Exhib	511	t C	
NEP-2	12.	-02	
Revis	sid	on	0
page	1	of	2

CON	AMONWEALTH EDISON COMPA CALCULATION TITLE PAGE	ANY
CALCULATION NO. QDC-1000-1	M-0078 PROJECT NO.: N/A	PAGE NO.: 1
SAFETY RELATED	REGULATORY RELATED	NON-SAFETY RELATED
<u>CALCULATION TITLE:</u> Pressure Locking Calculation for	r RHR System Valve MOV 2	-1001-29A
STATION/UNIT: Quad Cities/	'2 s	SYSTEM ABBREVIATION: LPCI
EQUIPMENT NO.: (IF APPL.) MOV 2-1001-29A		
REV: 0 STATUS: QA APPPECVED	SERIAL NO. OR CHRON NO.	N/A DATE:
PREPARED BY: <u>K. Higgins</u> REVISION SUMMARY: Original Issu DO ANY ASSUMPTIONS IN THIS C. VERIFICATION YES D NO •	ALCULATION REQUIRE LATER	DATE: 11/4/4
REVIEWED BY: <u>I. Kelly</u>	- ARelf	11-9-45
REVIEW METHOD: Detailed review		COMMENTS (C OR NC): <u>NC</u>
APPROVED BY:	_ WO PORTOR 11/9/9	?5 [`]
9602200291 960213 PDR ADDCK 05000237 PDR PDR		

، قى چ كەر ق

Exhibit C NEP-12-02 Revision 0 page 2 of 2

COMMONWEALTH EDISON COMPANY CALCULATION REVISION PAGE

CALCULATION NO. QD	C-1000-M-0078	PAGE NO.: 2
REV: STATUS:	QA SERIAL NO. OR CHRON NO.	DATE:
PREPARED BY:	· · · · · · · · · · · · · · · · · · ·	DATE:
REVISION SUMMARY:		
		·
REVIEWED BY:		DATE:
REVIEW METHOD:		COMMENTS (C OR NC):
REV: STATUS:	QA SERIAL NO. OR CHRON NO.	DATE:
PREPARED BY:		DATE:
REVISION SUMMARY:		
REVIEWED BY:		DATE:
REVIEW METHOD:		COMMENTS (C OR NC):

۰.

COMMONWEALTH EDISON COMPANY

CALCULATION TABLE OF CONTENTS

		PROJECT NO. N	I/A
CALCUL	ATION NO. QDC-1000-M-0078	REV. NO. 0	PAGE NO. 3
DESCRIP	TION	PAGE NO.	SUB-PAGE NO.
TITLE PA	AGE	1	
REVISIO	N SUMMARY	2	
TABLE O	OF CONTENTS	3	
I.	PURPOSE/OBJECTIVE	4	
• Ш.	METHODOLOGY AND ACCEPTANCE CRITERIA	4	
III.	ASSUMPTIONS	8	
IV.	DESIGN INPUT	9	
V]	REFERENCES	9	
VI.	CALCULATIONS	10-15	
VII.	COMPARISON OF MODEL TO OTHER SOURCES	16	
VIII. Š	SUMMARY AND CONCLUSIONS	17	
XI.	ATTACHMENTS	17	
1	A) Telecopies from Crane Valves	A-1, A-2	
Ē	B) VOTES Test 8, 2-1001-29A	B-1, B-2(Final)	
		· .	

T

I

ł

CALCULATION NO. QDC-	1000-M-0078	PROJECT NO.	N/A	PAGE NO. 4
I. PURPOSE/OBJECTI	VE			
Valve MOV 2-1001-29A, which is installed in the RHR System at Quad Cities, has been determined to be susceptible to the pressure locking phenomena. The purpose of this calculation is to determine that the valve will open when called upon by design during a pressure locking event by calculating the force necessary to overcome pressure locking and the available Motor/Gearing Capability (MGC) of the MOV.				
II. METHODOLOGY A	ND ACCEPTANCE CRITER	IA		
The methodology for calculating the thrust required to open the MOVs under the pressure locking scenario is based on the Reference 1 (Roark's) engineering handbook. This methodology has been previously applied by ComEd in the References 2 and 10 calculations. The methodology determines the total force required to open the valve under a pressure locking scenario by solving for the four components to this required force. The four components of the force are the Pressure Locking Component, the static unseating component, the piston effect component, and the "reverse piston effect" component. These components are determined using the following steps.				
Pressure Locking	Component of Force Require	d to Open the Va	lve	
The valve disk is modeled as two plates attached at the center by a hub which is concentric with the valve disk. A plane of symmetry is assumed between the valve disks. This plane of symmetry is considered fixed in the analysis.				
	Modeled As		ane metry Axis of Symmetry	
REVISION NO.	0	l		

CALCULATION NO. QDC-1000-M-0078

PROJECT NO. N/A

PAGE NO.5

The pressure force is assumed to act uniformly upon the inner surface of the disk between the hub diameter and the outer disk diameter. The outer edge of the disk is assumed to be unimpeded and allowed to deflect away from the pressure force. In addition, the disk hub is allowed to stretch. The total displacement at the outer edge of the valve disk due to shear and bending and due to hub stretch are calculated using the reference 1 equations.

An evenly distributed force is assumed to act between the valve seat and the outer edge of the valve disk. This force acts to deflect the outer diameter of the valve disk inward and to compress the disk hub. The pressure force is reacted to by an increase in this contact force between the valve disk and seats. The valve body seats are conservatively assumed to be fixed. Therefore, the deflection due to the known pressure load must be balanced by the deflection due to the unknown seat load. The deflection due to the pressure force is first calculated. Then, the reference 1 equations are used to determine the contact force between the seat and disk which results in a deflection which is equal and opposite to the deflection due to the pressure force. Because the disk varies in thickness, the average thickness is used for purposes of this calculation.

REVISION NO.

0

CALCULATION NO. *QDC-1000-M-0078*

PROJECT NO. N/A

The coefficient of friction between the seat and disk is determined based on the open valve factor from a DP test. The stem force required to overcome the contact load between the seat and disk which opposes the pressure force is equal to:

(seat load) x [(seat mu) cos(seat angle) - sin(seat angle)] x 2 (for two disk faces).

Static Unseating Force

The static unseating force represent the open packing load and pullout force due to wedging of the valve disk during closure. These loads are superimposed on the loads due to the pressure forces which occur during pressure locking. The value for this load is based on static test data for the MOVs.

Piston Effect

The piston effect due to valve internal pressure exceeding outside pressure is calculated using the standard industry equation. This force assists movement of the valve stem in the open direction.

$F_{\text{prime standing}} = \frac{\sqrt{3}}{4} \times D_{\text{prime standing}}^2 \times \left(P_{\text{homest}} - P_{\text{prime standing}} \right)$

"Reverse Piston Effect" (Fvert)

The reverse piston effect is the term used in this calculation to refer to the pressure force acting downward against the valve disk. This force is equal to the differential pressure across the valve disk times the area of the valve disk times the sine of the seat angle times 2 (for two disk faces).

REVISION NO.

0

PROJECT NO. N/A

Total Force Required to Overcome Pressure Locking

As mentioned previously, the total stem force (tension) required to overcome pressure locking is the sum of the four components discussed above. All of the terms are positive with the exception of the piston effect component.

Determination of Motor Gearing Capability

Next the motor gearing capability available to overcome static unseating forces is determined using the statically measured stem factor, the pullout efficiency, the temperature factor, and the ComEd motor test data (for breakdown torque and voltage factor), Reference.

Determination of Open Valve Factor

The open valve factor is calculated by based on the open DP load. This load is determined by using the equation below: The O10 thrust is measured in the region of the trace during which the valve disk is sliding on the valve seat (prior to flow initiation). This thrust is based on the O4 zero since the valve is effectively closed at O10. The open running thrust is measured at the end of the open stroke and is referenced to the C3 zero since the valve is nearly fully open at the point at which the open running load is measured. The Line Pressure adjustment term in the equation accounts for the fact that the piston effect decreases during the opening valve stroke.

$$VF_{que} = \frac{O10_{shart} - Rumning_{shart} + \frac{\pi}{4}D_{rem}^{2}(O10_{shart} - Rumning_{shart})}{DP \times \frac{\pi}{4}D_{res}^{2}}$$

Enhanced Capability Evaluation

The enhanced capability evaluation uses the measured overall MOV efficiency to predict the required motor torque during the pressure lock condition. This overall MOV efficiency is determined by dividing the actual motor torque during the latest static test by the measured pullout thrust. This ratio (MOV efficiency) is then multiplied by the estimated pressure lock pullout force to determine the required motor torque during pressure lock pullout. The available motor torque is set equal to the motor breakdown torque from the ComEd motor test data, Reference 5.

CALCULATION NO. QDC-1000-M-0078	PROJECT NO.	N/A	PAGE NO. 8

Acceptance Criteria

The margin between one time structural limit and required thrust is calculated. A margin of 15% or greater is required. This margin accounts for equipment inaccuracy and degradation.

The margin between MGC and required thrust is calculated. A margin of 20% or greater is required. This margin accounts for equipment inaccuracy and degradation.

If the enhanced capability evaluation is applied, a margin of 40% or greater is required. This margin accounts for voltage, current, and thrust measurement inaccuracies from the static test and a possible reduction in overall MOV efficiency from the static condition to the estimated pullout condition.

III. ASSUMPTIONS

1. The valve disk is assumed to act as two ideal disks connected by a hub. The equations in reference 1 are assumed to conservatively model the actual load due to pressure forces. This assumption is considered conservative since inspection of the disk drawings show large fillets between the disk hub and seats which should make the valve disk stiffer than assumed in the reference 1 equations.

CALCULATION NO. QDC-1000-M-0078

PROJECT NO. N/A

PAGE NO.9

- 2. The coefficient of friction between the valve seat and disk is assumed to be the same under pressure locking conditions as it is under DP conditions. This assumption (in combination with assumption 1) is considered to be justified based on bench marking of the calculation against ComEd and EPRI pressure locking test data for similar flex-wedge gate valves.
- 3. The upstream, downstream, and bonnet pressure values are based on a scenario in which the valve bonnet is pressurized to reactor pressure (1020 psia) by leakage past adjacent check valves. A LOCA occurs which causes the reactor pressure to drop off to 325 psig. The LPCI pump comes up to speed, and the subject valve receives a signal to open simultaneously. The dynamic head for an RHR pump in the LPCI mode is 307 psig. The pressure values are based on a review of the UFSAR for Quad Cities. See Reference 6.

IV. DESIGN INPUTS

- 1. Valve Disk Geometry information is based on the Reference 4, Faxes from the Crane-Aloyco Valve Company. (Attachment A)
- 2. Motor Data is taken from the Reference 5 report and RSMDS, Reference 7.
- 3. Static and DP diagnostic test data is taken from the most recent diagnostic tests.

V. REFERENCES

- 1. Sixth Edition of Roark's Formulas for Stress and Strain
- 2. MPR Calculations 101-013-1, "Effect of Bonnet Pressure on Disc to Seat Contact Load", dated 3/23/95; and 101-013-4, "Estimate of Valve Unseating Force as Function of Bonnet Pressure", dated 3/23/95
- 3. NMAC Report NP-6660-D, " Application Guide For Motor Operated Valves"

REVISION NO.

0

 Crane Telecopies from Dave Dwyer and Bruce Harry to Brian Bunte (ComE 5/3/95 and 6/16/95, Attachment A. ComEd White Paper 125, MOV-WP-125, Rev. 2, 10/4/95 UFSAR Section 6.3.2.2.3.4, Tbl 6.3-5, Tbl 4.1-3 and Fig 6.3-8 ComEd Rising Stem MOV Data Sheet, 2-1001-29A, 02/06/95, 13:12 Thrust values are taken from static VOTES Test 11 performed 12/16/93 and VOTES Test 8 performed 12/15/93. EMS Calculation CE-DR-030, "Pressure Locking Analysis of Dresden Moto Operated Valves", dated 6/13/95. ComEd Calculation NED-M-MSD-182, "Verification of Operability for Dres Quad Cities Injection Valves Susceptible to Pressure Locking", dated June 22 Thrust and Torque Calculation, OTC-240, Rev. 4, Attachment A. CALCULATIONS The following is provided for MOV 2-1001-29A. 	CULA	TION NO. QDC-1000-M-0078	PROJECT NO. N/A	PAGE NO
 Crane Telecopies from Dave Dwyer and Bruce Harry to Brian Bunte (ComE 5/3/95 and 6/16/95, Attachment A. ComEd White Paper 125, MOV-WP-125, Rev. 2, 10/4/95 UFSAR Section 6.3.2.2.3.4, Tbl 6.3-5, Tbl 4.1-3 and Fig 6.3-8 ComEd Rising Stem MOV Data Sheet, 2-1001-29A, 02/06/95, 13:12 Thrust values are taken from static VOTES Test 11 performed 12/16/93 and VOTES Test 8 performed 12/15/93. EMS Calculation CE-DR-030, "Pressure Locking Analysis of Dresden Moto Operated Valves", dated 6/13/95. ComEd Calculation NED-M-MSD-182, "Verification of Operability for Dres Quad Cities Injection Valves Susceptible to Pressure Locking", dated June 22 Thrust and Torque Calculation, OTC-240, Rev. 4, Attachment A. CALCULATIONS The following is provided for MOV 2-1001-29A. MathCad calculation of: 				
 5/3/95 and 6/16/95, Attachment A. ComEd White Paper 125, MOV-WP-125, Rev. 2, 10/4/95 UFSAR Section 6.3.2.2.3.4, Tbl 6.3-5, Tbl 4.1-3 and Fig 6.3-8 ComEd Rising Stem MOV Data Sheet, 2-1001-29A, 02/06/95, 13:12 Thrust values are taken from static VOTES Test 11 performed 12/16/93 and VOTES Test 8 performed 12/15/93. EMS Calculation CE-DR-030, "Pressure Locking Analysis of Dresden Moto Operated Valves", dated 6/13/95. ComEd Calculation NED-M-MSD-182, "Verification of Operability for Dres Quad Cities Injection Valves Susceptible to Pressure Locking", dated June 22 Thrust and Torque Calculation, OTC-240, Rev. 4, Attachment A. CALCULATIONS The following is provided for MOV 2-1001-29A. 	4.	Grane Telecopies from Dave Dwver a	und Bruce Harry to Brian Bu	unte (ComEd) (
 ComEd White Paper 125, MOV-WP-125, Rev. 2, 10/4/95 UFSAR Section 6.3.2.2.3.4, Tbl 6.3-5, Tbl 4.1-3 and Fig 6.3-8 ComEd Rising Stem MOV Data Sheet, 2-1001-29A, 02/06/95, 13:12 Thrust values are taken from static VOTES Test 11 performed 12/16/93 and VOTES Test 8 performed 12/15/93. EMS Calculation CE-DR-030, "Pressure Locking Analysis of Dresden Moto Operated Valves", dated 6/13/95. ComEd Calculation NED-M-MSD-182, "Verification of Operability for Dresden Quad Cities Injection Valves Susceptible to Pressure Locking", dated June 22 Thrust and Torque Calculation, OTC-240, Rev. 4, Attachment A. CALCULATIONS The following is provided for MOV 2-1001-29A. MathCad calculation of: 		5/3/95 and 6/16/95, Attachment A.		
 UFSAR Section 6.3.2.2.3.4, Tbl 6.3-5, Tbl 4.1-3 and Fig 6.3-8 ComEd Rising Stem MOV Data Sheet, 2-1001-29A, 02/06/95, 13:12 Thrust values are taken from static VOTES Test 11 performed 12/16/93 and VOTES Test 8 performed 12/15/93. EMS Calculation CE-DR-030, "Pressure Locking Analysis of Dresden Moto Operated Valves", dated 6/13/95. ComEd Calculation NED-M-MSD-182, "Verification of Operability for Dres Quad Cities Injection Valves Susceptible to Pressure Locking", dated June 22 Thrust and Torque Calculation, OTC-240, Rev. 4, Attachment A. CALCULATIONS The following is provided for MOV 2-1001-29A. MathCad calculation of: 	5.	ComEd White Paper 125, MOV-WP-	125, Rev. 2, 10/4/95	·
 ComEd Rising Stem MOV Data Sheet, 2-1001-29A, 02/06/95, 13:12 Thrust values are taken from static VOTES Test 11 performed 12/16/93 and VOTES Test 8 performed 12/15/93. EMS Calculation CE-DR-030, "Pressure Locking Analysis of Dresden Moto Operated Valves", dated 6/13/95. ComEd Calculation NED-M-MSD-182, "Verification of Operability for Dresduad Cities Injection Valves Susceptible to Pressure Locking", dated June 22 Thrust and Torque Calculation, OTC-240, Rev. 4, Attachment A. CALCULATIONS The following is provided for MOV 2-1001-29A. MathCad calculation of: 	6.	UFSAR Section 6.3.2.2.3.4, Tbl 6.3-	5, Tbl 4.1-3 and Fig 6.3-8	
 Thrust values are taken from static VOTES Test 11 performed 12/16/93 and VOTES Test 8 performed 12/15/93. EMS Calculation CE-DR-030, "Pressure Locking Analysis of Dresden Moto Operated Valves", dated 6/13/95. ComEd Calculation NED-M-MSD-182, "Verification of Operability for Dres Quad Cities Injection Valves Susceptible to Pressure Locking", dated June 22. Thrust and Torque Calculation, OTC-240, Rev. 4, Attachment A. CALCULATIONS The following is provided for MOV 2-1001-29A. MathCad calculation of: 	7.	ComEd Rising Stem MOV Data Sheet	t, 2-1001-29A, 02/06/95, 1	3:12
 9. EMS Calculation CE-DR-030, "Pressure Locking Analysis of Dresden Moto Operated Valves", dated 6/13/95. 10. ComEd Calculation NED-M-MSD-182, "Verification of Operability for Dres Quad Cities Injection Valves Susceptible to Pressure Locking", dated June 22 11. Thrust and Torque Calculation, OTC-240, Rev. 4, Attachment A. CALCULATIONS The following is provided for MOV 2-1001-29A. MathCad calculation of: 	8.	Thrust values are taken from static VO VOTES Test 8 performed 12/15/93.	OTES Test 11 performed 12	/16/93 and DF
 10. ComEd Calculation NED-M-MSD-182, "Verification of Operability for Dress Quad Cities Injection Valves Susceptible to Pressure Locking", dated June 22 11. Thrust and Torque Calculation, OTC-240, Rev. 4, Attachment A. CALCULATIONS The following is provided for MOV 2-1001-29A. MathCad calculation of: 	9.	EMS Calculation CE-DR-030, "Pressu Operated Valves", dated 6/13/95.	ure Locking Analysis of Dre	esden Motor
 11. Thrust and Torque Calculation, OTC-240, Rev. 4, Attachment A. CALCULATIONS The following is provided for MOV 2-1001-29A. MathCad calculation of: 	10.	ComEd Calculation NED-M-MSD-182 Quad Cities Injection Valves Susceptib	2, "Verification of Operabili ble to Pressure Locking", da	ty for Dresden ted June 22, 1
CALCULATIONS The following is provided for MOV 2-1001-29A. MathCad calculation of:	11.	Thrust and Torque Calculation, OTC-2	240, Rev. 4, Attachment A.	
The following is provided for MOV 2-1001-29A. MathCad calculation of:	CAI	LCULATIONS		
MathCad calculation of:	The	following is provided for MOV 2-1001-2	29A.	
	Ma	thCad calculation of:		
1) the pressure locking unseating force,	1)	the pressure locking unseating force,	• • • · · ·	
 the available motor gearing capability to unseat while pressure locked the enhanced capability 	2) 3)	the available motor gearing capability the enhanced capability	to unseat while pressure loc	ked
				•
			· ·	

CALCULATION NO. QDC-1000	<i>)-M-0078</i>	PROJECT NO. N/A	PAGE NO. 11
VI QCNPS Valve 2- INPUTS:	1001-29A		:
Bonnet Pressure Upstream Pressure Downstream Pressure	P _{bonnet} = 1005 psi P _{up} := 307 psi P _{down} := 325 psi	Reference 6 Ref. 6 & Assum. 3 Ref. 6 & Assum. 3	
Disk Thickness, Avg Seat Radius Hub Radius Hub Length Seat Angle Poisson's Ratio (disk) Mod. of Elast. (disk)	t := 2.75 in a := 6.385 in b := 2.125 in L := 2.4375 in theta := 5 deg v := 0.3 E := 27.6 $\cdot 10^{6}$ psi	Reference 4 Reference 7 Reference 4 Reference 4 Reference 7 Reference 1 & 11, Stain. Stee Reference 1 & 11, Stain. Stee	1 I .
Static Pullout Force (Test 11) O10 Thrust (DP test 8) Open Run Thrust (DP) DP LP (valve closed) LP (valve open) Stem Diameter	F _{po} := 45951 · lbf O10 := 12179 · lbf Run := 1202 · lbf DPtest := 277 · psi LPclose := 305 · psi LPopen := 0 · psi D stem := 3.0 · in	Reference 8 Reference 8 Reference 8, Att. B Reference 8, Att. B Reference 8, Att. B Reference 8, Att. B	

Valve Factor:

$$VF := \frac{(010 - Run) + \frac{\pi}{4} \cdot D_{stem}^{2} \cdot (LPclose - LPopen)}{VF := 0.37}$$

 $\pi(a)$ DPtest

(Reference 3)

Coefficient of friction between disk and seat:

$$mu = VF \cdot \frac{\cos(\text{theta})}{1 - VF \sin(\text{theta})}$$

PRESSURE FORCE CALCULATIONS

Average DP across disks:

DPavg =
$$P_{\text{bonnet}} - \frac{P_{\text{up}} + P_{\text{down}}}{2}$$

DPavg = 689 •psi

mu = 0.381

. **REVISION NO.** 0

CALCULATION NO. QDC-1000-M-0078	PROJECT NO. N/A	PAGE NO. 12
Disk Stiffness Constants (Reference 1, Table 24)		<u>.</u>
$D = \frac{E(t)^3}{12(1-t^2)}$	D = 5.256•10	⁷ ·lbf in
$G := \frac{E}{2 \cdot (1 + v)}$	G = 1.062•10 ⁷	' •psi
Geometry Factors: (Reference 1, Table 24)		,
$\mathbf{C}_{2} = \frac{1}{4} \left[1 - \left(\frac{\mathbf{b}}{\mathbf{a}} \right)^{2} \left(1 + 2 \cdot \ln \left(\frac{\mathbf{a}}{\mathbf{b}} \right) \right) \right]$	$C_2 = 0.161$	
$\mathbf{C}_{3} = \frac{\mathbf{b}}{4 \cdot \mathbf{a}} \left[\left[\left(\frac{\mathbf{b}}{\mathbf{a}} \right)^{2} + 1 \right] \cdot \ln \left(\frac{\mathbf{a}}{\mathbf{b}} \right) + \left(\frac{\mathbf{b}}{\mathbf{a}} \right)^{2} - 1 \right]$	$C_3 = 0.028$	
$C_{8} := \frac{1}{2} \left[1 + v + (1 - v) \left(\frac{b}{a} \right)^{2} \right]$	C ₈ = 0.689	
$C_{9} = \frac{b}{a} \left[\frac{1+v}{2} \cdot \ln \left(\frac{a}{b} \right) + \frac{1-v}{4} \cdot \left[1 - \left(\frac{b}{a} \right)^{2} \right] \right]$	$C_{9} = 0.29$	
$\mathbf{L}_{3} := \frac{\mathbf{a}}{4 \cdot \mathbf{a}} \cdot \left[\left[\left(\frac{\mathbf{a}}{\mathbf{a}} \right)^{2} + 1 \right] \cdot \ln \left(\frac{\mathbf{a}}{\mathbf{a}} \right) + \left(\frac{\mathbf{a}}{\mathbf{a}} \right)^{2} - 1 \right]$	L ₃ = 0	
$L_{9} := \frac{a}{a} \cdot \left[\frac{1+v}{2} \cdot \ln\left(\frac{a}{a}\right) + \frac{1-v}{4} \cdot \left[1 - \left(\frac{a}{a}\right)^{2} \right] \right]$	L ₉ =0	
$L_{11} = \frac{1}{64} \left[1 + 4 \cdot \left(\frac{b}{a}\right)^2 - 5 \cdot \left(\frac{b}{a}\right)^4 - 4 \cdot \left(\frac{b}{a}\right)^2 \left[2 + \left(\frac{b}{a}\right)^2 \right] \cdot 1$	$n\left(\frac{a}{b}\right) \end{bmatrix} \qquad L_{11} = 0.006$	
$L_{17} = \frac{1}{4} \cdot \left[1 - \frac{1 - v}{4} \cdot \left[1 - \left(\frac{b}{a} \right)^4 \right] - \left(\frac{b}{a} \right)^2 \left[1 + (1 + v) \cdot \ln u \right] \right]$	$\left(\frac{a}{b}\right) \bigg] \qquad \qquad L_{17} = 0.139$	
Moment (Reference 1, Table 24, Case 2L)		
$M_{rb} := \frac{-DPavg \cdot a^2}{C_8} \cdot \left[\frac{C_9}{2 \cdot a \cdot b} \cdot (a^2 - b^2) - L_{17} \right]$	$M_{rb} = -1.01 \cdot 1$	0 ⁴ •lbf
$Q_{b} = \frac{DPavg}{2 \cdot b} \cdot (a^{2} - b^{2})$	Q _b = 5.877 • 10	3. <u>lbf</u> in
REVISION NO. 0]

CALCULATION NO. QDC-J000-M-0078PROJECT NO.N/APAGE NO. J3Deflection due to pressure and bending: (Reference 1, Table 24, Case 2L)
$$y_{bq} = M_{rb} \frac{a^2}{D} C_2 + Q_{b} \frac{a^3}{D} C_3 - \frac{DParg a^4}{D} L_{11}$$
 $y_{bq} = -5.783 \cdot 10^{-4}$ imDeflection due to pressure and shear stress: (Reference 1, Table 25, Case 2L) $K_{sa} = -0.33 \left[2 \ln \left(\frac{a}{b} \right) - 1 + \left(\frac{b}{a} \right)^2 \right]$ $K_{sa} = -0.393$ $y_{sq} := \frac{K_{sa} DParg a^2}{t, G}$ $y_{sq} = -3.785 \cdot 10^{-4}$ imDeflection due to the stretch (from center of hub to disk):P force $= 7.847 \cdot 10^4$ ·lbfy stretch $= \frac{2}{1.1416} \left(a^2 - b^2\right) DParg$ P force $= 7.847 \cdot 10^4$ ·lbfy stretch $= \frac{1}{2.1416} \left(a^2 - b^2\right) DParg$ P force $= 7.847 \cdot 10^4$ ·lbfy stretch $= \frac{1}{2.1416} \left(a^2 - b^2\right) DParg$ P force $= 7.847 \cdot 10^4$ ·lbfy stretch $= \frac{1}{2.1416} \left(a^2 - b^2\right) DParg$ P force $= 7.847 \cdot 10^4$ ·lbfy stretch $= \frac{2}{1.1416} \left(a^2 - b^2\right) DParg$ P force $= 7.847 \cdot 10^4$ ·lbfy stretch $= \frac{2}{1.1416} \left(a^2 - b^2\right) DParg$ y stretch $= 2.443 \cdot 10^{-4}$ ·inDeflection due to pressure forces:y $q = -9$ bq + y sq $- y$ stretchy $q = -2.888 \cdot 10^{-7}$ (minitial deflection due to seat contact force and bending (per lbf/m)):y $p_{ord} = \frac{1}{a} \left(\frac{a}{b}\right) \left[\left(\frac{b}{b}\right) - L_g \right] - \left[\left(\frac{b}{b}\right) C_g \right] + L_g \right]$ y p

0

REVISION NO.

CALCULATION NO. QDC-1000-M-0078	PROJECT NO. N/A	PAGE NO. 14
Seat Contact Force for which deflection is equal previous from pressure forces:	ously calculated deflection	in .
$F_s = 2 \cdot \pi \cdot a \cdot \frac{y_q}{y_w}$	$F_{s} = 4.762 \cdot 10^{4}$	• •lbf
UNSEATING FORCES	Reference 2	
F _{packing} is included in measured static pullout Force		
$F_{piston} = \frac{\pi}{4} \cdot D_{stem}^2 \cdot P_{bonnet}$	$F_{\text{piston}} = 7.104 \cdot 10^3 \cdot 10^{10}$	
$F_{vert} = \pi a^2 sin(theta) \cdot (2 P_{bonnet} - P_{up} - P_{down})$	$F_{vert} = 1.538 \cdot 10^4 \cdot lbf$	
$F_{\text{preslock}} = 2 \cdot F_{\text{s}} \cdot (\text{mu} \cdot \cos(\text{theta}) - \sin(\text{theta}))$	$F_{\text{preslock}} = 2.785 \cdot 10^4 \cdot 10^4$	of
$F_{total} = F_{piston} + F_{vert} + F_{preslock} + F_{po}$	$F_{po} = 4.595 \cdot 10^4 \cdot lbf$	
$F_{total} = 8.208 \cdot 10^4 \cdot lbf$		

MOTOR / GEARING CAPABILITY INPUTS:

Motor Torque:	MR := 145.95 ft lbf	Reference 5
Temperature Factor:	Tf := 0.935	Reference 7
Degraded Voltage:	DV = 398 volt	Reference 7
Under Voltage Factor:	n := 2.119	Reference 5
Stem Factor:	SF := 0.0254 ft	Reference 7
Overall Ratio:	OAR := 46.13	Reference 7
Pullout Efficiency:	Eff _{po} :=0.65	Reference 7

MOTOR / GEARING CAPABILITY CALCULATIONS:

MGC = MR TF OAR Eff po $\frac{\left(\frac{DV}{460 \cdot \text{volt}}\right)^n}{SF}$	$MGC = 1.185 \cdot 10^5 \cdot 10^5$

	T		
REVISION NO.	0		
	i i	5	1

CALCULATION NO.	QDC-1000-M-0	078	PROJECT NO.	N/A	PAGE NO. 15
	URAL LIMIT:	StructuralLimit := 104	\$718-lbf Referen	nce 7	·.
OPEN LIMIT:		Limit := (min((Stru	cturalLimit MGC)))		
MARGIN:	Li Margin :=—	mit – F _{total} F _{total}	Margin = 0.276	· .	
		:			
					•
		,			
9 . Ø					
					, ,
·					
REVISION NO.		0			

CALCULATION NO. QDC-1000-M-0078	PROJECT NO.	N/A	PAGE NO. 16

VII. COMPARISON OF MODEL OF OTHER SOURCES OF INFORMATION

Finite Element Calculation to Determine Seat Contact Force due to Bonnet Pressure

Results from the Reference 9 calculation demonstrate that the contact force between the seat and disk which is calculated using the MathCad model above is conservative and reasonably accurate (within 5%) for the 16" valve size modeled in this calculation. Once this Finite Element Analysis calculation is finalized, this calculation will be updated to provide the actual values.

Comparison to Actual Test Data

The reference 10 calculation demonstrates that the MathCad model calculates the pressure locking unseating thrust for the 6" flex-wedge Velan gate valve with good accuracy. In addition, pressure locking testing performed on a 10" Crane 900# Class flex-wedge gate valve at Quad Cities on July 21, 1995 indicates that the model accurately and conservatively predicts that pressure locking unseating force. A graph showing the initial results of this testing is provided below. Further testing is scheduled for later this year. The results of the entire test sequence will be formally documented in a ComEd report after all testing is completed.

CALCULATION NO. QDC-1000-M-0078	PROJECT NO. N/A	PAGE NO.17
		and the second

VIII. SUMMARY AND CONCLUSIONS

This calculation has determined that the force required to unseat MOV 2-1001-29A (F_{total}) is 81,520 lbf and that the Motor/Gearing Capability (MGC) is 118,500 lbf. The Open Structural Limit for MOV 2-1001-29A, taken from the RSMDS, is the Weak Link value of 104,718 lbf (calculated at 575 *F design temp). The margin was determined by finding the difference between the limiting open force, in this case the weak link value, and the unseating force, then dividing the resultant value by the total unseating force to produced a margin of 27.6%.

The calculated margin of 27.6% is greater than the 15% minimum required margin, therefore, a pressure locking event will not prevent this valve from performing its design function.

IX. ATTACHMENTS

Telecopy from Dave Dwyer (Crane-Aloyco Valves) to Brian Bunte (ComEd) dated 5/3/95, Page A-1.

Telecopy from Bruce Harry (Crane-Aloyco Valves) to Brian Bunte (ComEd) dated 6/16/95, Page A-2.

VOTES Test 8, 2-1001-29A, dated 12/15/93, pages B-1 and B-2.

(FINAL)

CRANE VALVES Nuclear Operations

•

FAX TRANSMITTAL

<u>...</u>

TO BR	IAN BUNJTE	PHONE	FAX -208-66-3 - 7/9
ROM Devid	H. Dwyer, Proloct Engineer	PHONE (815) 740 - 7511	FAX (815) 727 - 4246
SUBJECT	DISC. DIME	ی لہ دیری ا	DATE 5/3/35
REFERENCE	· · · · · · · · · · · · · · · · · · ·		TOTAL PAGES /
ALSSAGE	BRIAN - THE	FOLLOWING MA	2.E APPROVIMATE
·	NOMINAL DI	MENSIONS FOR	THE 10" + 16"
	VALVES DIS	we me	DISCUECED THES
- 	MORNING .	ALL DIMET-SION	S IN INCHES
	512 E	HUB DIA (D)	PLATE THICK HE'SS (T
	;		MAIN MAP
	10	2.5	1 3/16 2. 3/16
	16	4,25	2 1/4 3 1/16
· /	LATE THIGHESS	15 GREWTEST	DT TER ST 2
	• • ••••••••••••••••••••••••••••••••••		
·			
•			1
· ••••• ••••••••••••••••••••••••••••••			
· <u></u> · · · ·· · ·	an an am 27 12 2 15 15 15 19 19 19 19 19 19 19 20 19 20 19 19 19 19 19 19 19 19 19 19 19 19 19		T
rrat es martiletats érailes :		a.a., a., a, angan nga manga si si si sa	
· • • • • • • • • • • • • • • • • • • •		andan tu au construction and a similar construction address and a second	REBANDS
			Clience Leg

 	-	No. 4071	U.T.HITE	Ξ
<u> </u>			0.000	 -

DATE:	6-16-95		
TO:	BRIAN BUNTE	FROM: BRULE HAR	a <u>y</u>
ITTLE:	SR. ENG	TITLE: DEV. ENG.	
COMPANT	X:		
PHONE:	708-663-3824	PHONE: <u>815-740-7</u> ,	570
AX:	708-663-7181	FAX: (815) 727-4246	
TOTAL PA	AGES:/	•	
506JE 774E	ECT ! HUB DIM. FO FLEXIBLE W LENGTHS OF THE	EDGES. EDGES. FLEXIBLE WEDGE	783
SUBJE THE INTER FOR T	ELT! HUB DIM, FU FLEXIBLE W LENGTHS OF THE WAL HUGS AN TTE 10" AND 16	ELEXIBLE WEDGE ELEXIBLE WEDGE E 15/8" AND 27 SIZES, RESPECTIVE	783 //L''
SUGJE THE INTER EOR 7	ECT : HUB DIM. FO FLEXIBLE W LENGTHS OF THE WAL HUGS AM THE 10" AND 16	EDGES. EDGES. FLEXIBLE WEDGE E 15/8" AND 27 "SIZES, RESPECTIVE	783 // <u>/</u> //
SUGJE THE INTER EOR 7	ECT ! HUB DIM. FO FLEXIBLE W LENGTHS OF THE WAL HUGS AN THE 10" AND 16	EDGES. EDGES. FLEXIBLE WEDGE E 15/8" AND 27 "SIZES, RESPECTIVE	783 ////////////////////////////////////
SUGJE THE INTER FOR 7	ECT ! HUB DIM. FO FLEXIBLE W LENGTH'S OF THE WAL HUGS AM THE IO" AND IG	EDGES. EDGES. FLEXIBLE WEDGE E 1 5/8" AND 27 "SIZES, RESPECTIVE	783 //C"
SUGJE THE INTER EOR 7	ECT ! HUB DIM. FO FLEXIBLE W LENGTH'S OF THE WAL HUGS RM THE 10" AND 16	<u>EDGES.</u> <u>FLEXIBLE WEDGE</u> <u>E 15/8" AND 27</u> <u>''SIZES, RESPECTIVE</u>	783 //C"
SUGJE THE INTER EOR 7	ECT ! HUB DIM. FO FLEXIBLE W LENGTH'S OF THE WAL HUGS AN THE 10" AND 16	EDGES. EDGES. FLEXIBLE WEDGE E 15/8" AND 27 "SIZES, RESPECTIVE	283 ////////////////////////////////////

ı · a

<u>e</u>

ROTOR LIMIT SWITCH, CB3 LENGTH=200'. STEM FACTOR=.02585, COF=.15 Actuator Motor Actuator Type ..: LIMITORQ Voltage Type: AC t.: DP2 Size....: SMB-4 Volts....: 460 Max Thrust Rate: 275000 lbs 1 Number....: 2-1001-29A Amp rating..: 25.70 amps e..... GATE Serial #....: 95534A Nom. Speed..: 3365.00 rpm .e.... 16" Order #....: 332682A Start torque: 150.00 ft-lb get Thrust...: 53000 lbs Worm Gear Teeth: 19 Run Torque..: 30.00 ft-1b entation....: HORIZONTAL Gear Ratio....: 46.1 Horse Power.: 19.20 h.p. Spring Pack 🖸 ation..... TOP OF TORUS 1301-211 m Material...: H1150 m Diameter...: 3.000 inches eads per Inch: 4.00 eads per Rev.: 2 bisson Ratio.: 106.0 x 10E6 psi ial #..: A2371 Signal Conditioner Calibration Due Date 06/01/94 5.893E-0003 μv/v/lb itivity

9.78 ft-1bs

0.02 in.

Load Cell Offset:

LVDT Offset:

Ait. I.D. B Sint Z of Z Calc. No. QUC-1000-M-Rev. 0