIN	<u>r</u>		_	AS FOUND	AS LEFT	INC/DEC
	INPUT		REQUIR	ED AS FOR	MD AS LEF	SETPOINT			
		ari_	Rs	Ps	Par			21	
	0	•	0	0	0	RESET		A	
	250	,	250	250	250	SETPOINT	·	1	
	54	12)	500	500	500	RESET REMARKS:	•		
	7 9	50	750	750	> 750	<u>-                                     </u>			
·	10	20	1000	100	0 100	<u> </u>	P057 (	-pc.	
	7	50	750	750	750		9500	003824.	09
<del></del>	5	00	500	500	500	_   '			
•	. 2	50	250	> 250	250	_			,
·		2	0	v v	0	[]			
,				]			•		1
-									
		TES	T E Q	UIPMI	ENT		DO	COMPANY EE	NI E4I V
ID#	AF/AL		ODEL#	RANGE	RATE	CERT DUE	SUPERVIS	SOR- ALA	
21 266	AF/AL	A	heroft	P-10100	NA	1.26.66	DATE REV	AT EWED: "\	2-5-96

DATE ENTRY: SYS ID:

NWI: 45000 7824.03

(Final) 1

APPROVEL

_92(082092) ZWBWIP

Source Document:	 
Revision:	
Date:	 

BwIP 2000-T0 Revision 2

# MULTIPLE USE

# CALIBRATION TEST REPORT FORM

Instr. No/Type	Location
Instrument Name OMEGA	Tolerance 2%=20 Psi
Instr.Model Mfr.	References
Instr.Serial No	Procecure No.
Head Correction	Setpoint
Technician Sunta Arenos	
Date Calibrated	Range

INPUT TEST	· · · · · · · · · · · · · · · · · · ·	OUTPUT	TEST	
POINT	<u> </u>	POINT	· · · · · · · · · · · · · · · · · · ·	
	PUT	REQUIRED	AS FOUND	AS LEFT
%	PSI	P61	PSI	PSI
	0	D	0	0
25	Z50	250	247	247
_50	500	500	499	499
75	750	750	747	747
100	1000	1000	995	995
75	750	750	747	747
50	500	500	499	499
25	250	250	250	250
0	0	0	3	3

SWITCH (	OPE	RATION		i	ACTUATION
	AS	FOUND	AS	LEFT	INC/DEC
SETPOINT		<u>.</u>	_	·	
RESET	_		_		
SETPOINT			_	<u> </u>	
RESET					
REMARKS:			-		

POST CAL 95003824-09

TEST EQUIPMENT							
ID#	AF/AL	MODEL#	RANGE	RATE	CERT DUE		
BR 1053	HF/AL	cmm	0-1000	NA	2-2-96		
				<u> </u>			
	<u> </u>	·					

DOCUMENT REVIEW

SUPERVISOR:

DATE REVIEWED: 2-5-90

DATE ENTRY:

SYS ID:

NWR #: 95003824-03

(Final)

APPROVEL

_92(082092) ZWBWIP

Source Document: Revision: Date:

Instr. Wo/Type

Instrument Name

Instr.Model Mfr.

Instr. Serial No.

Head Correction

Date Calibrated

Technician

Onega

BWIP 2000-TO Revision 2

T F/C

#### CALIBRATION TEST REPORT FOR

1-12-56

Setpoint

Pange

TEST MOIT	EXPORT FORM	MULTIPLE USE
	Location	
	Tolerance	2 %
HH 25TF	References Procecure No.	

0-200°F

INPUT TEST POINT		OUTPUT POINT	TEST		
IN	PUT	PEQUIPED	AS FOUND	AS LEFT	
	°F	o _F	OF	4	
	75	75	75.2	75.2	-
	125	125	124.3	124.3	
	175	175	173.6	173.6	<u> </u>
		•			
		-			

SWITCH	OPE	RATION	ACTUATION				
	AS	FOUND	AS LEFT	INC/DEC			
SETPOINT				,			
RESET		· ·	111	,			
SETPOINT			4	7			
RESET				,			
REMARKS:		<del> </del>					

POST CAL 95000382409

for Chris Belford x 2440

TEST EQUIPMENT											
ID#	AF/AL	MODEL#	RANGE	RATE	CERT DUE						
BR 750	AF/	TULU	TIPE K T/C	NA	4-96						
<del></del> *			<del> </del>	<del> </del>							

DOCUMENT REVIEW SUPERVI SOR+ DATE REVIEWED: DATE ENTRY:

SYS ID:

NHR : 95000 3624-03

(Final) 1

**APPROVEL** 

_92(082092) ZWBWIP

AUG 2 7 1992

## Pressure Locking Test Valve (10" Crane Valve)

This Mathcad Program is designed to calculate the estimated openning force under pressure locking scenarios for flex-wedge gate valves using a calculational methodology that accounts for wedge stiffness resisting pressure locking forces.

#### **INPUTS:**

Bonnet Pressure  $P_{bonnet} := 1775 \cdot psi$ Upstream Pressure  $P_{up} := 0 \cdot psi$ 

Upstream Pressure  $P_{up} := 0 \cdot psi$ Downstream Pressure  $P_{down} := 0 \cdot psi$ 

down := 0.p.

 Disk Thickness
 t := 2.1875 in

 Seat Radius
 a := 4.36 in

 Hub Radius
 b := 1.25 in

 Hub Length
 L := 1.625 in

 Seat Angle
 theta := 5 deg

Seat Angle theta := 5.0
Poisson's Ratio (disk) v := .3

Mod. of Elast. (disk)  $E := 27.6 \cdot 10^6 \cdot psi$ 

Static Pullout Force  $F_{po} = 35000 \text{ lbf}$ 

(Test 37)

Disk/Seat Friction Coef. . mu := .28

Stem Diameter D stem = 1.875 in

#### PRESSURE FORCE CALCULATIONS

Average DP across disks:

DPavg := 
$$P_{bonnet} - \frac{P_{up} + P_{down}}{2}$$
 DPavg = 1.775 · 10³ ·psi

Disk Stiffness Constants (Reference 1, Table 24)

$$D = \frac{E \cdot (t)^3}{12 \cdot (1 - v^2)}$$
 D = 2.646 \cdot 10^7 \cdot 10 f in

$$G = \frac{E}{2 \cdot (1 + v)}$$
  $G = 1.062 \cdot 10^7 \cdot psi$ 

Geometry Factors: (Reference 1, Table 24)

$$C_2 := \frac{1}{4} \left[ 1 - \left( \frac{b}{a} \right)^2 \left( 1 + 2 \cdot \ln \left( \frac{a}{b} \right) \right) \right]$$

$$C_2 = 0.178$$

$$C_3 := \frac{b}{4 \cdot a} \cdot \left[ \left[ \left( \frac{b}{a} \right)^2 + 1 \right] \ln \left( \frac{a}{b} \right) + \left( \frac{b}{a} \right)^2 - 1 \right]$$

$$C_3 = 0.031$$

$$C_8 := \frac{1}{2} \left[ 1 + v + (1 - v) \cdot \left( \frac{b}{a} \right)^2 \right]$$

$$C_8 = 0.679$$

$$C_{9} := \frac{b}{a} \cdot \left[ \frac{1+v}{2} \cdot \ln \left( \frac{a}{b} \right) + \frac{1-v}{4} \cdot \left[ 1 - \left( \frac{b}{a} \right)^{2} \right] \right]$$

$$C_9 = 0.279$$

$$L_3 := \frac{a}{4 \cdot a} \left[ \left[ \left( \frac{a}{a} \right)^2 + 1 \right] \ln \left( \frac{a}{a} \right) + \left( \frac{a}{a} \right)^2 - 1 \right]$$

$$L_3 = 0$$

$$L_9 := \frac{a}{a} \left[ \frac{1+v}{2} \cdot \ln \left( \frac{a}{a} \right) + \frac{1-v}{4} \cdot \left[ 1 - \left( \frac{a}{a} \right)^2 \right] \right]$$

$$L_9 = 0$$

$$L_{11} := \frac{1}{64} \cdot \left[ 1 + 4 \cdot \left( \frac{b}{a} \right)^2 - 5 \cdot \left( \frac{b}{a} \right)^4 - 4 \cdot \left( \frac{b}{a} \right)^2 \left[ 2 + \left( \frac{b}{a} \right)^2 \right] \cdot ln \left( \frac{a}{b} \right) \right]$$

$$L_{11} = 0.007$$

$$L_{17} := \frac{1}{4} \cdot \left[ 1 - \frac{1 - v}{4} \cdot \left[ 1 - \left( \frac{b}{a} \right)^4 \right] - \left( \frac{b}{a} \right)^2 \left[ 1 + (1 + v) \cdot \ln \left( \frac{a}{b} \right) \right] \right]$$

$$L_{17} = 0.153$$

Moment (Reference 1, Table 24, Case 2L)

$$M_{rb} := \frac{-DPavg \cdot a^2}{C_{8}} \cdot \left[ \frac{C_{9}}{2 \cdot a \cdot b} \cdot (a^2 - b^2) - L_{17} \right]$$

$$M_{rb} = -1.46 \cdot 10^4 \cdot lbf$$

$$Q_b := \frac{DPavg}{2 \cdot b} \cdot \left(a^2 - b^2\right)$$

$$Q_b = 1.239 \cdot 10^4 \cdot \frac{\text{lbf}}{\text{in}}$$

Deflection due to pressure and bending: (Reference 1, Table 24, Case 2L)

$$y_{bq} = M_{rb} \cdot \frac{a^2}{D} \cdot C_2 + Q_b \cdot \frac{a^3}{D} \cdot C_3 - \frac{DPavg \cdot a^4}{D} \cdot L_{11}$$

$$y_{bq} = -8.275 \cdot 10^{-4}$$
 ·in

Deflection due to pressure and shear stress: (Reference 1, Table 25, Case 2L)

$$K_{sa} := -0.3 \cdot \left[ 2 \cdot \ln \left( \frac{a}{b} \right) - 1 + \left( \frac{b}{a} \right)^2 \right]$$

$$K_{sa} = -0.474$$

$$y_{sq} := \frac{K_{sa} \cdot DPavg \cdot a^2}{t \cdot G}$$

$$y_{sq} = -6.891 \cdot 10^{-4} \cdot in$$

Deflection due to hub stretch (from center of hub to disk):

$$P_{force} := 3.1416 \cdot (a^2 - b^2) \cdot DPavg$$

$$P_{force} = 9.729 \cdot 10^4 \cdot lbf$$

$$y_{\text{stretch}} := \frac{P_{\text{force}}}{3.1416 \cdot b^2} \cdot \frac{L}{(2 \cdot E)}$$

$$y_{\text{stretch}} = 5.835 \cdot 10^{-4} \cdot \text{in}$$

Total Deflection due to pressure forces:

$$y_q := y_{bq} + y_{sq} - y_{stretch}$$

$$y_{q} = -0.002 \cdot in$$

Deflection due to seat contact force and shear stress (per lbf/in.): (Reference 1, Table 25, Case 1L)

$$y_{sw} := -\left[\frac{1.2 \cdot \left(\frac{a}{a}\right) \cdot \ln\left(\frac{a}{b}\right) \cdot a}{t \cdot G}\right]$$
(per lbf/in)

$$y_{SW} = -2.815 \cdot 10^{-7} \cdot \frac{\text{in}}{\left(\frac{\text{lbf}}{\text{in}}\right)}$$

Deflection due to seat contact force and bending (per lbf/in.): (Reference 1, Table 24, Case 1L)

$$y_{bw} := -\left(\frac{a^3}{D}\right) \cdot \left[\left(\frac{C_2}{C_8}\right) \cdot \left[\left(\frac{a \cdot C_9}{b}\right) - L_9\right] - \left[\left(\frac{a}{b}\right) \cdot C_3\right] + L_3\right]$$
(per lbf(in)

$$y_{bw} = -4.595 \cdot 10^{-7} \cdot \frac{\text{in}}{\left(\frac{\text{lbf}}{\text{in}}\right)}$$

Deflection due to hub compression (per lbf/in), (from center of hub to disk):

$$y_{compr} := \frac{2 \cdot a \cdot \pi}{3.1416 \cdot b^2} \cdot \frac{L}{(2 \cdot E)}$$
(per lbf/in)

$$y_{compr} = 1.643 \cdot 10^{-7} \cdot \frac{in}{\left(\frac{lbf}{in}\right)}$$

Total deflection due to seat contact force (per lbf//in.):

$$y_w = y_{bw} + y_{sw} - y_{compr}$$
  
(per lbf/in)

$$y_{\mathbf{w}} = -9.053 \cdot 10^{-7} \cdot \frac{\text{in}}{\left(\frac{\text{lbf}}{\text{in}}\right)}$$

Seat Contact Force for which deflection is equal previously calculated deflection from pressure forces:

$$F_s := 2 \cdot \pi \cdot a \cdot \frac{y_q}{y_w}$$

$$F_s = 6.355 \cdot 10^4 \cdot lbf$$

#### **UNSEATING FORCES**

 $\mathbf{F}_{\mathbf{packing}}$  is included in measured static pullout Force

$$F_{piston} := \frac{\pi}{4} \cdot D_{stem}^2 \cdot P_{bonnet}$$

$$F_{vert} := \pi \cdot a^2 \cdot \sin(\text{theta}) \cdot \left(2 \cdot P_{bonnet} - P_{up} - P_{down}\right)$$

$$F_{\text{total}} = 7.295 \cdot 10^4 \cdot \text{lbf}$$

$$F_{piston} = 4.901 \cdot 10^3 \cdot lbf$$

$$F_{\text{vert}} = 1.848 \cdot 10^4 \cdot lbf$$

$$F_{preslock} = 2.438 \cdot 10^4 \cdot lbf$$

$$F_{po} = 3.5 \cdot 10^4 \cdot lbf$$

 $F_{pressure} = 3.795 \cdot 10^4 \cdot lbf$ 

## Pressure Locking Test Valve (4" Westinghouse Valve)

This Mathcad Program is designed to calculate the estimated openning force under pressure locking scenarios for flex-wedge gate valves using a calculational methodology that accounts for wedge stiffness resisting pressure locking forces.

#### INPUTS:

•	P _{bonnet} := 1000 psi
Bonnet Pressure	bonnet - 1000 psi

$$\begin{array}{lll} \mbox{Disk Thickness} & t := 1.02 \cdot \mbox{in} \\ \mbox{Seat Radius} & a := 1.986 \cdot \mbox{in} \\ \mbox{Hub Radius} & b := 1.056 \cdot \mbox{in} \\ \mbox{Hub Length} & L := .6 \cdot \mbox{in} \\ \mbox{Seat Angle} & theta := 7 \cdot \mbox{deg} \\ \end{array}$$

Mod. of Elast. (disk) 
$$E := 27.6 \cdot 10^6 \cdot psi$$

Static Pullout Force 
$$F_{po} = 0.1bf$$

#### PRESSURE FORCE CALCULATIONS

Average DP across disks:

DPavg = 
$$P_{bonnet} - \frac{P_{up} + P_{down}}{2}$$
 DPavg =  $1 \cdot 10^3$  *psi

Disk Stiffness Constants (Reference 1, Table 24)

$$D := \frac{E \cdot (t)^3}{12 \cdot (1 - v^2)}$$
 D = 2.682 • 10⁶ • lbf·in

$$G := \frac{E}{2 \cdot (1 + v)}$$
  $G = 1.062 \cdot 10^7 \text{ psi}$ 

Geometry Factors: (Reference 1, Table 24)

$$\mathbf{C}_{2} := \frac{1}{4} \cdot \left[ 1 - \left( \frac{\mathbf{b}}{\mathbf{a}} \right)^{2} \cdot \left( 1 + 2 \cdot \ln \left( \frac{\mathbf{a}}{\mathbf{b}} \right) \right) \right]$$

$$C_2 = 0.09$$

$$\mathbf{C}_{3} := \frac{\mathbf{b}}{4 \cdot \mathbf{a}} \cdot \left[ \left[ \left( \frac{\mathbf{b}}{\mathbf{a}} \right)^{2} + 1 \right] \cdot \ln \left( \frac{\mathbf{a}}{\mathbf{b}} \right) + \left( \frac{\mathbf{b}}{\mathbf{a}} \right)^{2} - 1 \right]$$

$$C_3 = 0.012$$

$$C_8 := \frac{1}{2} \cdot \left[ 1 + v + (1 - v) \cdot \left( \frac{b}{a} \right)^2 \right]$$

$$C_8 = 0.749$$

$$C_{9} := \frac{b}{a} \cdot \left[ \frac{1+v}{2} \cdot \ln \left( \frac{a}{b} \right) + \frac{1-v}{4} \cdot \left[ 1 - \left( \frac{b}{a} \right)^{2} \right] \right]$$

$$C_9 = 0.285$$

$$L_3 := \frac{\mathbf{a}}{4 \cdot \mathbf{a}} \left[ \left[ \left( \frac{\mathbf{a}}{\mathbf{a}} \right)^2 + 1 \right] \ln \left( \frac{\mathbf{a}}{\mathbf{a}} \right) + \left( \frac{\mathbf{a}}{\mathbf{a}} \right)^2 - 1 \right]$$

$$L_3 = 0$$

$$L_{9} := \frac{a}{a} \left[ \frac{1+v}{2} \cdot \ln \left( \frac{a}{a} \right) + \frac{1-v}{4} \cdot \left[ 1 - \left( \frac{a}{a} \right)^{2} \right] \right]$$

$$L_9 = 0$$

$$L_{11} := \frac{1}{64} \left[ 1 + 4 \cdot \left( \frac{b}{a} \right)^2 - 5 \cdot \left( \frac{b}{a} \right)^4 - 4 \cdot \left( \frac{b}{a} \right)^2 \left[ 2 + \left( \frac{b}{a} \right)^2 \right] \cdot \ln \left( \frac{a}{b} \right) \right]$$

$$L_{11} = 0.002$$

$$L_{17} := \frac{1}{4} \left[ 1 - \frac{1 - v}{4} \left[ 1 - \left( \frac{b}{a} \right)^4 \right] - \left( \frac{b}{a} \right)^2 \left[ 1 + (1 + v) \cdot \ln \left( \frac{a}{b} \right) \right] \right]$$

$$L_{17} = 0.081$$

Moment (Reference 1, Table 24, Case 2L)

$$M_{rb} := \frac{-DPavg \cdot a^2}{C_8} \left[ \frac{C_9}{2 \cdot a \cdot b} \cdot (a^2 - b^2) - L_{17} \right]$$

$$M_{rb} = -585.782 \cdot lbf$$

$$Q_b := \frac{DPavg}{2 \cdot b} \cdot \left(a^2 - b^2\right)$$

$$Q_b = 1.34 \cdot 10^3 \cdot \frac{1bf}{in}$$

Deflection due to pressure and bending: (Reference 1, Table 24, Case 2L)

$$y_{bq} := M_{rb} \cdot \frac{a^2}{D} \cdot C_2 + Q_b \cdot \frac{a^3}{D} \cdot C_3 - \frac{DPavg \cdot a^4}{D} \cdot L_{11}$$

$$y_{bq} = -3.834 \cdot 10^{-5} \cdot in$$

Deflection due to pressure and shear stress: (Reference 1, Table 25, Case 2L)

$$K_{SB} := -0.3 \cdot \left[ 2 \cdot \ln \left( \frac{a}{b} \right) - 1 + \left( \frac{b}{a} \right)^2 \right]$$

$$K_{sa} = -0.164$$

$$y_{sq} := \frac{K_{sa} \cdot DPavg \cdot a^2}{t \cdot G}$$

$$y_{sq} = -5.967 \cdot 10^{-5} \cdot in$$

Deflection due to hub stretch (from center of hub to disk):

$$P_{force} = 3.1416 (a^2 - b^2) \cdot DPavg$$

$$P_{force} = 8.888 \cdot 10^3 \cdot lbf$$

$$y_{\text{stretch}} = \frac{P_{\text{force}}}{3.1416 \cdot b^2} \cdot \frac{L}{(2 \cdot E)}$$

$$y_{\text{stretch}} = 2.758 \cdot 10^{-5} \cdot \text{in}$$

Total Deflection due to pressure forces:

$$y_q := y_{bq} + y_{sq} - y_{stretch}$$

$$y_{q} = -1.256 \cdot 10^{-4} \cdot in$$

Deflection due to seat contact force and shear stress (per lbf/in.): (Reference 1, Table 25, Case 1L)

$$y_{SW} := -\left[\frac{1.2 \cdot \left(\frac{a}{a}\right) \cdot \ln\left(\frac{a}{b}\right) \cdot a}{t \cdot G}\right]$$
(per lbf/in)

$$y_{sw} = -1.39 \cdot 10^{-7} \cdot \frac{in}{\left(\frac{lbf}{in}\right)}$$

Deflection due to seat contact force and bending (per lbf/in.): (Reference 1, Table 24,

$$y_{bw} := -\left(\frac{a^3}{D}\right) \cdot \left[\left(\frac{C_2}{C_8}\right) \cdot \left[\left(\frac{a \cdot C_9}{b}\right) - L_9\right] - \left[\left(\frac{a}{b}\right) \cdot C_3\right] + L_3\right]$$
(per lbf/in)

$$y_{bw} = -1.203 \cdot 10^{-7} \cdot \frac{in}{\left(\frac{lbf}{in}\right)}$$

Deflection due to hub compression (per lbf/in), (from center of hub to disk):

$$y_{compr} = \frac{2 \cdot a \cdot \pi}{3.1416 \cdot b^2} \cdot \frac{L}{(2 \cdot E)}$$
(per lbf/in)

$$y_{compr} = 3.872 \cdot 10^{-8} \cdot \frac{in}{\left(\frac{lbf}{in}\right)}$$

Total deflection due to seat contact force (per lbf//in.):

$$y_w = y_{bw} + y_{sw} - y_{compr}$$
  
(per lbf/in)

$$y_{w} = -2.981 \cdot 10^{-7} \cdot \frac{in}{\left(\frac{lbf}{in}\right)}$$

Seat Contact Force for which deflection is equal previously calculated deflection from pressure forces:

$$\mathbf{F}_{\mathbf{S}} := 2 \cdot \pi \cdot \mathbf{a} \cdot \frac{\mathbf{y}_{\mathbf{q}}}{\mathbf{y}_{\mathbf{W}}}$$

$$F_s = 5.257 \cdot 10^3 \cdot lbf$$

#### **UNSEATING FORCES**

 $\mathbf{F}_{\mathbf{packing}}$  is included in measured static pullout Force

$$F_{piston} := \frac{\pi}{4} \cdot D_{stem}^2 \cdot P_{bonnet}$$

$$F_{piston} = 1.227 \cdot 10^3 \cdot lbf$$

$$F_{vert} := \pi \cdot a^2 \cdot sin(theta) \cdot (2 \cdot P_{bonnet} - P_{up} - P_{down})$$

$$F_{\text{vert}} = 3.02 \cdot 10^3 \cdot lbf$$

$$F_{\text{preslock}} = 2 \cdot F_{\text{s}} \cdot (\text{mu} \cdot \cos(\text{theta}) - \sin(\text{theta}))$$

$$F_{preslock} = 75.3 \cdot lbf$$

$$F_{po} = 0 \cdot lbf$$

$$F_{\text{total}} = 1.868 \cdot 10^3 \cdot \text{lbf}$$

$$F_{pressure} := F_{total} - F_{po}$$

$$F_{pressure} = 1.868 \cdot 10^3 \cdot lbf$$

## Pressure Locking Test Valve (10" Borg-Warner Valve)

This Mathcad Program is designed to calculate the estimated openning force under pressure locking scenarios for flex-wedge gate valves using a calculational methodology that accounts for wedge stiffness resisting pressure locking forces.

#### **INPUTS:**

Bonnet Pressure	P _{bonnet} := 100 psi
Upstream Pressure	$P_{up} := 0 \cdot psi$
Downstream Pressure	P _{down} :=0·psi

Disk Thickness	t := 1.5·in
Seat Radius	a := 5.168 in
Hub Radius	$b := 3.158 \cdot in$
Hub Length	L := .156 in
Seat Angle	theta = $5 \cdot \deg$
Poisson's Ratio (disk)	v := .3

Mod. of Elast. (disk) 
$$E := 27.6 \cdot 10^6 \cdot psi$$

Static Pullout Force (Test 37) = 9948 lbf (Test 37) 
$$VF := .41$$
Stem Diameter  $D_{stem} := 1.5 \cdot in$ 

#### PRESSURE FORCE CALCULATIONS

Coefficient of friction between disk and seat: (Reference 3)

$$mu = VF \cdot \frac{\cos(\text{theta})}{1 - VF \cdot \sin(\text{theta})} \qquad mu = 0.424$$

Average DP across disks:

DPavg := 
$$P_{bonnet} - \frac{P_{up} + P_{down}}{2}$$
 DPavg = 100 *psi

Disk Stiffness Constants (Reference 1, Table 24)

$$D = \frac{E \cdot (t)^3}{12 \cdot (1 - v^2)}$$
 D = 8.53 · 10⁶ · lbf in

$$G = \frac{E}{2 \cdot (1 + v)}$$
  $G = 1.062 \cdot 10^7 \text{ psi}$ 

Geometry Factors: (Reference 1, Table 24)

$$C_2 := \frac{1}{4} \left[ 1 - \left( \frac{b}{a} \right)^2 \left( 1 + 2 \cdot \ln \left( \frac{a}{b} \right) \right) \right]$$

$$C_2 = 0.065$$

$$C_3 := \frac{b}{4 \cdot a} \cdot \left[ \left[ \left( \frac{b}{a} \right)^2 + 1 \right] \cdot \ln \left( \frac{a}{b} \right) + \left( \frac{b}{a} \right)^2 - 1 \right]$$

$$C_3 = 0.008$$

$$C_8 := \frac{1}{2} \left[ 1 + v + (1 - v) \cdot \left( \frac{b}{a} \right)^2 \right]$$

$$C_8 = 0.781$$

$$C_{9} := \frac{b}{a} \cdot \left[ \frac{1+v}{2} \cdot \ln \left( \frac{a}{b} \right) + \frac{1-v}{4} \cdot \left[ 1 - \left( \frac{b}{a} \right)^{2} \right] \right]$$

$$C_9 = 0.263$$

$$L_3 := \frac{\mathbf{a}}{4 \cdot \mathbf{a}} \left[ \left[ \left( \frac{\mathbf{a}}{\mathbf{a}} \right)^2 + 1 \right] \cdot \ln \left( \frac{\mathbf{a}}{\mathbf{a}} \right) + \left( \frac{\mathbf{a}}{\mathbf{a}} \right)^2 - 1 \right]$$

$$L_3 = 0$$

$$L_9 := \frac{a}{a} \left[ \frac{1+\nu}{2} \cdot \ln \left( \frac{a}{a} \right) + \frac{1-\nu}{4} \cdot \left[ 1 - \left( \frac{a}{a} \right)^2 \right] \right]$$

$$L_9 = 0$$

$$L_{11} := \frac{1}{64} \left[ 1 + 4 \cdot \left( \frac{b}{a} \right)^2 - 5 \cdot \left( \frac{b}{a} \right)^4 - 4 \cdot \left( \frac{b}{a} \right)^2 \left[ 2 + \left( \frac{b}{a} \right)^2 \right] \cdot \ln \left( \frac{a}{b} \right) \right]$$

$$L_{11} = 7.876 \cdot 10^{-4}$$

$$L_{17} := \frac{1}{4} \left[ 1 - \frac{1 - v}{4} \left[ 1 - \left( \frac{b}{a} \right)^4 \right] - \left( \frac{b}{a} \right)^2 \left[ 1 + (1 + v) \cdot \ln \left( \frac{a}{b} \right) \right] \right]$$

$$L_{17} = 0.059$$

Moment (Reference 1, Table 24, Case 2L)

$$M_{rb} := \frac{-DPavg \cdot a^2}{C_8} \cdot \left[ \frac{C_9}{2 \cdot a \cdot b} \cdot (a^2 - b^2) - L_{17} \right]$$

$$M_{rb} = -258.064 \cdot lbf$$

$$Q_b := \frac{DPavg}{2 \cdot b} \cdot \left(a^2 - b^2\right)$$

$$Q_b = 264.966 \cdot \frac{lbf}{in}$$

Deflection due to pressure and bending: (Reference 1, Table 24, Case 2L)

$$y_{bq} := M_{rb} \cdot \frac{a^2}{D} \cdot C_2 + Q_b \cdot \frac{a^3}{D} \cdot C_3 - \frac{DPavg \cdot a^4}{D} \cdot L_{11}$$

$$y_{bq} = -2.619 \cdot 10^{-5} \cdot in$$

Deflection due to pressure and shear stress: (Reference 1, Table 25, Case 2L)

$$K_{sa} := -0.3 \cdot \left[ 2 \cdot \ln \left( \frac{a}{b} \right) - 1 + \left( \frac{b}{a} \right)^2 \right]$$

$$K_{sa} = -0.108$$

$$y_{sq} := \frac{K_{sa} \cdot DPavg \cdot a^2}{t \cdot G}$$

$$y_{sq} = -1.804 \cdot 10^{-5} \cdot in$$

Deflection due to hub stretch (from center of hub to disk):

$$P_{\text{force}} := 3.1416 \cdot \left(a^2 - b^2\right) \cdot DPavg$$

$$P_{\text{force}} = 5.258 \cdot 10^3 \cdot \text{lbf}$$

$$y_{\text{stretch}} := \frac{P_{\text{force}}}{3.1416 \cdot b^2} \cdot \frac{L}{(2 \cdot E)}$$

$$y_{\text{stretch}} = 4.742 \cdot 10^{-7} \cdot \text{in}$$

Total Deflection due to pressure forces:

$$y_q := y_{bq} + y_{sq} - y_{stretch}$$

$$y_q = -4.471 \cdot 10^{-5} \cdot in$$

Deflection due to seat contact force and shear stress (per lbf/in.): (Reference 1, Table 25, Case 1L)

$$y_{sw} := -\left[\frac{1.2 \cdot \left(\frac{a}{a}\right) \cdot \ln\left(\frac{a}{b}\right) \cdot a}{t \cdot G}\right]$$
(per lbf/in)

$$y_{sw} = -1.918 \cdot 10^{-7} \cdot \frac{in}{\left(\frac{lbf}{in}\right)}$$

Deflection due to seat contact force and bending (per lbf/in.): (Reference 1, Table 24,

$$y_{bw} := -\left(\frac{a^3}{D}\right) \cdot \left[\left(\frac{C_2}{C_8}\right) \cdot \left[\left(\frac{a \cdot C_9}{b}\right) - L_9\right] - \left[\left(\frac{a}{b}\right) \cdot C_3\right] + L_3\right]$$

$$y_{bw} := -3.745 \cdot 10^{-7} \cdot \frac{in}{\left(\frac{lbf}{in}\right)}$$
(per lbf/in)

$$y_{bw} = -3.745 \cdot 10^{-7} \cdot \frac{in}{\left(\frac{lbf}{in}\right)}$$

Deflection due to hub compression (per lbf/in), (from center of hub to disk):

$$y_{compr} = \frac{2 \cdot a \cdot \pi}{3.1416 \cdot b^2} \cdot \frac{L}{(2 \cdot E)}$$
(per lbf/in)

$$y_{compr} = 2.929 \cdot 10^{-9} \cdot \frac{in}{\left(\frac{lbf}{in}\right)}$$

Total deflection due to seat contact force (per lbf//in.):

$$y_w = y_{bw} + y_{sw} - y_{compr}$$
  
(per lbf/in)

$$y_{w} = -5.693 \cdot 10^{-7} \cdot \frac{\text{in}}{\left(\frac{\text{lbf}}{\text{in}}\right)}$$

Seat Contact Force for which deflection is equal previously calculated deflection from pressure forces:

$$F_s := 2 \cdot \pi \cdot a \cdot \frac{y_q}{y_w}$$

$$F_s = 2.55 \cdot 10^3 \cdot lbf$$

#### **UNSEATING FORCES**

 $\mathbf{F}_{\mathbf{packing}}$  is included in measured static pullout Force

$$F_{piston} := \frac{\pi}{4} \cdot D_{stem}^2 \cdot P_{bonnet}$$

$$F_{piston} = 176.715 \cdot lbf$$

$$F_{vert} := \pi \cdot a^2 \cdot \sin(\text{theta}) \cdot (2 \cdot P_{bonnet} - P_{up} - P_{down})$$

$$F_{\text{vert}} = 1.463 \cdot 10^3 \cdot lbf$$

$$F_{preslock} = 2 \cdot F_{g} \cdot (mu \cdot cos(theta) - sin(theta))$$

$$F_{\text{preslock}} = 1.707 \cdot 10^3 \cdot \text{lbf}$$

$$F_{po} = 9.948 \cdot 10^3 \cdot lbf$$

$$F_{\text{total}} = 1.294 \cdot 10^4 \cdot lbf$$

$$F_{pressure} = F_{total} - F_{po}$$

$$F_{pressure} = 2.993 \cdot 10^3 \cdot lbf$$

### **Crane Pressure Locking Test Data**

				Press	sures		Thrust Measurements			
Test #	Test	TSS	Pump	Reactor	Bonnet	Final	O9 thrust	O10 thrust	Run thrust	
	Туре									O9 thrust
1	Static	1	0	0	0	0	24680			
2	Static	1	0	0	0	0	24584			
3	Static	1	0	0	0	0	24888			
. 4	Static	1	350	350	350	350	23583			
5	Static	1	350	350	350	350	24383			
6	PL	1	350	. 355	650	400	30103			25000
7	PL	1	360	350	850	400	32213			25000
8	Static	1	325	440	335	400	25288			
9	Static	1	390	340	1040	430	35421			26000
10	PL	1	330	340	1040	400	35922			26000
11	PL	1	330	340	345	340	26090			
12	Static	1	0	0	0	0	27791			
13	PL	1	Ō	0	1195	0	47462			28000
14	PL	1	-0	0	1375	0	50974			28000
15	PL	1	0	0	1375	0	51126	·	<u> </u>	28000
16	Hydro DP	1	1440	0	1425	0	33512	17359	1102	
	Hydro DP	1	1470	0	1475	0	31107	18362	905	
18	Hydro DP	1	1015	0	1000	0	30103	13246	1003	
	Hydro DP	1	990	0	995	0	30905	12651	1102	-
	Hydro DP	1.	1030	0	1015	0	32209	14950	1606	
		1	1010	0	975	0	31707	14549	1003	
	Hydro DP							14349	1003	
	Static	1	0	0	0	0	28696		•	
	Static	1	0	0	. 0	0	28893			•
	Static	2.5	0	. 0	0	0	29199		••	
	Static	2.5	0	0	0	0	35520			
	Hydro DP	2.5	1010	0	995	0		15050	1204	
1	Hydro DP	2.5	980	0	965	0		15051	1204	
	Hydro DP	2.5	1480	0	1485	0		22455	1104	
	Hydro DP	2.5	1490	0	1465	0		22374	1104	
	Static	2.5	0	0	0	0	39229		1405	
31	Static	2.5	0	0	0	0	36821		301	
32	Static	2.5	335	340	345	350	37223		301	,
33	Static	2.5	360	340	335	350	38528		201	
34	PL	2.5	330	350	655	340	44243	•	401	38000
35	PL	2.5	330	340	655	370	43142	,	401	38000
36	Static	2.5	340	360	345	400	36819		301	
	Static	2.5	330	340	315	350	37923		301	
	PL	2.5	350	370	1055	380	50664		201	37500
	PL PL	2.5	370	350	1055	380	50565		602	37500
	Static	2.5	330	330	335	340	37323		401	
	Static	2.5	0	0	0	0	40834	.	1304	
	PL	2.5	0	0	1365	0	70028		3813	40000
	PL PL	2.5	0	0	1165	0	70028		502	40000
	Static		0	0	0	0	39627		502	40000
		2.5			0	- 0			1404	
	Static	2.5	0	0			40130			40000
	PL DI	2.5	0	0	1575	0	72231		1304	40000
	PL	2.5	0	0	1575	0	71931		1003	40000
	Static	2.5	0	0	0	0	40128		401	
	Static	2.5	0	0	0	0	40831			
50	PL	2.5	0	0	1775	0	77749			40000

	meas PL	calc PL	calc O9	
Test #	thrust	thrust	thrust	VF
	(	PE+vert+PI	L)	
1				
2				
3				
4				
5				
6	5103	4539	29539	_
7	7213	8191	33191	
8				
9	9421	11500	37500	
10	9922	12140	38140	
11				
12				
13	19462	22140	50140	
14	22974	25480	53480	
15	23126	25480	53480	
16				0.24
17		·	<del></del>	0.24
18		<del>-                                    </del>	·	0.25
19				0.24
20			<del></del>	0.27
21		· · ·		0.28
22				0.20
23	· · · · · · · · · · · · · · · · · · ·			
24			<del></del>	
25	<del></del>		•	
26				0.00
27				0.28
		<del></del>		0.29
28	4.			0.29
29				0.29
30			·	
31				
32			<u></u>	
33				
34	6243	5796	43796	
35	5142	5796	43796	
36	·			
37	·			
38	13164	13870	51370	
39	13065	13870	51370	
40			,	
41				
42	30028	29190	69190	
43	30428			· ·
44				
45		<del>-</del>		
46	32231	33680	73680	
47	31931	33680	73680	
48	3,001	35500		
49				
50	37749	37950	77950	
30	31148	31830	11830	

## Westinghouse Pressure Locking Test Data

Test #	Test	TSS	Γ	Pre	ssures		T	Measu	red Thrus	t Values	
	Туре		Pump	Reactor		Final	C16	09	010	Run	Corr Sta
	<del> </del>							1		<u> </u>	09
1	Static	1.5	0	0	0	C			1		
2	Static	1.5	0	O	0	0		<u> </u>			
3	Static	1.5	0		0	0					<del> </del>
4	Static	1.5	0	0	0	0		<u> </u>		1.	
5	Static	1.5	0	0	0	0					
6	DP	1.5	460	0	460	. 0	15050	3167	2430	1517	
7	DP	1.5	480	0	480	0	15665	2904	2359	1508	· ·
8	DP	1.5	980	9	980	0	15699	3378	2640	1482	
9	DP	1.5	1590	0	1590	0	15548	3501	2675	1590	
10	Static	1.5	0	0	0	0	15497				
11	Static	1.	0	0	0	0	13820	· .			
12	DP	1	1590	0	1590	0	15548	3501	2552	1590	
13	DP	2	1880	0	1880	0	13751	3500	2429	1581	
14	Static	2	0	0	0	0			1	<u> </u>	
15	Static	2	0	0	0	0					
16	PL	2	0	0	. 0	0			· · · · ·		
17	Static	2	0	0	0	0					
18	Static	2	0	0	0	0	20101	1952			
19	DP	2	505	0	505	0		2751	2189	1582	
20	DP	2	1020	0	1020	Ō	19914	2870	2342	1650	<u> </u>
21	DP	2	1496	0	1496	0		3091	2428	1604	
22	DP	2	1944	0	1944	0	19949	3125	2377	1634	1.
23	DP	2	1880	0	1880	0		3108	2529	1694	
24	DP	2	1596	. 0	1596	0	<u> </u>	2852	2359	1694	
25	DP	2	1068	0	1068	0	<u> </u>	2410	2070	1670	<del></del>
26	Static	2	0	0	0	0		1900			
27	Static	2	0	0	0	0	20129	1866			
28	Static	2	500	500	500	500		1441			-50
29	Static	2	500	500	500	500	20080	1458			Ang San San
30	PL	2	0	0	496	0	20096	3005		/	1450
31	PL	2	0	0	514	0		2988			1450
32	Static	2	1000	1000	1000	1000	19962	896			
33	PL	2	0	0	1000	0					900
34	Static	2	998	998	998	998	19962			<del></del>	
35	PL	2	0	. 0	1000	0		3890			900
36	Static	2	1500	1500	1500	1500					
37	PL	2	0	0	1500	0			<del></del>		50
38	Static	2	1500	1500	1500	1500					
39	PL	. 2	0	0	1500	0			<del> </del>		50
40	Static	2	2000	2000	2000	2000		na	na	na	na
41	Static	2	2000	2000	2000	2000	19677	-346			
42	PL	2	0	0	2000	2000	20323	5589			-400
43	Static	2	2000	2000	2000	2000	19976	-536			
44	PL	2	2000	2000	2000	2000	20158	5726			-400
45	Static	2	1500	1500	1500	1500	20041	17			700
46	DP	2	1515	0	1515	0	20058	2699	2019	1742	
47	DP	2	1564	0	1564	0	20291	3192	2240	1756	

1 1157 34	meas Pl	calc PL	calc O9	I	
1.500.11	thrust	thrust	thrust	VF	
<b></b>		(vert+PL)		<del></del>	
1					
2					
3				<del></del>	<del></del>
4				<del></del>	
5				<del>                                     </del>	
6	-			thrust data	questionable
7			l		questionable
8					questionable
9					questionable
10		·		un dot data	quoditoriabio
11					<u> </u>
12				0.148015	
13				0.146013	
14			77.4	J. 133311	
15	<del></del>				
16	<del></del>				
17					
18					
19				0.196239	
20			··	0.153944	<del>-</del>
21				0.153944	<del></del>
22				0.130014	
23				0.135018	
24				0.132798	
25				0.129394	<del></del>
26					
27					<u> </u>
28					
29					<u> </u>
30	1555	1537.6	2987.6		
31	1538	1593.4	3043.4		
32					·
33	3007	3100	4000		<u> </u>
34			·_		···
35	2990	3100	4000		
36					
37	4775	4650	4700		
38					
39	4672	4650	4700		
40					
41					
42	5989	6200	5800		
43					
44	6126	6200	5800		
45					
46	+			0.113908	•
47				0.124138	

Test #	Test	TSS		Pres	sures	_		Thrust	Measure	ments	
	Туре		Pump	Reactor		Final	C16	O9	010	Open	Corr Sta
	1		- 1							Run	O9
18	Static	2					23241	7863			
19	DP	2	100		100		25430	7863	1543	617	
20	DP	2	100		100		25825	7663	1841	600	
21	DP	2	200	0	200	0			2587	540	
22	DP	2	450	0	450	0			5424	535	
23	DP	2	730	0	730	0			9902	555	-, -
24	Static	1					12638	3781			
25	Static	2			-		24326	7612			
28	DP	2	760	0	760	0			14475	605	
29	DP	2	530		530		28945	18799	14025	406	
30	DP	2	540	\	540		28550	14722	15767	435	
31	DP	2	245		245		29395	15966	7311	482	
32	DP	2	285		285		29446	14126	8257	500	· · ·
33	DP	2	455	···	455		29843	11291	13529	426	<del></del>
34	DP	2	475		475		29245	11539	14573	448	
35	DP	2	450		450		29794	13927	13828	528	
36	DP	2	550		550	<del></del>	29344	10494	6863	499	· · · · · ·
37	DP	2	505		505		29344	9102	9599	439	
38	DP	2	550		550		28966	9549	14821	479	
39	DP	2	520		520		29096	12683	15269	447	
42	Static	2	320		320		31783	16513	13203	77/	
43	PL	2			205		32032	25467			16935
44	Static	2			203	: "	31731	17357			10833
45	Static	1					16162	7261			
46	Static	1					16659	7509			
47	Static	1	<del></del>		·		16859	7907			· · · · · ·
48	PL	1			209		16809	15268			7882
49	Static	1	—— <del> -</del>		209		16659	7857			7002
50	PL	1			402		16708	20786			7782
51	Static	1			702		16807	7707			1102
52	PL	1			630		16958	26705			7906
	Static	1			030		16460	8105			7 900
	PL				604	·			<u> </u>		7004 E
		1			694		16361	28395			7881.5
55	Static	1	-	· · ·	040		16956	7658			5000
	PL Ctatio	1			919		16709	41872		· .	5023
	Static	1					15665	5023	47550	0.55	
	DP	2	510		510		9845	16757	17553	350	4222
	Static	2									16008
	ТВ	2									18995
	Static	2				•					17402
	DP	2	208		208				6165	525	
	DP	2	198	·	198				6066	653	
	DP	2	370		370				11834	627	
	DP	2	413		413				13922	623	
	DP	2	575		575		32069	25506	18346	557	
	DP	2	610		610		31721	27545	20683	638	
	Static	2						17202			
	PL	2			208			27643			17477
	PL	2		*	213			28241			17477
	Static	2				I		17751			
77	PL	2			391			33906			17751

Test #	Test	TSS	Pressures				Thrust Measurements					
	Туре		Pump	Reactor	Bonnet	Final	C16	O9	010	Open	Corr Sta	
										Run	O9	
78	PL	2			402		1	34604			17751	
79	Static	2						17949				
80	PL	2			467			40121			17949	
81	PL	2			219			28540			17949	
82	Static	2						17700	17700	17700		
83	PL	2			110			25457			17700	
84	PL	2			55			22871			17700	
85	Static	2						17352				
86	PL	2			0		,	20980			17352	
87	Static	2_						18494				
88	Static	2				-		18197				
91	ТВ	2						24244			17541	
92	Static	2						17541				
93	Static	1		- 1				8000				
95	PL	1			0			11132			8000	
96	PL	1			557			27035			8000	
97	PL	1			504			26189		·	8000	
99	DP .	1			607				20177	35	,	
100	DP	1			578				20325	740		

Test #	PL	calc PL	meas O	calc O9							
	thrust	thrust	thrust	thrust	VF	Comments	3				
	(F	E+vert+F	PL)								
18											
19					0.131						
20					0.169						
21	L				0.143		·		ļ		<u> </u>
22	<u> </u>	<u> </u>			0.151				<u> </u>		ļ
23	<b>_</b>	<u> </u>			0.174			ļ ·	<del> </del>	ļ	
24					<del>                                     </del>				ļ <u> </u>		<b> </b>
25					0.000	<u> </u>	ļ		<u> </u>	<u> </u>	<del>  </del>
28	<u> </u>	ļ	<u> </u>	<del> </del>	0.239	<del></del>	<u> </u>	<del> </del>	ļ	<u> </u>	<del> </del>
29	<del></del>				0.327 0.359			ļ	<del> </del>	<del> </del>	ļ
30 31	<b>}</b>	\			0.359	<del> </del>	<del> </del>	<del> </del>		<del> </del>	<del> </del>
32		<u> </u>		<u> </u>	0.335	<u> </u>	<u> </u>	<del> </del>		<del> </del> -	<del> </del>
33		<del> </del>			0.345		<del></del>	<del> </del> -	<del> </del>	<del> </del>	<del> </del>
34	<del> </del>		<del></del> ;		0.375			<del>                                     </del>	<del> </del>	<del> </del>	
35	<del>                                     </del>	-			0.373			ļ	<del>-</del>	<del> </del>	
36	<del></del>			<del> </del>			VEDGE EI	OW DP TE	ST.	<del> </del>	
37	<del>                                     </del>	<del> </del>		-				RECONDIT		IDUKES	
38								PRECONDI			
39	<del> </del>				0.361	DF ILOTA	TILK IZ	LECOINDI	TIONING	INONES	<del>  </del>
42	<del></del>		· ·		0.501			·			<del>  .                                   </del>
43	8532	5690.8	25467	22625.8			<u> </u>	<u> </u>	<u> </u>		<del>                                     </del>
44	- 0002	3000.0	20401	22020.0						-	
45				,						ļ	
46										<del>                                     </del>	<del>  </del>
47				·		-					
48	7386	5801.8	15268	13683.8	-		•				
49	-									<u> </u>	
50	13004	11160	20786	18941.5		·					
51									<del>-</del>		
52	18799	17489	26705	25394.8							
53											
54	20514	19265	28395	27146.9							
55										,	
56	36849	25511	41872	30534.4							
58											
59					0.423						
63										1	
64	16008					Delta T of 7	75 F				
65											
66	·				0.344	<u>·</u>					
67					0.347		****				
68				<u></u>	0.382						
69					0.405						
70					0.390			- <del></del>			
71					0.413						
73											
74	10167	6225.4	27643	23701.9			· · · · · · · · ·		·		
75	10765	6375.1	28241	23851.6							
76	40455	44955		00455.5		<del></del>					
77	16155	11703	33906	29453.6							

Test #	PL	calc PL	meas O	caic O9	·	· <u></u>				,		
	thrust	thrust	thrust	thrust	VF	Comments						
	(PE+vert+PL)											
78	16853	12032	34604	29782.9								
79							1					
80	22172	13977	40121	31926.3		Test performed by p	ressurizing o	pen valve				
81	10591	6554.7	28540	24503.7		Test performed by pressurizing open valve						
82												
83	7757	3292.3	25457	20992.3								
84	5171	1646.2	22871	19346.2	,_							
85				-								
86	3628	0	20980	17352		Test demonstrates "Memory Effect" for 500 psi side load						
. 87			•			Test demonstrates "Memory Effect" is much smaller for 200 ps						
88												
91						Delta T of 230 F	1					
92					•							
93				. ,				-				
95	3132	0	11132	8000								
96	19035	16671	27035	24671								
97	18189	15085	26189	23084.7								
99					0.417	7 data suspect, not all line pressure gone						
100			-		0.425							