

Alex L. Javorik Vice President, Engineering P.O. Box 968, Mail Drop PE04 Richland, WA 99352-0968 Ph. 509-377-8555 F. 509-377-2354 aljavorik@energy-northwest.com

> 10 CFR 50.90 10 CFR 50.55a

July 5, 2017 GO2-17-124

U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555-0001

SUBJECT: COLUMBIA GENERATING STATION, DOCKET NO. 50-397 FINAL TECHNICAL SPECIFICATION MARKUP AND CLEAN PAGES FOR APPLICATION TO REVISE TECHNICAL SPECIFICATIONS TO ADOPT TSTF-545, REVISION 3

Reference: Letter A.L. Javorik, Energy Northwest to NRC, "Application To Revise Technical Specifications To Adopt TSTF-545, Revision 3," GO2-16-076, (ADAMS Accession No. ML16196A419), Dated July 14, 2016.

Dear Sir or Madam:

By the referenced letter, Energy Northwest submitted for approval the License Amendment Request (LAR) to adopt TSTF-545, Revision 3.

This letter transmits the final markup and clean pages of the Technical Specifications (TS) for the LAR referenced above. This final set of markup and clean TS pages supersedes all other previously submitted markup and clean TS pages for this LAR. Attachment 1 contains the markup pages of the TS. Attachment 2 contains the clean pages of the TS.

All TS pages made obsolete by implementation of License Amendment 226 remain retained in the Columbia TS. These obsolete pages will be deleted under a separate LAR with a projected submission date of November 30, 2017.

The No Significant Hazards Consideration Determination (NSHCD) provided in the original submittal is not altered by this submittal. This letter and its attachment contain no regulatory commitments.

If you should have any questions regarding this submittal, please contact Ms. L. L. Williams, Licensing Supervisor, at 509-377-8148.

GO2-17-124

Page 2 of 2

I declare under penalty of perjury that the foregoing is true and correct.

Executed on this 5^{th} day of July, 2017.

Respectfully,

A. L. Javorik Vice President, Engineering

Attachments: As stated

cc: NRC Region IV Administrator NRC NRR Project Manager NRC Sr. Resident Inspector - 988C CD Sonoda - BPA - 1399 (w/o enclosures) WA Horin - Winston & Strawn (email) RR Cowley - WDOH (email) EFSECutc.wa.gov-- EFSEC (email) TECHNICAL SPECIFICATIONS CHANGES (MARK-UPS)

1.1 Definitions

INSERVICE TESTING PROGRAM The INSERVICE TESTING PROGRAM is the licensee program that fulfills the requirements of 10 CFR 50.55a(f). ISOLATION SYSTEM RESPONSE TIME The ISOLATION SYSTEM RESPONSE TIME shall be that time interval from when the monitored parameter exceeds its isolation valves travel to their required positions. The response time may be measured by means of any series of sequential, overlapping, or total steps so that the entire response time is measured. LEAKAGE LEAKAGE shall be: a. Identified LEAKAGE 1. LEAKAGE into the drywell such as that from purn seals or valve packing, that is captured and conducted to a sump or collecting tank; or 2. LEAKAGE into the drywell such as that from purn seals or valve packing, that is captured and known either not to interfere with the operation of leakage detection systems or not to be pressure boundary LEAKAGE; b. Unidentified LEAKAGE All LEAKAGE into the drywell that is not identified LEAKAGE; c. Total LEAKAGE Sum of the identified and unidentified LEAKAGE; and d. Pressure Boundary LEAKAGE LEAKAGE through a nonisolable fault in a Reactor Coalust System (PCS)	END OF CYCLE RECIRCULATION PUMP TRIP (EOC-RPT) SYSTEM RESPONSE TIME	The EOC-RPT SYSTEM RESPONSE TIME shall be that time interval from initial signal generation by the associated turbine throttle valve limit switch or from when the turbine governor valve hydraulic control oil pressure drops below the pressure switch setpoint to complete suppression of the electric arc between the fully open contacts of the recirculation pump circuit breaker. The response time may be measured by means of any series of sequential, overlapping, or total steps so that the entire response time is measured.		
ISOLATION SYSTEM The ISOLATION SYSTEM RESPONSE TIME shall be that time interval from when the monitored parameter exceeds its isolation initiation setpoint at the channel sensor until the isolation valves travel to their required positions. The response time may be measured by means of any series of sequential, overlapping, or total steps so that the entire response time is measured. LEAKAGE LEAKAGE shall be: a. Identified LEAKAGE 1. LEAKAGE into the drywell such as that from purn seals or valve packing, that is captured and conducted to a sump or collecting tank; or 2. LEAKAGE into the drywell atmosphere from sources that are both specifically located and known either not to interfere with the operation of leakage detection systems or not to be pressure boundary LEAKAGE; b. Unidentified LEAKAGE All LEAKAGE C. Total LEAKAGE Sum of the identified and unidentified LEAKAGE; and d. Pressure Boundary LEAKAGE LEAKAGE through a nonisolable fault in a Reactor Context System (PCR) accenter body price were local for the dry well be and in a result or context body price were local for the dry body price were local to be detected by the detection systems or not to be pressure boundary LEAKAGE;	INSERVICE TESTING PROGRAM	The prog	INSEF ram th	RVICE TESTING PROGRAM is the licensee at fulfills the requirements of 10 CFR 50.55a(f).
LEAKAGE LEAKAGE shall be: a. Identified LEAKAGE 1. LEAKAGE into the drywell such as that from purr seals or valve packing, that is captured and conducted to a sump or collecting tank; or 2. LEAKAGE into the drywell atmosphere from sources that are both specifically located and known either not to interfere with the operation of leakage detection systems or not to be pressure boundary LEAKAGE; b. Unidentified LEAKAGE All LEAKAGE into the drywell that is not identified LEAKAGE; c. Total LEAKAGE Sum of the identified and unidentified LEAKAGE; and d. Pressure Boundary LEAKAGE LEAKAGE through a nonisolable fault in a Reactor Coolant System (PCS) component body piece will or	ISOLATION SYSTEM RESPONSE TIME	The ISOLATION SYSTEM RESPONSE TIME shall be that time interval from when the monitored parameter exceeds its isolation initiation setpoint at the channel sensor until the isolation valves travel to their required positions. The response time may be measured by means of any series of sequential, overlapping, or total steps so that the entire response time is measured.		
 a. Identified LEAKAGE 1. LEAKAGE into the drywell such as that from purn seals or valve packing, that is captured and conducted to a sump or collecting tank; or 2. LEAKAGE into the drywell atmosphere from sources that are both specifically located and known either not to interfere with the operation of leakage detection systems or not to be pressure boundary LEAKAGE; b. Unidentified LEAKAGE All LEAKAGE into the drywell that is not identified LEAKAGE; C. Total LEAKAGE Sum of the identified and unidentified LEAKAGE; and d. Pressure Boundary LEAKAGE LEAKAGE through a nonisolable fault in a Reactor Coolant System (PCS) component body pinc wall are 	LEAKAGE	LEA	KAGE	shall be:
 LEAKAGE into the drywell such as that from pum seals or valve packing, that is captured and conducted to a sump or collecting tank; or LEAKAGE into the drywell atmosphere from sources that are both specifically located and known either not to interfere with the operation of leakage detection systems or not to be pressure boundary LEAKAGE; Unidentified LEAKAGE All LEAKAGE into the drywell that is not identified LEAKAGE; Total LEAKAGE Sum of the identified and unidentified LEAKAGE; and Pressure Boundary LEAKAGE LEAKAGE through a nonisolable fault in a Reactor Coolant System (PCS) component body, ping well or 		a.	<u>Ident</u>	ified LEAKAGE
 2. LEAKAGE into the drywell atmosphere from sources that are both specifically located and known either not to interfere with the operation of leakage detection systems or not to be pressure boundary LEAKAGE; b. Unidentified LEAKAGE All LEAKAGE into the drywell that is not identified LEAKAGE; c. Total LEAKAGE Sum of the identified and unidentified LEAKAGE; and d. Pressure Boundary LEAKAGE LEAKAGE through a nonisolable fault in a Reactor Coolant System (PCS) component body, pipe well, or 			1.	LEAKAGE into the drywell such as that from pump seals or valve packing, that is captured and conducted to a sump or collecting tank; or
 b. Unidentified LEAKAGE All LEAKAGE into the drywell that is not identified LEAKAGE; c. Total LEAKAGE Sum of the identified and unidentified LEAKAGE; and d. Pressure Boundary LEAKAGE LEAKAGE through a nonisolable fault in a Reactor Coolant System (PCS) component body, pine well, or 			2.	LEAKAGE into the drywell atmosphere from sources that are both specifically located and known either not to interfere with the operation of leakage detection systems or not to be pressure boundary LEAKAGE;
All LEAKAGE into the drywell that is not identified LEAKAGE; c. <u>Total LEAKAGE</u> Sum of the identified and unidentified LEAKAGE; and d. <u>Pressure Boundary LEAKAGE</u> LEAKAGE through a nonisolable fault in a Reactor		b.	<u>Unide</u>	entified LEAKAGE
 c. <u>Total LEAKAGE</u> Sum of the identified and unidentified LEAKAGE; and d. <u>Pressure Boundary LEAKAGE</u> LEAKAGE through a nonisolable fault in a Reactor Coolant System (PCS) component body, ping well, or 			Ali Le Leam	EAKAGE into the drywell that is not identified (AGE;
Sum of the identified and unidentified LEAKAGE; and d. <u>Pressure Boundary LEAKAGE</u> LEAKAGE through a nonisolable fault in a Reactor		C.	<u>Total</u>	LEAKAGE
d. <u>Pressure Boundary LEAKAGE</u> LEAKAGE through a nonisolable fault in a Reactor			Sum	of the identified and unidentified LEAKAGE; and
LEAKAGE through a nonisolable fault in a Reactor		d.	Press	sure Boundary LEAKAGE
vessel wall.			LEAK Coola vessa	AGE through a nonisolable fault in a Reactor ant System (RCS) component body, pipe wall, or el wall.

	SURVEILLANCE	FREQUENCY
SR 3.1.7.6	Verify each pump develops a flow rate \ge 41.2 gpm at a discharge pressure \ge 1220 psig.	In accordance with the Inservice Testing Program INSERVICE TESTING PROGRAM
SR 3.1.7.7	Verify flow through one SLC subsystem from pump into reactor pressure vessel.	In accordance with the Surveillance Frequency Control Program
SR 3.1.7.8	Verify all heat traced piping between storage tank and pump suction valve is unblocked.	In accordance with the Surveillance Frequency Control Program <u>AND</u> Once within 24 hours after solution temperature is restored within the limits of Figure 3.1.7-1
SR 3.1.7.9	Verify sodium pentaborate enrichment is \ge 44.0 atom percent B-10.	Prior to addition to SLC Tank

3.4 REACTOR COOLANT SYSTEM (RCS)

- 3.4.3 Safety/Relief Valves (SRVs) ≥ 25% RTP
- LCO 3.4.3 The safety function of 12 SRVs shall be OPERABLE, with two SRVs in the lowest two lift setpoint groups OPERABLE.

APPLICABILITY: THERMAL POWER \geq 25% RTP.

ACTIONS

CONDITION		REQUIRED ACTION	COMPLETION TIME
A. One or more required SRVs inoperable.	A.1	Reduce THERMAL POWER to < 25% RTP.	4 hours

SURVEILLANCE		FREQUENCY	
SR 3.4.3.1	Verify the safety function lift setpoints of the required SRVs are as follows:		In accordance with the Inservice
	Number of	Setpoint	INSERVICE
		(nsig)	TESTING
	01113	<u>(bsig)</u>	PROGRAM
	2	1165 + 34.9	
	_	- 58.2	
	4	1175 + 35.2	
		- 58.7	
	4	1185 + 35.5	
		- 59.2	
	4	1195 + 35.8	
		- 59.7	
	4	1205 ± 36.1	
		- 60.2	
	Following testing, lif	t settings shall be within <u>+</u> 3%.	

SURVEILLANCE			FREQUENCY
SR 3.4.4.1	Verify the safety function lift setpoints of the required SRVs are as follows:		In accordance with the Inservice
	Number of <u>SRVs</u>	Setpoint <u>(psig)</u>	INSERVICE TESTING PROGRAM
	2 4	1165 + 34.9 - 58.2 1175 + 35.2	
	4	- 58.7 1185 + 35.5 - 59.2 1105 + 35.8	
	4	- 59.7 1205 ± 36.1 - 60.2	
	Following testing, lift	settings shall be within <u>+</u> 3%.	
SR 3.4.4.2	NOTENOTE Not required to be performed until 12 hours after reactor steam pressure and flow are adequate to perform the test.		
	Verify each required S actuated.	SRV opens when manually	In accordance with the Surveillance Frequency Control Program

ACTIONS

CONDITION		REQUIRED ACTION	COMPLETION TIME
 Required Action and associated Completion Time not met. 	В.1 <u>AND</u>	Be in MODE 3.	12 hours
	B.2	Be in MODE 4.	36 hours

	SURVEILLANCE	FREQUENCY
SR 3.4.6.1	NOTE Only required to be performed in MODES 1 and 2. 	In accordance with Inservice Testing Program the INSERVICE TESTING PROGRAM

	S			FREQUENCY
SR 3.5.1.1	Verify, fo the piping discharge	Verify, for each ECCS injection/spray subsystem, the piping is filled with water from the pump discharge valve to the injection valve.		
SR 3.5.1.2	Low pres may be c and oper steam do if capable otherwise	NOTE sure coolant injectio considered OPERAB ation for decay heat ome pressure less th e of being manually e inoperable.		
	Verify ea manual, ı flow path secured i	ch ECCS injection/s power operated, and , that is not locked, s in position, is in the o	pray subsystem I automatic valve in the sealed, or otherwise correct position.	In accordance with the Surveillance Frequency Control Program
SR 3.5.1.3	Verify AD system a ≥ 2200 ps	OS accumulator back verage pressure in t sig.	In accordance with the Surveillance Frequency Control Program	
SR 3.5.1.4	Verify ea rate with reactor a <u>SYSTEM</u>	ch ECCS pump devente the specified differe nd suction source.	elops the specified flow ntial pressure between DIFFERENTIAL PRESSURE BETWEEN REACTOR AND SUCTION SOURCE	In accordance with the Inservice Testing Program INSERVICE TESTING PROGRAM
	LPCS LPCI HPCS	≥ 6200 gpm ≥ 7200 gpm ≥ 6350 gpm	 ≥ 128 psid ≥ 26 psid ≥ 200 psid 	

	S	SURVEILLANCE		FREQUENCY
SR 3.5.2.3	Verify, fo subsyste pump dis	r each required ECC m, the piping is filled scharge valve to the i	S injection/spray with water from the injection valve.	In accordance with the Surveillance Frequency Control Program
SR 3.5.2.4	One low subsyste alignmen capable otherwise	pressure coolant inje m may be considere at and operation for d of being manually rea e inoperable.	ection (LPCI) d OPERABLE during lecay heat removal, if aligned and not	
	Verify ea subsyste valve in t otherwise position.	ch required ECCS in m manual, power op he flow path, that is e secured in position	ijection/spray erated, and automatic not locked, sealed, or , is in the correct	In accordance with the Surveillance Frequency Control Program
SR 3.5.2.5	Verify ea specified pressure	ch required ECCS p flow rate with the sp between reactor and	ump develops the becified differential d suction source. DIFFERENTIAL PRESSURE BETWEEN BETWEEN	In accordance with the Inservice Testing Program INSERVICE TESTING PROGRAM
	<u>SYSTEM</u>	FLOW RATE	SUCTION SOURCE	
	LPCS LPCI HPCS	≥ 6200 gpm ≥ 7200 gpm ≥ 6350 gpm	≥ 128 psid ≥ 26 psid ≥ 200 psid	

	SURVEILLANCE	FREQUENCY
SR 3.6.1.3.3	 NOTESNOTES 1. Valves and blind flanges in high radiation areas may be verified by use of administrative means. 2. Not required to be met for PCIVs that are open under administrative controls. 	
	Verify each primary containment isolation manual valve and blind flange that is located inside primary containment and not locked, sealed, or otherwise secured and is required to be closed during accident conditions is closed.	Prior to entering MODE 2 or 3 from MODE 4 if primary containment was de-inerted while in MODE 4, if not performed within the previous 92 days
SR 3.6.1.3.4	Verify continuity of the traversing incore probe (TIP) shear isolation valve explosive charge.	In accordance with the Surveillance Frequency Control Program
SR 3.6.1.3.5	Verify the isolation time of each power operated, automatic PCIV, except for MSIVs, is within limits.	In accordance with the Inservice Testing Program INSERVICE TESTING PROGRAM
SR 3.6.1.3.6	Verify the isolation time of each MSIV is \geq 3 seconds and \leq 5 seconds.	In accordance with the Inservice Testing Program INSERVICE TESTING PROGRAM

	SURVEILLANCE	FREQUENCY
SR 3.6.1.3.7	Verify each automatic PCIV actuates to the isolation position on an actual or simulated isolation signal.	In accordance with the Surveillance Frequency Control Program
SR 3.6.1.3.8	Verify a representative sample of reactor instrument line EFCVs actuate to the isolation position on an actual or simulated instrument line break signal.	In accordance with the Surveillance Frequency Control Program
SR 3.6.1.3.9	Remove and test the explosive squib from each shear isolation valve of the TIP System.	In accordance with the Surveillance Frequency Control Program
SR 3.6.1.3.10	Verify the combined leakage rate for all secondary containment bypass leakage paths is $\leq 0.04\%$ primary containment volume/day when pressurized to $\geq P_a$.	In accordance with the Primary Containment Leakage Rate Testing Program
SR 3.6.1.3.11	Verify leakage rate through each MSIV is \leq 16.0 scfh when tested at \geq 25.0 psig.	In accordance with the Primary Containment Leakage Rate Testing Program
SR 3.6.1.3.12	Verify combined leakage rate through hydrostatically tested lines that penetrate the primary containment is within limits.	In accordance with the Primary Containment Leakage Rate Testing Program

CONDITION	REQUIRED ACTION	COMPLETION TIME
E. Two or more lines with one or more reactor building-to-suppression chamber vacuum breakers inoperable for opening.	E.1 Restore all vacuum breakers in two lines to OPERABLE status.	1 hour
F. Required Action and associated Completion Time of Condition A, B or E not met.	F.1Be in MODE 3.ANDF.2Be in MODE 4.	12 hours 36 hours

ACTIONS

	SURVEILLANCE						
SR 3.6.1.6.1	 NOTES	In accordance with the Surveillance Frequency Control Program					
SR 3.6.1.6.2	Perform a functional test of each vacuum breaker.	In accordance with the Inservice Testing Program INSERVICE TESTING PROGRAM					

	FREQUENCY	
SR 3.6.2.3.1	Verify each RHR suppression pool cooling subsystem manual, power operated, and automatic valve in the flow path that is not locked, sealed, or otherwise secured in position, is in the correct position or can be aligned to the correct position.	In accordance with the Surveillance Frequency Control Program
SR 3.6.2.3.2	Verify each RHR pump develops a flow rate ≥ 7100 gpm through the associated heat exchanger while operating in the suppression pool cooling mode.	In accordance with the Inservice Testing Program INSERVICE TESTING PROGRAM

	FREQUENCY				
SR 3.6.4.2.1	 SR 3.6.4.2.1NOTES				
	Verify each secondary containment isolation manual valve and blind flange that is not locked, sealed, or otherwise secured, and is required to be closed during accident conditions is closed.	In accordance with the Surveillance Frequency Control Program			
SR 3.6.4.2.2	Verify the isolation time of each power operated, automatic SCIV is within limits.	In accordance with the Inservice Testing Program INSERVICE TESTING PROGRAM			
SR 3.6.4.2.3	Verify each automatic SCIV actuates to the isolation position on an actual or simulated automatic isolation signal.	In accordance with the Surveillance Frequency Control Program			

5.5 Programs and Manuals

5.5.5 <u>Component Cyclic or Transient Limit</u>

This program provides controls to track the FSAR, Table 3.9-1, Note 1, cyclic and transient occurrences to ensure that components are maintained within the design limits.

5.5.6 Deleted Inservice Testing Program

This program provides controls for inservice testing of ASME Code Class 1, 2, and 3 pumps and valves.

a. Testing Frequencies applicable to the ASME Code for Operations and Maintenance of Nuclear Power Plants (ASME OM Code) and applicable Addenda as follows:

ASME OM Code and applicable	Required Frequencies for
Addenda	performing
terminology for	inservice
inservice testing	testing
activities	activities
Weekly	At least once per 7 days
Monthly	At least once per 31 days
Quarterly or every 3 months	At least once per 92 days
Semiannually or every 6 months	At least once per 184 days
Every 9 months	At least once per 276 days
Yearly or annually	At least once per 366 days
Biennially or every 2 years	At least once per 731 days

b. The provisions of SR 3.0.2 are applicable to the above required
 Frequencies and to other normal and accelerated Frequencies specified as
 2 years or less in the Inservice Testing Program for performing inservice testing activities;

c. The provisions of SR 3.0.3 are applicable to inservice testing activities; and

d. Nothing in the ASME OM Code shall be construed to supersede the requirements of any TS.

TECHNICAL SPECIFICATIONS CLEAN PAGES

1.1 Definitions

INSERVICE TESTING PROGRAM The INSERVICE TESTING PROGRAM is the licensee program that fulfills the requirements of 10 CFR 50.55a(f). ISOLATION SYSTEM RESPONSE TIME The ISOLATION SYSTEM RESPONSE TIME shall be that time interval from when the monitored parameter exceeds its isolation initiation setpoint at the channel sensor until the isolation valves travel to their required positions. The response time may be measured by means of any series of sequential, overlapping, or total steps so that the entire response time is measured. LEAKAGE LEAKAGE shall be: a. Identified LEAKAGE 1. LEAKAGE into the drywell such as that from pur seals or valve packing, that is captured and conducted to a sump or collecting tank; or 2. LEAKAGE into the drywell atmosphere from sources that are both specifically located and known either not to interfere with the operation of leakage detection systems or not to be pressure boundary LEAKAGE; b. Unidentified LEAKAGE All LEAKAGE into the drywell that is not identified LEAKAGE; c. Total LEAKAGE LEAKAGE d. Pressure Boundary LEAKAGE LEAKAGE LEAKAGE through a nonisolable fault in a Reactor Coolant System (RCS) component body, pine wall, or	END OF CYCLE RECIRCULATION PUMP TRIP (EOC-RPT) SYSTEM RESPONSE TIME	The EOC-RPT SYSTEM RESPONSE TIME shall be that time interval from initial signal generation by the associated turbine throttle valve limit switch or from when the turbine governor valve hydraulic control oil pressure drops below the pressure switch setpoint to complete suppression of the electric arc between the fully open contacts of the recirculation pump circuit breaker. The response time may be measured by means of any series of sequential, overlapping, or total steps so that the entire response time is measured.		
ISOLATION SYSTEM The ISOLATION SYSTEM RESPONSE TIME shall be that Time time interval from when the monitored parameter exceeds its isolation initiation setpoint at the channel sensor until the isolation initiation setpoint at the channel sensor until the isolation valves travel to their required positions. The response time may be measured by means of any series of sequential, overlapping, or total steps so that the entire response time is measured. LEAKAGE LEAKAGE shall be: a. Identified LEAKAGE 1. LEAKAGE into the drywell such as that from purr seals or valve packing, that is captured and conducted to a sump or collecting tank; or 2. LEAKAGE into the drywell atmosphere from sources that are both specifically located and known either not to interfere with the operation of leakage detection systems or not to be pressure boundary LEAKAGE; b. Unidentified LEAKAGE All LEAKAGE into the drywell that is not identified LEAKAGE; c. Total LEAKAGE Sum of the identified and unidentified LEAKAGE; and d. Pressure Boundary LEAKAGE LEAKAGE through a nonisolable fault in a Reactor Coolant System (RCS) component body, pipe wall, or	INSERVICE TESTING PROGRAM	The l progi	NSEF ram th	RVICE TESTING PROGRAM is the licensee at fulfills the requirements of 10 CFR 50.55a(f).
LEAKAGE LEAKAGE shall be: a. Identified LEAKAGE 1. LEAKAGE into the drywell such as that from purr seals or valve packing, that is captured and conducted to a sump or collecting tank; or 2. LEAKAGE into the drywell atmosphere from sources that are both specifically located and known either not to interfere with the operation of leakage detection systems or not to be pressure boundary LEAKAGE; b. Unidentified LEAKAGE All LEAKAGE into the drywell that is not identified LEAKAGE; c. Total LEAKAGE Sum of the identified and unidentified LEAKAGE; and d. Pressure Boundary LEAKAGE LEAKAGE through a nonisolable fault in a Reactor Coolant System (RCS) component body, pipe wall, or	ISOLATION SYSTEM RESPONSE TIME	The ISOLATION SYSTEM RESPONSE TIME shall be that time interval from when the monitored parameter exceeds its isolation initiation setpoint at the channel sensor until the isolation valves travel to their required positions. The response time may be measured by means of any series of sequential, overlapping, or total steps so that the entire response time is measured.		
 a. <u>Identified LEAKAGE</u> 1. LEAKAGE into the drywell such as that from purr seals or valve packing, that is captured and conducted to a sump or collecting tank; or 2. LEAKAGE into the drywell atmosphere from sources that are both specifically located and known either not to interfere with the operation of leakage detection systems or not to be pressure boundary LEAKAGE; b. <u>Unidentified LEAKAGE</u> All LEAKAGE into the drywell that is not identified LEAKAGE; c. <u>Total LEAKAGE</u> Sum of the identified and unidentified LEAKAGE; and d. <u>Pressure Boundary LEAKAGE</u> LEAKAGE through a nonisolable fault in a Reactor Coolant System (RCS) component body, pipe wall, or 	LEAKAGE	LEAKAGE shall be:		shall be:
 LEAKAGE into the drywell such as that from pum seals or valve packing, that is captured and conducted to a sump or collecting tank; or LEAKAGE into the drywell atmosphere from sources that are both specifically located and known either not to interfere with the operation of leakage detection systems or not to be pressure boundary LEAKAGE; Unidentified LEAKAGE All LEAKAGE into the drywell that is not identified LEAKAGE; Total LEAKAGE Sum of the identified and unidentified LEAKAGE; and Pressure Boundary LEAKAGE LEAKAGE through a nonisolable fault in a Reactor Coolant System (RCS) component body, pipe wall, or 		a.	<u>Ident</u>	ified LEAKAGE
 LEAKAGE into the drywell atmosphere from sources that are both specifically located and known either not to interfere with the operation of leakage detection systems or not to be pressure boundary LEAKAGE; Unidentified LEAKAGE All LEAKAGE into the drywell that is not identified LEAKAGE; Total LEAKAGE Sum of the identified and unidentified LEAKAGE; and Pressure Boundary LEAKAGE LEAKAGE through a nonisolable fault in a Reactor Coolant System (RCS) component body, pipe wall, or 			1.	LEAKAGE into the drywell such as that from pump seals or valve packing, that is captured and conducted to a sump or collecting tank; or
 b. <u>Unidentified LEAKAGE</u> All LEAKAGE into the drywell that is not identified LEAKAGE; c. <u>Total LEAKAGE</u> Sum of the identified and unidentified LEAKAGE; and d. <u>Pressure Boundary LEAKAGE</u> LEAKAGE through a nonisolable fault in a Reactor Coolant System (RCS) component body, pipe wall, or 			2.	LEAKAGE into the drywell atmosphere from sources that are both specifically located and known either not to interfere with the operation of leakage detection systems or not to be pressure boundary LEAKAGE;
All LEAKAGE into the drywell that is not identified LEAKAGE; c. <u>Total LEAKAGE</u> Sum of the identified and unidentified LEAKAGE; and d. <u>Pressure Boundary LEAKAGE</u> LEAKAGE through a nonisolable fault in a Reactor Coolant System (RCS) component body, pipe wall, or		b.	<u>Unide</u>	entified LEAKAGE
 c. <u>Total LEAKAGE</u> Sum of the identified and unidentified LEAKAGE; and d. <u>Pressure Boundary LEAKAGE</u> LEAKAGE through a nonisolable fault in a Reactor Coolant System (RCS) component body, pipe wall, or 			Ali Le Leam	EAKAGE into the drywell that is not identified (AGE;
Sum of the identified and unidentified LEAKAGE; and d. <u>Pressure Boundary LEAKAGE</u> LEAKAGE through a nonisolable fault in a Reactor Coolant System (RCS) component body, pipe wall, or		C.	<u>Total</u>	LEAKAGE
d. <u>Pressure Boundary LEAKAGE</u> LEAKAGE through a nonisolable fault in a Reactor Coolant System (RCS) component body, pipe wall, or			Sum	of the identified and unidentified LEAKAGE; and
LEAKAGE through a nonisolable fault in a Reactor Coolant System (RCS) component body, pipe wall, or		d.	Press	sure Boundary LEAKAGE
vessel wall.			LEAK Coola vesse	AGE through a nonisolable fault in a Reactor ant System (RCS) component body, pipe wall, or el wall.

	FREQUENCY	
SR 3.1.7.6	Verify each pump develops a flow rate \ge 41.2 gpm at a discharge pressure \ge 1220 psig.	In accordance with the INSERVICE TESTING PROGRAM
SR 3.1.7.7	Verify flow through one SLC subsystem from pump into reactor pressure vessel.	In accordance with the Surveillance Frequency Control Program
SR 3.1.7.8	Verify all heat traced piping between storage tank and pump suction valve is unblocked.	In accordance with the Surveillance Frequency Control Program <u>AND</u> Once within 24 hours after solution temperature is restored within the limits of Figure 3.1.7-1
SR 3.1.7.9	Verify sodium pentaborate enrichment is \ge 44.0 atom percent B-10.	Prior to addition to SLC Tank

3.4 REACTOR COOLANT SYSTEM (RCS)

- 3.4.3 Safety/Relief Valves (SRVs) ≥ 25% RTP
- LCO 3.4.3 The safety function of 12 SRVs shall be OPERABLE, with two SRVs in the lowest two lift setpoint groups OPERABLE.

APPLICABILITY: THERMAL POWER \geq 25% RTP.

ACTIONS

CONDITION		REQUIRED ACTION	COMPLETION TIME
A. One or more required SRVs inoperable.	A.1	Reduce THERMAL POWER to < 25% RTP.	4 hours

	FREQUENCY		
SR 3.4.3.1	Verify the safety function lift setpoints of the required SRVs are as follows: Number of Setpoint SRVs (psig)		In accordance with the INSERVICE TESTING PROGRAM
	2	1165 + 34.9	
	4	– 58.2 1175 + 35.2 – 58 7	
	4	1185 + 35.5 - 59.2	
	4	1195 + 35.8 - 59.7	
	4	1205 ± 36.1 - 60.2	
	Following testing, lift	settings shall be within <u>+</u> 3%.	

	FREQUENCY		
SR 3.4.4.1	3.4.4.1 Verify the safety function lift setpoints of the required SRVs are as follows:		
	Number of	Setpoint	
	SKVS	<u>(psig)</u>	PROGRAM
	2	1165 + 34.9 - 58.2	
	4	1175 + 35.2 - 58 7	
	4	1185 + 35.5	
	4	– 59.2 1195 + 35.8	
		- 59.7	
	4	1205 ± 36.1 - 60.2	
	Following testing, lift	settings shall be within <u>+</u> 3%.	
SR 3.4.4.2	Not required to be per reactor steam pressur perform the test.		
	Verify each required S actuated.	SRV opens when manually	In accordance with the Surveillance Frequency Control Program

ACTIONS

CONDITION	REQUIRED ACTION		COMPLETION TIME
 B. Required Action and associated Completion Time not met. 	В.1 <u>AND</u>	Be in MODE 3.	12 hours
	B.2	Be in MODE 4.	36 hours

	FREQUENCY	
SR 3.4.6.1	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	In accordance with the INSERVICE TESTING PROGRAM

	S	FREQUENCY		
SR 3.5.1.1	Verify, fo the piping discharge	r each ECCS injection g is filled with water f e valve to the injection	In accordance with the Surveillance Frequency Control Program	
SR 3.5.1.2	Low pres may be c and oper steam do if capable otherwise	sure coolant injectio considered OPERAB ation for decay heat ome pressure less th e of being manually i e inoperable.		
	Verify ea manual, j flow path secured i	ch ECCS injection/s power operated, and , that is not locked, s in position, is in the o	In accordance with the Surveillance Frequency Control Program	
SR 3.5.1.3	Verify AE system a ≥ 2200 p	OS accumulator back verage pressure in t sig.	In accordance with the Surveillance Frequency Control Program	
SR 3.5.1.4	Verify ea rate with reactor a <u>SYSTEM</u> LPCS	ch ECCS pump deve the specified different nd suction source. <u>FLOW RATE</u> ≥ 6200 gpm	In accordance with the INSERVICE TESTING PROGRAM	
	LPCI HPCS	≥ 7200 gpm ≥ 6350 gpm	≥ 26 psid≥ 200 psid	

	S	SURVEILLANCE		FREQUENCY
SR 3.5.2.3	Verify, fo subsyste pump dis	r each required ECC m, the piping is filled scharge valve to the i	S injection/spray with water from the njection valve.	In accordance with the Surveillance Frequency Control Program
SR 3.5.2.4	NOTE One low pressure coolant injection (LPCI) subsystem may be considered OPERABLE during alignment and operation for decay heat removal, if capable of being manually realigned and not otherwise inoperable.			
	Verify ea subsyste valve in t otherwise position.	ch required ECCS in m manual, power op he flow path, that is e secured in position	In accordance with the Surveillance Frequency Control Program	
SR 3.5.2.5	Verify each required ECCS pump develops the specified flow rate with the specified differential pressure between reactor and suction source. DIFFERENTIAL PRESSURE BETWEEN REACTOR AND SYSTEM FLOW RATE SUCTION SOURCE		In accordance with the INSERVICE TESTING PROGRAM	
	LPCS LPCI HPCS	≥ 6200 gpm ≥ 7200 gpm ≥ 6350 gpm	 ≥ 128 psid ≥ 26 psid ≥ 200 psid 	

	SURVEILLANCE	FREQUENCY
SR 3.6.1.3.3	 NOTESNOTES 1. Valves and blind flanges in high radiation areas may be verified by use of administrative means. 2. Not required to be met for PCIVs that are open under administrative controls. 	
	Verify each primary containment isolation manual valve and blind flange that is located inside primary containment and not locked, sealed, or otherwise secured and is required to be closed during accident conditions is closed.	Prior to entering MODE 2 or 3 from MODE 4 if primary containment was de-inerted while in MODE 4, if not performed within the previous 92 days
SR 3.6.1.3.4	Verify continuity of the traversing incore probe (TIP) shear isolation valve explosive charge.	In accordance with the Surveillance Frequency Control Program
SR 3.6.1.3.5	Verify the isolation time of each power operated, automatic PCIV, except for MSIVs, is within limits.	In accordance with the INSERVICE TESTING PROGRAM
SR 3.6.1.3.6	Verify the isolation time of each MSIV is ≥ 3 seconds and ≤ 5 seconds.	In accordance with the INSERVICE TESTING PROGRAM

	SURVEILLANCE	FREQUENCY
SR 3.6.1.3.7	Verify each automatic PCIV actuates to the isolation position on an actual or simulated isolation signal.	In accordance with the Surveillance Frequency Control Program
SR 3.6.1.3.8	Verify a representative sample of reactor instrument line EFCVs actuate to the isolation position on an actual or simulated instrument line break signal.	In accordance with the Surveillance Frequency Control Program
SR 3.6.1.3.9	Remove and test the explosive squib from each shear isolation valve of the TIP System.	In accordance with the Surveillance Frequency Control Program
SR 3.6.1.3.10	Verify the combined leakage rate for all secondary containment bypass leakage paths is $\leq 0.04\%$ primary containment volume/day when pressurized to $\geq P_a$.	In accordance with the Primary Containment Leakage Rate Testing Program
SR 3.6.1.3.11	Verify leakage rate through each MSIV is \leq 16.0 scfh when tested at \geq 25.0 psig.	In accordance with the Primary Containment Leakage Rate Testing Program
SR 3.6.1.3.12	Verify combined leakage rate through hydrostatically tested lines that penetrate the primary containment is within limits.	In accordance with the Primary Containment Leakage Rate Testing Program

CONDITION	REQUIRED ACTION	COMPLETION TIME
E. Two or more lines with one or more reactor building-to-suppression chamber vacuum breakers inoperable for opening.	E.1 Restore all vacuum breakers in two lines to OPERABLE status.	1 hour
F. Required Action and associated Completion Time of Condition A, B or E not met.	F.1Be in MODE 3.ANDF.2Be in MODE 4.	12 hours 36 hours

ACTIONS

	SURVEILLANCE	FREQUENCY	
SR 3.6.1.6.1	 Not required to be met for vacuum breakers that are open during Surveillances. Not required to be met for vacuum breakers open when performing their intended function. Verify each vacuum breaker is closed. 	In accordance with the Surveillance Frequency	
SR 3.6.1.6.2	Perform a functional test of each vacuum breaker.	In accordance with the INSERVICE TESTING PROGRAM	

	SURVEILLANCE	FREQUENCY
SR 3.6.2.3.1	Verify each RHR suppression pool cooling subsystem manual, power operated, and automatic valve in the flow path that is not locked, sealed, or otherwise secured in position, is in the correct position or can be aligned to the correct position.	In accordance with the Surveillance Frequency Control Program
SR 3.6.2.3.2	Verify each RHR pump develops a flow rate ≥ 7100 gpm through the associated heat exchanger while operating in the suppression pool cooling mode.	In accordance with the INSERVICE TESTING PROGRAM

	SURVEILLANCE	FREQUENCY
SR 3.6.4.2.1	 NOTESNOTES 1. Valves and blind flanges in high radiation areas may be verified by use of administrative controls. 2. Not required to be met for SCIVs that are open under administrative controls. 	
	Verify each secondary containment isolation manual valve and blind flange that is not locked, sealed, or otherwise secured, and is required to be closed during accident conditions is closed.	In accordance with the Surveillance Frequency Control Program
SR 3.6.4.2.2	Verify the isolation time of each power operated, automatic SCIV is within limits.	In accordance with the INSERVICE TESTING PROGRAM
SR 3.6.4.2.3	Verify each automatic SCIV actuates to the isolation position on an actual or simulated automatic isolation signal.	In accordance with the Surveillance Frequency Control Program

5.5 Programs and Manuals

5.5.5 <u>Component Cyclic or Transient Limit</u>

This program provides controls to track the FSAR, Table 3.9-1, Note 1, cyclic and transient occurrences to ensure that components are maintained within the design limits.

5.5.6 Deleted