Exhibit C NEP-12-02 Revision O page 1 of 2

COMMONWEALTH EDISON COMPANY CALCULATION TITLE PAGE

SAFETY REL	ATED	REGULAT	TORY RELAT		AGE NO.: 1 NON-SAFETY REL	ATED
LCULATION TITLE				TED I	NON-SAFETY REL	.ATED
LCULATION TITLE essure Locking Ca	iculation for RI	HR System	Valve MO			
		•		√ 1-1001-29A	•	
ATION/UNIT:	Quad Cities/1		<u></u>	SYSTEM AB	BREVIATION: LP	CI
UIPMENT NO.: @FAI MOV 1-1001-29A	PL.)					
		·		, ,		
	-	RIAL NO. C)R CHRON N	0. N/A	DATE:	
VISION SUMMARY: ANY ASSUMPTION	Original Issue		REQUIRE LA	- TER	DATE: <u>11</u>	9/55
VIEWED BY: <u>]. Kel</u>	1 Jal	872	J.		11-5-	-95
VIEW METHOD: D	stailed review			COMM	IENTS (C OR NC)	<u>. NC</u>
PROVED BY: UC	Prenore U	BE	= 11/2/2	·		
	MOV 1-1001-29A T: 0 STATUS: APPP.2 PARED BY: <u>K. Hig</u> ISION SUMMARY: ANY ASSUMPTION IFICATION YES I IEWED BY: <u>J. Kel</u> IEW METHOD: De ROVED BY: <u>UC</u>	APPPOVED PARED BY: K. Higgins	MOV 1-1001-29A T: 0 STATUS: QA SERIAL NO. C APPPCVLED PARED BY: <u>K. Higgins</u> ISION SUMMARY: Original Issue ANY ASSUMPTIONS IN THIS CALCULATION F IFICATION YES INO = IEWED BY: <u>J. Kelly</u> IEWED BY: <u>J. Kelly</u> IEW METHOD: Detailed review ROVED BY: <u>UO SCROOC</u>	MOV 1-1001-29A Y: 0 STATUS: QA SERIAL NO. OR CHRON NA APPPLVED PARED BY: K. Higgins LA ISION SUMMARY: Original Issue ANY ASSUMPTIONS IN THIS CALCULATION REQUIRE LAT IFICATION YES INO IEWED BY: I. Kelly Jol A Delta IEW METHOD: Detailed review ROVED BY: WO FOR FOR UNDER 11/9/2	MOV 1-1001-29A T: O STATUS: QA SERIAL NO. OR CHRON NO. N/A APPPCNED PARED BY: <u>K. Higgins</u> ISION SUMMARY: Original Issue ANY ASSUMPTIONS IN THIS CALCULATION REQUIRE LATER IFICATION YES INO IN IEWED BY: <u>J. Kelly</u> IEWED BY: <u>J. Kelly</u> IEW METHOD: Detailed review COMN ROVED BY: <u>UNC FORMOR</u> UNC 11/2/25	MOV 1-1001-29A f: 0 STATUS: QA SERIAL NO. OR CHRON NO. N/A DATE:

- · ·

- -- · ·

,.

Exhibit C NEP-12-02 Revision 0 page 2 of 2

COMMONWEALTH EDISON COMPANY CALCULATION REVISION PAGE

CALCULATION NO.	QDC-1000-M-0076	PAGE NO.: 2
REV: STATUS:	QA SERIAL NO. OR CHRON NO.	DATE:
PREPARED BY:		DATE:
REVISION SUMMARY:		
· · · ·		
REVIEWED BY:		DATE:
REVIEW METHOD:		COMMENTS (C OR NC):
REV: STATUS:	QA SERIAL NO. OR CHRON NO.	DATE:
PREPARED BY:		DATE:
REVISION SUMMARY:		
REVIEWED BY:		DATE:

Exhibit D NEP-12-02 Revision 0

٠.

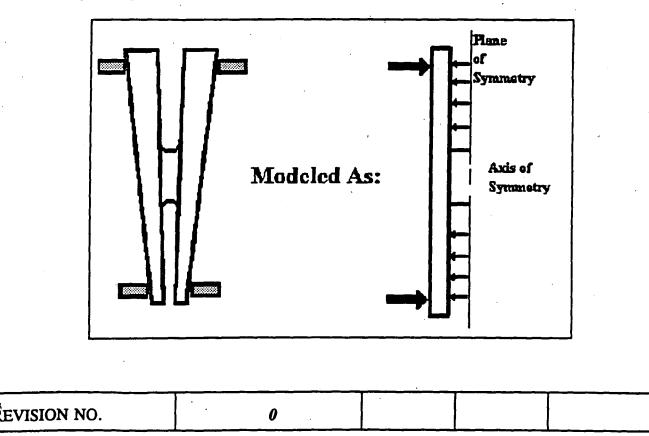
COMMONWEALTH EDISON COMPANY

CALCULATION TABLE OF CONTENTS

, 		PROJECT NO.	N/A
CALC	ULATION NO. QDC-1000-M-0076	REV. NO. 0	PAGE NO. 3
DESC	RIPTION	PAGE NO.	SUB-PAGE NO.
TITLE	PAGE	1	
REVIS	SION SUMMARY	2	
TABL	E OF CONTENTS	3	
I.	PURPOSE/OBJECTIVE	4	
п.	METHODOLOGY AND ACCEPTANCE CRITERIA	4	
III.	ASSUMPTIONS	8	
IV.	DESIGN INPUT	9	
v .	REFERENCES	9	
VI.	CALCULATIONS	10-15	
VII.	COMPARISON OF MODEL TO OTHER SOURCES OF INFORMATION	16	
VIII.	SUMMARY AND CONCLUSIONS	17	
IX.	ATTACHMENTS	17	
	A) Telecopies from Crane Valves	A-1, A-2	
	B) VOTES Test 12, 1-1001-29A	B-1, B-2 (Final)	
•			
k i			

CALCULATION NO. QDC-1000-M-0076	PROJECT NO.	N/A	PAGE NO. 4

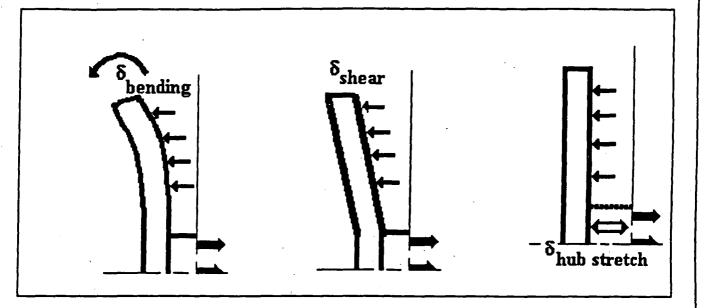
I. PURPOSE/OBJECTIVE


Valve MOV 1-1001-29A, which is installed in the RHR System at Quad Cities, has been determined to be susceptible to the pressure locking phenomena. The purpose of this calculation is to determine that the valve will open when called upon by design during a pressure locking event by calculating the force necessary to overcome pressure locking and the available Motor/Gearing Capability (MGC) of the MOV.

II. METHODOLOGY AND ACCEPTANCE CRITERIA

The methodology for calculating the thrust required to open the MOVs under the pressure locking scenario is based on the Reference 1 (Roark's) engineering handbook. This methodology has been previously applied by ComEd in the References 2 and 10 calculations. The methodology determines the total force required to open the valve under a pressure locking scenario by solving for the four components to this required force. The four components of the force are the Pressure Locking Component, the static unseating component, the piston effect component, and the "reverse piston effect" component. These components are determined using the following steps.

Pressure Locking Component of Force Required to Open the Valve


The valve disk is modeled as two plates attached at the center by a hub which is concentric with the valve disk. A plane of symmetry is assumed between the valve disks. This plane of symmetry is considered fixed in the analysis.

CALCULATION NO. *QDC-1000-M-0076*

PROJECT NO. N/A

The pressure force is assumed to act uniformly upon the inner surface of the disk between the hub diameter and the outer disk diameter. The outer edge of the disk is assumed to be unimpeded and allowed to deflect away from the pressure force. In addition, the disk hub is allowed to stretch. The total displacement at the outer edge of the valve disk due to shear and bending and due to hub stretch are calculated using the reference 1 equations.

An evenly distributed force is assumed to act between the valve seat and the outer edge of the valve disk. This force acts to deflect the outer diameter of the valve disk inward and to compress the disk hub. The pressure force is reacted to by an increase in this contact force between the valve disk and seats. The valve body seats are conservatively assumed to be fixed. Therefore, the deflection due to the known pressure load must be balanced by the deflection due to the unknown seat load. The deflection due to the pressure force is first calculated. Then, the reference 1 equations are used to determine the contact force between the seat and disk which results in a deflection which is equal and opposite to the deflection due to the pressure force. Because the disk varies in thickness, the average thickness is used for purposes of this calculation.

REVISION NO.

CALCULATION NO. QDC-1000-M-0076

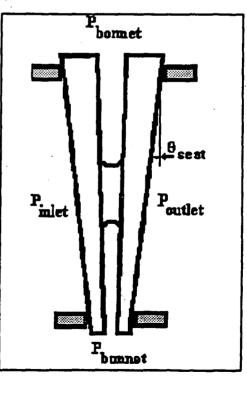
PROJECT NO. N/A

The coefficient of friction between the seat and disk is determined based on the open valve factor from a DP test. The stem force required to overcome the contact load between the seat and disk which opposes the pressure force is equal to:

(seat load) x [(seat mu) cos(seat angle) - sin(seat angle)] x 2 (for two disk faces).

Static Unseating Force

The static unseating force represent the open packing load and pullout force due to wedging of the valve disk during closure. These loads are superimposed on the loads due to the pressure forces which occur during pressure locking. The value for this load is based on static test data for the MOVs.


Piston Effect

The piston effect due to valve internal pressure exceeding outside pressure is calculated using the standard industry equation. This force assists movement of the valve stem in the open direction.

$$\mathbf{F}_{\text{piston effect}} = \frac{.37}{4} \times D_{\text{stern}}^2 \times \left(\mathbf{P}_{\text{bonnet}} - \mathbf{P}_{\text{stm}} \right)$$

"Reverse Piston Effect"(F_{vert})

The reverse piston effect is the term used in this calculation to refer to the pressure force acting downward against the valve disk. This force is equal to the differential pressure across the valve disk times the area of the valve disk times the sine of the seat angle times 2 (for two disk faces).

REVISION NO.

CALCULATION NO. QDC-1000-M-0076	PROJECT NO. N/A	PAGE NO.7
	:	
Total Force Required to Overcome Pressure Locki	ng	•
As mentioned previously, the total stem force the sum of the four components discussed above exception of the piston effect component.		

Determination of Motor Gearing Capability

Next the motor gearing capability available to overcome static unseating forces is determined using the statically measured stem factor, the pullout efficiency, the temperature factor, and the ComEd motor test data (for breakdown torque and voltage factor), Reference 5.

$$MGC_{open} = \frac{MR_{breskdown} \times TempFactor \times OAR \times Eff_{pullout} \times \left(\frac{V \text{ oltage}_{svalishe}}{V \text{ oltage}_{roted}}\right)^{L_{ponent}}}{Stem Factor}$$

Determination of Open Valve Factor

The open valve factor is calculated by based on the open DP load. This load is determined by using the equation below: The O10 thrust is measured in the region of the trace during which the valve disk is sliding on the valve seat (prior to flow initiation). This thrust is based on the O4 zero since the valve is effectively closed at O10. The open running thrust is measured at the end of the open stroke and is referenced to the C3 zero since the valve is nearly fully open at the point at which the open running load is measured. The Line Pressure adjustment term in the equation accounts for the fact that the piston effect decreases during the opening valve stroke.

$$\nabla F_{\text{open}} = \frac{O10_{\text{thurst}} - \text{Running}_{\text{thurst}} + \frac{\sqrt{7}}{4} D_{\text{stem}}^2 (O10_{\text{linepressure}} - \text{Running}_{\text{linepressure}})}{DP \times \frac{\sqrt{7}}{4} D_{\text{stet}}^2}$$

Enhanced Capability Evaluation

The enhanced capability evaluation uses the measured overall MOV efficiency to predict the required motor torque during the pressure lock condition. This overall MOV efficiency is determined by dividing the actual motor torque during the latest static test by the measured pullout thrust. This ratio (MOV efficiency) is then multiplied by the estimated pressure lock pullout force to determine the required motor torque during pressure lock pullout. The available motor torque is set equal to the motor breakdown torque from the ComEd motor test data.

CALCULATION NO. QDC-1000-M-0076	PROJECT NO. N/A	PAGE NO. 8

Acceptance Criteria

The margin between one time structural limit and required thrust is calculated. A margin of 15% or greater is required. This margin accounts for equipment inaccuracy and degradation.

The margin between MGC and required thrust is calculated. A margin of 20% or greater is required. This margin accounts for equipment inaccuracy and degradation.

If the enhanced capability evaluation is applied, a margin of 40% or greater is required. This margin accounts for voltage, current, and thrust measurement inaccuracies from the static test and a possible reduction in overall MOV efficiency from the static condition to the estimated pullout condition.

III. ASSUMPTIONS

1. The valve disk is assumed to act as two ideal disks connected by a hub. The equations in reference 1 are assumed to conservatively model the actual load due to pressure forces. This assumption is considered conservative since inspection of the disk drawings show large fillets between the disk hub and seats which should make the valve disk stiffer than assumed in the reference 1 equations.

CALCU	LATION NO. (DC-1000-M-0076	PROJECT	NO. <i>N/A</i>	PAGE NO.9
	under pre combinati of the cal	icient of friction between a ssure locking conditions as on with assumption 1) is o culation against ComEd an e gate valves.	it is under DP onsidered to be	conditions. The justified based	his assumption (in on bench marking
	which the adjacent c off to 325 a signal to mode is 3	eam, downstream, and bor valve bonnet is pressurize heck valves. A LOCA oc psig. The LPCI pump c open simultaneously. The 07 psig. The pressure values. See Reference 6.	d to reactor pre curs which caus omes up to spec dynamic head	ssure (1020 psi es the reactor p d and the subj for an RHR pu	ia) by leakage past pressure to drop ect valve receives imp in the LPCI
IV.	DESIGN INPUT	5			
		c Geometry information is yco Valve Company. (Att		eference 4, Fa	xes from the
2	2. Motor Dat	a is taken from the Refere	nce 5 report and	I RSMDS, Ref	f. 7.
	3. Static and	DP diagnostic test data is	taken from the	most recent dia	ignostic tests.
V. 1	REFERENCES				
1	. Sixth Editi	on of Roark's Formulas fo	or Stress and Str	ain	
2	Load", dat	ulations 101-013-1, "Effected 3/23/95; and 101-013-4 f Bonnet Pressure", dated	, "Estimate of		
3	. NMAC Re	port NP-6660-D, " Applic	ation Guide For	Motor Operat	ted Valves"
	_		,		
	-				
	-				
	 N NO.	0			

.

ALCULAT	TION NO. QDC-1000-M-0076	PROJECT NO. N/A	PAGE NO.10
4.	Crane Telecopies from Dave Dwy 5/3/95 and 6/16/95, Attachment A	•	unte (ComEd) date
5.	ComEd White Paper 125, MOV-V	WP-125, Rev. 2, 10/4/95	
6.	UFSAR Section 6.3.2.2.3.4, Tbl	6.3-5, Tbl 4.1-3 and Fig 6.3-8	
7.	ComEd Rising Stem MOV Data S	Sheet, 1-1001-29A, 02/06/95, 1	: 3:10
8.	Thrust values are taken from static VOTES Test 12 performed 11/11/		/11/93 and DP
9.	EMS Calculation CE-DR-030, "Pr Operated Valves", dated 6/13/95.	ressure Locking Analysis of Dre	esden Motor
10.	ComEd Calculation NED-M-MSD Quad Cities Injection Valves Susce		
11.	Thrust and Torque Calculation, O	rc-240, Rev. 4, Attachment A	•
12.	Response to IE Bulletin 79-01B, S	ection 4.3.1.	
. CALCUI	LATIONS	•	
The	following is provided for MOV 1-10	01-29A.	
Mat	hCad calculation of:		
1) 2) 3)	the pressure locking unseating forc the available motor gearing capabil the enhanced capability		ked

ALCULATION NO. QDC-1000	- <i>M-0076</i>	PROJECT NO. N/A	PAGE NO. 11
VI QCNPS Valve 1-	1001-29A		·
INPUTS:		,	·
Bonnet Pressure Upstream Pressure Downstream Pressure	P _{bonnet} = 1005 psi P _{up} = 307 psi P _{down} = 325 psi	Reference 6 Ref. 6 & Assum. 3 Ref. 6 & Assum. 3	
Disk Thickness, Avg Seat Radius Hub Radius Hub Length Seat Angle Poisson's Ratio (disk) Mod. of Elast. (disk) Static Pullout Force (Test 13) O10 Thrust (DP test 12) Open Run Thrust (DP) DP	t := 2.75 · in a := 6.385 · in b := 2.125 · in L := 2.4375 · in theta := 5 · deg v := 0.3 E := 27.6 · 10 ⁶ · psi F po := 58766 · lbf O10 := 6892 · lbf Rum := - 5390 · lbf DPtest := 277 · psi	Reference 4 Reference 7 Reference 4 Reference 4 Reference 7 Reference 1 & 11, Stain. Steel Reference 1 & 11, Stain. Steel Reference 8 Reference 8 Reference 8, Att. B	•
LP (valve closed) LP (valve open) Stem Diameter	LPclose := 277·psi LPopen := 0·psi D _{stem} := 3.0·in	Reference 8, Att. B Reference 8, Att. B Reference 7	
VALVE FACTOR CALCULA			
Valve Factor:			•
	stem ² ·(LPclose – LPopen)) ² ·DPtest	VF = 0.401	
Coefficient of friction betw	•	Reference 3)	
$mu = VF \frac{\cos(\text{theta})}{1 - VF \sin(t)}$	<u>)</u>	mu = 0.414	

PRESSURE FORCE CALCULATIONS

Average DP across disks:

$$DPavg := P_{bonnet} - \frac{P_{up} + P_{down}}{2}$$

•

DPavg = 689 •psi

REVISION NO.

		PAGE NO. 12
Disk Stiffness Constants (Reference 1, Table 24)		
$D = \frac{E(t)^{3}}{12(1-v^{2})}$	$D = 5.256 \cdot 10^7$	•lbf in
$G := \frac{E}{2 \cdot (1 + v)}$	$G = 1.062 \cdot 10^7$	•psi
Geometry Factors: (Reference 1, Table 24)		
$\mathbf{C}_{2} := \frac{1}{4} \cdot \left[1 - \left(\frac{\mathbf{b}}{\mathbf{a}} \right)^{2} \cdot \left(1 + 2 \cdot \ln \left(\frac{\mathbf{a}}{\mathbf{b}} \right) \right) \right]$	$C_2 = 0.161$	
$\mathbf{C}_{3} := \frac{\mathbf{b}}{4 \cdot \mathbf{a}} \cdot \left[\left[\left(\frac{\mathbf{b}}{\mathbf{a}} \right)^{2} + 1 \right] \cdot \ln \left(\frac{\mathbf{a}}{\mathbf{b}} \right) + \left(\frac{\mathbf{b}}{\mathbf{a}} \right)^{2} - 1 \right]$	C ₃ = 0.028	
$C_{8} := \frac{1}{2} \cdot \left[1 + v + (1 - v) \cdot \left(\frac{b}{a} \right)^{2} \right]$	C ₈ = 0.689	
$\mathbf{C}_{9} := \frac{\mathbf{b}}{\mathbf{a}} \left[\frac{1+\mathbf{v}}{2} \cdot \ln\left(\frac{\mathbf{a}}{\mathbf{b}}\right) + \frac{1-\mathbf{v}}{4} \cdot \left[1-\left(\frac{\mathbf{b}}{\mathbf{a}}\right)^{2}\right] \right]$	C ₉ = 0.29	
$\mathbf{L}_{3} := \frac{\mathbf{a}}{4 \cdot \mathbf{a}} \cdot \left[\left[\left(\frac{\mathbf{a}}{\mathbf{a}} \right)^{2} + 1 \right] \cdot \ln \left(\frac{\mathbf{a}}{\mathbf{a}} \right) + \left(\frac{\mathbf{a}}{\mathbf{a}} \right)^{2} - 1 \right]$	L ₃ =0	
$L_{9} := \frac{a}{a} \cdot \left[\frac{1+v}{2} \cdot \ln\left(\frac{a}{a}\right) + \frac{1-v}{4} \cdot \left[1 - \left(\frac{a}{a}\right)^{2} \right] \right]$	L ₉ =0	
$L_{11} := \frac{1}{64} \cdot \left[1 + 4 \cdot \left(\frac{b}{a}\right)^2 - 5 \cdot \left(\frac{b}{a}\right)^4 - 4 \cdot \left(\frac{b}{a}\right)^2 \cdot \left[2 + \left(\frac{b}{a}\right)^2 \right] \cdot \ln\left(\frac{a}{b}\right) \right]$	$L_{11} = 0.006$	
$L_{17} = \frac{1}{4} \cdot \left[1 - \frac{1-\nu}{4} \cdot \left[1 - \left(\frac{b}{a}\right)^4 \right] - \left(\frac{b}{a}\right)^2 \cdot \left[1 + (1+\nu) \cdot \ln\left(\frac{a}{b}\right) \right] \right]$	L ₁₇ =0.139	
Moment (Reference 1, Table 24, Case 2L)	· . '	
$M_{1b} := \frac{-DPavg \cdot a^2}{C_8} \cdot \left[\frac{C_9}{2 \cdot a \cdot b} \cdot (a^2 - b^2) - L_{17} \right]$	M _{rb} =-1.01•10	0 ⁴ •lbf
$Q_{b} := \frac{DPavg}{2 \cdot b} \cdot (a^{2} - b^{2})$	Q _b = 5.877•10	· <u>lbf</u> in

REVISION NO. 0

Deflection due to pressure and bending: (Reference $y_{bq} = M_{rb} \cdot \frac{a^2}{D} \cdot C_2 + Q_b \cdot \frac{a^3}{D} \cdot C_3 - \frac{DPavg \cdot a^4}{D} \cdot L_{11}$ Deflection due to pressure and shear stress: (Reference $K_{sa} = -0.3 \cdot \left[2 \cdot \ln \left(\frac{a}{b} \right) - 1 + \left(\frac{b}{a} \right)^2 \right]$ $y_{sq} = \frac{K_{sa} \cdot DPavg \cdot a^2}{t \cdot G}$ Deflection due to hub stretch (from center of hub to be	y _{bq} = -5.783• eference 1, Table 25, Case 2L) K _{sa} = -0.393	10 ⁻⁴ m
Deflection due to pressure and shear stress: (Re $K_{sa} := -0.3 \cdot \left[2 \cdot \ln \left(\frac{a}{b} \right) - 1 + \left(\frac{b}{a} \right)^2 \right]$ $y_{sq} := \frac{K_{sa} \cdot DPavg \cdot a^2}{t \cdot G}$	oference 1, Table 25, Case 2L) K _{sa} = -0.393	10 ⁻⁴ in
$K_{sa} := -0.3 \cdot \left[2 \cdot \ln\left(\frac{a}{b}\right) - 1 + \left(\frac{b}{a}\right)^2 \right]$ $y_{sq} := \frac{K_{sa} \cdot DPavg \cdot a^2}{t \cdot G}$	K _{sa} = -0.393	
$y_{sq} := \frac{K_{sa} \cdot DPavg \cdot a^2}{t \cdot G}$		
Deflection due to hub stretch (from center of hub to	y _{sq} = −3.785•1	10 ⁻⁴ •in
•	disk):	
$P_{\text{force}} = 3.1416 \cdot (a^2 - b^2) \cdot DPavg$	$P_{force} = 7.84$	7•10 ⁴ ·lbf
$y_{\text{stretch}} = \frac{P_{\text{force}}}{3.1416 \cdot b^2} \frac{L}{(2 \cdot E)}$	$y_{\text{stretch}} = 2.4$	43•10 ⁻⁴ •in
Total Deflection due to pressure forces:		
$y_q = y_{bq} + y_{sq} - y_{stretch}$	$y_{q} = -0.001 + 100$	in
Deflection due to seat contact force and shear stress	s (per lbf/in.): (Reference 1, Tab Case 1L)	le 25,
y _{sw} := $-\left[\frac{1.2 \cdot \left(\frac{a}{a}\right) \cdot \ln\left(\frac{a}{b}\right) \cdot a}{t \cdot G}\right]$ (per lbf/in)	y _{sw} = -2.888•1	$0^{-7} \cdot \frac{\text{in}}{\left(\frac{\text{lbf}}{\text{in}}\right)}$
Deflection due to seat contact force and bending (pe	r Ibf/in.): (Reference 1, Table 24	, (<u> </u>
$ y_{bw} = -\left(\frac{a^{3}}{D}\right) \cdot \left[\left(\frac{C_{2}}{C_{8}}\right) \cdot \left[\left(\frac{a \cdot C_{9}}{b}\right) - L_{9}\right] - \left[\left(\frac{a}{b}\right) \cdot C_{3}\right] + \left(\frac{a}{b}\right) \cdot C_{3} \right] + \left(\frac{a}{b}\right) \cdot C_{3} + \frac{a^{3}}{b^{3}} + \frac{a^{3}}{b^{$	+ L_3 $y_{bw} = -5.983 \cdot 1$	$10^{-7} \cdot \frac{\text{in}}{\left(\frac{\text{lbf}}{\text{in}}\right)}$
Deflection due to hub compression (per lbf/in), (from	center of hub to disk):	(ш)
$\frac{y_{\text{compr}}}{(\text{per lbf/in})} = \frac{2 \cdot a \cdot \pi}{3.1416 \cdot b^2} \frac{L}{(2 \cdot E)}$	y _{compr} = 1.249•	$10^{-7} \cdot \frac{\text{in}}{\left(\frac{\text{lbf}}{\text{in}}\right)}$
Total deflection due to seat contact force (per lbf//in.)		\ m <i>}</i> .
^y w ^{= y} bw ^{+ y} sw ^{- y} compr (per lbf/in)	$y_{w} = -1.012 \cdot 10$	$\frac{1}{(\frac{1}{\ln n})}$

REVISION NO.

	COMMONWEALTH ED		
CALCULATION NO. QDC-1000-M	-0076	PROJECT NO. N/A	PAGE NO. 14
Seat Contact Force for whit from pressure forces:	ch deflection is equal pre	viously calculated deflection	_in_ 1
$\mathbf{F}_{\mathbf{s}} := 2 \cdot \pi \cdot \mathbf{a} \cdot \frac{\mathbf{y}_{\mathbf{q}}}{\mathbf{y}_{\mathbf{w}}}$		$F_{s} = 4.7$	'62•10 ⁴ •lbf
UNSEATING FORCES		Reference 2	
F _{packing} is included in me	asured static pullout Forc	e .	· ·
$F_{piston} := \frac{\pi}{4} \cdot D_{stem}^2 \cdot P_{box}$	nnet	$F_{piston} = 7.104 \cdot 10$	³ ·lbf
$F_{\text{vert}} := \pi \cdot a^2 \cdot \sin(\text{theta}) \cdot (2 \cdot a^2)$	$P_{bonnet} - P_{up} - P_{down}$	$F_{vert} = 1.538 \cdot 10^4$	·lbf
$F_{\text{preslock}} = 2 \cdot F_{s} \cdot (\text{mu-cos})$	(theta) - sin(theta))	F preslock = 3.101.	10 ⁴ -lbf
$F_{\text{total}} = F_{\text{piston}} + F_{\text{vert}}$	+ ^F preslock ^{+ F} po	$F_{po} = 5.877 \cdot 10^4 \cdot 1$	bf
$F_{total} = 9.805 \cdot 10^4 \cdot lbf$	· .		
MOTOR / GEARING CAP	ABILITY INPUTS:		
Motor Torque:	MR := 145.95-ft-lbf	Reference 5	
Temperature Factor:	Tf := .935	Reference 7	
Degraded Voltage:	DV := 383 volt	Reference 7	
Under Voltage Factor:	n := 2.119	Reference 5	
Stem Factor:	SF := 0.0254.ft	Reference 7	· · ·
Overall Ratio:	OAR := 46.13	Reference 7	
Pullout Efficiency:	Eff _{po} = 0.65	Reference 7	
Motor Torque at Pullout: (Static Test)	MT po = 28 ft lbf	Ref 8, motor 50, pf = 0.8	13 @ 24 A
MOTOR / GEARING CAP	PABILITY CALCULA	TIONS:	
MGC := MR·Tf·OAR·Eff _p	$\frac{\left(\frac{DV}{460 \cdot \text{volt}}\right)^n}{\text{SF}}$	MGC = 1.093•10 ⁵ •lbf	
			• <u>.</u>
EVISION NO.	0	· · · · · · · · · · · · · · · · · · ·	

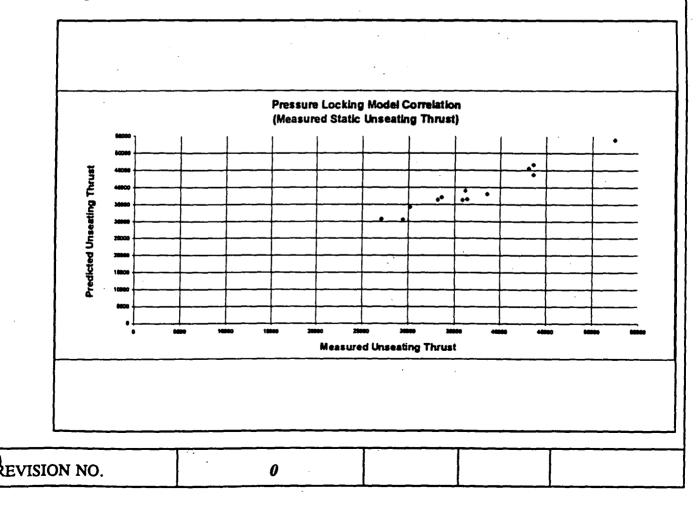
ALCULATION NO. QDC-1000-M-0076	PROJECT NO. N/A PAGE NO. 1
	ructural Limit will be set to the Open Weak Link of 135 °F (value for LOCA per ref. 12). The thrust value ig:
OWL 100deg := 164694 lbf OWL 575deg := 104718 lbf ΔTemp := 475 deg	Reference 11 Reference 7
-	deg = 1.603 • 10 ⁵ • 1bf Conservatively use 160000 lbf ht := 160000 lbf
MarginStructural :=	alLimit - F _{total} MarginStructural = 0.632 F _{total}
OPEN LIMIT: Limit := (mit	n((StructuralLimit MGC)))
MARGIN: Margin := $\frac{\text{Limit} - F_{\text{total}}}{F_{\text{total}}}$	Margin = 0.114
ENHANCED CAPABILITY EVALUATION:	
motor torque during the pressure lock conditio determined by dividing the actual motor torque thrust. This ratio (MOV efficiency) is then used pressure lock conditions. The resulting margin	
MT avail. = MR Tf $\left(\frac{DV}{460 \cdot \text{volt}}\right)^n$	MT _{avail.} = 92.561 •ft lbf
$Margin := \frac{MT_{avail.} - MT_{required}}{MT_{required}}$	Margin = 98.123 •%

		t i	
REVISION NO.	1		
REVISION NO.	1		

۰.

motor temperature at the time of opening, thereby, eliminating the temperature degradation factor.

	CALCULATION NO. QDC-1000-M-0076	PROJECT NO.	N/A	PAGE NO. 16
ŀ				


VII. COMPARISON OF MODEL OF OTHER SOURCES OF INFORMATION

Finite Element Calculation to Determine Seat Contact Force due to Bonnet Pressure

Results from the Reference 9 calculation demonstrate that the contact force between the seat and disk which is calculated using the MathCad model above is conservative and reasonably accurate (within 5%) for the 16" valve size modeled in this calculation. Once this Finite Element Analysis calculation is finalized, this calculation will be updated to provide the actual values.

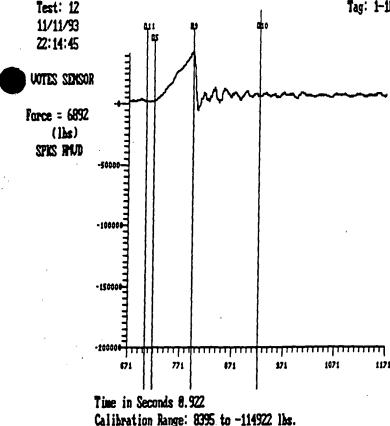
Comparison to Actual Test Data

The reference 10 calculation demonstrates that the MathCad model calculates the pressure locking unseating thrust for the 6" flex-wedge Velan gate valve with good accuracy. In addition, pressure locking testing performed on a 10" Crane 900# Class flex-wedge gate valve at Quad Cities on July 21, 1995 indicates that the model accurately and conservatively predicts that pressure locking unseating force. A graph showing the initial results of this testing is provided below. Further testing is scheduled for later this year. The results of the entire test sequence will be formally documented in a ComEd report after all testing is completed.

CALC	ULATION NO. Q	DC-1000-M-0076		PROJECT	' NO. <i>N/A</i>	PAGE NO.17	
VIII.	SUMMARY AND CONCLUSIONS						
	This calculation has determined that the force required to unseat MOV 1-1001-29A (F_{total}) is 104,000 lbf and that the Motor/Gearing Capability (MGC) is 109,300 lbf. The Open Structural Limit for MOV 1-1001-29A, calculated at the DBA temperature of 135 °F, is the Weak Link value of 160,000 lbf. The margin was determined by finding the difference between the limiting open force, in this case the MGC value, from the unseating force and dividing the resultant value by the total unseating force to produced a margin of 11.4%.						
		servative MGC calcula ty evaluation was appl	-		•		
The calculated margin of 98.13% is greater than the 40% minimum required margin, therefore, a pressure locking event will not prevent this value from performing its design function.							
IX.	ATTACHMENTS	S					
	Telecopy from Dave Dwyer (Crane-Aloyco Valves) to Brian Bunte (ComEd) dated 5/3/95, Page A-1.						
	Telecopy from Bruce Harry (Crane-Aloyco Valves) to Brian Bunte (ComEd) dated 6/16/95, Page A-2.						
	VOTES Test 12,	1-1001-29A, dated 11/	11/93, j	pages B-1 a	nd B-2.		
					• .		
	• • •						
·							
	• .						
REVISIO	ON NO.	0					

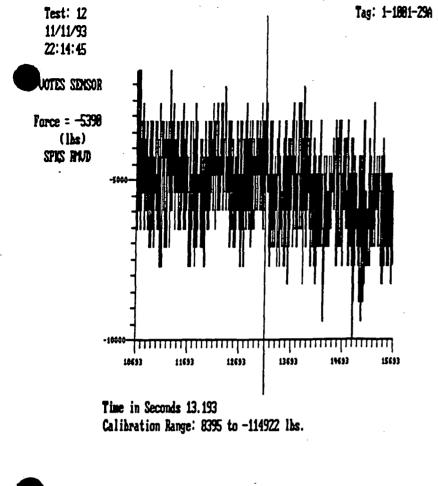
(FINAL)

CRANE VALVES Nuclear Operations


FAX TRANSMITTAL

		PHONE			•
		PHONE			
UBJECT	DISC. DI	Mends/cons	an antropy n	DATE	3/3/35
EFFRENCE	• · · • <u>;</u> · · • • • • • • • • • • • • • • • • •	·		TOTAL PAG	ES
ESSAGE	BRIAN T	HE Follow	NG MA	E APPRO	MATE
		DIMENSIONS			
		DISCO WE			
	• • •	ALC DIMO			
	512 E	HUB D	(D)	7 LATE لنم	HICKAE'SS (7
	ي وي وي منهو و ديد م مرجعه ال ميشد . معاد منه . م				MAX
	10	-2.5	••••••••••••••••••••••••••••••••••••••	1 5/16	2.
).					
	16	4,25	•••	2 1/16	3 1/6
	LINTE THICK	55 <u>15</u> 64	?E= 41 72-5-7		
· · · · · · · · · · · · · · · · · · ·				1	
'='	· · · · · · · · · · · · · · · · · · ·		•••••	ן דן	
	·····			REGAN	
	······		···· •·· •··	line !	
			Ait. Caic	I.D. <u>A</u> Shit . No. <u>202-120-1</u> 	4 Rsv

CRANE


CRANE VALVES NUCLEAR OPERATIONS TELECOPIER TRANSMITTAL 104 North Chicago Street, Joliet, IL 60431

DATE:	6-16-95	
TO:	BRIAN BUNTE	FROM: BRULE HARRY
TTTLE:	SR. ENG	TITLE: DEV. ENG.
COMPANY	EECO	
PHONE:	708-663-3824	PHONE:
FAX:	708-663-7181	FAX: (815) 727-4246
TOTAL PA	GES:/	•
SUBJE	CT! HUB DIM. FU	10" AND 16" FIG- 783
	FLEXIBLE W	· · · · · · · · · · · · · · · · · · ·
THE	LENGTHS OF THE	FLEXIBLE WEDGE
		E 15/8" AND 27/16"
		" SIZES, RESPECTIVELY.
<u></u>		
		Alt. I.D. A Sit 2. of Calc. NoPS100-M- Rev
		0.76

witch Setting Open/Close..... 1.375/1.375 mit Switch Rotor Adjustment (Y/N)..... N 0 ow (gpm) Start/Finish.....: 7700/ stream Pressure (psi) Start/Finish..... 300 145/ wnstream Pressure (psi) Start/Finish...... 35/ 23 pneral Comments: 20740 VOTES SYSTEM 278101Q(A1098/A1009/A1009) U-CLAMP A1097 ON THREADS NSOR #A8487 STR -.282 UNSTR -450; VTC LC #2196, LVDT #6853; GAINS 1/5; 10 @ C14=1032 ft.lbs; C10=548; ATQ @ MAX=2333 ft.lbs. TQ @ VF = 656 ft-lbs 4 DISPLACEMENT=0.159 in; OAR IS NONLOCKING; NEW T.S.; 4 ROTOR LS W/OPN BYPASS Valve Information Valve Actuator Actuator Motor ant: QUAD CITIES Actuator Type ..: LIMITORQ Voltage Type: AC it.: DP1 Size....: SMB-4 Volts....: 460 Max Thrust Rate: 275000 lbs g Number....: 1-1001-29A Amp rating..: 25.70 amps Serial #....: 95536A pe....: GATE Nom. Speed..: 3600.00 rpm ≵e....: 16" Order #....: 332682A Start torque: 150.00 ft-lb Worm Gear Teeth: 19 50000 lbs Run Torque..: 30.00 ft-1b get Thrust...: entation....: HORIZ Gear Ratio....: 46.1 Horse Power .: 20.00 h.p. Spring Pack 🖸 }ation....: TOP OF TORUS 1301-211 Am Material...: 17-455 m Diameter...: 3.000 inches eads per Inch: 4.00 eads per Rev.: 2 oisson Ratio.: 106.0 x 10E6 psi ial #..: A8487 Signal Conditioner Calibration Due Date 02/26/94 ltivity 1.873E-0003 $\mu v / v / lb$ Luad Cell Offset: -28.72 ft-lbs LVDT Offset: -0.02 in. Att. I.D. Calc. No.QD

A.

		, .
c Switch Setting Open/Close	: 1.375/1.375	
, imit Switch Rotor Adjustment (Y/N)	N	
<pre>>low (gpm) Start/Finish</pre>		
pstream Pressure (psi) Start/Finish		
<pre>>ownstream Pressure (psi) Start/Finish >eneral Comments:</pre>		
00740 VOTES SYSTEM 278101Q(A1098/A100	9/A1009) U-CLAMP A1097 ON THRE	ADS
ENSOR #A8487 STR 282 UNSTR -450; VTC	LC #2196, LVDT #6853; GAINS 1	/5;
TQ @ C14=1032 ft.1bs; C10=548; ATQ @ 1	MAX=2333 ft.1bs. TQ @ VF = 650	6 ft-lbs
14 DISPLACEMENT=0.159 in; OAR IS NONL	OCKING; NEW T.S.; 4 ROTOR LS W	OPN BYPASS
Valve Information	Valve Actuator	Actuator Motor
Jant: QUAD CITIES	Actuator Type: LIMITORQ	Voltage Type: AC
pit.: DP1	Size SMB-4	Volts: 460
ag Number: 1-1001-29A	Max Thrust Rate: 275000 lbs	Amp rating: 25.70 amps
∦pe: GATE	Serial #: 95536A	Nom. Speed: 3600.00 rpm
ize 16"	Order #: 332682A	Start torque: 150.00 ft-lb
arget Thrust: 50000 lbs	Worm Gear Teeth: 19	Run Torque: 30.00 ft-1b
rientation: HORIZ	Gear Ratio: 46.1	Horse Power.: 20.00 h.p.
<pre>pcation: TOP OF TORUS</pre>	Spring Pack # 1301-211	
tem Material: 17-4SS		
tem Diameter: 3.000 inches		
hreads per Inch: 4.00		
preads per Rev.: 2		<i>,</i>
Poisson Ratio.: 106.0 x 10E6 psi		
rial #: A8487	Signal Conditioner Calibration	Due Date 02/26/94
maitivity 1.873E-0003 μ v/v/lb	The second se	(TINAL)
^{AC} Load Cell Offset: -28.72 ft-lbs	Att. I.D. B	Sint Zni Z
C LVDT Offset: -0.02 in.	Calc. No. 224-1	an M Roy
· · ·		
	00'	10

۰.